JP7460904B2 - Manufacturing method of rare earth magnet powder - Google Patents

Manufacturing method of rare earth magnet powder Download PDF

Info

Publication number
JP7460904B2
JP7460904B2 JP2020106662A JP2020106662A JP7460904B2 JP 7460904 B2 JP7460904 B2 JP 7460904B2 JP 2020106662 A JP2020106662 A JP 2020106662A JP 2020106662 A JP2020106662 A JP 2020106662A JP 7460904 B2 JP7460904 B2 JP 7460904B2
Authority
JP
Japan
Prior art keywords
rare earth
particles
magnet
powder
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020106662A
Other languages
Japanese (ja)
Other versions
JP2022002258A (en
Inventor
和晃 榛葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2020106662A priority Critical patent/JP7460904B2/en
Publication of JP2022002258A publication Critical patent/JP2022002258A/en
Application granted granted Critical
Publication of JP7460904B2 publication Critical patent/JP7460904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、高油温下に曝されるボンド磁石の製造に用いられる希土類磁石粉末の製造方法等に関する。 The present invention relates to a method for producing rare earth magnet powder used in the manufacture of bonded magnets that are exposed to high oil temperatures.

高性能化や省エネルギー化等を図るため、希土類磁石を用いた電磁機器(電動機等)が多く用いられる。希土類磁石には、希土類磁石粒子を焼結させた焼結磁石と、希土類磁石粒子をバインダ樹脂で結着させたボンド磁石がある。 Rare earth magnets are widely used in electromagnetic devices (electric motors, etc.) to improve performance and save energy. There are two types of rare earth magnets: sintered magnets, which are made by sintering rare earth magnet particles, and bonded magnets, which are made by binding rare earth magnet particles with a binder resin.

ボンド磁石には、磁石粒子とバインダ樹脂(主に熱可塑性樹脂)の混在物をキャビティへ射出して成形した射出ボンド磁石と、磁石粒子とバインダ樹脂(主に熱硬化性樹脂)の混在物をキャビティ内で圧縮固化(硬化を含む)して成形した圧縮ボンド磁石とがある。 Bonded magnets include injection bonded magnets that are formed by injecting a mixture of magnet particles and binder resin (mainly thermoplastic resin) into a cavity, and injection bonded magnets that are molded by injecting a mixture of magnet particles and binder resin (mainly thermosetting resin) into a cavity. There is a compression bonded magnet that is formed by compression solidification (including hardening) within a cavity.

いずれのボンド磁石も、焼結磁石より形状自由度が大きく、成形性に優れるため、その用途は拡大しつつある。これに伴い、高磁気特性が安定的に維持され得る耐久性(耐食性)がボンド磁石に求められている。これに関連する記載が、例えば、下記の特許文献にある。 Both types of bonded magnets have a greater degree of freedom in shape than sintered magnets and are superior in formability, so their uses are expanding. Along with this, bonded magnets are required to have durability (corrosion resistance) that allows stable maintenance of high magnetic properties. Descriptions related to this can be found, for example, in the following patent documents.

特許第3882490号公報Patent No. 3882490 特許第4650593号公報Japanese Patent No. 4650593 特許第5499738号公報Patent No. 5499738

特許文献1~3は、リン系化合物(リン酸塩等)で被覆された磁石粒子をボンド磁石に用いることを提案している。しかし、いずれも、高温高湿な大気雰囲気中における磁石粒子の耐酸化性に着目しているに過ぎない。 Patent Documents 1 to 3 propose the use of magnet particles coated with a phosphorus compound (phosphate, etc.) in a bonded magnet. However, all of these methods merely focus on the oxidation resistance of magnetic particles in a high-temperature, high-humidity atmospheric atmosphere.

本発明者の研究によれば、これまで大気中の酸素や水分による酸化が生じ難いと考えられていた油環境下でも、ボンド磁石を構成する磁石粒子の磁気特性が劣化し得ることがわかった。 The inventors' research has revealed that the magnetic properties of the magnetic particles that make up bonded magnets can deteriorate even in oil environments, where oxidation due to oxygen or moisture in the air was previously thought to be unlikely to occur.

本発明はこのような事情に鑑みて為されたものであり、油環境下に曝されるボンド磁石の耐久性の向上に貢献し得る希土類磁石粉末が得られる製造方法等の提供を目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a manufacturing method and the like that can obtain rare earth magnet powder that can contribute to improving the durability of bonded magnets exposed to oil environments.

本発明者はこの課題を解決すべく鋭意研究した結果、リン酸処理後に所定温度で加熱した磁石粒子は、高温な油環境に曝露後でも、高磁気特性(例えば角形性:Hk)を維持し得ることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 The inventors conducted extensive research to solve this problem and discovered that magnetic particles that were heated to a specific temperature after phosphoric acid treatment could maintain high magnetic properties (e.g., squareness: Hk) even after being exposed to a high-temperature oil environment. By expanding on this finding, the inventors were able to complete the present invention, which is described below.

《希土類磁石粉末の製造方法》
(1)本発明は、希土類磁石粒子とリン酸を含む処理液とを接触させる処理工程と、該処理工程後の希土類磁石粒子を170~215℃で加熱する焼成工程とを備え、Pを含む化合物で被覆された希土類磁石粒子からなり、90℃以上の油環境に曝されるボンド磁石の製造に用いられる希土類磁石粉末の製造方法である。
《Method for manufacturing rare earth magnet powder》
(1) The present invention comprises a treatment step of bringing rare earth magnet particles into contact with a treatment liquid containing phosphoric acid, and a firing step of heating the rare earth magnet particles at 170 to 215° C. after the treatment step, and contains P. This is a method for producing rare earth magnet powder used in the production of bonded magnets that are made of rare earth magnet particles coated with a compound and exposed to an oil environment of 90° C. or higher.

