JPH11209181A - Preparation of slurry for reactive-sintered silicon carbide - Google Patents
Preparation of slurry for reactive-sintered silicon carbideInfo
- Publication number
- JPH11209181A JPH11209181A JP10042734A JP4273498A JPH11209181A JP H11209181 A JPH11209181 A JP H11209181A JP 10042734 A JP10042734 A JP 10042734A JP 4273498 A JP4273498 A JP 4273498A JP H11209181 A JPH11209181 A JP H11209181A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- slurry
- powder
- sintered
- carbon powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高温高強度材料、
耐摩耗性材料等として用いることのできる複雑形状の反
応焼結炭化珪素焼結体を製造するのに適した、反応焼結
炭化珪素用スラリーの調製方法に関する。The present invention relates to a high-temperature high-strength material,
The present invention relates to a method for preparing a slurry for reaction-sintered silicon carbide, which is suitable for producing a reaction-sintered silicon carbide sintered body having a complicated shape that can be used as a wear-resistant material or the like.
【0002】[0002]
【従来の技術】反応焼結炭化珪素焼結体は、高温用構造
材料として従来から広く使用されており、その製造方法
はSi+C→SiCの反応を利用したもので、緻密で高
強度の焼結体が得られる。反応焼結炭化珪素焼結体の成
形体の成形方法としては加圧成形、鋳込み成形等が採用
されている。しかし、鋳込み成形における反応焼結炭化
珪素用スラリーを調製する際には、成形体中に炭化珪素
粉末の他に炭素粉末もしくは炭素粉末及びシリコン粉末
が混合されており、このような密度の異なる二成分系以
上の混合物でのスラリー調製では均一な分散が難しく、
良好なスラリーを得るために種々の工夫が必要である。
特に、炭素粉末は粒子表面が疎水性であり、水との濡れ
性が悪く、炭化珪素粉末と比べ分散性に劣るため、炭化
珪素粉末と炭素粉末との混合スラリーを調製した際に
は、流動性が劣る高粘性のスラリーしか得られず、鋳込
み成形をすることは困難であった。炭化珪素粉末の分散
性を損なうことなく、炭素粉末の分散性を向上させるに
は分散剤が必要となるため、その選択方法の重要性が高
くなっている。近年、反応焼結炭化珪素用スラリーの調
製方法としては、炭化珪素粉末と炭素粉末とをメタノー
ルに加え、混合した後、加熱してメタノールを揮散さ
せ、この乾燥原料に解こう剤としての水ガラスと水とを
加えスラリーとする調製方法(特開昭60−24626
4号公報)や炭化珪素粉末と炭素粉末とを、アクリル系
ポリマーである解こう剤を用いアルギン酸ナトリウム水
溶液に分散させ、スラリーとする調製方法(特開昭64
−87565号公報)が知られている。2. Description of the Related Art Reaction-sintered silicon carbide sintered bodies have been widely used as structural materials for high temperatures, and their production method utilizes a reaction of Si + C → SiC, and is a dense and high-strength sintered body. The body is obtained. Pressure molding, casting, and the like are employed as a method of molding a reaction sintered silicon carbide sintered body. However, when preparing a slurry for reaction-sintered silicon carbide in cast molding, carbon powder or carbon powder and silicon powder are mixed in addition to the silicon carbide powder in the molded body. In the case of slurry preparation with a mixture of components or more, uniform dispersion is difficult,
Various measures are required to obtain a good slurry.
In particular, carbon powder has a hydrophobic particle surface, has poor wettability with water, and is inferior in dispersibility to silicon carbide powder, so when a mixed slurry of silicon carbide powder and carbon powder is prepared, Only a highly viscous slurry having poor properties was obtained, and it was difficult to perform casting. Since a dispersant is required to improve the dispersibility of the carbon powder without impairing the dispersibility of the silicon carbide powder, the method of selecting the dispersant is becoming increasingly important. In recent years, as a method for preparing a slurry for reaction-sintered silicon carbide, silicon carbide powder and carbon powder are added to methanol, mixed, and then heated to volatilize methanol. A method for preparing a slurry by adding water and water (JP-A-60-24626)
No. 4) and a method of preparing a slurry by dispersing a silicon carbide powder and a carbon powder in an aqueous sodium alginate solution using a peptizer, which is an acrylic polymer (JP-A-64
-87565).
