JPH112106A - 有効エネルギーへの熱変換方法およびその装置 - Google Patents

有効エネルギーへの熱変換方法およびその装置

Info

Publication number
JPH112106A
JPH112106A JP9026980A JP2698097A JPH112106A JP H112106 A JPH112106 A JP H112106A JP 9026980 A JP9026980 A JP 9026980A JP 2698097 A JP2698097 A JP 2698097A JP H112106 A JPH112106 A JP H112106A
Authority
JP
Japan
Prior art keywords
working fluid
primary
stream
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9026980A
Other languages
English (en)
Other versions
JP3961058B2 (ja
Inventor
Alexander I Kalina
アレキサンダー,アイ.カリナ
Lawrence B Rhodes
ローレンス,ビー.ローズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exergy Inc
Original Assignee
Exergy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exergy Inc filed Critical Exergy Inc
Publication of JPH112106A publication Critical patent/JPH112106A/ja
Application granted granted Critical
Publication of JP3961058B2 publication Critical patent/JP3961058B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】 【課題】 有効エネルギーへの熱変換。 【解決手段】 一次流体(例えば水蒸気)を多段膨張さ
せ、一次流体の熱を使用して別個の閉鎖ループ中におい
て多成分作動流体を加熱し、前記多成分作動流体を膨張
させる事によって前記一次流体中の熱を有効エネルギー
に変換させる。蒸気状態の一次流体が第1段階エキスパ
ンダーの中で膨張させられて有効エネルギーを生産しま
た部分的に膨張された一次流体流を形成する。次に前記
部分的に膨張させられた一次流体が液体成分と蒸気成分
とに分離され、また(第2段階エキスパンダーにおいて
膨張される)蒸気流と(多成分作動流体の加熱に使用さ
れる)第2の一次流とに分割される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、熱エネルギー(例
えば都市廃棄物などの毒性/または腐食性燃料の燃焼に
よって生成される熱、または地熱)を有効エネルギー
(例えば、機械的または電気的エネルギー)に変換する
事に関するものである。
【0002】
【従来の技術】毒性および/または腐食性煙道ガスを発
生する燃料の燃焼工程においては、ボイラー管の急速な
腐食を防止するため、これらのボイラー管を一定温度水
準以下の温度に保持する必要がある。これは通常、これ
らのボイラー管の中に沸騰水を循環させその結果として
飽和水蒸気または少し過熱された水蒸気を形成する事に
よって達成される。
【0003】
【発明が解決しようとする課題】従来この水蒸気は次に
有効な動力を発生するため水蒸気タービンの中で膨張さ
せられる。しかしこの水蒸気は飽和されまたは軽度に過
熱されているにすぎないので、その膨張はタービンを湿
潤区域で作動させるが、これは水蒸気タービンの効率と
寿命を大幅に低下させる。従って水蒸気タービンは水蒸
気湿潤度が12−13%を超える条件で作動する事がで
きないので、しばしば膨張の途中で膨張を停止し液体を
分離除去し次に再び膨張を継続する事が必要である。
【0004】また米国特許第5,440,882号に記
載のように水蒸気と塩水とを含有する地熱流体から有効
なエネルギーが得られる。
【0005】
【課題を解決するための手段】1つの観点において、本
発明の特徴は一次流体(例えば水蒸気)を多段膨張させ
て前記一次流体中の熱を有効エネルギーに変換し、別個
の閉鎖ループ中において一次流体の熱を使用して多成分
作動流体を加熱し、前記多成分作動流体を膨張させるに
ある。蒸気状態の一次流体が第1段階膨張器の中で膨張
させられて有効エネルギーを生産しまた部分的に膨張さ
れた一次流体流を形成する。次にこの部分的に膨張させ
られた一次流体が液体成分と蒸気成分とに分離され、ま
た(第2段階膨張器において膨張される)蒸気流と(多
成分作動流体の加熱に使用される)第2の一次流とに分
割される。
【0006】好ましい実施態様において、(膨張させら
れた)消費済み多成分作動流体が凝縮器において凝縮さ
れまた回収型熱交換器を通され、この熱交換器の中にお
いて前記消費済み多成分作動流体の熱を使用して凝縮さ
れた多成分作動流体を熱回収的に加熱する。一次流体は
ボイラーの中で加熱される事ができ、または一次流体は
地熱流体から得られる水蒸気とする事ができる。
【0007】他の観点において、本発明の特徴は一般に
2つの閉鎖ループを使用して熱を有効エネルギーに変換
するにある。一方の閉鎖ループが一次作動流体を収容
し、この一次作動流体が外部熱源によって(例えば、腐
食性または毒性燃料を燃焼させるボイラーの中で)加熱
され次に2つの流れに分割される。その第1流が(例え
ばタービンの中で)膨張させられて有効エネルギーを生
産し、第2流が第1熱交換器中において第2閉鎖ループ
中の多成分作動流体を加熱するために使用される。加熱
された多成分作動流体は(例えば第2タービン中におい
て)膨張させられてさらに有効エネルギーを生産する。
【0008】好ましい実施態様において第1流が2つの
流れに分割され、これらの2流の一方が蒸気流であって
膨張させられて有効エネルギーを生産し、またこれらの
追加的2流がいずれも他の2つの熱交換器の中で多成分
作動流体を加熱するために使用される。
【0009】他の観点において、本発明の特徴は一般に
水蒸気と塩水とを含有する地熱流体の熱を有効エネルギ
ーに変換する動力システムである。塩水から水蒸気が分
離され、この水蒸気の熱が別個の閉鎖ループ中において
第1熱交換器の中で多成分作動流体を加熱するために使
用される。前記の分離された塩水は第2熱交換器の中に
おいて多成分作動流体をさらに加熱するために使用さ
れ、次にシステムから排出される。次に多成分作動流体
が膨張させられて追加的有効エネルギーを生産する。
【0010】好ましい実施態様において、消費済み多成
分作動流体が凝縮器において凝縮され、回収型熱交換器
を通され、この熱交換器中において消費済み多成分作動
流体の熱を使用して、凝縮器の中で凝縮された多成分作
動流体を熱回収的に加熱する。第1熱交換器の中で多成