(2)本発明の製造方法によれば、高温な油環境に曝露した後でも、磁気特性(例えば角形性:Hk)の劣化が少ない希土類磁石粉末が得られる。その理由は定かではないが、希土類磁石粒子の表層域にだけ、Pを含む化合物(「P系化合物」という。)からなる安定な被膜が形成されるためと考えられる。なお、P系化合物の被膜(単に「P系被膜」という。)は、希土類磁石粒子の全表面にあるとよいが、その一部だけにあってもよい。 (2) According to the manufacturing method of the present invention, rare earth magnet powder can be obtained that exhibits little deterioration in magnetic properties (e.g., squareness: Hk) even after exposure to a high-temperature oil environment. The reason for this is unclear, but it is thought to be because a stable coating made of a compound containing P (referred to as a "P-based compound") is formed only on the surface region of the rare earth magnet particles. The coating of the P-based compound (simply referred to as a "P-based coating") is preferably present on the entire surface of the rare earth magnet particles, but may be present on only a portion of the surface.

《希土類磁石粉末/ボンド磁石》
本発明は、上述した製造方法により得られる希土類磁石粉末としても把握され得る。また、その希土類磁石粉末を用いたボンド磁石またはその製造方法としても把握され得る。
<Rare earth magnetic powder/bonded magnet>
The present invention can be understood as a rare earth magnetic powder obtained by the above-mentioned manufacturing method, and can also be understood as a bonded magnet using the rare earth magnetic powder or a manufacturing method thereof.

ボンド磁石の製造方法として、希土類磁石粉末と熱可塑性樹脂からなる溶融混合物をスロット等のキャビティへ充填して固化させる射出成形法、キャビティへ投入した希土類磁石粉末と熱硬化性樹脂を圧縮、溶融および固化させる圧縮成形法等がある。希土類磁石粉末が異方性磁石粉末であるとき、配向磁場を印加した状態で成形されるとよい。 Manufacturing methods for bonded magnets include injection molding, in which a molten mixture of rare earth magnet powder and thermoplastic resin is filled into a cavity such as a slot and solidified, and compression molding, in which rare earth magnet powder and thermosetting resin are poured into a cavity and compressed, melted, and solidified. When the rare earth magnet powder is anisotropic magnet powder, it is recommended that it be molded with an aligning magnetic field applied.

《その他》
(1)本明細書では、単に、希土類磁石粒子を「磁石粒子」、希土類磁石粉末を「磁石粉末」ともいう。適宜、処理工程前の磁石粒子(磁石粉末)を「原料粒子(原料粉末)」、処理工程後の磁石粒子(磁石粉末)を「処理粒子(処理粉末)」、焼成工程後の磁石粒子(磁石粉末)を「焼成粒子(焼成粉末)」という。換言すると、本発明は、希土類磁石合金からなる原料粉末に処理工程および焼成工程を施して得られる焼成粉末の製造方法となる。
"others"
(1) In this specification, rare earth magnet particles are simply referred to as "magnet particles" and rare earth magnet powder is simply referred to as "magnet powder". As appropriate, magnet particles (magnet powder) before the treatment process are referred to as "raw material particles (raw material powder)", magnet particles (magnet powder) after the treatment process are referred to as "treated particles (treated powder)", and magnet particles (magnet powder) after the sintering process are referred to as "sintered particles (sintered powder)". In other words, the present invention provides a method for producing sintered powder obtained by subjecting raw material powder made of a rare earth magnet alloy to a treatment process and a sintering process.

(2)油環境へ曝露した後の磁石粒子の磁気特性が維持される程度(磁気特性の劣化が抑制される具合)を「耐油性」という。耐油性の指標例として、高温(例えば150℃)の油環境下に曝露後の磁石粒子の角形性(Hk)、またはその変化率を用いることができる。Hkは、磁石粒子の耐逆磁界性の指標となる。具体的にいうと、Hkは、磁化ポテンシャルの指標である残留磁束密度(Br)を10%低下させる逆磁界の大きさを表し、逆磁界に対する有効磁束密度Bの指標ともなる。 (2) The degree to which the magnetic properties of magnet particles are maintained after exposure to an oil environment (the degree to which deterioration of the magnetic properties is suppressed) is called "oil resistance". As an example of an index of oil resistance, the squareness (Hk) of magnet particles after exposure to a high-temperature (e.g., 150°C) oil environment, or its rate of change, can be used. Hk is an index of the resistance of magnet particles to reverse magnetic fields. Specifically, Hk represents the magnitude of the reverse magnetic field that reduces the residual magnetic flux density (Br), an index of magnetization potential, by 10%, and is also an index of the effective magnetic flux density B against the reverse magnetic field.

油環境への曝露前後における焼成粒子のHkの低下率は、例えば、5%以下であるとよい。原料粒子(初期状態)と油環境への曝露後の焼成粒子との比較でいうなら、Hkの低下率は、例えば、25%以下さらには22%以下であるとよい。なお、本明細書では、油環境への曝露前の状態を「初期状態」という。 The rate of decrease in Hk of the sintered particles before and after exposure to an oil environment may be, for example, 5% or less. In comparison with the raw material particles (initial state) and the sintered particles after exposure to an oil environment, the rate of decrease in Hk may be, for example, 25% or less, or even 22% or less. In this specification, the state before exposure to an oil environment is referred to as the "initial state."

