JPH1121193A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH1121193A
JPH1121193A JP17586397A JP17586397A JPH1121193A JP H1121193 A JPH1121193 A JP H1121193A JP 17586397 A JP17586397 A JP 17586397A JP 17586397 A JP17586397 A JP 17586397A JP H1121193 A JPH1121193 A JP H1121193A
Authority
JP
Japan
Prior art keywords
single crystal
compound semiconductor
raw material
crystal
growth rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17586397A
Other languages
Japanese (ja)
Other versions
JP3806793B2 (en
Inventor
Toshiaki Asahi
聰明 朝日
Akira Noda
朗 野田
Kenji Kohiro
健司 小廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP17586397A priority Critical patent/JP3806793B2/en
Publication of JPH1121193A publication Critical patent/JPH1121193A/en
Application granted granted Critical
Publication of JP3806793B2 publication Critical patent/JP3806793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a compd. semiconductor single crystal capable of yielding a high-quality single crystal without lowering the growth rate of the crystal. SOLUTION: This process consists in growing the single crystal of the compd. semiconductor by enclosing a crucible 1 contg. at least a compd. semiconductor raw material (GaAs polycrystal) into a hermetic vessel 4, then installing this hermetic vessel into a heating furnace 5 of a vertical type and heating and melting the raw material by a heat source (heater), then slowly cooling and solidifying the raw material melt under a prescribed temp. gradient. In such a case, the temp. difference between the max. temp. of the raw material melt and the m. p. of the compd. semiconductor is kept at <=10 to >=4 deg.C, the temp. gradient near the solid-liquid boundary between the single crystal and the raw material melt at <=4 to >=1 deg.C and the crystal growth rate at >=3 to <=50 m/h.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体単結
晶の製造方法に係り、例えばGaAs等の化合物半導体
の原料融液を冷却して垂直方向に単結晶を成長させる垂
直グラジェントフリージング(VGF)法や垂直ブリッ
ジマン(VB)法に適用して有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor single crystal, and more particularly to a vertical gradient freezing (VGF) for growing a single crystal in a vertical direction by cooling a raw material melt of a compound semiconductor such as GaAs. The present invention relates to a technique that is useful when applied to a method or a vertical Bridgman (VB) method.

【0002】[0002]

【従来の技術】例えばGaAs-FET(Field Effect
Transistor)やGaAs-IC等のGaAs系の化合物
半導体デバイスの製作には、半絶縁性GaAs単結晶で
形成された基板が用いられる。
2. Description of the Related Art For example, a GaAs-FET (Field Effect)
A substrate formed of a semi-insulating GaAs single crystal is used for manufacturing a GaAs-based compound semiconductor device such as a transistor or a GaAs-IC.

【0003】従来、このような半絶縁性のGaAs結晶
は、水平ブリッジマン(HB)法や液体封止チョクラル
スキー(LEC)法により工業的に製造されている。
Conventionally, such a semi-insulating GaAs crystal has been industrially manufactured by a horizontal Bridgman (HB) method or a liquid-sealed Czochralski (LEC) method.

【0004】LEC法は、結晶の高純度化に著しい効果
があり、半絶縁性のGaAs単結晶を安定して得ること
ができるという長所を有するほかに、大口径で円形のウ
ェハを得ることができるというメリットがある。
[0004] The LEC method has a remarkable effect on the purification of crystals, has the advantage that a semi-insulating GaAs single crystal can be obtained stably, and has the advantage of obtaining a large-diameter circular wafer. There is a merit that can be done.

【0005】しかし、LEC法では、結晶育成中の結晶
成長方向の温度勾配が大きいため、FETやICを作製
した際の電気的な特性の劣化を招く原因となる転位の密
度が高いという短所がある。
[0005] However, the LEC method has a disadvantage that the temperature gradient in the crystal growth direction during crystal growth is large, so that the density of dislocations which causes the deterioration of the electrical characteristics when an FET or IC is manufactured is high. is there.

