JPH11207432A - Molding composition for mold and molding method for mold - Google Patents

Molding composition for mold and molding method for mold

Info

Publication number
JPH11207432A
JPH11207432A JP2775698A JP2775698A JPH11207432A JP H11207432 A JPH11207432 A JP H11207432A JP 2775698 A JP2775698 A JP 2775698A JP 2775698 A JP2775698 A JP 2775698A JP H11207432 A JPH11207432 A JP H11207432A
Authority
JP
Japan
Prior art keywords
weight
binder
parts
solid content
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2775698A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ito
智幸 伊藤
Yuji Miyashita
雄次 宮下
Toshio Hirohashi
利夫 広橋
Akihiro Okubo
明浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2775698A priority Critical patent/JPH11207432A/en
Publication of JPH11207432A publication Critical patent/JPH11207432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide kneaded sand which uses binder containing water soluble saccharides for giving high mold strength and wetting resistance as the essential component, aldehyde compound having carbon-carbon double bond and acidic catalyst, and a molding method for a mold, with which this kneaded sand is dried and hardened. SOLUTION: The molding composition for mold obtd. by a process in which aggregate of one or more kinds among silica sand, zircon sand, olivine sand, chromite sand, alumina sand and mullite sand, to 100 pts.wt. of the aggregate 0.5-10 pts.wt. of the binder containing the water soluble saccharides having 10-50 dextrose equivalent and aldehyde compound having carbon-carbon double bond at the ratio of 50:50-99:1 and added with the water so as to become 20-75 wt.% concn. and to 100 pts.wt. of the solid content of the binder, 0.1-25 pts.wt. of the acid having >=1×10<-5> dissociation constant (ka), are added and mixed, is filled into a mold pattern, and successively, dried and hardened with drying gas or reduced pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は高強度で耐湿性に優れた
鋳型造型用組成物、更に高い鋳型強度や耐湿性を付与す
る糖組成を持つ水溶性の糖類を主たる成分とする水溶性
糖類粘結剤と、炭素−炭素二重結合を有するアルデヒド
化合物及び酸性触媒を含み、乾燥により架橋する粘結剤
(以下「オリゴ粘結剤M」と呼称する)を用いた混練砂
及びこれを乾燥硬化させる鋳型の造型方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for molding a mold having high strength and excellent moisture resistance, and a water-soluble saccharide comprising a water-soluble saccharide having a saccharide composition for imparting high mold strength and moisture resistance as a main component. A kneading sand containing a binder, an aldehyde compound having a carbon-carbon double bond and an acidic catalyst, and using a binder that is crosslinked by drying (hereinafter referred to as “oligo binder M”) and drying the kneaded sand The present invention relates to a molding method of a mold to be cured.

【従来の技術】鋳型の造型方法には種々の方法があり、
これに使われる粘結剤も多岐にわたるが、大別して無機
粘結剤と有機粘結剤になる。無機粘結剤を用いる造型方
法としては主に珪酸塩をフェロシリコン(Nプロセ
ス)、ダイカルシウムシリケート(ダイカル法)あるい
はCO2ガスで硬化させる方法などがある。珪酸塩を用
いた鋳型は鋳造後の崩壊性の悪さ及び多量の廃棄物を発
生するなどの欠点がある。有機粘結剤を用いる造型方法
としては、シェルモールド法のような熱硬化性鋳型、フ
ラン樹脂やフェノール樹脂を酸あるいはエステルを用い
て硬化させる常温硬化性鋳型、またウレタン樹脂あるい
はフェノール樹脂をアミンガス、エステルガスあるいは
CO2ガスで硬化させるガス硬化性鋳型等の造型方法が
ある。これらの有機粘結剤を用いる鋳型造型時において
はホルムアルデヒド等の臭気の発生や有機溶剤、毒性の
ある硬化剤あるいは触媒の使用による作業環境の悪化等
の欠点がある。更にこれらは注湯時において粘結剤、有
機溶剤、硬化剤、触媒及び粘結剤の硬化物が熱分解して
種々の有害ガスや臭気を発生させ工場内作業環境及び工
場周辺の外部環境を悪化させる欠点がある。一方、これ
ら無機粘結剤及び有機粘結剤の上記の様な欠点のない粘
結剤としては天然物及び天然物由来のデキストリン等を
用いた水溶性糊粘結剤を用いる技術がある(特開昭52
−120225号公報、特開昭59−76642号公
報、特公平3−21254号公報)。しかしながら実用
に供する鋳型の強度を得るには多量の水溶性糊粘結剤を
必要とし、実用的でない。また水溶性糊粘結剤を用いた
鋳型は、鋳型造型後大気中の水分の吸湿による鋳型の強
度劣化が著しいため、造型後すぐに注湯せねばならない
という作業工程上の制約がある。更にこれらの水溶性糊
粘結剤を水溶液で保存する場合、微生物などによる腐敗
が起こり易く、貯蔵安定性、衛生上の欠点がある。
2. Description of the Related Art There are various methods for molding a mold.
There are a wide variety of binders used for this purpose, but they are roughly divided into inorganic binders and organic binders. As a molding method using an inorganic binder, there is a method of hardening a silicate mainly with ferrosilicon (N process), dicalcium silicate (dical method), or CO 2 gas. A mold using silicate has disadvantages such as poor disintegration after casting and generation of a large amount of waste. As a molding method using an organic binder, a thermosetting mold such as a shell mold method, a room temperature curable mold in which a furan resin or a phenol resin is cured using an acid or an ester, or a urethane resin or a phenol resin in an amine gas, There is a molding method such as a gas-curable mold that is cured with an ester gas or a CO 2 gas. There are drawbacks such as the generation of odors such as formaldehyde and the deterioration of the working environment due to the use of organic solvents, toxic hardeners or catalysts during mold making using these organic binders. In addition, when pouring, the binder, organic solvent, curing agent, catalyst and the cured product of the binder are thermally decomposed to generate various harmful gases and odors, thereby reducing the working environment in the factory and the external environment around the factory. There are drawbacks that make it worse. On the other hand, as binders of these inorganic binders and organic binders that do not have the above-mentioned drawbacks, there is a technique of using a water-soluble glue binder using a natural product or a dextrin derived from a natural product. Kaisho 52
-120225, JP-A-59-76642, JP-B-3-21254). However, a large amount of a water-soluble glue binder is required to obtain the strength of a practically usable mold, which is not practical. Further, the mold using the water-soluble glue binder has a limitation in the work process that the mold must be poured immediately after molding because the strength of the mold is significantly deteriorated due to the absorption of moisture in the air after molding. Furthermore, when these water-soluble glue binders are stored in an aqueous solution, they are easily rotted by microorganisms and the like, and have drawbacks in storage stability and hygiene.