初期状態の焼成粒子のHk(「初期Hk」という。)は、例えば、565kA/m以上さらには580kA/m以上あるとよい。初期状態の焼成粒子のBr(「初期Br」という。)は、例えば、1.2T以上さらには1.25T以上あるとよい。 The Hk of the fired particles in the initial state (referred to as "initial Hk") is preferably, for example, 565 kA/m or more, and further 580 kA/m or more. The Br of the fired particles in the initial state (referred to as "initial Br") may be, for example, 1.2 T or more, and further preferably 1.25 T or more.

(3)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。また、特に断らない限り、本明細書でいう「x~ykA/m」はxkA/m~ykA/mを意味する。他の単位系についても同様である。 (3) Unless otherwise specified, "x to y" in this specification includes a lower limit of x and an upper limit of y. Any numerical value included in the various numerical values or numerical ranges described in this specification may be used as a new lower limit or upper limit to create a new range such as "a to b." Additionally, unless otherwise specified, "x to ykA/m" in this specification means xkA/m to ykA/m. The same applies to other units.

初期状態のHkに及ぼす焼成温度の影響を例示するグラフである。1 is a graph illustrating the effect of firing temperature on initial Hk. 初期状態に対する耐久試験後のHkに及ぼす焼成温度の影響を例示するグラフである。It is a graph illustrating the influence of firing temperature on Hk after a durability test with respect to an initial state. 原料状態に対する耐久試験後のHkに及ぼす焼成温度の影響を例示するグラフである。It is a graph illustrating the influence of firing temperature on Hk after a durability test with respect to the raw material state. 耐久試験の油温と焼成温度がHkに及ぼす影響を例示するグラフである。It is a graph illustrating the influence that oil temperature and firing temperature have on Hk in a durability test.

本明細書中に記載した事項から任意に選択した一つまたは二つ以上の構成要素を、上述した本発明の構成に付加し得る。製造方法に関する構成要素も物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components selected from the items described in this specification may be added to the above-mentioned configuration of the present invention. The components may be related to the manufacturing method or to the product. Which embodiment is best depends on the target, required performance, etc.

《処理工程》
処理工程は、磁石粒子(粉末)とリン酸を含む処理液とを接触させてなされる。処理工程は、磁石粒子の表面に、P系化合物(例えばリン酸塩)を形成できれば、リン酸の種類、処理液の濃度や溶媒等を問わない。
《Processing process》
The treatment step is performed by bringing the magnet particles (powder) into contact with a treatment liquid containing phosphoric acid. In the treatment step, the type of phosphoric acid, the concentration of the treatment liquid, the solvent, etc. are not limited as long as a P-based compound (for example, phosphate) can be formed on the surface of the magnet particles.

リン酸の種類として、オルトリン酸をはじめ、リン酸塩系、亜リン酸系、次亜リン酸系、ピロリン酸、メタリン酸、ポリリン酸系などの無機リン酸、有機リン酸が挙げられる。これらの中でも、希土類金属や鉄と反応性が高く、磁石粒子の表面にP系化合物を形成しやすい、オルトリン酸を用いるとよい。 Types of phosphoric acid include orthophosphoric acid, as well as inorganic and organic phosphoric acids such as phosphates, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, metaphosphoric acid, and polyphosphoric acid. Of these, it is recommended to use orthophosphoric acid, which is highly reactive with rare earth metals and iron and easily forms P-based compounds on the surface of magnet particles.

処理液は、例えば、リン酸またはリン化合物(リン酸塩を含む)を溶媒で調製して得られる。溶媒は、水でもよいが、有機溶媒(特に揮発性溶媒)を用いるとよい。有機溶媒には、例えば、アルコール類(イソプロピルアルコール(IPA))、エタノール、メタノール、2-メトキシエタノール等)の他、ホルムアミド、N,N-ジメチルホルムアミド等がある。処理液は、さらに、界面活性剤(例えばシランカップリング剤等)を含んでもよい。 The treatment liquid is obtained, for example, by preparing phosphoric acid or a phosphorus compound (including a phosphate) in a solvent. The solvent may be water, but it is preferable to use an organic solvent (particularly a volatile solvent). Examples of organic solvents include alcohols (isopropyl alcohol (IPA), ethanol, methanol, 2-methoxyethanol, etc.), formamide, N,N-dimethylformamide, and the like. The treatment liquid may further contain a surfactant (for example, a silane coupling agent, etc.).

処理液の磁石粉末に対する混合比(質量%)は、例えば、オルトリン酸(HPO)を用いるときなら、0.5~1.0質量%さらには、0.7~0.9質量%であるとよい。 For example, when using orthophosphoric acid (H 3 PO 4 ), the mixing ratio (mass %) of the treatment liquid to the magnet powder is 0.5 to 1.0 mass %, and more preferably 0.7 to 0.9 mass %. It would be good if it were.

原料粉末と処理液の接触は、例えば、浸漬法、噴霧法等によりなされる。磁石粒子の表面にP系化合物を均一的に形成するため、両者を撹拌等しつつ接触(混合)されるとよい。また、原料粉末と処理液の少なくとも一方を加熱しつつ、両者を接触させてもよい。加熱により、溶媒が気化(蒸発)すると共に、磁石粒子表面におけるP系被膜の形成が促進される。その加熱温度は、例えば、40~110℃さらには60~90℃である。 The raw powder and the treatment liquid are brought into contact with each other by, for example, immersion or spraying. In order to uniformly form the P-based compound on the surface of the magnet particles, it is advisable to bring the two into contact (mix) while stirring or the like. Alternatively, the raw powder and the treatment liquid may be brought into contact with each other while at least one of them is heated. Heating vaporizes (evaporates) the solvent and promotes the formation of a P-based coating on the surface of the magnet particles. The heating temperature is, for example, 40 to 110°C, or even 60 to 90°C.