分作動流体を加熱するために使用される熱は、膨張させ
られて2流に分割された水蒸気から得られる。一方の流
は有効エネルギーを得るために膨張させられる蒸気であ
り、他方の流は第1熱交換器を通って次に絞られ、膨張
流と結合させられる。
【0011】以下、本発明を図面に示す実施の形態につ
いて詳細に説明するが本発明はこれに限定されない。
【0012】
【発明の実施の形態】図1について述べれば、熱を機械
的エネルギーに変換する装置が図示されている。装置1
10は第1および第2閉鎖ループ112、114を含
む。ループ112は一次作動流体として水を含む。第2
ループ114は多成分作動流体として水/アンモニア混
合物を含む。多成分作動流体を使用するシステムはアレ
キサンダー I.カリーナの米国特許第4、346、5
61号、第4,489,563号、第4,548,04
3号、第5,596,340号、第4,604,867
号、第4,732,005号、第4,763,480
号、第4,899,545号、第4,982,568
号、第5,029,444号、第5,095,708
号、第5,440,882号、第5,450,821号
および特願第08/283,091号、第08/54
6,419号に記載され、これらの特許および特願を引
例とする。
【0013】閉鎖ループ112の中において、点56の
ようなパラメータを有する凝縮液状水が管を通してボイ
ラー116の中に送られ、このボイラーが腐食性および
/または毒性燃料を燃焼する。ボイラー116の管の中
で、水が沸騰し、点51のパラメータを有する乾燥した
飽和水蒸気を生成する。点51のパラメータを有する水
蒸気がそれぞれ点41および52のパラメータを有する
第1および第2の一次流に分割される。点41のパラメ
ータを有する水蒸気流が水蒸気タービンの第1段ST−
1の中に転送される。この第1段は第1膨張器であって
その中で水蒸気が中圧まで膨張し、出力を生じ、点42
のパラメータをもってST−1をでる。この水蒸気はす
でに湿潤しており、セパレータ/スプリッター118中
のセパレータSの中に転送され、そこで膨張した第1の
一次流中の液体が水蒸気から分離される。点43のパラ
メータを有する分離された水蒸気部分が水蒸気タービン
の第2段、ST−2(第2膨張器)の中に転送される。
水蒸気の残分とセパレータSを出る液体全部が結合され
て、点45のパラメータを有する第4の一次流を成す。
点43(前記)のパラメータを有する水蒸気の第3の一
次流が水蒸気タービンの第2段、ST−2中で膨張さ
れ、出力を生じまた点44のパラメータを得る。このよ
うにして、それぞれ点52、44および45のパラメー
タを有する飽和または湿潤水蒸気の第2、第3および第
4の一次流が形成される。点52のパラメータを有する
第2の一次流が最高の圧力と温度を有する。点45のパ
ラメータを有する第4の一次流と、点44のパラメータ
を有する第3の一次流とがそれぞれ中圧および中温度と
最低圧および最低温度を有する。点52のパラメータを
有する第2の一次流中の水蒸気が熱交換器HE−1の中
に転送され、そこでこの水蒸気が凝縮されサブクーリン
グされて、放熱し、点54のパラメータをもって熱交換
器HE−1を出る。点45のパラメータを有する第4の
一次流中の水蒸気が第2熱交換器HE−2の中に転送さ
れ、そこでこの水蒸気が凝縮されサブクーリングされ
て、放熱し、点46のパラメータをもって熱交換器HE
−2を出る。次にこの第4の一次流が点54のパラメー
タを有する前記の第2の一次流中の水蒸気の圧力に等し
い圧力までポンプP−2によって加圧されて点50のパ
ラメータを得る。点44のパラメータを有する第3の一
次流中の水蒸気が第3熱交換器HE−3の中に転送さ
れ、そこでこの水蒸気が凝縮されサブクーリングされ
て、放熱し、点48のパラメータをもって熱交換器HE
−3を出る。次にこの第3の一次流がそれぞれ前記の点
54と50のパラメータを有する第2および第4の一次
流の圧力に等しい圧力までポンプP−3によって加圧さ
れる。次に、それぞれ点54、49および50のパラメ
ータを有する第2、第3および第4の一次流が結合され
て点55のパラメータを有する流を生じる。次にこの流
が前記の点56のパラメータを得るのに必要な圧力まで
ポンプP−4によって加圧され、ボイラー116の中に
転送される。
【0014】第2閉鎖ループ114の中において、点1
4のパラメータを有する完全に凝縮された多成分作動流
体がポンプP−1によって所要圧まで加圧され点21の
パラメータを得る。その後、点21のパラメータを有す
る多成分作動流体流が第4熱交換器HE−4を通過し、
そこで流体は加熱されて点60のパラメータを得る。好
ましくは点60における作動流体の状態は飽和液であ
る。その後、点60のパラメータを有する多成分作動流
体が回収型第5熱交換器HE−5を通り、そこで部分的
に蒸発されて点62のパラメータを得る。その後、点6
2のパラメータを有する流体流が前記の第3熱交換器H
E−3の中に転送され、そこでこの熱交換器中において
放出される熱によってさらに加熱され、点66のパラメ
ータを得る。その後、点66のパラメータを有する多成
分作動流体流が前記の第2熱交換器HE−2の中に転送
され、そこでこの熱交換器中において放出される熱によ
ってさらに加熱され完全に蒸発される。熱交換器HE−
2を出て点68のパラメータを有する多成分作動流体流
(好ましくは飽和蒸気の状態)が前記の第1熱交換器H
E−1の中に入り、そこでこの熱交換器中において放出
される熱によって過熱され点30のパラメータをもって
この第1熱交換器から出る。点30のパラメータを有す
る多成分作動流体流が作動流体タービンWFT(第2膨
張器)を通り、この中で膨張させられて出力を生じ、点
36のパラメータを有する消費済み多成分作動流体とし
てWFTを出る。点36のパラメータを有する消費済み
多成分作動流体が回収型熱交換器HE−5を通り、そこ
で冷却され部分的に凝縮され、放熱し(前述)、点38
のパラメータをもってHE−5を出る。その後、点38
のパラメータを有する多成分作動流体流が回収熱交換器
HE−4に入り、そこでさらに冷却され凝縮し、放熱
(前述)して点29のパラメータをもってHE−4を出
る。点29のパラメータを有する部分的に凝縮された多
成分作動流体流は凝縮器HE−6を通り、そこで冷却水
または冷却空気流23−24によって完全に凝縮され
て、点14のパラメータを得る。
【0015】前記工程のすべてのキーポイントのパラメ
ータを表1に示す。
【0016】装置110は毒性および腐食性燃料の燃焼
によって生じた熱の効率的変換を成す。本発明による図
1のシステムの性能一覧を表2に示し、この表は28.
14%の正味熱効率を示す。従来の流体流の直接膨張に
基づくシステムにおいては、点51の同一パラメータを
もってボイラーを出る流体流は21%の正味熱効率を示
す。従って図1のシステムは熱変換/出力発生効率を3
3%増大させる。
【0017】図2において、水蒸気と塩水から成る地熱
流体からの熱を利用するように設計された動力システム
210を示す。塩水の高度の無機質含有量は塩水の冷却
される限度を制限し、その結果、二、三の点において腐
食性毒性燃料を利用するための図1のシステムに類似し