【発明が解決しようとする課題】このような無機粘結剤
の崩壊性や廃砂の問題及び従来の水溶性糊粘結剤や有機
粘結剤の鋳型強度不足や保存安定性、作業環境や外部環
境への悪影響等の欠点を解消した鋳型を得るべく鋭意研
究した結果、水溶性の糖類、特に糖組成を制限させた糖
類と該水溶性糖類を架橋させるための炭素−炭素二重結
合を有するアルデヒド化合物及び酸性触媒を必須成分と
し、さらに水溶性の酸硬化性樹脂、補助剤、シランカッ
プリング剤及び界面活性剤を含むオリゴ粘結剤Mを用い
ることにより、易崩壊性で砂再生も容易であり、鋳型強
度や保存安定性に優れ、かつ有害な臭気発生による作業
環境の悪化のない鋳型を得ることに成功し、本発明に至
った。
Problems such as disintegration of inorganic binders and waste sand, lack of mold strength and storage stability of conventional water-soluble glue binders and organic binders, work environment and As a result of intensive studies to obtain a template that has solved the drawbacks such as adverse effects on the external environment, water-soluble saccharides, particularly saccharides having a restricted sugar composition, and a carbon-carbon double bond for cross-linking the water-soluble saccharide have been developed. By using an aldehyde compound and an acidic catalyst as essential components, and using an oligo-binding agent M containing a water-soluble acid-curable resin, an auxiliary agent, a silane coupling agent and a surfactant, the sand is easily disintegrated and the sand can be regenerated. The present invention has succeeded in obtaining a mold that is easy, has excellent mold strength and storage stability, and does not deteriorate the working environment due to generation of harmful odor, and has led to the present invention.

【課題を解決するための手段】本発明を更に詳細に説明
する。本発明に用いられる骨材としては珪砂、ジルコン
砂、オリビン砂、クロマイト砂、アルミナ砂、ムライト
砂等がある。骨材100重量部に対して固形分濃度20
〜75重量%のオリゴ粘結剤Mを0.5〜10重量部、
及び酸性触媒を該オリゴ粘結剤Mの固形分100重量部
に対して0.1〜25重量部添加し、混練して得られる
鋳型造型用組成物を提供することが本発明の目的の1つ
である。更にもう一つの目的は該鋳型造型用組成物を所
望の模型に充填し、これを乾燥して硬化させ鋳型を造型
する方法を提供することである。この乾燥方法を更に詳
しく述べると、模型の上部、下部あるいは側部のいずれ
かの部分より圧力4.9〜390kPaにて温度0℃〜
400℃の乾燥気体(熱風)を通気し、水分を強制的に
除去する。このとき同時に、熱風の送風口と反対側の部
分より減圧にして強制乾燥を行うと更に効果的であり、
短時間で鋳型を硬化させることができる。更に80℃以
上の熱風乾燥を行った場合、温度50℃以下の乾燥気体
を上記の圧力と同じ条件にて鋳型内に通気し、鋳型の冷
却を行う。このとき強制乾燥時と同様に、同時に減圧に
て鋳型の冷却を行うと更に効果的である。乾燥の際に高
周波、マイクロ波などによる誘電加熱を用いることも可
能である。ただし、この場合も例えば空気を通気し水分
を強制的に外部に排出させる必要がある。尚、この時乾
燥用気体として空気以外にCO2、He、Ne、Ar、
2も使用できることは自明である。また本発明の鋳型
造型方法は減圧のみによる乾燥も可能である。その場合
オリゴ粘結剤Mを用いて得られる混練砂を鋳型に充填
し、該鋳型を密閉容器内に収めた後、真空ポンプにて真
空箱内の圧力を48.0kPa以下として、鋳型中の水
分を強制除去する。真空箱内の圧力は鋳型内の水分が除
去されるまで48.0kPa以下を保持し、乾燥硬化後
大気圧(101.3kPa)に戻した後、鋳型を取り出
す。鋳型を密閉容器内に収め真空乾燥する方法には、図
1に示すように、密閉容器(真空箱)1又は鋳型2が図
中の矢印になるように上下に移動する上下式、又は図2
に示すように、鋳型2が図中の矢印のように左右に移動
するスライド式、更には図3に示すように、密閉容器
(真空箱)1の上部が多孔板3になっておりその上に鋳
型2を置き、鋳型2の周囲を気密可撓膜4で覆い真空と
する定置式などがある。本発明に用いられる水溶性糖類
としては、天然の少糖類及び/または澱粉を酸又は酵素
を用いて加水分解して得られるデキストロース等量(以
下「DE」という)=10〜50の水溶性糖類又は天然
の高分子糖類を加水分解して得られる前記澱粉加水分解
物相当分子量の水溶性糖類を言う。更に好ましくは単糖
類の含有量が固形分換算で1重量%以下、2糖類が5重
量%以下、3糖類が5〜25重量%、4糖類が3〜15
重量%、5糖類が3〜20重量%、6糖類が3〜25重
量%、7糖類以上が35重量%以上の糖組成をもつ水溶
性糖類である。また、必須成分としてアルデヒド基と二
重結合を有する有機化合物と酸性触媒を含むことによ
り、該水溶性糖類を乾燥硬化により架橋せしめ、鋳型強
度の向上及び耐水性の向上が可能である。ここで前記水
溶性糖類の組成を外れた、特にDEが10未満の糖類又
は高分子糖類を加水分解して得られる同等分子量の水溶
性糖類を用いた場合には、水に対する溶解度が低く、水