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来方法
の内特開昭60−246264号公報によるスラリーの
調製方法では、まず炭化珪素と炭素粉末とをメタノール
に加えることで、それらの分散性を向上させようとして
いるが、メタノールを揮散させた後の乾燥原料では炭化
珪素粉末及び炭素粉末は凝結しているため、均一に原料
粉末を分散するには十分でないという問題がある。ま
た、特開昭64−87565号公報による調製方法で
は、アクリル系ポリマーの吸着により炭化珪素粉末及び
炭素粉末の分散性を向上させているが、調製されるスラ
リーがチキソトロピー性の大きいものになるため、鋳込
み成形において十分な流動性をもつスラリーが得られな
い。更に、粉末表面をアクリル系ポリマーが覆うため、
鋳込み成形体を作製しても、乾燥時に空隙になってしま
い成形体密度が高くならず、金属シリコンを含浸させた
後の反応焼結炭化珪素焼結体中に遊離シリコンの含量が
多くなり、十分な耐熱・耐食性を有する焼結体が得られ
ないという問題がある。そこで、本発明は、炭化珪素粉
末に対する分散性を損なうことなく、疎水性で水中への
分散性が低い炭素粉末の分散性を向上させたスラリーを
得ることを可能とし、更に成形体密度を高めることが可
能である反応焼結炭化珪素用スラリーの調製方法を提供
する。However, in the above-mentioned conventional method of preparing a slurry disclosed in Japanese Patent Application Laid-Open No. 60-246264, first, silicon carbide and carbon powder are added to methanol to reduce their dispersibility. However, there is a problem that the silicon carbide powder and the carbon powder are coagulated in the dry raw material after the methanol is volatilized, so that it is not sufficient to uniformly disperse the raw material powder. Further, in the preparation method disclosed in JP-A-64-87565, the dispersibility of the silicon carbide powder and the carbon powder is improved by adsorption of an acrylic polymer, but the prepared slurry has a large thixotropic property. In addition, a slurry having sufficient fluidity cannot be obtained in casting. Furthermore, since the acrylic polymer covers the powder surface,
Even if a cast molded body is produced, voids are formed during drying and the molded body density does not increase, and the content of free silicon in the reaction sintered silicon carbide sintered body after impregnation with metallic silicon increases, There is a problem that a sintered body having sufficient heat resistance and corrosion resistance cannot be obtained. Therefore, the present invention makes it possible to obtain a slurry having improved dispersibility of carbon powder having low hydrophobicity and low dispersibility in water without impairing dispersibility with respect to silicon carbide powder, and further increasing the density of a compact. The present invention provides a method for preparing a slurry for reaction-sintered silicon carbide, which is capable of:
【0004】[0004]
【課題を解決するための手段】前記課題を解決するた
め、本発明の反応焼結炭化珪素用スラリーの調製方法
は、スラリーの調製に際し、炭化珪素粉末と炭素粉末と
を、非イオン性界面活性剤を用いてバインダを含有する
水に分散させ、得られたスラリーの水素指数(pH)を
6以上11以下に調製することを特徴とするものであ
る。In order to solve the above-mentioned problems, a method for preparing a slurry for reaction-sintered silicon carbide according to the present invention comprises the steps of: preparing a silicon carbide powder and a carbon powder at the time of preparing the slurry; The slurry is dispersed in water containing a binder using an agent, and the hydrogen index (pH) of the obtained slurry is adjusted to 6 or more and 11 or less.