《焼成工程》
焼成工程は、処理工程後の希土類磁石粒子(処理粒子)を加熱してなされる。その加熱温度(「焼成温度」という。)は、例えば、170~215℃、175~210℃さらには185~205℃であるとよい。焼成温度が過小であると、安定的なP系化合物の形成が促進されず、焼成粒子の耐油性が低下し得る。焼成温度が過大になると、P系化合物の生成が磁石粒子内へ深層化して、初期状態の磁気特性(例えば初期Hk)が低下し得る。
Firing process
The sintering step is performed by heating the rare earth magnet particles (treated particles) after the treatment step. The heating temperature (referred to as the "sintering temperature") is preferably, for example, 170 to 215°C, 175 to 210°C, or even 185 to 205°C. If the sintering temperature is too low, the formation of stable P-based compounds is not promoted, and the oil resistance of the sintered particles may decrease. If the sintering temperature is too high, the formation of P-based compounds may progress deep into the magnet particles, and the initial magnetic properties (for example, initial Hk) may decrease.

焼成工程は、酸化防止雰囲気(例えば、真空中、不活性ガス中、窒素ガス中等)でなされるとよい。また焼成工程は、例えば、0.5~5時間さらには1~3時間なされるとよい。 The firing process is preferably carried out in an oxidation-preventing atmosphere (e.g., in a vacuum, in an inert gas, in nitrogen gas, etc.). The firing process is preferably carried out for, for example, 0.5 to 5 hours, or even 1 to 3 hours.

《磁石粒子》
磁石粒子(粉末)は、希土類元素(R)を含む磁石合金からなる。磁石合金の組成は種々ある。例えば、NdとFeとBを基成分(必須成分)とするNdFeB系磁石粒子、SmとFeとNを基成分とするSmFeN系磁石粒子、SmとCoを基成分とするSmCo系磁石粒子等である。なお、基成分(必須成分または主成分)となる元素の合計量は、通常、磁石粒子全体に対して80原子%以上さらには90原子%以上である。希土類磁石粒子は、その保磁力や耐熱性等を高める元素(Dy、Tb等の重希土類元素、Cu、Al、Co、Nb等)を含んでもよい。
《Magnetic particles》
The magnet particles (powder) are made of a magnet alloy containing a rare earth element (R). There are various compositions of magnet alloys. For example, NdFeB magnet particles whose basic components are Nd, Fe, and B (essential components), SmFeN magnet particles whose basic components are Sm, Fe, and N, SmCo magnet particles whose basic components are Sm and Co, etc. be. Note that the total amount of elements serving as base components (essential components or main components) is usually 80 atomic % or more, further 90 atomic % or more, based on the entire magnet particle. The rare earth magnet particles may contain elements (heavy rare earth elements such as Dy and Tb, Cu, Al, Co, Nb, etc.) that enhance their coercive force, heat resistance, and the like.

磁石粒子は、異方性磁石粒子でも等方性磁石粒子でもよい。異方性磁石粒子(粉末)を用いて配向磁場中成形すれば、高磁気特性なボンド磁石が得られる。 The magnet particles may be anisotropic or isotropic magnet particles. By using anisotropic magnet particles (powder) and molding in an aligning magnetic field, a bonded magnet with high magnetic properties can be obtained.

磁石粒子は、例えば、磁石合金に水素処理を施して得られる。水素処理は、通常、吸水素による不均化反応(Hydrogenation-Disproportionation/単に「HD反応」ともいう。)と、脱水素による再結合反応(Desorption-Recombination/単に「DR反応」ともいう。)を伴う。HD反応とDR反応を併せて単に「HDDR反応」といい、HDDR反応を生じる水素処理を単に「HDDR(処理)」という。なお、HDDRには、改良型であるd―HDDR(dynamic-Hydrogenation-Disproportionation-Desorption-Recombination)も含まれる。d―HDDRについては、例えば、国際公開公報(WO2004/064085)等で詳述されている。 The magnet particles are obtained, for example, by subjecting a magnet alloy to hydrogen treatment. Hydrogen treatment usually involves a disproportionation reaction due to hydrogen absorption (Hydrogenation-Disproportionation, also simply called the "HD reaction") and a recombination reaction due to dehydrogenation (Desorption-Recombination, also simply called the "DR reaction"). The HD reaction and the DR reaction are collectively referred to simply as the "HDDR reaction", and the hydrogen treatment that produces the HDDR reaction is simply referred to as "HDDR (treatment)". Note that HDDR also includes an improved version, d-HDDR (dynamic-Hydrogenation-Disproportionation-Desorption-Recombination). d-HDDR is described in detail, for example, in International Publication WO2004/064085.

磁石粒子は、上述したリン酸処理とは別に、一種以上の防錆処理がされてもよい。このような防錆処理として、例えば、有機金属化合物層を形成する金属アルコキシオリゴマー処理、カップリング剤層を形成するカップリング処理、酸化被膜を形成する徐酸化処理等がある。 The magnet particles may be subjected to one or more types of rust prevention treatment in addition to the above-mentioned phosphoric acid treatment. Such rust prevention treatments include, for example, metal alkoxy oligomer treatment to form an organometallic compound layer, coupling treatment to form a coupling agent layer, gradual oxidation treatment to form an oxide film, and the like.