溶液とするのに多量の水を必要とし、鋳型の乾燥工程に
おいて長時間を要することとなる。また、水に溶解した
ときの粘性も高く、砂との混練性が悪くなり、更には得
られる混練砂の流動性も悪くなる。また、DEが50よ
り大きい糖類又は高分子糖類を加水分解して得られる同
等分子量の水溶性糖類、即ち単糖を多く含む水溶性糖類
を用いた場合には、水溶性及び水溶液の粘度の点では問
題ないが、乾燥硬化後の高い鋳型強度が得られない。ま
た架橋剤となるアルデヒド化合物の添加量も多量に必要
であり経済的に不利であるため粘結剤として適さない。
一方、DEが10〜50の糖類又は高分子糖類を加水分
解して得られる同等分子量の水溶性糖類で、特に単糖類
の含有量が固形分換算で1重量%以下、2糖類が5重量
%以下、3糖類が5〜25重量%、4糖類が3〜15重
量%、5糖類が3〜20重量%、6糖類が3〜25重量
%、7糖類以上が35重量%以上の糖組成をもつ水溶性
糖類を粘結剤として用いた場合には、水溶液とすること
も容易であり、その水溶液の粘度は低いため、砂との混
練性も良く、得られる混練砂(すなわち鋳型造型用組成
物)の流動性も良い。また、実用的に充分高い鋳型強度
を得ることができる。また多官能アルデヒド化合物と反
応した場合、難溶性の堅いフィルムを形成することによ
り高い鋳型強度及び耐湿性が得られる。本発明における
オリゴ粘結剤Mは、鋳型強度の更なる向上及び注湯時の
アルミニウムあるいは鉄の溶湯が凝固するまでの間の鋳
型の形状保持に関わる熱間強度を維持させるため、水溶
性のフェノール樹脂、ユリア樹脂、メラミン樹脂、フラ
ン樹脂の酸硬化性樹脂の少なくとも1種類を併用すると
効果的である。またオリゴ粘結剤Mには補助剤として多
糖類や蛋白質、ポリビニルアルコール、ポリアクリル酸
ソーダ、酢酸ビニル樹脂等の水溶性高分子を併用するこ
とも有効である。更にオリゴ粘結剤Nにはシランカップ
リング剤や界面活性剤を添加することにより、鋳型のよ
り高い常態強度とより優れた保存安定性を得る事ができ
る。本発明におけるオリゴ粘結剤Mの固形分濃度は20
〜75重量%であり、好ましくは30〜65重量%であ
る。固形分濃度が75重量%を超える濃度では、オリゴ
粘結剤Mの粘度が高くなり、骨材と粘結剤の充分な混練
が困難になるとともに、混練砂の流動性が悪くなる。一
方、固形分量が20重量%未満では水分量が多く鋳型の
乾燥に時間がかかるばかりでなく、実用に供し得る鋳型
強度が得られない。またオリゴ粘結剤M中の必須成分で
ある水溶性糖類と、アルデヒド基と二重結合を有する有
機化合物との配合割合は、上記固形分のうち糖類が50
〜99重量%である。固形分中の糖類の配合量が99重
量%を越える濃度では、アルデヒド化合物の割合が少な
く、架橋点も少なくて十分な架橋効果が得られず、その
ため鋳型強度及び耐湿性への効果が小さい。また50重
量%未満では、つまりアルデヒド化合物の割合が多くな
っても著しい架橋効果は得られない。また架橋剤の量の
方が多くなり経済的に不利である。更に架橋反応の架橋
触媒としての酸が必要であり、酸の解離定数がKa=1
×10-5以上の酸性触媒が必要である。当然酸の解離定
数がKa=1×10-5未満である酸では十分な触媒作用
が得られないため乾燥硬化中に架橋反応が完了しないた
め、十分な鋳型強度と耐湿性が得られない。本発明のオ
リゴ粘結剤Mに用いられる水溶性糖類としては、天然に
存在するもの、または天然に存在する多糖類を酸又は酵
素を用いて加水分解して得られる糖類であり、例えば原
料として、馬鈴薯澱粉、甘藷澱粉、トウモロコシ澱粉、
ハイアミローストウモロコシ澱粉、モチトウモロコシ澱
粉、小麦澱粉、タピオカ澱粉、サゴ澱粉等の澱粉質、セ
ルロース質、キチン、マンナン、ヒアルロン酸、ペクチ
ン等の炭水化物であれば特に限定するものではない。ま
た、これらの炭水化物の加水分解も、硫酸や塩酸などの
強酸や蓚酸などの弱酸等、酸性触媒による方法や、α−
アミラーゼに代表される酵素を触媒とする方法、更にこ
れらの組み合わせなど炭水化物を加水分解する方法であ
れば特に限定するものではない。尚この加水分解の程度
はDEが10〜50又は高分子糖類を加水分解して得ら
れる同等分子量の水溶性糖類でよく、より望ましくはD
Eが15〜30である。これら加水分解物から目的とす
る組成物を得るには、例えばスチレン−ジビニルベンゼ
ンスルホン酸共重合体樹脂のNa+型イオン交換樹脂を
用いることに代表されるクロマト分離や酵母処理による
低分子糖(単糖〜3糖)の除去、更にグルコースオキシ
ダーゼ処理によるグルコース分の除去等、その固形物中
の組成が単糖類の含有量が固形分換算で1重量%以下、
2糖類が5重量%以下、3糖類が5〜25重量%、4糖
類が3〜15重量%、5糖類が3〜20重量%、6糖類
が3〜25重量%、7糖類以上が35重量%以上になる
ような分子量の分布制御が可能な方法であれば特に限定
するものではない。このようにして得られた糖組成物
は、常法により精製を行い、必要に応じて濃縮を行い所
望の濃度の溶液とすることができる。さらに乾燥を行い
粉末として長期保存することも可能である。本発明の粘
結剤の必須成分として炭素−炭素二重結合を有するアル
デヒド化合物を用いる。このアルデヒド化合物として
は、クロトンアルデヒド、アクロレインなどを用いる事
ができる。また架橋反応に必要な酸性触媒の種類として
は、例えば塩酸、硫酸等の無機酸、シュウ酸、ベンゼン
スルホン酸、ギ酸、酢酸等の有機酸であり、酸の解離定
数がKa=1×10-5以上の酸性触媒であれば特に限定
されるものではない。本発明の添加剤の1つとして水溶
性のフェノール樹脂、ユリア樹脂、メラミン樹脂及びフ
ラン樹脂の酸硬化性樹脂を用いる。水溶性フェノール樹
脂としては、レゾール型水溶性フェノール樹脂が一般的
に用いる事ができる。これらのフェノール樹脂はフェノ
ール類とアルデヒド類とを、アルカリまたは酸触媒存在
下で縮合させて得られるものである。フェノール類とし
ては、例えばフェノール、クレゾール、レゾルシノー
ル、ビスフェノールA、ビスフェノールF、ビスフェノ
ールC、ビスフェノールH、クミルフェノール、ノニル
フェノール、イソプロペニルフェノール精製残渣、ビス
フェノールA精製残渣、ビスフェノールF精製残渣、ブ
チルフェノール、フェニルフェノール、エチルフェノー
ル、オクチルフェノール、アミルフェノール、ナフトー
ル、カテコール、ハイドロキノン、ピロガロールあるい
はこれらの置換体を含めたフェノール類が挙げられる。