【0006】一方、HB法には、結晶育成中の温度勾配
が小さいため、低転位密度の結晶が得られるという長所
がある反面、ルツボ(ボート)内で原料融液を固化させ
るため大口径化が困難であり、さらにルツボ形状に依存
した形状(かまぼこ形)のウェハしか得られないという
短所がある。
[0006] On the other hand, the HB method has an advantage that a crystal having a low dislocation density can be obtained due to a small temperature gradient during crystal growth, but the HB method has a large diameter in order to solidify a raw material melt in a crucible (boat). However, there is a disadvantage that only a wafer having a shape depending on the crucible shape (kamaboko shape) can be obtained.

【0007】そこで、HB法及びLEC法のそれぞれの
短所を補い、それぞれの長所を活かした結晶製造方法と
して、垂直グラジェントフリージング(VGF)法や垂
直ブリッジマン(VB)法が開発された。これらの製造
方法によれば、有底円筒形のルツボの使用により円形の
ウェハを得ることができ、結晶成長方向の温度勾配が小
さいため低転位密度化が容易である。
Therefore, a vertical gradient freezing (VGF) method or a vertical Bridgman (VB) method has been developed as a crystal production method which compensates for the disadvantages of the HB method and the LEC method and makes use of the respective advantages. According to these manufacturing methods, a circular wafer can be obtained by using a bottomed cylindrical crucible, and the temperature gradient in the crystal growth direction is small, so that the dislocation density can be easily reduced.

【0008】さらに、液体封止剤(B23)を使用すれ
ば、石英アンプルからのSiの混入を防いで、アンドー
プで半絶縁性のGaAs等の化合物半導体の単結晶を成
長させることも可能である。
Further, if a liquid sealant (B 2 O 3 ) is used, the incorporation of Si from a quartz ampule can be prevented, and a single crystal of an undoped semi-insulating compound semiconductor such as GaAs can be grown. It is possible.

【0009】[0009]

【発明が解決しようとする課題】ところが、VGF法や
VB法は、上述したように、LEC法に比べてより小さ
い温度勾配で結晶育成を行うことができるため、結晶の
欠陥密度が低く高品質の基板が得られるという利点があ
る反面、結晶の成長速度はLEC法に比べて小さく、育
成時間が長くかかるという欠点がある。
However, since the VGF method and the VB method can grow crystals with a smaller temperature gradient than the LEC method, as described above, the crystal defect density is low and the quality is high. On the other hand, there is an advantage that the substrate can be obtained, but on the other hand, the growth rate of the crystal is lower than that of the LEC method, and the growth time is longer.

【0010】VGF法やVB法で育成時間を短縮するた
めに結晶の成長速度を上げた場合、単位時間当たりの凝
固潜熱量が増加するため、その影響で固体側が凹型の固
液界面となり易く、結晶周辺部の欠陥密度が高くなり、
そこから多結晶が発生し易くなるという難点がある。
When the crystal growth rate is increased by the VGF method or the VB method in order to reduce the growth time, the amount of latent heat of solidification per unit time increases, so that the solid side easily becomes a concave solid-liquid interface due to the influence. The defect density around the crystal increases,
There is a disadvantage that polycrystals are easily generated therefrom.

【0011】また、温度勾配を大きくすれば結晶の成長
速度を上げることはできるが、その場合は結晶の欠陥密
度の増加や、温度勾配を大きくしたことに伴う融液の対
流による温度揺らぎの増加のため、結晶が多結晶化し易
くなるという不都合を生ずる。
The crystal growth rate can be increased by increasing the temperature gradient. However, in that case, the crystal defect density increases, and the temperature fluctuation due to the convection of the melt accompanying the increase in the temperature gradient increases. For this reason, there is an inconvenience that the crystal is easily polycrystallized.

【0012】このため、従来のVGF法やVB法では、
温度勾配を大きくせず、成長速度を遅くするという方法
が一般的にとられており、一炉あたりの結晶の生産性が
LEC法に比べて低いという問題があった。
For this reason, in the conventional VGF method and VB method,
A method of decreasing the growth rate without increasing the temperature gradient is generally adopted, and there is a problem that the productivity of crystals per furnace is lower than that of the LEC method.