磁石粒子のサイズ(磁石粉末の粒径(粒度))は問わない。NdFeB系磁石粒子なら、例えば、平均粒径が40~200μmさらには80~160μmであるとよい。本明細書でいう平均粒径は、特に断らない限り、レーザー回折式粒度分布測定装置(株式会社日本レーザー製 HELOS)で測定して定まるボリュームミーディアン径(VMD)である。 The size of the magnet particles (particle size of the magnet powder) is not important. For NdFeB magnet particles, for example, the average particle size should be 40 to 200 μm, or even 80 to 160 μm. Unless otherwise specified, the average particle size referred to in this specification is the volume median diameter (VMD) determined by measurement using a laser diffraction particle size distribution measuring device (HELOS, manufactured by Nippon Laser Co., Ltd.).

磁石粒子は、平均粒径が相対的に大きな粗粒子の他、平均粒径が小さい微粒子であってもよい。微粒子の平均粒径は、例えば、1~10μmさらには2~6μmである。このような微粒子として、SmFeN系磁石粒子等がある。なお、本明細書でいう磁石粉末は、組成、異方性・等方性、平均粒径等が異なる2種以上の磁石粒子が混在したものでもよい。このような複合磁石粉末を用いることにより、磁石粉末の充填率等が向上し、高磁気特性なボンド磁石が得られる。 The magnetic particles may be coarse particles with a relatively large average particle size, or fine particles with a small average particle size. The fine particles have an average particle size of, for example, 1 to 10 μm or even 2 to 6 μm. Such fine particles include SmFeN magnetic particles. Note that the magnetic powder referred to in this specification may be a mixture of two or more types of magnetic particles with different compositions, anisotropy/isotropy, average particle size, etc. By using such composite magnetic powder, the filling rate of the magnetic powder is improved, and a bonded magnet with high magnetic properties is obtained.

《油環境》
磁石粒子(またはボンド磁石)が曝される油環境は、磁石粒子に接する油の温度(油温)が、例えば、90℃以上、100℃以上、115℃以上さらには130℃以上となる環境である。油環境は、油中(浸漬状態)、油ミスト雰囲気等である。油は、潤滑油、作動油、冷却油またはそれらを兼用する油でもよい。具体例として、自動変速機用フルード(automatic transmission fluid:ATF)、無段変速機用フルード(continuously variable transmission fluid:CVTF)、ミッションオイル、エンジンオイル等がある。なお、油は、鉱物油でも化学合成油でもよい。ATFやCVTFには、主に鉱物油が用いられている。
Oil Environment
The oil environment to which the magnet particles (or bonded magnets) are exposed is an environment in which the temperature (oil temperature) of the oil in contact with the magnet particles is, for example, 90°C or higher, 100°C or higher, 115°C or higher, or even 130°C or higher. The oil environment is in oil (immersed state), in an oil mist atmosphere, etc. The oil may be lubricating oil, hydraulic oil, cooling oil, or an oil that serves both purposes. Specific examples include automatic transmission fluid (ATF), continuously variable transmission fluid (CVTF), transmission oil, engine oil, etc. The oil may be mineral oil or chemically synthetic oil. Mineral oil is mainly used for ATF and CVTF.

ちなみに、一般的な変速機内で使用されるATFやCVTFの温度は、通常、40~80℃程度である。本発明者の調査研究によれば、そのような油温域であれば、焼成温度を160℃以下さらに150℃以下とした磁石粒子粉末でも、十分な耐油性を発揮し得る。 The temperature of the ATF and CVTF used in typical transmissions is usually around 40 to 80°C. According to the inventor's research, in this oil temperature range, even magnet particle powder with a sintering temperature of 160°C or less, or even 150°C or less, can exhibit sufficient oil resistance.

具体例を示すと、80℃のATF環境下では、焼成温度を150℃、180℃および200℃としたいずれの磁石粒子でも、Hkの低下率は略同じであった。しかし、120℃さらには150℃のATF環境下では、磁石粒子の焼成温度によりHkの低下率が大きく異なった。すなわち、焼成温度を180℃または200℃とした磁石粒子では、いずれのATF環境下でもHkの低下率(耐油性)に殆ど変化がなかった。一方、焼成温度を150℃とした磁石粒子では、ATFが120℃または150℃なると、Hkが大きく低下した(図2参照)。 To give a specific example, in an ATF environment of 80°C, the rate of decrease in Hk was approximately the same for magnet particles with sintering temperatures of 150°C, 180°C, and 200°C. However, in an ATF environment of 120°C and even 150°C, the rate of decrease in Hk differed greatly depending on the sintering temperature of the magnet particles. In other words, for magnet particles with a sintering temperature of 180°C or 200°C, there was almost no change in the rate of decrease in Hk (oil resistance) in either ATF environment. On the other hand, for magnet particles with a sintering temperature of 150°C, Hk decreased significantly when the ATF was 120°C or 150°C (see Figure 2).

《ボンド磁石》
本発明に係る希土類磁石粉末は、ボンド磁石の製造に用いられる。油環境下で使用されるボンド磁石(永久磁石)は、例えば、電動機やソレノイドの界磁子の界磁源となる。ボンド磁石は、射出成形品でも圧縮成形品でもよい。
《Bond magnet》
The rare earth magnet powder according to the present invention is used for manufacturing bonded magnets. A bonded magnet (permanent magnet) used in an oil environment serves as a field source for a field element of an electric motor or a solenoid, for example. The bonded magnet may be an injection molded product or a compression molded product.

電動機用の界磁子は、回転子(ロータ)でも固定子(ステータ)でもよい。電動機には、モータのみならず、ジェネレータが含まれる。電動機は、直流電動機でも交流電動機でもよい。界磁子がロータの場合、ボンド磁石は、例えば、ロータコアのスロット(キャビティ)に一体成形される。 The field element for an electric motor may be a rotor or a stator. Electric motors include not only motors but also generators. The electric motor may be a DC motor or an AC motor. When the field element is a rotor, the bonded magnet is, for example, integrally molded into a slot (cavity) in the rotor core.