アルデヒド類としてはホルマリン、パラホルムアルデヒ
ド、α−ポリオキシメチレン、アセトアルデヒド等があ
るがこれらに限定されるものではない。またこれらフェ
ノール類とアルデヒド類とを縮合させる触媒としては、
シュウ酸、塩酸、硫酸等の酸性物質及び有機酸金属塩、
または水酸化カリウム、水酸化ナトリウム、水酸化リチ
ウム等のアルカリ金属の水酸化物あるいはアルカリ土類
金属の水酸化物等がある。その他の水溶性の酸硬化性樹
脂としては、尿素、メチロール尿素、ジメチロール尿
素、ジヒドロキシエチレン尿素を主成分とする尿素樹
脂、メラミンと前述のアルデヒド類とをアルカリまたは
酸を触媒として反応させて得られるメラミン樹脂、ある
いはフルフリルアルコール樹脂、フルフリルアルコール
・フルフラール共縮合樹脂、フルフリルアルコール・尿
素共縮合樹脂、フルフリルアルコール・フェノール共縮
合樹脂、フルフラール・フェノール共縮合樹脂などを用
いることができる。これら水溶性のフェノール樹脂、ユ
リア樹脂、メラミン樹脂、フラン樹脂は、酸性触媒存在
のもと熱風乾燥時あるいは誘電加熱により急激に高分子
化又は水溶性糖との架橋反応により、鋳型強度の向上、
注湯時の熱間強度の向上、鋳型の耐湿性の向上による鋳
型保存安定性向上に効果があり、また粘結剤自体の微生
物などの影響による腐敗防止に効果がある。また、補助
剤としての多糖類、蛋白質、ポリビニールアルコール、
ポリアクリル酸ナトリウム、酢酸ビニル樹脂のような水
溶性高分子は水溶性糖類に比較して水に対する溶解度が
低いために水溶性糖類より乾燥速度が速く、乾燥後には
分離して強固な膜を形成する。この皮膜は水溶性糖類に
比較して耐湿性に優れているため、オリゴ粘結剤に添加
した場合、鋳型の耐湿性が向上する。多糖類とは、植物
性あるいは動物性の単純多糖類及び複合多糖類をいう。
例えば、澱粉、化工澱粉、デキストリン、セルロース、
化工されたセルロース、デキストラン、レバン、アルギ
ン酸類、ペクチン、ヘミセルロース、グルコマンナン、
ガラクトマンナン、植物ゴム、ヒアルロン酸等である。
蛋白質とは、ペプチドを含む植物性あるいは動物性の蛋
白質をいう。例えば、大豆蛋白、小麦蛋白、その他豆
類、穀物類の蛋白質、カゼイン、アルブミン、コラーゲ
ン、ヘモグロビン等動物、菌類由来の蛋白質をいう。ま
たこれらの蛋白質には植物及び動物、菌類由来の酵素類
も含まれる。ポリビニールアルコールには、完全鹸化
物、中間鹸化物、部分鹸化物のポリビニールアルコール
を含み、重合度200〜3000程度のものが好まし
い。また変性されたポリビニールアルコールも含まれ
る。酢酸ビニル樹脂では、溶液型またはエマルジョン型
の酢酸ビニル樹脂がよく、場合により塩化亜鉛、塩化ア
ルミニウム、硝酸ジルコニル等の金属塩を含み耐湿性の
向上された酢酸ビニル樹脂も含まれる。これらの補助剤
は、オリゴ粘結剤Mにその固形分100重量部に対して
固形分で1〜30重量部使用することができる。また、
これらの補助剤はオリゴ粘結剤Mに加えて溶液とするこ
となく、オリゴ粘結剤Mと骨材の混練時に添加して、使
用することもできる。また本発明におけるオリゴ粘結剤
Mには、シランカップリング剤や界面活性剤を併用する
ことにより、より一層混練砂の流動性及び鋳型の強度を
向上させることができる。シランカップリング剤として
は、γ−グリシドキシプロピルトリメトキシシラン、γ
−アミノプロピルトリエトキシシラン、γ−(2−アミ
ノエチル)アミノプロピルトリメトキシシラン、N−グ
リシジル−N,N−ビス(3−(トリメトキシシリル)
プロピル)アミン、ウレイドプロピルトリエトキシシラ
ン等を使用することができる。上記のシランカップリン
グ剤は、オリゴ粘結剤Nにその固形分100重量部に対
して0.1〜5重量部添加することが好ましい。本発明
に用いられる界面活性剤としては、ノニオン界面活性
剤、カチオン界面活性剤、アニオン界面活性剤、両性界
面活性剤、シリコーン系界面活性剤、フッ素系界面活性
剤等が使用可能であり、界面活性剤としては特に限定さ
れない。これら界面活性剤は粘結剤と骨材との濡れ性を
改善する効果がある。模型に充填する際の混練砂の流動
性も向上する。流動性の向上により、鋳型の充填密度が
向上し高い鋳型強度が得られるとともに、表面の優れた
鋳型を得ることができる。界面活性剤の配合量は、オリ
ゴ粘結剤Mの固形分100重量部に対して0.01〜5
重量部が好ましい。
The present invention will be described in further detail. The aggregate used in the present invention includes silica sand, zircon sand, olivine sand, chromite sand, alumina sand, mullite sand and the like. Solids concentration 20 per 100 parts by weight of aggregate
0.5 to 10 parts by weight of ~ 75% by weight oligo binder M,
An object of the present invention is to provide a composition for mold molding obtained by adding 0.1 to 25 parts by weight of an acidic catalyst to 100 parts by weight of the solid content of the oligo binder M and kneading the mixture. One. Still another object is to provide a method for filling a desired model with the composition for molding a mold, drying and curing the composition to mold a mold. The drying method is described in further detail. The temperature is 0 ° C. to 4.9 kPa at a pressure of 4.9 to 390 kPa from the upper part, lower part or side part of the model.