【0013】本発明は、上述のようなVGF法やVB法
の欠点を解消し、結晶の成長速度を遅くすることなく高
品質の単結晶を得ることのできる化合物半導体単結晶の
製造方法を提供することを目的とする。
The present invention provides a method of manufacturing a compound semiconductor single crystal which can solve the above-mentioned disadvantages of the VGF method and the VB method and can obtain a high-quality single crystal without slowing down the crystal growth rate. The purpose is to do.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る化合物半導体単結晶の製造方法は、気
密容器内に、少なくとも化合物半導体原料を入れたルツ
ボを封入した後、その気密容器を縦型の加熱炉内に放置
して前記原料を熱源により加熱融解し、原料融液を所定
の温度勾配下で徐々に冷却して固化させることにより化
合物半導体単結晶を成長させる方法において、原料融液
の最高温度と化合物半導体の融点との温度差を10℃以
下,4℃以上、単結晶と原料融液の固液界面近傍の温度
勾配を4℃/cm以下,1℃/cm以上、結晶成長速度
を3mm/h以上,50mm/h以下とするようにした
ものである。
In order to achieve the above-mentioned object, a method for producing a compound semiconductor single crystal according to the present invention is characterized in that a crucible containing at least a compound semiconductor material is sealed in an airtight container. In a method of growing a compound semiconductor single crystal by leaving the container in a vertical heating furnace, heating and melting the raw material by a heat source, and gradually cooling and solidifying the raw material melt under a predetermined temperature gradient, The temperature difference between the maximum temperature of the raw material melt and the melting point of the compound semiconductor is 10 ° C or less, 4 ° C or more, and the temperature gradient near the solid-liquid interface between the single crystal and the raw material melt is 4 ° C / cm or less, 1 ° C / cm or more. The crystal growth rate is set to 3 mm / h or more and 50 mm / h or less.

【0015】以下に、本発明者等が、本発明に到るまで
の考察内容及び研究経過について概説する。
In the following, the present inventors outline the contents of the study and the progress of the research leading up to the present invention.

【0016】上述したように、VGF法やVB法におけ
る利点および欠点は、何れも小さな温度勾配で結晶育成
を行うことに起因している。融液が固化する時点で発生
する凝固潜熱は結晶の成長速度に比例するので、小さい
温度勾配では結晶の成長速度を遅くすることが一般的な
方法であった。
As described above, the advantages and disadvantages of the VGF method and the VB method are all caused by growing a crystal with a small temperature gradient. Since the latent heat of solidification generated when the melt solidifies is proportional to the crystal growth rate, it has been a general method to reduce the crystal growth rate with a small temperature gradient.

【0017】しかしながら、凝固潜熱は、融点における
熱平衡状態下での液体と固体の相転位に伴うエネルギー
差を示したものであるため、実際の結晶育成とは系の状
態が異なっていると考えられる。
However, since the latent heat of solidification indicates the energy difference due to the phase transition between the liquid and the solid under the thermal equilibrium state at the melting point, the state of the system is considered to be different from the actual crystal growth. .

【0018】従って、一般的な凝固潜熱の測定方法で求
められた凝固潜熱を目安としても、その凝固潜熱を結晶
成長にそのまま適用することはできないと発明者等は考
察した。
Therefore, the inventors have considered that even if the latent heat of solidification obtained by a general method of measuring latent heat of solidification is used as a guide, the latent heat of solidification cannot be directly applied to crystal growth.

【0019】近年、Si単結晶の成長において、融点近
傍での融液密度が、これまで考えられていたような温度
依存による変化よりも大きく変化することが報告されて
いる。 一方、CdTeやZnSeなどのII-IV族化合
物においては、融液の温度と融点の温度差が融液構造に
影響を与えるとの報告もある。
In recent years, it has been reported that, in the growth of a Si single crystal, the melt density near the melting point changes more than the temperature-dependent change that has been considered so far. On the other hand, in II-IV group compounds such as CdTe and ZnSe, there is a report that a temperature difference between the temperature of the melt and the melting point affects the structure of the melt.

【0020】これらの理論的な要因についてはまだ詳し
いことは解明されていないが、このような融液構造の変
化が、従来的な凝固潜熱に対しても影響を与えることは
十分に推測できることであり、本発明者等は、結晶成長
時の融液温度に着目して次のような実験を試みた。
Although the details of these theoretical factors have not been elucidated yet, it can be sufficiently estimated that such a change in the melt structure also affects the conventional latent heat of solidification. The present inventors focused on the melt temperature during crystal growth and tried the following experiment.