た条件を生じる。このような条件の類似性の故に、地熱
動力システム210においても一部の同一原理を利用す
る事ができる。
【0018】地熱動力システム210においては、点1
51のパラメータを有する水蒸気と無機質含有塩水とか
ら成る地熱流体がセパレータS−1に入り、そこで点1
41のパラメータを有する飽和水蒸気流と点152のパ
ラメータを有する無機質塩水流とに分離される。点14
1のパラメータを有する水蒸気流が高圧蒸気タービンS
T−1の中に入り、そこで中圧まで膨張させられて点1
42のパラメータを得る。点142のパラメータを有す
る水蒸気は湿潤水蒸気であって、セパレータ/スプリッ
ター212中のセパレータS−2の中に入り、そこで膨
張水蒸気中の液体が水蒸気から分離され、点143のパ
ラメータを有する第1流と点146のパラメータを有す
る第2流とに分割される。セパレータS−2から出る水
蒸気は、それぞれ点143と点145のパラメータを有
する2つの支流に分割され。その後、第1流(点143
のパラメータを有する水蒸気)が低圧蒸気タービンST
−2の中に転送され、そこで低圧まで膨張させられて有
用エネルギーを発生する。高圧蒸気タービンST−1と
低圧蒸気タービンST−2は水蒸気のそれぞれ第1およ
び第2段階膨張器である。低圧タービンST−2におけ
る膨張後に、第1流は点144のパラメータを得る。点
145のパラメータを有する水蒸気流がセパレータS−
2から除去された液体と混合され、パラメータ146を
有する第2流を生じる。この第2流が第1熱交換器HE
−1を通り、そこで凝縮されサブクーリングされ、この
第1熱交換器から点148のパラメータをもって出る。
その後、点148のパラメータを有する凝縮物流は絞り
弁TVにおいて、点144のパラメータを有するST−
2からの流れと同等圧まで絞られ、この流と混合され
る。この混合の結果、点149のパラメータを有する部
分的に凝縮された水蒸気流が形成される。点149のパ
ラメータを有する流が水蒸気凝縮器HE−6を通り、そ
こで冷却水または冷却空気によって冷却されて、点15
0のパラメータを得る。この凝縮流がシステム210か
ら排出される。
【0019】セパレータS−1から除去され点152の
パラメータを有する塩水(前述)が第2熱交換器HE−
2を通り、そこで冷却されて点154のパラメータを得
る。熱交換器HE−2中の塩水から放出された熱が下記
に説明する二元サイクルの作動流体に転送される。冷却
された塩水はシステム210から適度の温度で排出され
る。
【0020】完全に凝縮され点114のパラメータを有
する二元サイクルの作動流体がポンプP−1によってポ
ンプ輸送されて点121のパラメータを得る。点121
のパラメータを有する作動流体流が回収型熱交換器HE
−3を通過し、そこで加熱されて160のパラメータを
得る。この点160のパラメータを有する作動流体の状
態は飽和液である。その後、点160のパラメータを有
する作動流体流は熱交換器HE−4を通り、そこで部分
的に沸騰させられ点166のパラメータを得る。その
後、点166のパラメータを有する作動流体流は第1熱
交換器HE−1を通り、そこで前記セパレータ/スプリ
ッター212から出る第2流の熱によって加熱されて完
全に蒸発させられ、点168のパラメータをもって熱交
換器HE−1から出る。点168のパラメータを有する
多成分作動流体が第2熱交換器HE−2を通り、そこで
液状地熱塩水の冷却工程に際して放出された熱によって
過熱される。熱交換器HE−2中の加熱の結果、作動流
体は点130のパラメータを得て作動流体タービンWF
Tの中に入る。タービンWFT中で作動流体が膨張させ
られて仕事を生じ点136のパラメータを得る。その
後、点136のパラメータを有する消費済み多成分作動
流体が回収型熱交換器HE−4を通り、そこで部分的に
凝縮されてこの熱交換器を点138のパラメータをもっ
て出る。熱交換器HE−4の中に放出された熱は作動流
体を点160と166との間において初期蒸発させるの
に使用される。その後、点138のパラメータを有する
作動流体が熱交換器HE−3を通り、そこでさらに凝縮
されて点129のパラメータを得る。熱交換器HE−3
の中に放出された熱が作動流体を前述のように点121
と点160との間において予熱するために利用される。
さらに点129のパラメータを有する作動流体流が凝縮
器HE−5の中に転送され、そこで冷却水または空気に
よって完全に凝縮されて、点114のパラメータを得
る。そこで作動流体のサイクルが閉じる。
【0021】動力システム210において、タービン第
2段(ST−2)後の水蒸気の凝縮熱は図1のシステム
110のように二元サイクル中の作動流体の加熱と蒸発
には使用されない。これは、この種の熱が非常に低温で
あって、動力を発生するポテンシャルを有しないからで
ある。
【0022】地熱エネルギーの利用に応用される図2の
動力システムは、蒸気が最低可能圧まで全部膨張させら
れ、液体が追加水蒸気を発生するように絞られ、この追
加水蒸気も最低可能圧まで膨張させられるように成され
た従来システムと比較して、約30%の効率増大をもた
らす。
【0023】動力システム210のすべてのキーポイン
トの水蒸気パラメータを表3に示し、またこのシステム
の性能一覧を表4に示す。
【0024】前記のシステム110と210は、熱源と
して使用される水蒸気の多段膨張を使用し、また凝縮熱
を閉鎖二元サイクルにおいて多成分作動流体を加熱し蒸
発させるために利用される。またいずれの場合にも、二
元サイクル中の多成分作動流体は少なくとも2種の成分
の混合物である。多成分作動流体中の成分組成は、作動
流体の膨張後の初凝縮温度が膨張前の同一作動流体の初
沸騰温度より高くなるように選定される。その結果、流
入作動流体の回収型初沸騰を可能とする。
【0025】本発明は前記の説明のみに限定されるもの
でなく、その主旨の範囲内において任意に変更実施でき
る。例えば図1のシステムにおいて、熱源として水蒸気
でなく水蒸気と液体との混合物を使用し、またこの液体
の冷却によって放出された熱を二元サイクルの作動流体
の過熱のために使用する事ができる。
【0026】
【表1】
【0027】
【表2】
【0028】
【表3】
【0029】
【表4】
【図面の簡単な説明】
【図1】燃料燃焼から熱を生産する本発明の第1の実施
の形態のフローシート。
【図2】水蒸気と塩水とを含む地熱流体から熱を生産す
る本発明の第2の実施の形態のフローシート。
【符号の説明】
110 燃料燃焼から熱が得られる装置 23 冷却水/エア 41 第1の一次流 52 第2の一次流 44 第3の一次流 45 第4の一次流 112、114 ループ 116 ボイラー 118 セパレータ/スプリッター S セパレータ ST−1 第1段階タービン(膨張器) ST−2 第2段階タービン(膨張器) WFT 多成分作動流体タービン HE−1、2、3、4、5 熱交換器 HE−6 凝縮器 P1、2、3、4 ポンプ 210 地熱から熱が得られる装置 S−1 セパレータ S−2 セパレータ TV 絞り弁 151 蒸気導入 152 塩水導入 154 塩水排出 212 スプリッター