【0005】[0005]
【発明の実施の形態】上記手段において、非イオン性界
面活性剤を用いることで疎水性である炭素粉末の表面を
親水性に改質でき、炭化珪素粉末の分散性を損ねること
なく、水溶液中に均一に分散させることができ、更に鋳
込み成形して作製できる成形体の密度を高めることがで
きる。炭化珪素粉末としては、α型とβ型とがあるが、
いずれのタイプの粉末でも良い。炭化珪素粉末の製造工
程はα型とβ型とでは異なってくるが、α型では製造工
程の際、粉砕、分級等の工程を経るにしたがい粒子表面
が酸化され水に対して濡れ易くなる。それゆえ、β型よ
りもα型の粉末を使用することがより好ましい。炭化珪
素粉末の粒径については、サブミクロン粒子のものから
300μm以下の比較的粒径の大きい粒子までが使用さ
れる。炭素粉末としては、カーボンブラック、人造黒
鉛、天然黒鉛等の粉末が用いられ、その粒径は100μ
m以下が望ましい。炭化珪素粉末及び炭素粉末の組成に
ついては、炭化珪素粉末が70〜95wt%、炭素粉末
が5〜30wt%が望ましい。炭素粉末を5〜30wt
%としたのは、炭素粉末が5wt%未満の組成では反応
焼結の効果即ち、焼結体の緻密化及び強度の向上が認め
られず又、30wt%を越えると、スラリーの流動性が
極端に悪くなり、成形体の作製が困難になる。更にシリ
コン含浸の際、成形体中にシリコンが十分に供給され
ず、未反応の炭素粉末が残留し、焼結体の強度を低下さ
せてしまう。また、鋳込み成形体の密度を高めるには、
炭化珪素粉末に微粒と粗粒とを用いて、粒度配合するこ
とが望ましく、その配合割合は微粒/粗粒=0.5〜
1.0である。非イオン性界面活性剤としては、ポリオ
キシエチレンエーテル、アルキルアリルエーテルを主成
分としたものが用いられ、例えばポリオキシエチレンア
ルキルエーテル、ポリオキシエチレンアルキルフェニル
エーテル、ポリオキシエチレンラウリルエーテル、ポリ
オキシエチレンセチルエーテル、ポリオキシエチレンス
テアリルエーテル、ポリオキシエチレンオレイルエーテ
ル、ポリオキシエチレン高級アルコールエーテル、ポリ
オキシエチレン誘導体等が挙げられる。添加量は炭化珪
素粉末と炭素粉末とを合わせた固形分に対して、0.3
〜2.0wt%の比率で添加される。本発明にかかるバ
インダとしては、鋳込み成形で用いられている全てのバ
インダが使用可能である。このようなバインダとして
は、ポリアクリルアミド、ポリアクリルニトリル、エチ
ルセルロース等が示される。これらバインダの添加量
は、鋳込み成形体としての十分な強度を有する程度に添
加することが望ましい。反応焼結炭化珪素用スラリーの
水素指数(pH)は、6以上11以下が好ましく、より
好ましくは水素指数(pH)が7から10である。即
ち、水素指数(pH)が6未満の酸性領域においては、
原料粉末の分散が不均一になり、成形性が悪く、金属シ
リコンを含浸させると、キレツ、割れ等の問題が生じ、
良好な反応焼結炭化珪素焼結体が得られない。また、水
素指数(pH)が11を超えるアルカリ領域では、石膏
型に損傷を生じやすく、石膏型の寿命が短くなるため、
製造工程上問題となる。スラリーのpH調整剤として
は、酸、アルカリ金属水酸化物、例えば塩酸、硝酸、硫
酸、水酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム、アンモニア水等の他、脂肪族の一級、二級、三級ア
ミン等の有機系調整剤が用いられる。DETAILED DESCRIPTION OF THE INVENTION In the above means, the surface of a hydrophobic carbon powder can be modified to be hydrophilic by using a nonionic surfactant, and the surface of an aqueous solution can be modified without impairing the dispersibility of the silicon carbide powder. And the density of a molded product that can be produced by casting. As silicon carbide powder, there are α type and β type,
Any type of powder may be used. The production process of silicon carbide powder is different between α-type and β-type. However, in α-type, the particle surface is oxidized and easily wetted with water as it goes through the steps of pulverization and classification during the production process. Therefore, it is more preferable to use α-type powder than β-type powder. Regarding the particle size of the silicon carbide powder, particles ranging from submicron particles to particles having a relatively large particle size of 300 μm or less are used. As the carbon powder, powders such as carbon black, artificial graphite, and natural graphite are used.