【0021】即ち、VGF法による直径3インチ・長さ
150mmのGaAs単結晶の育成において、固液界面
近傍の温度勾配を4℃/cmとし、一方は融液の最高温
度を融点よりも30℃程度高い場合、もう一方は10℃
程度高くした場合での結晶の成長速度に関わる結晶品質
の差異を調べた。
That is, in growing a GaAs single crystal having a diameter of 3 inches and a length of 150 mm by the VGF method, the temperature gradient in the vicinity of the solid-liquid interface was set at 4 ° C./cm. If high, the other is 10 ° C
The difference in crystal quality related to the growth rate of the crystal when the height was increased was examined.

【0022】その結果、結晶の成長速度が3mm/h以
上の場合、融液の最高温度を融点よりも30℃程度高く
した場合には、成長した結晶の途中より結晶周辺部の転
位密度が増加し多結晶が発生した。一方、温度差を10
℃程度とした場合は、4mm/hでも結晶全域が単結晶
となり転位密度の増加も見られなかった。
As a result, when the growth rate of the crystal is 3 mm / h or more, when the maximum temperature of the melt is higher than the melting point by about 30 ° C., the dislocation density at the crystal periphery increases from the middle of the grown crystal. Then, polycrystals were generated. On the other hand, if the temperature difference is 10
At about 4 ° C., even at 4 mm / h, the entire crystal region was a single crystal, and no increase in dislocation density was observed.

【0023】凝固潜熱に基づく計算では、結晶の成長速
度を約3mm/hとした場合には、発生する凝固潜熱を
十分に放散させるためには、温度勾配は5℃/cm以上
は必要であるが、本実験の結果では4℃/cmでも十分
に凝固潜熱を放散させることが可能であることが判っ
た。
In the calculation based on the latent heat of solidification, when the crystal growth rate is about 3 mm / h, a temperature gradient of 5 ° C./cm or more is required to sufficiently dissipate the generated latent heat of solidification. However, according to the results of this experiment, it was found that even at 4 ° C./cm, latent heat of solidification could be sufficiently dissipated.

【0024】以上のように、本実験では、GaAs単結
晶の育成について固液界面近傍の温度勾配を4℃/cm
とし、融液の最高温度と融点との温度差を10℃程度と
し、成長速度を3mm/hとしたが、本発明の主旨によ
れば上記以外の化合物半導体について上記以外の条件で
も単結晶を成長させ得ることは十分に推測可能である。
As described above, in this experiment, in growing a GaAs single crystal, the temperature gradient near the solid-liquid interface was 4 ° C./cm.
The temperature difference between the maximum temperature and the melting point of the melt was set to about 10 ° C., and the growth rate was set to 3 mm / h. However, according to the gist of the present invention, a single crystal of a compound semiconductor other than the above was formed even under other conditions. What can be grown is well speculative.

【0025】本発明は、一般的な凝固潜熱に基づく計算
では不可能とされていた、小さな温度勾配でも結晶の成
長速度を遅くすることなく化合物半導体単結晶の育成が
可能な条件を見出してなされたものであり、VGF法等
においても高い生産性を発揮させることができる。
The present invention has been made by finding a condition under which a compound semiconductor single crystal can be grown without reducing the crystal growth rate even with a small temperature gradient, which has been impossible by a calculation based on general latent heat of solidification. Therefore, high productivity can be exhibited even in the VGF method or the like.

【0026】[0026]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0027】[0027]

【実施例】図1を参照して本発明の一実施例について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.

【0028】ここに、図1は本発明に係る化合物半導体
単結晶の製造方法を実現するためのVGF法による単結
晶成長炉の概要を示す概略図である。
FIG. 1 is a schematic diagram showing an outline of a single crystal growth furnace by the VGF method for realizing the method of manufacturing a compound semiconductor single crystal according to the present invention.