Claims (48)

    【特許請求の範囲】
  1. 【請求項1】蒸気状態の一次流体を第1段膨張器の中で
    膨張させて有効エネルギーを得て、蒸気成分と液状成分
    とを含む部分的に膨張された一次流体流を形成する工程
    と、 前記の部分的に膨張された一次流体流を液体成分と蒸気
    成分とに分離し、前記一次流体流を蒸気流と液体を含む
    他の一次流とに分割する工程と、 前記蒸気流を第2段階膨張器の中で膨張させて有効エネ
    ルギーを得る工程と、 前記部分的に膨張された一次流体流中の熱を使用して別
    個の閉鎖ループの中において第1熱交換器の中で多成分
    作動流体を加熱する工程と、 前記の別個の閉鎖ループの中で前記多成分作動流体を他
    の膨張器において膨張させて有効エネルギーを得て消費
    済み多成分作動流体を形成する工程と、を備えた事を特
    徴とする有効エネルギーへの熱変換方法。
  2. 【請求項2】前記の消費済み多成分作動流体を凝縮器に
    おいて凝縮させ回収熱交換器を通し、この回収熱交換器
    の中で前記消費済み多成分作動流体からの熱を使用し
    て、前記凝縮器において凝縮された後の前記多成分作動
    流体を熱回収的に加熱する事を特徴とする請求項1に記
    載の方法。
  3. 【請求項3】前記蒸気状態の前記一次流体が水蒸気であ
    る事を特徴とする請求項1に記載の方法。
  4. 【請求項4】前記水蒸気が前記一次流体を一次閉鎖ルー
    プの中でボイラー中で加熱する事によって生成される事
    を特徴とする請求項3に記載の方法。
  5. 【請求項5】前記加熱は腐食性または毒性燃料の燃焼を
    含む事を特徴とする請求項4に記載の方法。
  6. 【請求項6】前記蒸気状態の前記一次流体が、前記第1
    段階膨張器において膨張される第1の一次流と、前記多
    成分作動流体をその膨張前にさらに加熱するために使用
    される第2の一次流とに分割される事を特徴とする請求
    項5に記載の方法。
  7. 【請求項7】前記の他の一次流を使用して、前記第1加
    熱熱交換器の中において加熱される前の前記多成分作動
    流体を加熱する事を特徴とする請求項6に記載の方法。
  8. 【請求項8】前記蒸気状態の一次流体が地熱流体から得
    られる事を特徴とする請求項3に記載の方法。
  9. 【請求項9】前記一次流体流を前記地熱流体中の塩水か
    ら分離する段階と、前記塩水を使用して膨張前の前記多
    成分作動流体をさらに加熱する段階とを含む事を特徴と
    する請求項8に記載の方法。
  10. 【請求項10】蒸気状態の一次流体を膨張させて有効エ
    ネルギーを生じまた蒸気と液体成分とを含む部分的に膨
    張された一次流体を形成する第1段階膨張器と、 前記第1段階膨張器から出た前記部分的に膨張された一
    次流体流を液体成分と蒸気成分とに分離しまた前記一次
    流体流を蒸気流と液体を含む他の一次流とに分割するセ
    パレータ/スプリッターと、 前記セパレータ/スプリッタからの前記蒸気流を膨張さ
    せて有効エネルギーを得るための第2段階膨張器と、 前記部分的に膨張された一次流体流中の熱を使用して多
    成分作動流体を加熱するように接続された一次熱交換器
    と、 前記多成分作動流体と、前記一次熱交換器中の流れ通路
    と、前記多成分作動流体を膨張させて有効エネルギーを
    得て消費済み多成分作動流体を形成する他の膨張器とを
    有する別個の閉鎖ループと、を備えた事を特徴とする熱
    を有効エネルギーに変換する装置。
  11. 【請求項11】前記閉塞ループは消費済み多成分作動流
    体を凝縮させる凝縮器と、前記消費済み多成分作動流体
    からの熱を利用して、前記凝縮器で凝縮された後の前記
    多成分作動流体を熱回収的に加熱する回収型熱交換器と
    を含む事を特徴とする請求項10に記載の装置。
  12. 【請求項12】前記蒸気状態の一次流体が水蒸気である
    事を特徴とする請求項10に記載の装置。
  13. 【請求項13】前記水蒸気が前記一次流体をボイラー中
    の一次閉鎖ループで加熱する事によって生成される事を
    特徴とする請求項12に記載の装置。
  14. 【請求項14】前記ボイラーは腐食性または毒性燃料を
    燃焼させる事を特徴とする請求項13に記載の装置。
  15. 【請求項15】前記蒸気状態の前記一次流体を前記第1
    段階膨張器において膨張される第1の一次流と、前記多
    成分作動流体をその膨張前にさらに加熱するために使用
    される第2の一次流とに分割する蒸気スプリッターを更
    に備えた事を特徴とする請求項14に記載の方法。
  16. 【請求項16】前記の他の一次流を使用して、前記第1
    熱交換器中で加熱される前の前記多成分作動流体を加熱
    する事を特徴とする請求項15に記載の装置。
  17. 【請求項17】前記蒸気状態の一次流体が地熱流体から
    得られる事を特徴とする請求項12に記載の装置。
  18. 【請求項18】前記一次流体流を前記地熱流体中の塩水
    から分離するセパレータと、前記塩水を使用して膨張前
    の前記多成分作動流体をさらに加熱する他の熱交換器と
    を更に備えた事を特徴とする請求項17に記載の装置。
  19. 【請求項19】第1閉鎖ループ中において外部熱源によ
    って一次作動流体を加熱する工程と、 前記の加熱された一次作動流体を第1の一次流と第2の
    一次流とに分割する工程と、 前記第1の一次流を第1膨張器中で膨張させて有効エネ
    ルギーを得る工程と、 前記第2の一次流の熱を利用して、第2閉鎖ループの中
    で多成分作動流体を第1熱交換器中で加熱する工程と、 前記多成分作動流体を第2膨張器中で膨張させて有効エ
    ネルギーを得る工程と、を備えた事を特徴とする熱を有
    効エネルギーに変換する方法。
  20. 【請求項20】前記加熱は腐食性または毒性燃料の燃焼
    を含む事を特徴とする請求項19に記載の方法。
  21. 【請求項21】前記一次作動流体は水蒸気である事を特
    徴とする請求項20に記載の方法。
  22. 【請求項22】前記第1膨張器中の膨張後に前記第1の
    一次流中の熱を使用して、前記多成分作動流体を第2熱
    交換器中において加熱する事を特徴とする請求項19に
    記載の方法。
  23. 【請求項23】前記第1の一次流は前記第1膨張器中で
    の膨張後に液体成分と蒸気成分とに分離されまた第3お
    よび第4の一次流に分割され、前記第3の一次流は有効
    エネルギーを得るため第3膨張器中で膨張される蒸気で
    あり、前記第4の一次流が前記第2熱交換器中を通る事
    を特徴とする請求項22に記載の方法。
  24. 【請求項24】前記第3膨張器中での膨張後に前記第3
    の一次流の熱を使用して前記多成分作動流体を第3熱交
    換器中で加熱する事を特徴とする請求項23に記載の方
    法。
  25. 【請求項25】前記第2、第3および第4の一次流を結
    合して前記一次作動流体を成しこの一次作動流体を前記
    ヒータによって加熱する事を特徴とする請求項24に記
    載の方法。
  26. 【請求項26】前記第1の一次流が前記第1膨張器中で
    の膨張後にセパレータによって液相と蒸気相とに分離さ
    れ、前記蒸気相の一部が前記第3の一次流を成し、また
    前記蒸気相の一部が前記液相と結合されて前記第4の一
    次流を成す事を特徴とする請求項25に記載の方法。
  27. 【請求項27】前記多成分作動流体が前記第2膨張器で
    の膨張後に凝縮器中で凝縮され、次に前記多成分作動流
    体が第4熱交換器を通され、この第4熱交換器の中にお
    いて凝縮前の前記多成分作動流体の熱を使用して前記凝
    縮器での凝縮後の前記多成分作動流体を熱回収的に加熱
    する事を特徴とする請求項19に記載の方法。
  28. 【請求項28】一次作動流体を収容する第1閉鎖ループ
    であって、前記一次作動流体を加熱するヒータと、前記
    加熱された一次作動流体を第1の一次流と第2の一次流
    とに分割する第1流れスプリッターと、有効エネルギー
    を得るため前記第1の一次流を膨張させる第1膨張器