A dry gas (hot air) at 400 ° C. is passed through to forcibly remove moisture. At this time, at the same time, it is more effective to carry out forced drying by reducing the pressure from the portion on the opposite side of the hot air blowing port,
The mold can be cured in a short time. When hot air drying at 80 ° C. or higher is performed, a drying gas at a temperature of 50 ° C. or lower is passed through the mold under the same conditions as the above pressure to cool the mold. At this time, as in the case of forced drying, it is more effective to simultaneously cool the mold under reduced pressure. At the time of drying, it is also possible to use dielectric heating by high frequency, microwave, or the like. However, also in this case, it is necessary, for example, to ventilate the air and forcibly discharge the moisture to the outside. At this time, CO 2 , He, Ne, Ar,
Obviously, N 2 can also be used. Further, the mold making method of the present invention can be dried only by reduced pressure. In that case, the kneading sand obtained by using the oligo-binding agent M is filled into a mold, and the mold is placed in a closed container. Then, the pressure in the vacuum box is reduced to 48.0 kPa or less by a vacuum pump, and Forcibly remove water. The pressure in the vacuum box is kept at 48.0 kPa or less until moisture in the mold is removed, and after drying and curing, the pressure is returned to the atmospheric pressure (101.3 kPa), and then the mold is taken out. As shown in FIG. 1, a method of placing a mold in a closed container and drying it in a vacuum is as follows: a closed container (vacuum box) 1 or a mold 2 is moved up and down as indicated by an arrow in FIG.
As shown in FIG. 3, the mold 2 is a slide type in which the mold 2 moves left and right as indicated by the arrow in the figure. Further, as shown in FIG. There is a stationary type in which the mold 2 is placed on the mold 2 and the periphery of the mold 2 is covered with the airtight flexible film 4 to make a vacuum. The water-soluble saccharide used in the present invention includes a natural oligosaccharide and / or a water-soluble saccharide having a dextrose equivalent (hereinafter referred to as “DE”) = 10 to 50 obtained by hydrolyzing starch using an acid or an enzyme. Or a water-soluble saccharide having a molecular weight equivalent to the starch hydrolyzate obtained by hydrolyzing a natural high-molecular saccharide. More preferably, the content of monosaccharide is 1% by weight or less in terms of solid content, 5% by weight or less of disaccharide, 5 to 25% by weight of trisaccharide, and 3 to 15% of tetrasaccharide.
It is a water-soluble saccharide having a saccharide composition of 3% to 20% by weight of pentasaccharide, 3 to 25% by weight of hexasaccharide, and 35% by weight or more of 7 or more saccharides. In addition, by containing an organic compound having an aldehyde group and a double bond as an essential component and an acidic catalyst, the water-soluble saccharide can be crosslinked by drying and curing, thereby improving mold strength and water resistance. Here, when a water-soluble saccharide having a composition deviating from the water-soluble saccharide, particularly an equivalent molecular weight obtained by hydrolyzing a saccharide having a DE of less than 10 or a high-molecular saccharide is used, the solubility in water is low, and Requires a large amount of water, and a long time is required in the mold drying step. In addition, the viscosity when dissolved in water is high, and the kneading property with the sand is deteriorated, and the fluidity of the obtained kneaded sand is also deteriorated. In addition, when a water-soluble saccharide having an equivalent molecular weight obtained by hydrolyzing a saccharide or a high-molecular saccharide having a DE of greater than 50, that is, a water-soluble saccharide containing a large amount of monosaccharide, is used, the water solubility and the viscosity of the aqueous solution are reduced. However, high mold strength after drying and curing cannot be obtained. Also, the amount of the aldehyde compound serving as a cross-linking agent must be large, which is economically disadvantageous and is not suitable as a binder.