m or less is desirable. Regarding the composition of the silicon carbide powder and the carbon powder, the silicon carbide powder is desirably 70 to 95 wt%, and the carbon powder is desirably 5 to 30 wt%. 5-30 wt% carbon powder
The reason is that the effect of reaction sintering, that is, the densification of the sintered body and the improvement of the strength are not recognized when the composition of the carbon powder is less than 5 wt%, and when the carbon powder exceeds 30 wt%, the fluidity of the slurry becomes extremely high. And it becomes difficult to produce a molded article. In addition, during the silicon impregnation, the silicon is not sufficiently supplied into the molded body, and unreacted carbon powder remains, thereby lowering the strength of the sintered body. Also, to increase the density of the cast molding,
It is desirable to use fine particles and coarse particles for the silicon carbide powder and to mix the particles, and the mixing ratio is fine particles / coarse particles = 0.5 to
1.0. As the nonionic surfactant, those containing polyoxyethylene ether and alkyl allyl ether as main components are used. For example, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene Examples include cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, and polyoxyethylene derivatives. The amount of addition is 0.3% based on the total solid content of the silicon carbide powder and the carbon powder.
2.02.0 wt%. As the binder according to the present invention, all binders used in casting can be used. Examples of such a binder include polyacrylamide, polyacrylonitrile, and ethyl cellulose. It is desirable to add these binders to such an extent that they have sufficient strength as a cast molded article. The hydrogen index (pH) of the slurry for reaction-sintered silicon carbide is preferably from 6 to 11, and more preferably from 7 to 10. That is, in an acidic region where the hydrogen index (pH) is less than 6,
Dispersion of the raw material powder becomes non-uniform, moldability is poor, and when impregnated with metallic silicon, problems such as cracks and cracks occur,
A good reaction sintered silicon carbide sintered body cannot be obtained. Further, in an alkali region having a hydrogen index (pH) of more than 11, the gypsum mold is easily damaged and the life of the gypsum mold is shortened.
This is a problem in the manufacturing process. Examples of the pH adjuster of the slurry include acids, alkali metal hydroxides such as hydrochloric acid, nitric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, lithium hydroxide, aqueous ammonia, and aliphatic primary, secondary, and tertiary. Organic regulators such as secondary amines are used.
【0006】[0006]
【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.
【0007】[0007]
【実施例1】平均粒径2μmの炭化珪素粉末40wt%
及び平均粒径180μmの炭化珪素粉末40wt%と平
均粒径12μmの人造黒鉛粉末20wt%とに、非イオ
ン性界面活性剤1wt%とバインダ1wt%、固形分に
対して蒸留水22wt%を加え、pH調整剤として水酸
化ナトリウムを添加し、ポットミルで24時間混合し、
反応焼結炭化珪素用スラリーとした。得られた反応焼結
炭化珪素用スラリーは、pH及び粘度を測定した後、8
0×80×5mmの成形体が得られる石膏型を用いて成
形体を作製し、成形体を十分乾燥し、成形体密度を測定
した。その後、金属シリコンを窒素雰囲気中において2
100℃、1時間で成形体中に含浸させ、得られた反応
焼結炭化珪素焼結体の密度、曲げ強度及び遊離Si量を
測定した。Example 1 40% by weight of silicon carbide powder having an average particle size of 2 μm
And 40 wt% of silicon carbide powder having an average particle diameter of 180 μm and 20 wt% of artificial graphite powder having an average particle diameter of 12 μm, 1 wt% of a nonionic surfactant, 1 wt% of a binder, and 22 wt% of distilled water with respect to solid content, Add sodium hydroxide as a pH adjuster, mix for 24 hours in a pot mill,
A slurry for reaction sintered silicon carbide was obtained. After measuring the pH and viscosity, the obtained slurry for reaction sintered silicon carbide
A molded body was prepared using a gypsum mold from which a molded body of 0 × 80 × 5 mm was obtained, the molded body was sufficiently dried, and the density of the molded body was measured. Then, the metal silicon is placed in a nitrogen atmosphere for 2
The molded body was impregnated at 100 ° C. for 1 hour, and the density, flexural strength and free Si amount of the obtained reaction sintered silicon carbide sintered body were measured.