高温な油環境に曝されるボンド磁石として、電動車両の電動機(特に駆動モータ)に用いられる界磁源がある。電動車両は、電気自動車の他、種々のハイブリッド車でもよい。 As a bonded magnet exposed to a high-temperature oil environment, there is a field source used in an electric motor (particularly a drive motor) of an electric vehicle. The electric vehicle may be an electric vehicle or various hybrid vehicles.

焼成温度を種々変更した被覆処理を施した希土類磁石粉末(試料)の耐油性を評価した。このような具体例に基づいて、本発明を以下に詳しく説明する。 The oil resistance of rare earth magnet powder (samples) coated with various firing temperatures was evaluated. The present invention will be described in detail below based on such specific examples.

《試料の製作》
(1)原料粉末
原料となる磁石粉末として、水素処理(d-HDDR)して製造された市販のNdFeB系異方性磁石粉末(愛知製鋼株式会社製マグファイン:MF18P(Br:1.29T、iHc:1321kA/m、(BH)max:311.2kJ/m、平均粒径(VMD):121μm)を用意した。この磁石粉末を原料粉末(試料C0)という。
《Sample production》
(1) Raw material powder As raw material magnet powder, commercially available NdFeB-based anisotropic magnet powder manufactured by hydrogen treatment (d-HDDR) (Magfine: MF18P (Br: 1.29T, manufactured by Aichi Steel Co., Ltd.), (iHc: 1321 kA/m, (BH) max: 311.2 kJ/m 3 , average particle diameter (VMD): 121 μm) was prepared. This magnet powder is referred to as raw material powder (sample C0).

(2)処理工程
原料粉末に次のような処理工程を施して処理粉末を製作した。
(2) Treatment Process The raw material powder was subjected to the following treatment process to produce a treated powder.

オルトリン酸(関東化学株式会社製)4.8mLと溶媒(イソプロピルアルコール:IPA、富士フィルム和光純薬株式会社製)、300mLを混合・撹拌して処理液を調製した。 A treatment solution was prepared by mixing and stirring 4.8 mL of orthophosphoric acid (manufactured by Kanto Kagaku Co., Ltd.) and 300 mL of a solvent (isopropyl alcohol: IPA, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.).

小型ヘンシェルミキサー(日本コークス工業株式会社製FMミキサーFM3/I)に原料粉末1000gと上記処理液を投入し、窒素ガスフロー雰囲気中(0.1L/分)で、油温調機により80℃に混合槽を加熱しながら、ブレード回転数300rpmで60分間、原料粉末と処理液を混合・攪拌した(処理工程)。 1000 g of the raw material powder and the above treatment liquid were put into a small Henschel mixer (FM mixer FM3/I manufactured by Nippon Coke Industry Co., Ltd.), and heated to 80°C using an oil temperature controller in a nitrogen gas flow atmosphere (0.1 L/min). The raw material powder and the treatment liquid were mixed and stirred for 60 minutes at a blade rotation speed of 300 rpm while heating the mixing tank (treatment step).

(3)焼成工程
処理粉末に次のような焼成工程を施して焼成粉末を製作した。
(3) Firing process The treated powder was subjected to the following firing process to produce a fired powder.

ヘンシェルミキサーから回収した処理粉末をドライオーブンに入れて、10-1Paの真空雰囲気中で加熱した。加熱温度(焼成温度)は120~250℃の範囲で調整した。加熱時間はいずれも2時間とした。こうして表1に示す各試料(焼成粉末:被覆処理された希土類異方性磁石粉末)を得た。 The treated powder recovered from the Henschel mixer was placed in a dry oven and heated in a vacuum atmosphere of 10 -1 Pa. The heating temperature (sintering temperature) was adjusted in the range of 120 to 250°C. The heating time was 2 hours in all cases. In this way, the samples shown in Table 1 (sintered powder: coated rare earth anisotropic magnet powder) were obtained.

《耐久試験》
各試料の粉末(焼成粉末と原料粉末)を次のような油環境下に曝した。ビーカーに各粉末:30gとATF:30mLを入れて、大気雰囲気中で、150℃×1000時間放置した。ATFには、鉱物油を基油とするACDelco製Dexron-VIを用いた。
"An endurance test"
The powder of each sample (calcined powder and raw material powder) was exposed to the following oil environment. 30 g of each powder and 30 mL of ATF were placed in a beaker, and the mixture was left at 150° C. for 1000 hours in the air. As the ATF, Dexron-VI manufactured by ACDelco, which uses mineral oil as a base oil, was used.

《観察》
耐久試験前の焼成粉末から任意に抽出した粒子(焼成粒子)の断面を走査型電子顕微鏡(SEM)で観察した。
"observation"
The cross sections of particles (sintered particles) randomly extracted from the sintered powder before the durability test were observed with a scanning electron microscope (SEM).

《磁気特性》
耐久試験前後における各試料の磁気特性はパルスBHトレーサー(OP電子工業株式会社製)を用いて常温で測定した。得られたB-H曲線から、最大エネルギー積:(BH)max、残留磁束密度:Br、保磁力:iHcおよび角形性:Hkを求めて、表1に併せて示した。なお、(BH)max、BrおよびiHcについては、耐久試験前(「初期状態」という。)の測定値のみを表1に示した。
Magnetic properties
The magnetic properties of each sample before and after the durability test were measured at room temperature using a pulse BH tracer (manufactured by OP Electronics Co., Ltd.). From the obtained BH curves, the maximum energy product: (BH)max, residual magnetic flux density: Br, coercive force: iHc, and squareness: Hk were determined and shown in Table 1. Note that for (BH)max, Br, and iHc, only the measured values before the durability test (referred to as the "initial state") are shown in Table 1.