On the other hand, DE is a water-soluble saccharide having an equivalent molecular weight obtained by hydrolyzing a saccharide or a high-molecular saccharide having a DE of 10 to 50. In particular, the monosaccharide content is 1% by weight or less in terms of solids, and the disaccharide is 5% by weight. Hereinafter, a saccharide composition of 5 to 25% by weight of trisaccharide, 3 to 15% by weight of tetrasaccharide, 3 to 20% by weight of pentasaccharide, 3 to 25% by weight of hexasaccharide, and 35% by weight or more of 7 or more saccharides. When a water-soluble saccharide is used as a binder, it is easy to prepare an aqueous solution, and since the viscosity of the aqueous solution is low, it has good kneadability with sand and obtains kneaded sand (ie, a composition for mold molding). Good). In addition, a sufficiently high mold strength can be obtained for practical use. In addition, when reacted with a polyfunctional aldehyde compound, a high mold strength and moisture resistance can be obtained by forming a hardly soluble hard film. Oligo binder M in the present invention is a water-soluble, in order to further improve the strength of the mold and maintain the hot strength involved in maintaining the shape of the mold until the molten aluminum or iron at the time of pouring solidifies. It is effective to use at least one of phenol resins, urea resins, melamine resins, and acid-curable resins such as furan resins. It is also effective to use a water-soluble polymer such as polysaccharide, protein, polyvinyl alcohol, sodium polyacrylate, or vinyl acetate resin as an auxiliary agent in the oligo binder M. Further, by adding a silane coupling agent or a surfactant to the oligo-binding agent N, it is possible to obtain higher normal strength and better storage stability of the template. The oligo binder M in the present invention has a solid concentration of 20.
To 75% by weight, preferably 30 to 65% by weight. If the solid content exceeds 75% by weight, the viscosity of the oligo binder M becomes high, and it becomes difficult to sufficiently knead the aggregate and the binder, and the fluidity of the kneaded sand is deteriorated. On the other hand, when the solid content is less than 20% by weight, the amount of water is large and not only takes much time to dry the mold, but also the practically usable strength of the mold cannot be obtained. The mixing ratio of the water-soluble saccharide which is an essential component in the oligo-binding agent M and the organic compound having an aldehyde group and a double bond is such that the saccharide is 50% of the solid content.
~ 99% by weight. If the amount of the saccharide in the solid content exceeds 99% by weight, the ratio of the aldehyde compound is small, the crosslinking point is small, and a sufficient crosslinking effect cannot be obtained. Therefore, the effect on the mold strength and moisture resistance is small. If it is less than 50% by weight, that is, even if the proportion of the aldehyde compound increases, a remarkable crosslinking effect cannot be obtained. In addition, the amount of the crosslinking agent increases, which is economically disadvantageous. Further, an acid is required as a crosslinking catalyst for the crosslinking reaction, and the dissociation constant of the acid is Ka = 1.
An acid catalyst of × 10 -5 or more is required. Naturally, an acid having an acid dissociation constant of less than Ka = 1 × 10 −5 cannot provide a sufficient catalytic action, so that the cross-linking reaction is not completed during drying and curing, so that sufficient mold strength and moisture resistance cannot be obtained. Examples of the water-soluble saccharide used in the oligo-binding agent M of the present invention include naturally occurring saccharides and saccharides obtained by hydrolyzing a naturally occurring polysaccharide with an acid or an enzyme. , Potato starch, sweet potato starch, corn starch,
The starch is not particularly limited as long as it is a carbohydrate such as high amylose corn starch, waxy corn starch, wheat starch, tapioca starch, sago starch and the like, cellulosic material, chitin, mannan, hyaluronic acid, pectin and the like. Hydrolysis of these carbohydrates is also carried out by a method using an acidic catalyst such as a strong acid such as sulfuric acid or hydrochloric acid or a weak acid such as oxalic acid, or α-
The method is not particularly limited as long as it is a method of hydrolyzing a carbohydrate such as a method using an enzyme represented by amylase as a catalyst, and a combination thereof. The degree of this hydrolysis may be a water-soluble saccharide having a DE of 10 to 50 or an equivalent molecular weight obtained by hydrolyzing a high molecular weight saccharide, and more preferably D.
E is 15 to 30. In order to obtain a desired composition from these hydrolysates, for example, low molecular weight saccharides obtained by chromatographic separation represented by using a Na + type ion exchange resin of a styrene-divinylbenzenesulfonic acid copolymer resin or a yeast treatment ( Monosaccharides to trisaccharides), and further the removal of glucose by glucose oxidase treatment.
5% by weight or less of disaccharides, 5 to 25% by weight of trisaccharides, 3 to 15% by weight of 4 sugars, 3 to 20% by weight of 5 sugars, 3 to 25% by weight of hexasaccharides, and 35% by weight of 7 or more sugars % Is not particularly limited as long as it is a method capable of controlling the molecular weight distribution so that the molecular weight becomes not less than%. The saccharide composition thus obtained is purified by a conventional method, and if necessary, concentrated to obtain a solution having a desired concentration. Furthermore, it is possible to dry and store it as a powder for a long time. An aldehyde compound having a carbon-carbon double bond is used as an essential component of the binder of the present invention. As this aldehyde compound, crotonaldehyde, acrolein, or the like can be used. Examples of the type of acidic catalyst required for the crosslinking reaction include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as oxalic acid, benzenesulfonic acid, formic acid, and acetic acid, and the dissociation constant of the acid is Ka = 1 × 10 −. There is no particular limitation as long as the acidic catalyst is 5 or more. As one of the additives of the present invention, an acid-curable resin such as a water-soluble phenol resin, urea resin, melamine resin and furan resin is used. As the water-soluble phenol resin, a resol-type water-soluble phenol resin can be generally used. These phenolic resins are obtained by condensing phenols and aldehydes in the presence of an alkali or acid catalyst. Examples of phenols include phenol, cresol, resorcinol, bisphenol A, bisphenol F, bisphenol C, bisphenol H, cumylphenol, nonylphenol, isopropenylphenol purified residue, bisphenol A purified residue, bisphenol F purified residue, butylphenol, phenylphenol And phenols including ethyl phenol, octyl phenol, amyl phenol, naphthol, catechol, hydroquinone, pyrogallol, and substituted products thereof.