    と、前記第2の一次流の熱を多成分作動流体に伝達する
    ために第1熱交換器を通る流路と、を含む第1閉鎖ルー
    プと、 前記多成分作動流体を収容する第2閉鎖ループであっ
    て、前記第1熱交換器を通る流路と、第2膨張器を含
    み、この第2膨張器の中で前記多成分作動流体が膨張さ
    れて有効エネルギーを発生するように成された第2閉鎖
    ループとを備えた事を特徴とする熱を有効エネルギーに
    変換する装置。
  29. 【請求項29】前記ヒータはボイラーであって、このボ
    イラーの中で腐食性または毒性燃料が燃焼される事を特
    徴とする請求項28に記載の装置。
  30. 【請求項30】前記一次作動流体が水蒸気である事を特
    徴とする請求項28に記載の装置。
  31. 【請求項31】前記第1閉鎖ループと前記第2閉鎖ルー
    プは各々第2熱交換器中の流路を含み、前記第2熱交換
    器の中において前記第1の一次流の熱を使用して前記多
    成分作動流体を加熱する事を特徴とする請求項28に記
    載の装置。
  32. 【請求項32】前記第1閉鎖ループは前記第1膨張器中
    での膨張後に前記第1の一次流を液相と蒸気相に分離し
    また前記第1の一次流を蒸気である第3の一次流と第4
    の一次流とに分割するセパレータ/スプリッターと、前
    記第3の一次流が通って膨張される膨張器とを含み、ま
    た前記第4の一次流が前記第2熱交換器を通る事を特徴
    とする請求項31に記載の装置。
  33. 【請求項33】前記第1閉鎖ループと前記第2閉鎖ルー
    プは各々第3熱交換器の中に流路を含み、この第3熱交
    換器の中において前記第3一次流からの熱を使用して前
    記多成分作動流体を加熱する事を特徴とする請求項32
    に記載の装置。
  34. 【請求項34】前記第1閉鎖ループは流れ結合手段を含
    み、この流れ結合手段において前記第2、第3および第
    4の一次流が結合されて、前記ヒータによって加熱され
    る前記一次作動流体を形成する事を特徴とする請求項3
    3に記載の装置。
  35. 【請求項35】前記セパレータ/スプリッターは、前記
    第1一次流を液相と蒸気相とに分離するセパレータと、
    前記蒸気相を前記第3一次流と他の流とに分割する第2
    流れスプリッターと、前記他の流れと前記液相とを前記
    第4の一次流に結合する流れ結合手段とを含む事を特徴
    とする請求項32に記載の装置。
  36. 【請求項36】前記第2閉鎖ループは前記多成分作動流
    体を凝縮する凝縮器と、第4熱交換器とを含み、前記第
    4熱交換器の中において、凝縮前の前記多成分作動流体
    の熱を使用して前記凝縮器中で凝縮された前記多成分作
    動流体を熱回収的に加熱する事を特徴とする請求項28
    に記載の装置。
  37. 【請求項37】蒸気と塩水とを含有する地熱流体の熱を
    動力システムの中において有効エネルギーに変換する方
    法において、 前記地熱流体中の前記水蒸気を前記塩水から分離する工
    程と、 前記水蒸気を第1膨張器中で膨張させて膨張水蒸気流を
    生じる工程と、 別個の閉鎖ループの中において第1熱交換器中で前記膨
    張水蒸気流を使用して多成分作動流体を加熱する工程
    と、 第2熱交換器の中において、前記塩水を使用して前記第
    1熱交換器から来る前記多成分作動流体をさらに加熱す
    る工程と、 前記塩水を前記第2熱交換器から動力システム外に排出
    する工程と、 前記多成分作動流体を前記別個の閉鎖ループ中の第2膨
    張器の中において膨張させて、有効エネルギーを生産し
    消費済み多成分作動流体を生じる工程とを備えた事を特
    徴とする方法。
  38. 【請求項38】前記消費済み多成分作動流体を凝縮器の
    中で凝縮しこの多成分作動流体を回収型熱交換器の中を
    通し、この回収型熱交換器の中で前記消費済み多成分作
    動流体の熱を使用して、前記凝縮器で凝縮された後の前
    記多成分作動流体を熱回収的に加熱する事を特徴とする
    請求項37に記載の方法。
  39. 【請求項39】前記第1熱交換器の中で前記多成分作動
    流体を加熱するために使用される前記の熱は、前記第1
    膨張器の中で膨張された水蒸気から得られる事を特徴と
    する請求項38に記載の方法。
  40. 【請求項40】前記第1膨張器中の膨張後に前記膨張水
    蒸気流が液体成分と蒸気成分とに分離されまた第1流と
    第2流とに分割され、前記第1流は蒸気であってこの蒸
    気が第3膨張器の中で膨張させられて有効エネルギーを
    生じさせ、前記第2流が前記第1熱交換器の中を通る事
    を特徴とする請求項39に記載の方法。
  41. 【請求項41】前記第2流が前記第1熱交換器通過後に
    絞られて、前記第3膨張器中の膨張後の前記第1水蒸気
    流と結合される事を特徴とする請求項40に記載の方
    法。
  42. 【請求項42】前記第1流と第2流との結合流が凝縮さ
    れシステムから排出される事を特徴とする請求項41に
    記載の方法。
  43. 【請求項43】動力システムにおいて水蒸気と塩水を含
    有する地熱流体の熱を有効エネルギーに変換する装置に
    おいて、 前記地熱流体中の前記水蒸気を前記塩水から分離するセ
    パレータと、 前記水蒸気を膨張させて有効エネルギーを生産し膨張水
    蒸気流を形成する第1膨張器と、 多成分作動流体を収容する別個の閉鎖ループであって、
    前記水蒸気の熱を使用して前記多成分作動流体を加熱す
    る第1熱交換器中の流路と、前記塩水が前記第1熱交換
    器からの前記多成分作動流体をさらに加熱する第2熱交
    換器中の流路と、前記第2熱交換器から来る多成分作動
    流体が膨張されて有効エネルギーを生じさせ消費済み多
    成分作動流体を形成するように成された第2膨張器とを
    含む別個の閉鎖ループと、 前記塩水を前記第2熱交換器からシステム外部に排出す
    るように接続された流出ラインとを備えた事を特徴とす
    る装置。
  44. 【請求項44】前記別個の閉鎖ループは前記消費済み多
    成分作動流体を凝縮する凝縮器と、前記消費済み多成分
    作動流体の熱を使用して前記多成分作動流体を前記凝縮
    器における凝縮後に熱回収的に加熱する回収型熱交換器
    とを含む事を特徴とする請求項43に記載の装置。
  45. 【請求項45】前記第1熱交換器中の前記多成分作動流
    体を加熱するために使用される前記熱は前記第1膨張器
    の中において膨張された水蒸気から得られる事を特徴と
    する請求項44に記載の装置。
  46. 【請求項46】さらに前記膨張水蒸気流を液体成分と蒸
    気成分とに分離し前記膨張水蒸気流を第1流と第2流と
    に分割し前記第1流を蒸気とするセパレータ/スプリッ
    ターと、前記第1流を通して膨張させて有効エネルギー
    を生産し前記第2流が前記第1熱交換器を通るように成
    された第3膨張器とを更に備えた事を特徴とする請求項
    45に記載の装置。
  47. 【請求項47】前記第1熱交換器を通過後の前記第2流
    を絞る絞り弁と、前記絞り弁から来る前記第2流を前記
    第3膨張器の中で膨張された前記第1流と結合させる継
    手とを更に備えた事を特徴とする請求項46に記載の装
    置。
  48. 【請求項48】前記第1流と前記第2流との結合流が凝
    縮されシステムから排出される事を特徴とする請求項4
    7に記載の装置。
JP02698097A 1996-02-09 1997-02-10 有効エネルギーへの熱変換方法およびその装置 Expired - Lifetime JP3961058B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US598950 1996-02-09
US08/598,950 US5822990A (en) 1996-02-09 1996-02-09 Converting heat into useful energy using separate closed loops