《評価》
耐久試験前・後のHkから、その変化率(ΔHk)を算出した。その結果を表1に併せて示した。表1に示したΔHks0は、耐久試験前(初期状態)において、原料粉末(試料C0)のHkに対する各焼成粉末のHkの変化率を示す。ΔHk01は、焼成粉末について、耐久試験前のHkに対する耐久試験後のHkの変化率を示す。ΔHks1は、原料粉末のHkに対する耐久試験後の焼成粉末のHkの変化率を示す。
"evaluation"
The rate of change (ΔHk) was calculated from the Hk before and after the durability test. The results are also shown in Table 1. ΔHk s0 shown in Table 1 indicates the rate of change in Hk 0 of each fired powder with respect to Hk s of the raw material powder (sample C0) before the durability test (initial state). ΔHk 01 indicates the rate of change in Hk 1 after the durability test relative to Hk 0 before the durability test for the fired powder. ΔHk s1 represents the rate of change in Hk 1 of the fired powder after the durability test with respect to Hk s of the raw material powder.

また、ΔHks0、ΔHk01およびΔHks1と、各焼成温度との関係を図1A~図1C(これらを併せて「図1」という。)に示した。 Further, the relationships between ΔHk s0 , ΔHk 01 and ΔHk s1 and each firing temperature are shown in FIGS. 1A to 1C (collectively referred to as "FIG. 1").

(1)粒子表面
耐久試験前の焼成粒子を観察したSEM像から、その表面には略均一的な被覆層(被膜)が存在することがわかった。
(1) Particle Surface From the SEM images of the sintered particles observed before the durability test, it was found that a substantially uniform coating layer (film) was present on the surface.

(2)初期の磁気特性
表1から明らかなように、被覆処理(処理工程と焼成工程)を施工した初期状態の焼成粉末は、原料粉末よりも、(BH)max、BrおよびHkが少し低下したが、iHcは殆ど変化なかった。また、焼成粉末の(BH)max、BrとiHcは、焼成温度による変化が殆どなかった。しかし、図1Aから明らかなように、焼成粉末のHkは、焼成温度が220℃以上になると、明らかに低下し始めた。
(2) Initial magnetic properties As is clear from Table 1, the fired powder in the initial state after the coating treatment (treatment process and firing process) has (BH)max, Br and Hk slightly lower than the raw powder. However, there was almost no change in iHc. Further, (BH)max, Br and iHc of the fired powder hardly changed depending on the firing temperature. However, as is clear from FIG. 1A, the Hk of the fired powder clearly began to decrease when the firing temperature reached 220° C. or higher.

(3)耐久試験後の磁気特性(耐油性)
表1および図1Bから明らかなように、焼成粉末のHkは、耐久試験により低下した。しかし、焼成温度を170℃以上とした焼成粒子では、Hkの低下率(ΔHk01)が僅か5%以下に留まった。
(3) Magnetic properties after durability test (oil resistance)
1B, the Hk of the sintered powder decreased due to the durability test. However, in the case of the sintered particles sintered at a temperature of 170° C. or higher, the decrease in Hk (ΔHk 01 ) was only 5% or less.

さらに表1および図1Cから明らかなように、焼成温度を170~215℃とした焼成粒子は、原料粉末に対しても、磁気特性(特にHk)の劣化が顕著に少なかった。 Furthermore, as is clear from Table 1 and Figure 1C, the particles sintered at temperatures between 170 and 215°C showed significantly less degradation in magnetic properties (especially Hk) compared to the raw material powder.

以上から、リン酸処理後に所定温度域で加熱すると、原料粉末に対する磁気特性の低下が少なく、油環境下における磁気特性の劣化も抑制される希土類磁石粉末が得られることがわかった。 From the above, it was found that by heating at a specified temperature range after phosphoric acid treatment, rare earth magnet powder can be obtained that has little deterioration in magnetic properties compared to the raw material powder and also suppresses deterioration of magnetic properties in an oil environment.

Figure 0007460904000001
Figure 0007460904000001

Claims (5)

希土類磁石粒子とリン酸を含む処理液とを接触させる処理工程と、
該処理工程後の希土類磁石粒子を170~215℃で加熱する焼成工程とを備え、
Pを含む化合物で被覆された希土類磁石粒子からなり、
該希土類磁石粒子は、NdとFeとBを必須成分とするNdFeB系磁石粒子を含み、
90℃以上の油環境に曝されるボンド磁石の製造に用いられる希土類磁石粉末の製造方法。
a treatment step of bringing rare earth magnet particles into contact with a treatment solution containing phosphoric acid;
a firing step of heating the rare earth magnet particles at 170 to 215° C. after the treatment step,
Consists of rare earth magnet particles coated with a compound containing P,
The rare earth magnet particles include NdFeB-based magnet particles containing Nd, Fe, and B as essential components,
A method for producing rare earth magnet powder used in the production of bonded magnets that are exposed to an oil environment of 90°C or higher.
前記NdFeB系磁石粒子は、磁石合金を水素処理して得られる請求項1に記載の希土類磁石粉末の製造方法。 2. The method for producing rare earth magnet powder according to claim 1, wherein the NdFeB magnet particles are obtained by hydrogen treating a magnet alloy . 前記油は、鉱物油である請求項1または2に記載の希土類磁石粉末の製造方法。 The method for producing rare earth magnet powder according to claim 1 or 2, wherein the oil is mineral oil. 前記油は、自動変速機用フルード(ATF)である請求項1~3のいずれかに記載の希土類磁石粉末の製造方法。 The method for producing rare earth magnet powder according to any one of claims 1 to 3, wherein the oil is an automatic transmission fluid (ATF). 前記ボンド磁石は、電動車両の電動機用界磁源である請求項1~4のいずれかに記載の希土類磁石粉末の製造方法。 The method for producing rare earth magnet powder according to any one of claims 1 to 4, wherein the bonded magnet is a field source for a motor of an electric vehicle.
JP2020106662A 2020-06-22 2020-06-22 Manufacturing method of rare earth magnet powder Active JP7460904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020106662A JP7460904B2 (en) 2020-06-22 2020-06-22 Manufacturing method of rare earth magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106662A JP7460904B2 (en) 2020-06-22 2020-06-22 Manufacturing method of rare earth magnet powder