【0008】[0008]
【実施例2、3】pH調整剤としての水酸化ナトリウム
の添加量を変えたほかは、実施例1と同様の方法、条件
で請求範囲内のpHの異なる反応焼結炭化珪素用スラリ
ーを調製した。次いで、実施例1と同様の方法、条件に
より成形体を作製し、金属シリコンを含浸させ反応焼結
炭化珪素焼結体を得た。なお、実施例1と同様にスラリ
ーのpH、粘度、成形体密度、反応焼結炭化珪素焼結体
の密度、曲げ強度及び遊離Si量を測定した。Embodiments 2 and 3 A slurry for reaction-bonded silicon carbide having a different pH was prepared in the same manner and under the same conditions as in Embodiment 1 except that the amount of sodium hydroxide as a pH adjuster was changed. did. Next, a molded body was produced in the same manner and under the same conditions as in Example 1 and impregnated with metallic silicon to obtain a reaction sintered silicon carbide sintered body. As in Example 1, the slurry pH, viscosity, compact density, reaction sintered silicon carbide sintered body density, flexural strength, and free Si amount were measured.
【0009】[0009]
【比較例1】非イオン界面活性剤を解こう剤であるアク
リル系ポリマーに変えたほかは、実施例1と同様の方
法、条件で反応焼結炭化珪素用スラリーを調製した。次
いで、実施例1と同様の方法、条件により成形体を作製
し、金属シリコンを含浸させ反応焼結炭化珪素焼結体を
得た。なお、実施例1と同様にスラリーのpH、粘度、
成形体密度、反応焼結炭化珪素焼結体の密度、曲げ強度
及び遊離Si量を測定した。Comparative Example 1 A slurry for reactive sintered silicon carbide was prepared in the same manner and under the same conditions as in Example 1, except that the nonionic surfactant was changed to an acrylic polymer as a peptizer. Next, a molded body was produced in the same manner and under the same conditions as in Example 1 and impregnated with metallic silicon to obtain a reaction sintered silicon carbide sintered body. In addition, pH, viscosity,
The density of the compact, the density of the reaction sintered silicon carbide sintered body, the bending strength, and the amount of free Si were measured.
【0010】[0010]
【比較例2、3】pH調整剤としての水酸化ナトリウム
の添加量を変えたほかは、実施例1と同様の方法、条件
で請求範囲外のpHの異なる反応焼結炭化珪素用スラリ
ーを調製した。次いで、実施例1と同様の方法、条件に
より成形体を作製し、金属シリコンを含浸させ反応焼結
炭化珪素焼結体を得た。なお、実施例1と同様にスラリ
ーのpH、粘度、成形体密度、反応焼結炭化珪素焼結体
の密度、曲げ強度及び遊離Si量を測定した。このよう
に得られた結果について、図1にはスラリーの粘度と回
転数との関係を示した。表1にはスラリーのpH、成形
体密度、反応焼結炭化珪素焼結体の密度、反応焼結炭化
珪素の曲げ強度及び遊離Si量を対比して示した。Comparative Examples 2 and 3 A slurry for reaction-sintered silicon carbide having a different pH was prepared under the same method and conditions as in Example 1 except that the amount of sodium hydroxide as a pH adjuster was changed. did. Next, a molded body was produced in the same manner and under the same conditions as in Example 1 and impregnated with metallic silicon to obtain a reaction sintered silicon carbide sintered body. As in Example 1, the slurry pH, viscosity, compact density, reaction sintered silicon carbide sintered body density, flexural strength, and free Si amount were measured. FIG. 1 shows the relationship between the viscosity of the slurry and the number of rotations of the obtained results. Table 1 shows the pH of the slurry, the density of the compact, the density of the reaction-sintered silicon carbide sintered body, the bending strength of the reaction-sintered silicon carbide, and the amount of free Si in comparison.