【0029】本発明に係る化合物半導体単結晶の製造方
法では、図1に示すように、例えば直径3インチで厚さ
1mmのpBN製のルツボ1の底部中央に設けられた種
結晶設置部(図示省略)に種結晶(本実施例ではGaA
sの種結晶)を入れ、さらにルツボ1内に化合物半導体
原料として約4.5kgのGaAs多結晶2と、封止剤
3として約40gのB23(含有水分量:90ppm)を
入れる。
In the method of manufacturing a compound semiconductor single crystal according to the present invention, as shown in FIG. 1, a seed crystal mounting portion (shown in FIG. 1) provided at the bottom center of a pBN crucible 1 having a diameter of 3 inches and a thickness of 1 mm, for example. A seed crystal (in this embodiment, GaAs)
Then, about 4.5 kg of GaAs polycrystal 2 as a compound semiconductor raw material and about 40 g of B 2 O 3 (water content: 90 ppm) as a sealant 3 are put into the crucible 1.

【0030】続いて、気密容器4としての石英アンプル
4aの蒸気圧制御部(リザーバ)4b内に蒸気圧制御用
の元素として3gのAsを入れ、そのルツボ1を石英ア
ンプル4a内のサセプタ(図示省略)上に設置した後、
石英アンプル4a内を真空排気してキャップにより真空
封止する。
Subsequently, 3 g of As is put as a vapor pressure control element in a vapor pressure control section (reservoir) 4b of a quartz ampoule 4a as an airtight container 4, and the crucible 1 is placed in a susceptor (shown in the drawing) in the quartz ampule 4a. (Not shown)
The inside of the quartz ampule 4a is evacuated to vacuum and sealed with a cap.

【0031】その真空封止した気密容器4を熱源として
の例えば13段ヒータ構成の縦型加熱炉5内に設置す
る。
The vacuum-sealed hermetic container 4 is placed in a vertical heating furnace 5 having, for example, a 13-stage heater as a heat source.

【0032】そして、上記加熱炉5内の結晶育成部加熱
用ヒータ及び種結晶部加熱用ヒータにより、種結晶の上
端とGaAs多結晶(原料)2が1238℃〜1248
℃の温度となるようにルツボ1を加熱して原料2及び封
止剤3を融解させる。
Then, the upper end of the seed crystal and the GaAs polycrystal (raw material) 2 are heated from 1238 ° C. to 1248 by the heater for heating the crystal growing portion and the heater for heating the seed crystal portion in the heating furnace 5.
The crucible 1 is heated to a temperature of ° C. to melt the raw material 2 and the sealing agent 3.

【0033】ここで、GaAsの融点は1238℃であ
るから、上記GaAs多結晶2からなる原料融液の最高
温度(1248℃)とGaAsの融点との温度差は10
℃以下に保たれることとなる。
Since the melting point of GaAs is 1238 ° C., the temperature difference between the maximum temperature (1248 ° C.) of the raw material melt made of the GaAs polycrystal 2 and the melting point of GaAs is 10 ° C.
C. or less.

【0034】また、加熱炉5内において、蒸気圧制御部
加熱用ヒータにより蒸気圧制御部4bを615℃となる
ように加熱する。
Further, in the heating furnace 5, the vapor pressure control section 4b is heated to 615 ° C. by a heater for heating the vapor pressure control section.

【0035】次いで、結晶の育成速度が毎時3mmで固
液界面近傍の温度勾配が4℃/cmとなるように加熱炉
5の設定温度を連続的に下げて結晶の育成を開始し、結
晶育成中は、蒸気圧制御部4bの温度が一定となるよう
にヒータの出力を制御する。
Next, the set temperature of the heating furnace 5 is continuously lowered so that the crystal growth rate is 3 mm / h and the temperature gradient near the solid-liquid interface is 4 ° C./cm, and crystal growth is started. During that time, the output of the heater is controlled so that the temperature of the vapor pressure control unit 4b becomes constant.

【0036】上記実施例のようにしてVGF法による単
結晶成長炉を運転した結果、結晶育成開始から約70時
間経過した時点で原料融液は全て固化した。
As a result of operating the single crystal growth furnace by the VGF method as in the above embodiment, all of the raw material melt was solidified at about 70 hours after the start of crystal growth.

【0037】その後、加熱炉5全体を毎時100℃の降
温速度で冷却し、室温近くまで冷えた時点で加熱炉5内
から気密容器4を取り出して、その気密容器4を壊して
結晶を取り出す。
Thereafter, the entire heating furnace 5 is cooled at a temperature decreasing rate of 100 ° C./hour, and when the temperature is cooled to near room temperature, the airtight container 4 is taken out of the heating furnace 5 and the airtight container 4 is broken to take out a crystal.