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007015548A Division JP4523948B2 (ja) 1996-02-09 2007-01-25 有効エネルギーへの熱変換方法およびその装置
JP2007015540A Division JP4566204B2 (ja) 1996-02-09 2007-01-25 有効エネルギーへの熱変換方法およびその装置

Publications (2)

Publication Number Publication Date
JPH112106A true JPH112106A (ja) 1999-01-06
JP3961058B2 JP3961058B2 (ja) 2007-08-15

Family

ID=24397596

Family Applications (3)

Application Number Title Priority Date Filing Date
JP02698097A Expired - Lifetime JP3961058B2 (ja) 1996-02-09 1997-02-10 有効エネルギーへの熱変換方法およびその装置
JP2007015548A Expired - Fee Related JP4523948B2 (ja) 1996-02-09 2007-01-25 有効エネルギーへの熱変換方法およびその装置
JP2007015540A Expired - Fee Related JP4566204B2 (ja) 1996-02-09 2007-01-25 有効エネルギーへの熱変換方法およびその装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2007015548A Expired - Fee Related JP4523948B2 (ja) 1996-02-09 2007-01-25 有効エネルギーへの熱変換方法およびその装置
JP2007015540A Expired - Fee Related JP4566204B2 (ja) 1996-02-09 2007-01-25 有効エネルギーへの熱変換方法およびその装置

Country Status (19)