Aldehydes include, but are not limited to, formalin, paraformaldehyde, α-polyoxymethylene, acetaldehyde, and the like. As a catalyst for condensing these phenols and aldehydes,
Acidic substances such as oxalic acid, hydrochloric acid and sulfuric acid, and organic acid metal salts,
Alternatively, there are hydroxides of alkali metals such as potassium hydroxide, sodium hydroxide, and lithium hydroxide, and hydroxides of alkaline earth metals. Other water-soluble acid-curable resins include urea, methylol urea, dimethylol urea, a urea resin containing dihydroxyethylene urea as a main component, melamine and the above aldehydes obtained by reacting with an alkali or an acid as a catalyst. Melamine resin, furfuryl alcohol resin, furfuryl alcohol / furfural cocondensation resin, furfuryl alcohol / urea cocondensation resin, furfuryl alcohol / phenol cocondensation resin, furfural / phenol cocondensation resin, and the like can be used. These water-soluble phenolic resins, urea resins, melamine resins, and furan resins can be rapidly polymerized by hot air drying or dielectric heating in the presence of an acidic catalyst or by a cross-linking reaction with a water-soluble sugar to improve mold strength,
It is effective in improving the hot strength at the time of pouring, improving the storage stability of the mold by improving the moisture resistance of the mold, and is also effective in preventing decay due to the influence of microorganisms on the binder itself. In addition, polysaccharides, proteins, polyvinyl alcohol,
Water-soluble polymers such as sodium polyacrylate and vinyl acetate resin have a lower solubility in water than water-soluble saccharides, so they dry faster than water-soluble saccharides, and separate after drying to form a strong film. I do. Since this film is more excellent in moisture resistance than the water-soluble saccharide, when added to the oligo binder, the moisture resistance of the mold is improved. The polysaccharide refers to simple or complex polysaccharides of vegetable or animal origin.
For example, starch, modified starch, dextrin, cellulose,
Chemically modified cellulose, dextran, levan, alginates, pectin, hemicellulose, glucomannan,
Galactomannan, vegetable gum, hyaluronic acid and the like.
A protein refers to a vegetable or animal protein containing a peptide. For example, it refers to proteins derived from animals and fungi such as soybean protein, wheat protein, other beans, cereal proteins, casein, albumin, collagen, and hemoglobin. These proteins also include enzymes derived from plants, animals and fungi. The polyvinyl alcohol includes completely saponified, intermediate saponified and partially saponified polyvinyl alcohols, and preferably has a degree of polymerization of about 200 to 3000. Also includes modified polyvinyl alcohol. As the vinyl acetate resin, a solution-type or emulsion-type vinyl acetate resin is preferable, and in some cases, a vinyl acetate resin containing a metal salt such as zinc chloride, aluminum chloride, and zirconyl nitrate and having improved moisture resistance is also included. These auxiliaries can be used in the oligo binder M in an amount of 1 to 30 parts by weight in terms of solids based on 100 parts by weight of the solids. Also,
These auxiliaries can be used by adding them at the time of kneading the oligo binder M and the aggregate without forming a solution in addition to the oligo binder M. In addition, by using a silane coupling agent or a surfactant in combination with the oligo binder M in the present invention, the fluidity of the kneading sand and the strength of the mold can be further improved. As the silane coupling agent, γ-glycidoxypropyltrimethoxysilane, γ
-Aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, N-glycidyl-N, N-bis (3- (trimethoxysilyl)
Propyl) amine, ureidopropyltriethoxysilane and the like can be used. The above silane coupling agent is preferably added to the oligo binder N in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the solid content. As the surfactant used in the present invention, a nonionic surfactant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a silicone-based surfactant, a fluorine-based surfactant, and the like can be used. The activator is not particularly limited. These surfactants have the effect of improving the wettability between the binder and the aggregate. The fluidity of the kneading sand when filling the model is also improved. By improving the fluidity, the filling density of the mold is improved, high mold strength is obtained, and a mold having an excellent surface can be obtained. The amount of the surfactant is 0.01 to 5 parts by weight based on 100 parts by weight of the solid content of the oligo binder M.
Parts by weight are preferred.

【実施例】以下、実施例をあげて本発明に係る鋳型造型
用組成物及び鋳型造型方法を更に詳しく説明する。但
し、本発明は、下記実施例に限定されるものではなく、
その要旨の範囲内で種々変形実施が可能である。 1.架橋剤の種類、添加量及び酸性触媒種を変えての比
較評価実施例 [実施例1]水分13%のトウモロコシ澱粉を固形分で
30重量%の水懸濁液になるように調整する。 水酸化
カルシウムを用いpHを6.2とする。対澱粉固形分当
たり0.1重量%のα−アミラーゼ(ターマミル、ノボ
ノルディスクインダストリー社製)を添加し、107℃
にて5分間加熱処理し澱粉液化液を得る。更にこの液化
液を90℃で1時間処理後、蓚酸添加により酵素反応を
停止させる。常法により、活性炭やイオン交換樹脂によ
る脱色・脱塩精製をする。次いで濃縮乾燥を行い粉末状
の水溶性糖を得た。この水溶性糖のDEは25であっ
た。上記水溶性糖42.5重量部、クロトンアルデヒド
9.2重量部、水48.3重量部を混合し、表1に示す
オリゴ粘結剤Mを得た。次に珪砂(飯豊F−6号珪砂)
100重量部に対して該オリゴ粘結剤Mを4.0重量部
添加し、更にフェノールスルホン酸水溶液(固形分50
重量%)0.2重量部(オリゴ粘結剤Mの固形分100
重量部に対して10重量部)を混練機にて、60秒間混
練し鋳型造型用組成物(混練砂)を得た。混練砂を10
mm×10mm×60mmテストピース金型に圧力29
4kPaでブローイングし、250℃に加熱された空気
の熱風を圧力98kPaにて金型内に送ると共に、5
3.2kPaの減圧にて金型下部より吸引し、乾燥を2
分間行い、最後に室温の乾燥空気を20秒間金型内に圧
力98kPaで通気し、造型した。得られた鋳型の造型
直後及び、恒温恒湿室(35℃、80%)内に48時間
保管した後の、曲げ強度を測定した。結果を表2に示
す。 [実施例2]実施例1と同様にして得られたDE=25
の水溶性糖を35%濃度水溶液となるように調整し、該
水溶性糖の固形分に対し、市販のドライイースト(日本
製粉(株)、ふっくらパンドライイースト)を0.5重
量%添加し、撹拌下36℃で3時間処理する。酵母を煮
沸失活後常法により活性炭やイオン交換樹脂による脱色
・脱塩精製する。次いで濃縮乾燥を行い粉末状の水溶性
糖を得た。この水溶性糖のDEは19であり、その組成
を東ソー(株)製「TSKgel G−Oligo−P
W」を用いた液体クロマトグラフィー装置により分析し
た。その糖組成は、単糖類は含まず、2糖類が1.4重
量%、3糖類が13.3重量%、4糖類が8.8重量
%、5糖類が12.6重量%、6糖類が15.0重量
%、7糖類以上が48.9重量%であった。上記の水溶
性糖42.5重量部、クロトンアルデヒド9.2重量
部、水48.3重量部を混合し、表1に示すオリゴ粘結
剤Mを得た。以下実施例1と同様の方法にて鋳型を造型
し、曲げ強度を測定した。結果を表2に示す。 [実施例3]実施例2と同様にして得られたDE=19
の水溶性糖42.5重量部、クロトンアルデヒド18.