Publications (2)

Publication Number Publication Date
JP2022002258A JP2022002258A (en) 2022-01-06
JP7460904B2 true JP7460904B2 (en) 2024-04-03

Family

ID=79244322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106662A Active JP7460904B2 (en) 2020-06-22 2020-06-22 Manufacturing method of rare earth magnet powder

Country Status (1)

Country Link
JP (1) JP7460904B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091587A (en) 2002-08-30 2004-03-25 Sumitomo Special Metals Co Ltd Degradation prevention method for alkali silicate film
JP3882490B2 (en) 2000-10-13 2007-02-14 住友金属鉱山株式会社 Method for producing highly weather-resistant magnet powder and product obtained
JP2010071111A (en) 2008-09-16 2010-04-02 Kawasaki Heavy Ind Ltd Air intake duct and air intake structure
JP2011146417A (en) 2010-01-12 2011-07-28 Sumitomo Metal Mining Co Ltd Method for manufacturing composition for resin-bonded magnet, resin composition for magnet obtained, and the resin-bonded magnet
JP2017055509A (en) 2015-09-08 2017-03-16 パナソニックIpマネジメント株式会社 Electric motor element manufacturing method, electric motor element, electric motor and device
JP2017073479A (en) 2015-10-08 2017-04-13 日立化成株式会社 Bond magnet hardened body
JP2020056101A (en) 2018-09-26 2020-04-09 日亜化学工業株式会社 Method for producing rare earth magnetic powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650593B2 (en) * 2008-12-15 2011-03-16 住友金属鉱山株式会社 Iron-based magnet alloy powder containing rare earth element, method for producing the same, obtained resin composition for bonded magnet, bonded magnet, and compacted magnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882490B2 (en) 2000-10-13 2007-02-14 住友金属鉱山株式会社 Method for producing highly weather-resistant magnet powder and product obtained
JP2004091587A (en) 2002-08-30 2004-03-25 Sumitomo Special Metals Co Ltd Degradation prevention method for alkali silicate film
JP2010071111A (en) 2008-09-16 2010-04-02 Kawasaki Heavy Ind Ltd Air intake duct and air intake structure
JP2011146417A (en) 2010-01-12 2011-07-28 Sumitomo Metal Mining Co Ltd Method for manufacturing composition for resin-bonded magnet, resin composition for magnet obtained, and the resin-bonded magnet
JP2017055509A (en) 2015-09-08 2017-03-16 パナソニックIpマネジメント株式会社 Electric motor element manufacturing method, electric motor element, electric motor and device
JP2017073479A (en) 2015-10-08 2017-04-13 日立化成株式会社 Bond magnet hardened body
JP2020056101A (en) 2018-09-26 2020-04-09 日亜化学工業株式会社 Method for producing rare earth magnetic powder

Also Published As

Publication number Publication date
JP2022002258A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
CN101552066B (en) Sintered magnet and rotating machine equipped with the same
US20150187494A1 (en) Process for preparing rare earth magnets
JP4415980B2 (en) High resistance magnet and motor using the same
KR100746908B1 (en) Corrosion?resistant rare earth element magnet
JP4797906B2 (en) Magnetic materials, magnets and rotating machines
JP2007116088A (en) Magnetic material, magnet and rotating machine
JP4867632B2 (en) Low loss magnet and magnetic circuit using it
US20100079025A1 (en) Sintered Magnet and Rotating Machine Equipped with the Same
KR101543111B1 (en) NdFeB PERMANENT MAGNET AND METHOD FOR PRODUCING THE SAME
JP6255783B2 (en) COMPOSITE MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MAGNETIC MATERIAL MATERIAL SET
KR20140089544A (en) Method of manufacturing rare-earth magnets
JP2007281433A (en) Bound magnet produced using binder, and its manufacturing method
JP2008282832A (en) Rare-earth magnet
WO2012173239A1 (en) Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
JP5501829B2 (en) Rare earth permanent magnet manufacturing method
JP2013153172A (en) Manufacturing method of neodymium-iron-boron sintered magnet
JP4084007B2 (en) Manufacturing method of magnetic material
JP7460904B2 (en) Manufacturing method of rare earth magnet powder
JP2011171346A (en) Iron-based soft magnetic powder for dust core, method of manufacturing the same, and dust core
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JP2012199462A (en) Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
WO2023119612A1 (en) Rare earth magnet powder and production method therefor
EP4006931A1 (en) Manufacturing method of sintered magnet
JP2020050904A (en) Magnetic powders and method for producing same
JP2014120492A (en) High heat resistant bond magnet, process of manufacturing the same, and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7460904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150