Country Link
US (1) US5822990A (ja)
EP (1) EP0790391A3 (ja)
JP (3) JP3961058B2 (ja)
KR (1) KR970062323A (ja)
CN (1) CN1100933C (ja)
AR (1) AR005755A1 (ja)
AU (1) AU723964B2 (ja)
BR (1) BR9700926A (ja)
CA (1) CA2197038C (ja)
CO (1) CO4560511A1 (ja)
EA (1) EA000058B1 (ja)
GT (1) GT199700021A (ja)
IL (1) IL120178A (ja)
IS (1) IS1792B (ja)
NO (1) NO307225B1 (ja)
NZ (1) NZ314206A (ja)
TR (1) TR199700105A2 (ja)
TW (1) TW330234B (ja)
ZA (1) ZA971039B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011272A (ja) * 2011-06-03 2013-01-17 Toda Kogyo Corp 発電システム
JP2016145560A (ja) * 2015-02-09 2016-08-12 日野自動車株式会社 廃熱回収装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027221A1 (en) 1997-04-02 2004-04-01 Electric Power Research Institute, Inc. Method and system for a thermodynamic process for producing usable energy
US5953918A (en) * 1998-02-05 1999-09-21 Exergy, Inc. Method and apparatus of converting heat to useful energy
KR100302586B1 (ko) * 1998-03-27 2001-10-19 김영환 피씨 카드 에이티에이 카드의 파워다운 및 슬립모드 전환 방법
US6924781B1 (en) * 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
US6170263B1 (en) 1999-05-13 2001-01-09 General Electric Co. Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
US6347520B1 (en) 2001-02-06 2002-02-19 General Electric Company Method for Kalina combined cycle power plant with district heating capability
CA2393386A1 (en) * 2002-07-22 2004-01-22 Douglas Wilbert Paul Smith Method of converting energy
US6829895B2 (en) 2002-09-12 2004-12-14 Kalex, Llc Geothermal system
US6820421B2 (en) 2002-09-23 2004-11-23 Kalex, Llc Low temperature geothermal system
US6735948B1 (en) 2002-12-16 2004-05-18 Icalox, Inc. Dual pressure geothermal system
US6910334B2 (en) * 2003-02-03 2005-06-28 Kalex, Llc Power cycle and system for utilizing moderate and low temperature heat sources
US6769256B1 (en) 2003-02-03 2004-08-03 Kalex, Inc. Power cycle and system for utilizing moderate and low temperature heat sources
US7305829B2 (en) * 2003-05-09 2007-12-11 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
US7264654B2 (en) * 2003-09-23 2007-09-04 Kalex, Llc Process and system for the condensation of multi-component working fluids
US7065967B2 (en) * 2003-09-29 2006-06-27 Kalex Llc Process and apparatus for boiling and vaporizing multi-component fluids
CA2543470A1 (en) * 2003-10-21 2005-05-12 Petroleum Analyzer Company, Lp An improved combustion apparatus and methods for making and using same
US8117844B2 (en) * 2004-05-07 2012-02-21 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
WO2008124868A1 (en) * 2007-04-13 2008-10-23 Renewable Energy Systems Limited Power generation and energy recovery systems and methods
GB2450755B (en) 2007-07-06 2012-02-29 Greenfield Energy Ltd Geothermal energy system and method of operation
GB2450754B8 (en) * 2007-07-06 2013-02-06 Greenfield Energy Ltd Geothermal energy system and method of operation
GB2461029B (en) * 2008-06-16 2011-10-26 Greenfield Energy Ltd Thermal energy system and method of operation
EP2204553A1 (de) * 2008-06-23 2010-07-07 Siemens Aktiengesellschaft Dampfkraftanlage
US8087248B2 (en) 2008-10-06 2012-01-03 Kalex, Llc Method and apparatus for the utilization of waste heat from gaseous heat sources carrying substantial quantities of dust
US8695344B2 (en) * 2008-10-27 2014-04-15 Kalex, Llc Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power
US8176738B2 (en) 2008-11-20 2012-05-15 Kalex Llc Method and system for converting waste heat from cement plant into a usable form of energy
CN102365499B (zh) 2009-04-01 2014-11-05 莱内姆系统有限公司 余热空调系统
US8474263B2 (en) 2010-04-21 2013-07-02 Kalex, Llc Heat conversion system simultaneously utilizing two separate heat source stream and method for making and using same
GB2488797A (en) 2011-03-08 2012-09-12 Greenfield Master Ipco Ltd Thermal Energy System and Method of Operation
US20120324885A1 (en) * 2011-06-27 2012-12-27 Turbine Air Systems Ltd. Geothermal power plant utilizing hot geothermal fluid in a cascade heat recovery apparatus
CN102338047A (zh) * 2011-09-13 2012-02-01 上海盛合新能源科技有限公司 一种地热发电设备
CN102305113A (zh) * 2011-09-13 2012-01-04 上海盛合新能源科技有限公司 一种石化行业中使用的低温余热回收设备
DE102012100967A1 (de) * 2012-02-07 2013-08-08 Levitec Gmbh Anordnung zur Vorwärmung eines Fluids in einem Kraftwerk, insbesondere in einem Dampfkraftwerk
US8833077B2 (en) 2012-05-18 2014-09-16 Kalex, Llc Systems and methods for low temperature heat sources with relatively high temperature cooling media
US9638175B2 (en) * 2012-10-18 2017-05-02 Alexander I. Kalina Power systems utilizing two or more heat source streams and methods for making and using same
JP6013140B2 (ja) * 2012-11-01 2016-10-25 株式会社東芝 発電システム
WO2015165477A1 (en) 2014-04-28 2015-11-05 El-Monayer Ahmed El-Sayed Mohamed Abd El-Fatah High efficiency power plants
MY189450A (en) * 2014-10-31 2022-02-14 Subodh Verma A system for high efficiency energy conversion cycle by recycling latent heat of vaporization
RU187281U1 (ru) * 2018-10-17 2019-02-28 Общество с ограниченной ответственностью "Геотерм-М" Геотермальная турбоустановка
RU2747894C1 (ru) * 2020-11-24 2021-05-17 Общество с ограниченной ответственностью "Новый цикл" Замкнутый энергетический цикл