【0038】上記方法によって得られた結晶6は、直径
約3インチで全長約150mmのGaAs単結晶であ
り、その結晶性を調べたところ双晶や多結晶は全く発生
していなかった。
The crystal 6 obtained by the above method is a GaAs single crystal having a diameter of about 3 inches and a total length of about 150 mm. When its crystallinity was examined, no twin or polycrystal was generated.

【0039】この単結晶インゴットを切断して転位密度
を調べたところ、結晶のどの領域においても転位密度は
2000cm-2以下であった。
When the dislocation density was examined by cutting this single crystal ingot, the dislocation density was 2000 cm -2 or less in any region of the crystal.

【0040】そして、上記実施例と同一の条件でGaA
sの単結晶成長を10回行ったところ、8回が単結晶と
なり転位密度は2000cm-2以下であった。
Then, GaAs is formed under the same conditions as in the above embodiment.
When single crystal growth of s was performed ten times, eight times became a single crystal, and the dislocation density was 2000 cm -2 or less.

【0041】このように、本実施例によれば、比較的小
さな温度勾配であっても結晶の成長速度を遅くすること
なく、単結晶の育成が可能となりGaAs単結晶の生産
性を高めることに貢献することができる。
As described above, according to this embodiment, it is possible to grow a single crystal without slowing down the crystal growth rate even with a relatively small temperature gradient, and to improve the productivity of the GaAs single crystal. Can contribute.

【0042】なお、上記実施例では、化合物半導体とし
てGaAsの育成に本発明に係る製造方法を適用する場
合について述べたが、これに限定されるものではなく、
本発明に係る方法は他の化合物半導体の単結晶成長につ
いても有効であることが推測されることから、GaAs
以外のInPやGaP等の閃亜鉛鉱型構造の化合物半導
体をVGF法等により製造する場合にも適用可能であ
る。
In the above embodiment, the case where the manufacturing method according to the present invention is applied to growing GaAs as a compound semiconductor has been described. However, the present invention is not limited to this.
Since the method according to the present invention is presumed to be effective also for single crystal growth of other compound semiconductors, GaAs
The present invention is also applicable to a case where a compound semiconductor having a zinc blende structure such as InP or GaP other than the above is manufactured by the VGF method or the like.

【0043】[0043]

【発明の効果】本発明によれば、気密容器内に、少なく
とも化合物半導体原料を入れたルツボを封入した後、そ
の気密容器を縦型の加熱炉内に設置して前記原料を熱源
により加熱融解し、原料融液を所定の温度勾配下で徐々
に冷却して固化させることにより化合物半導体の単結晶
を成長させる方法において、原料融液の最高温度と化合
物半導体の融点との温度差を10℃以下,4℃以上、単
結晶と原料融液の固液界面近傍の温度勾配を4℃/cm
以下,1℃/cm以上、結晶成長速度を3mm/h以
上,50mm/h以下としたことにより、小さな温度勾
配でも結晶の成長速度を遅くすることなく化合物半導体
単結晶の育成が可能となり、VGF法においても高い生
産性を発揮させることができるようになるという優れた
効果がある。
According to the present invention, a crucible containing at least a compound semiconductor material is sealed in an airtight container, and then the airtight container is placed in a vertical heating furnace, and the material is heated and melted by a heat source. Then, in a method of growing a compound semiconductor single crystal by gradually cooling and solidifying the raw material melt under a predetermined temperature gradient, a temperature difference between the maximum temperature of the raw material melt and the melting point of the compound semiconductor is set to 10 ° C. In the following, the temperature gradient in the vicinity of the solid-liquid interface between the single crystal and the raw material melt is 4 ° C./cm
By setting the crystal growth rate to 1 ° C./cm or more and the crystal growth rate to 3 mm / h or more and 50 mm / h or less, it becomes possible to grow a compound semiconductor single crystal without slowing down the crystal growth rate even with a small temperature gradient. The method also has an excellent effect that high productivity can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る製造方法をVGF法によるGaA
s単結晶の製造に適用する際に使用される結晶成長炉の
概略図である。
FIG. 1 shows a method for manufacturing GaAs by VGF method according to the present invention.
It is a schematic diagram of a crystal growth furnace used when applying to manufacture of an s single crystal.