【0011】[0011]
【表1】 図1において、実施例1〜3のスラリー特性が比較例
1、2に比べ、回転数を変化させても粘度の変化が小さ
いことがわかる。このことから、実施例1〜3のスラリ
ー特性は、比較例1、2に比べ、チキソトロピー性の小
さいことが認められる。また、表1において、実施例1
〜3の成形体密度は、比較例1、2と比べて成形体の密
度が高くなっていることが認められる。このため、この
成形体に金属Siを含浸することにより、遊離Si量の
含量が少なく、高密度で高強度の反応焼結炭化珪素焼結
体を製造することができる。これに対して、比較例1、
2のスラリーを用いて得られた成形体及び焼結体はいず
れも密度及び曲げ強度が低く、遊離Si量の含量も多い
ため、強度特性に劣っていることがわかる。比較例3に
おいては、スラリー特性、成形体及び焼結体の特性が実
施例1〜3に近いが、スラリーの水素指数(pH)が高
いことにより、石膏型の使用回数が実施例1〜3に比べ
て、減少した。[Table 1] In FIG. 1, it can be seen that the slurry characteristics of Examples 1 to 3 are smaller than those of Comparative Examples 1 and 2 even when the rotation speed is changed. From this, it is recognized that the thixotropic properties of the slurry of Examples 1 to 3 are smaller than those of Comparative Examples 1 and 2. Also, in Table 1, Example 1
It is recognized that the molded article densities of ~ 3 are higher than those of Comparative Examples 1 and 2. Therefore, by impregnating this compact with metallic Si, it is possible to produce a high-density, high-strength, reaction-sintered silicon carbide sintered compact having a low content of free Si. In contrast, Comparative Example 1,
It can be seen that both the compact and the sintered compact obtained by using the slurry of No. 2 have low density and flexural strength and a large content of free Si, and thus have poor strength characteristics. In Comparative Example 3, the characteristics of the slurry, the characteristics of the compact and the sintered body were close to those of Examples 1 to 3, but the number of times the gypsum mold was used was reduced due to the high hydrogen index (pH) of the slurry. Compared with, decreased.
【0012】[0012]
【発明の効果】以上のとおり、本発明の反応焼結炭化珪
素用スラリーの調製方法によれば、非イオン性界面活性
剤を用いることで、炭素粉末の水との濡れ性が向上し、
また、スラリーの水素指数(pH)を特定範囲に制御す
ることにより、これらの機能が相乗的に作用して、均一
で安定したスラリーを得ることが可能である。従って、
本発明のスラリーを用いれば、均一組織を有し、大型で
複雑形状の成形体を得ることができ、高密度、高強度の
炭化珪素焼結体を製造することが可能となり、産業上の
効果は大きいといえる。As described above, according to the method for preparing a slurry for reactive sintered silicon carbide of the present invention, the wettability of carbon powder with water is improved by using a nonionic surfactant,
Further, by controlling the hydrogen index (pH) of the slurry to a specific range, these functions act synergistically, and a uniform and stable slurry can be obtained. Therefore,
By using the slurry of the present invention, it is possible to obtain a large-sized and complicated-shaped formed body having a uniform structure, and it is possible to manufacture a high-density, high-strength silicon carbide sintered body, which has an industrial effect. Is great.