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB528254A (en) * 1939-05-01 1940-10-25 British Thomson Houston Co Ltd Improvements in and relating to steam or like turbines
CH451209A (de) * 1966-08-15 1968-05-15 Escher Wyss Ag Im Zweistoffverfahren arbeitende Dampfkraftanlage
FR2283309A1 (fr) * 1974-08-26 1976-03-26 Delas Condenseurs Dispositif de condensation par l'air ambiant pour fluide d'installation thermique de production d'energie
JPS5427640A (en) * 1977-07-30 1979-03-01 Kawasaki Heavy Ind Ltd Compound generating facility
US4346561A (en) * 1979-11-08 1982-08-31 Kalina Alexander Ifaevich Generation of energy by means of a working fluid, and regeneration of a working fluid
US4489563A (en) * 1982-08-06 1984-12-25 Kalina Alexander Ifaevich Generation of energy
US4578953A (en) * 1984-07-16 1986-04-01 Ormat Systems Inc. Cascaded power plant using low and medium temperature source fluid
US4542625A (en) * 1984-07-20 1985-09-24 Bronicki Lucien Y Geothermal power plant and method for operating the same
US4548043A (en) * 1984-10-26 1985-10-22 Kalina Alexander Ifaevich Method of generating energy
US4586340A (en) * 1985-01-22 1986-05-06 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle using a fluid of changing concentration
US4604867A (en) * 1985-02-26 1986-08-12 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle with intercooling
JPS6226304A (ja) * 1985-07-29 1987-02-04 Mitsubishi Heavy Ind Ltd 蒸気−バイナリ−複合地熱発電システム
JPS6297203U (ja) * 1985-12-10 1987-06-20
US4763480A (en) * 1986-10-17 1988-08-16 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle with recuperative preheating
US4732005A (en) * 1987-02-17 1988-03-22 Kalina Alexander Ifaevich Direct fired power cycle
IL88571A (en) * 1988-12-02 1998-06-15 Ormat Turbines 1965 Ltd Method of and apparatus for producing power using steam
US4899545A (en) * 1989-01-11 1990-02-13 Kalina Alexander Ifaevich Method and apparatus for thermodynamic cycle
US4982568A (en) * 1989-01-11 1991-01-08 Kalina Alexander Ifaevich Method and apparatus for converting heat from geothermal fluid to electric power
US5029444A (en) * 1990-08-15 1991-07-09 Kalina Alexander Ifaevich Method and apparatus for converting low temperature heat to electric power
US5095708A (en) * 1991-03-28 1992-03-17 Kalina Alexander Ifaevich Method and apparatus for converting thermal energy into electric power
NZ248146A (en) * 1992-07-24 1995-04-27 Ormat Ind Ltd Rankine cycle power plant with two turbine stages; second turbine stage of higher efficiency than first
NZ248729A (en) * 1992-10-02 1996-03-26 Ormat Ind Ltd High pressure geothermal power plant with secondary low pressure turbogenerator
NZ247880A (en) * 1993-01-01 1995-08-28 Ormat Turbines 1965 Ltd Producing power from geothermal fluid; use of steam turbine associated with closed organic rankine cycle turbine
US5598706A (en) * 1993-02-25 1997-02-04 Ormat Industries Ltd. Method of and means for producing power from geothermal fluid
US5450821A (en) * 1993-09-27 1995-09-19 Exergy, Inc. Multi-stage combustion system for externally fired power plants
US5440882A (en) * 1993-11-03 1995-08-15 Exergy, Inc. Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
US5572871A (en) * 1994-07-29 1996-11-12 Exergy, Inc. System and apparatus for conversion of thermal energy into mechanical and electrical power
US5588298A (en) * 1995-10-20 1996-12-31 Exergy, Inc. Supplying heat to an externally fired power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011272A (ja) * 2011-06-03 2013-01-17 Toda Kogyo Corp 発電システム
JP2016145560A (ja) * 2015-02-09 2016-08-12 日野自動車株式会社 廃熱回収装置

Also Published As

Publication number Publication date
JP3961058B2 (ja) 2007-08-15
JP4566204B2 (ja) 2010-10-20
NZ314206A (en) 1998-09-24
TR199700105A2 (tr) 1997-08-21
ZA971039B (en) 1997-08-25
CA2197038C (en) 2000-04-25
EA199700016A1 (ru) 1997-09-30
JP2007127131A (ja) 2007-05-24
JP2007146853A (ja) 2007-06-14
NO970598D0 (no) 1997-02-10
CN1100933C (zh) 2003-02-05
IL120178A (en) 2000-06-29
BR9700926A (pt) 1998-09-01
EP0790391A2 (en) 1997-08-20
EA000058B1 (ru) 1998-04-30
CO4560511A1 (es) 1998-02-10
EP0790391A3 (en) 2000-07-19
US5822990A (en) 1998-10-20
IL120178A0 (en) 1997-06-10
AU1259997A (en) 1997-08-14
NO970598L (no) 1997-08-11
IS4427A (is) 1997-08-10
KR970062323A (ko) 1997-09-12
AU723964B2 (en) 2000-09-07
TW330234B (en) 1998-04-21
AR005755A1 (es) 1999-07-14
CA2197038A1 (en) 1997-08-10
CN1165909A (zh) 1997-11-26
IS1792B (is) 2001-12-12
JP4523948B2 (ja) 2010-08-11
NO307225B1 (no) 2000-02-28
GT199700021A (es) 1999-01-14

Similar Documents

Publication Publication Date Title
JP3961058B2 (ja) 有効エネルギーへの熱変換方法およびその装置
KR940002718B1 (ko) 직접 연소식(direct fired)동력 사이클을 수행하는 장치 및 방법
CA2562836C (en) Method and device for executing a thermodynamic cycle process
AU2008349706B2 (en) Method for operating a thermodynamic circuit, as well as a thermodynamic circuit
US7356993B2 (en) Method of converting energy
US5440882A (en) Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
US7458217B2 (en) System and method for utilization of waste heat from internal combustion engines
JP4346149B2 (ja) 複合サイクル発電システムの効率を高める方法
JP4388067B2 (ja) 熱力学サイクルの実施方法と装置
US6694740B2 (en) Method and system for a thermodynamic process for producing usable energy
US4838027A (en) Power cycle having a working fluid comprising a mixture of substances
JPH11324711A (ja) ガスタ―ビンに入る周囲空気を冷却する方法
JP2005533972A (ja) カスケーディング閉ループサイクル動力発生
KR100355624B1 (ko) 열역학사이클의실시방법및실시장치
JPS63263206A (ja) 発電設備
MXPA97000995A (en) Conversion of heat in energy u
NZ233778A (en) Using two-phase fluid for generating power in a rankine cycle power plant
MXPA98006482A (en) Apparatus and method for producing energy using a geoterm fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term