【符号の説明】[Explanation of symbols]

1 ルツボ 2 化合物半導体原料(GaAs多結晶) 3 封止剤(B23) 4 気密容器 5 加熱炉(ヒータ)1 crucible 2 compound semiconductor material (GaAs polycrystal) 3 sealant (B 2 O 3) 4 airtight container 5 heating furnace (heater)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気密容器内に、少なくとも化合物半導体
原料を入れたルツボを封入した後、その気密容器を縦型
の加熱炉内に設置して前記原料を熱源により加熱融解
し、原料融液を所定の温度勾配下で徐々に冷却して固化
させることにより化合物半導体の単結晶を成長させる方
法において、原料融液の最高温度と化合物半導体の融点
との温度差を10℃以下,4℃以上、単結晶と原料融液
の固液界面近傍の温度勾配を4℃/cm以下,1℃/c
m以上、結晶成長速度を3mm/h以上,50mm/h
以下とすることを特徴とする化合物半導体単結晶の製造
方法。
1. A crucible containing at least a compound semiconductor raw material is sealed in an airtight container, and the airtight container is placed in a vertical heating furnace, and the raw material is heated and melted by a heat source. In a method of growing a compound semiconductor single crystal by gradually cooling and solidifying under a predetermined temperature gradient, a temperature difference between the maximum temperature of the raw material melt and the melting point of the compound semiconductor is 10 ° C. or less, 4 ° C. or more, The temperature gradient near the solid-liquid interface between the single crystal and the raw material melt should be 4 ° C / cm or less, 1 ° C / c
m or more, the crystal growth rate is 3 mm / h or more, 50 mm / h
A method for producing a compound semiconductor single crystal, characterized by the following.
【請求項2】 前記化合物半導体がGaAsまたはIn
P若しくはGaPであることを特徴とする請求項1記載
の化合物半導体単結晶の製造方法。
2. The method according to claim 1, wherein the compound semiconductor is GaAs or In.
The method for producing a compound semiconductor single crystal according to claim 1, wherein the compound semiconductor is P or GaP.
JP17586397A 1997-07-01 1997-07-01 Method for producing compound semiconductor single crystal Expired - Lifetime JP3806793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17586397A JP3806793B2 (en) 1997-07-01 1997-07-01 Method for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17586397A JP3806793B2 (en) 1997-07-01 1997-07-01 Method for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH1121193A true JPH1121193A (en) 1999-01-26
JP3806793B2 JP3806793B2 (en) 2006-08-09

Family

ID=16003528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17586397A Expired - Lifetime JP3806793B2 (en) 1997-07-01 1997-07-01 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP3806793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006988A (en) * 2007-05-09 2015-01-15 エーエックスティー,インコーポレーテッド Method for manufacturing gallium basis material and group iii basis material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006988A (en) * 2007-05-09 2015-01-15 エーエックスティー,インコーポレーテッド Method for manufacturing gallium basis material and group iii basis material

Also Published As

Publication number Publication date
JP3806793B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP3343615B2 (en) Bulk crystal growth method
EP0446525A1 (en) Crystal growth method and apparatus
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP3806791B2 (en) Method for producing compound semiconductor single crystal
US4654110A (en) Total immersion crystal growth
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
US7175705B2 (en) Process for producing compound semiconductor single crystal
JPH10259100A (en) Production of garium-arsenic single crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JPH10218699A (en) Growth of compound semiconductor single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP3831913B2 (en) Method for producing compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JPH0380180A (en) Device for producing single crystal
JP3624295B2 (en) Single crystal manufacturing method and manufacturing apparatus thereof
JPH03193689A (en) Production of compound semiconductor crystal
JPH10212192A (en) Method for growing bulk crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH10212200A (en) Production of semi-insulating gallium arsenide single crystal
JPH05319973A (en) Single crystal production unit
US20070068446A1 (en) Compound semiconductor single crystal and production process thereof
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP2000327496A (en) Production of inp single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term