【図1】スラリーの粘度と回転数との関係を示す図。FIG. 1 is a diagram showing the relationship between the viscosity of a slurry and the number of rotations.
Claims (1)
し、炭化珪素粉末と炭素粉末とを、非イオン性界面活性
剤を用いてバインダを含有する水に分散させ、得られた
スラリーの水素指数(pH)を6以上11以下に調製す
ることを特徴とする反応焼結炭化珪素用スラリーの調製
方法。In preparing a slurry for reaction-sintered silicon carbide, a silicon carbide powder and a carbon powder are dispersed in water containing a binder using a nonionic surfactant, and a hydrogen index of the obtained slurry is obtained. A method for preparing a slurry for reactive sintered silicon carbide, wherein the (pH) is adjusted to 6 or more and 11 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10042734A JPH11209181A (en) | 1998-01-20 | 1998-01-20 | Preparation of slurry for reactive-sintered silicon carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10042734A JPH11209181A (en) | 1998-01-20 | 1998-01-20 | Preparation of slurry for reactive-sintered silicon carbide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11209181A true JPH11209181A (en) | 1999-08-03 |
Family
ID=12644276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10042734A Pending JPH11209181A (en) | 1998-01-20 | 1998-01-20 | Preparation of slurry for reactive-sintered silicon carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11209181A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104355620A (en) * | 2014-10-27 | 2015-02-18 | 安徽锐视光电技术有限公司 | Ceramic nozzle prepared from composite tungsten carbide/silicon carbide and preparation method of ceramic nozzle |
-
1998
- 1998-01-20 JP JP10042734A patent/JPH11209181A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104355620A (en) * | 2014-10-27 | 2015-02-18 | 安徽锐视光电技术有限公司 | Ceramic nozzle prepared from composite tungsten carbide/silicon carbide and preparation method of ceramic nozzle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58204873A (en) | Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture | |
JP3129870B2 (en) | Manufacturing method of ceramic sintered body | |
JP3094148B2 (en) | Manufacturing method of lightweight refractory | |
JPH11209181A (en) | Preparation of slurry for reactive-sintered silicon carbide | |
JP2011016667A (en) | Ferrosilicon nitride powder and refractory | |
JP4283358B2 (en) | Method for producing reaction sintered silicon carbide sintered body | |
JP2001247367A (en) | Silicon carbide sintered body and method for producing the same | |
JP3617765B2 (en) | Slide gate plate and manufacturing method thereof | |
JP4612608B2 (en) | Method for producing silicon / silicon carbide composite material | |
JPH1143372A (en) | Silicon nitride ceramics and method for producing the same | |
JPH05254945A (en) | Production of reaction-sintered ceramic | |
JPH0224789B2 (en) | ||
JPH10231174A (en) | Composite ceramic including dispersed solid lubricant and its production | |
JP2652939B2 (en) | Graphite-ceramic composite material and manufacturing method | |
WO1989008086A1 (en) | HIGH-STRENGTH, beta-TYPE SILICON CARBIDE SINTER AND PROCESS FOR ITS PRODUCTION | |
CN119191838A (en) | Zirconia ceramic material and preparation method thereof | |
JPH11335172A (en) | Method for producing porous silicon carbide sintered body | |
JPS5817146B2 (en) | Method for manufacturing high-density silicon carbide sintered body | |
JP3036830B2 (en) | Sialon casting method | |
JP2000203940A (en) | Silicon carbide sintered body and its production | |
JP3567001B2 (en) | Method for producing composite sintered body of silicon carbide and silicon nitride | |
JPH09286667A (en) | Production of silicon carbide sintered body | |
JPS58130165A (en) | Silicon carbide sliding material | |
JPH11292614A (en) | Refractory containing carbon and its production | |
JPH0517210A (en) | Production of alumina-based composite sintered body and the sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080415 |