4重量部、水48.3重量部を混合し、表1に示すオリ
ゴ粘結剤Mを得た。以下実施例1と同様の方法にて鋳型
を造型し、曲げ強度を測定した。結果を表2に示す。 [実施例4]実施例2と同様にして得られたDE=19
の水溶性糖42.5重量部、クロトンアルデヒド9.2
重量部、水48.3重量部を混合し、表1に示すオリゴ
粘結剤Mを得た。次ぎに珪砂(飯豊F−6号珪砂)10
0重量部に対して該オリゴ粘結剤Mを4.0重量部添加
し、更に酢酸(有効成分50重量%)0.5重量部(オ
リゴ粘結剤Mの固形分100重量部に対して10重量
部)を混練機にて、60秒間混練し鋳型造型用組成物
(混練砂)を得た。以下実施例1と同様の方法にて鋳型
を造型し、曲げ強度を測定した。 結果を表2に示す。 [比較例1]実施例1と同様にして得られたDE=25
の水溶性糖50.0重量部、水50.0重量部を混合
し、水溶性の粘結剤を得た。以下実施例1と同様の方法
にて鋳型を造型し、曲げ強度を測定した。結果を表2に
示す。 [比較例2]実施例2と同様にして得られたDE=19
の水溶性糖50.0重量部、水50.0重量部を混合
し、水溶性の粘結剤を得た。以下実施例1と同様の方法
にて鋳型を造型し、曲げ強度を測定した。結果を表2に
示す。 [比較例3]無水結晶ブドウ糖50.0重量部、水5
0.0重量部を混合し、水溶性の粘結剤を得た。以下実
施例1と同様の方法にて鋳型を造型し、曲げ強度を測定
した。結果を表2に示す。 [比較例4]DEが7である水溶性糖(三和澱粉(株)
製、サンデック#70)50.0重量部、水50.0重
量部を混合し、水溶性の粘結剤を得た。以下実施例1と
同様の方法にて鋳型を造型し、曲げ強度を測定した。結
果を表2に示す。 [比較例5]無水結晶ブドウ糖42.5重量部、クロト
ンアルデヒド9.2重量部、水48.3重量部を混合
し、水溶性の粘結剤を得た。以下実施例1と同様の方法
にて鋳型を造型し、曲げ強度を測定した。結果を表2に
示す。 [比較例6]実施例2と同様にして得られたDE=19
の水溶性糖17.5重量部、グルタルアルデヒド32.
5重量部、水50.0重量部を混合し、表1に示すオリ
ゴ粘結剤Mを得た。以下実施例1と同様の方法にて鋳型
を造型し、曲げ強度を測定した。結果を表2に示す。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following Examples,
Various modifications can be made within the scope of the gist. 1. Comparative Evaluation Example in Which Kind of Crosslinking Agent, Addition Amount, and Kind of Acid Catalyst are Changed [Example 1] Corn starch having a water content of 13% is adjusted to be a 30% by weight solid suspension in water. The pH is adjusted to 6.2 using calcium hydroxide. 0.1% by weight of α-amylase (termamamil, manufactured by Novo Nordisk Industries) per starch solid content was added, and 107 ° C.
For 5 minutes to obtain a liquefied starch solution. Furthermore, after treating this liquefied liquid at 90 ° C. for 1 hour, the enzyme reaction is stopped by adding oxalic acid. Decolorization and desalination purification using activated carbon or ion exchange resin is carried out by a conventional method. Then, the mixture was concentrated and dried to obtain a powdery water-soluble sugar. The DE of this water-soluble sugar was 25. 42.5 parts by weight of the above-mentioned water-soluble sugar, 9.2 parts by weight of crotonaldehyde, and 48.3 parts by weight of water were mixed to obtain an oligo-binding agent M shown in Table 1. Next is quartz sand (Iide F-6 No. 6 quartz sand)
4.0 parts by weight of the oligo-binding agent M was added to 100 parts by weight, and a phenolsulfonic acid aqueous solution (solid content: 50%) was added.
0.2% by weight (solid content of oligo binder M 100)
(10 parts by weight with respect to parts by weight) using a kneader to knead the mixture for 60 seconds to obtain a composition for mold making (kneading sand). 10 kneading sand
mm × 10mm × 60mm test piece pressure 29
Blowing at 4 kPa, hot air of air heated to 250 ° C. is sent into the mold at a pressure of 98 kPa, and 5
Suction from the lower part of the mold under reduced pressure of 3.2 kPa,
After that, dry air at room temperature was passed through the mold at a pressure of 98 kPa for 20 seconds, and molded. The bending strength of the obtained mold was measured immediately after molding and after being stored in a thermo-hygrostat (35 ° C., 80%) for 48 hours. Table 2 shows the results. [Example 2] DE = 25 obtained in the same manner as in Example 1.
Is adjusted to be a 35% aqueous solution, and 0.5% by weight of a commercially available dry yeast (Nippon Flour Milling Co., Ltd., Fluffy Pan Dry Yeast) is added to the solid content of the water-soluble sugar. Treat at 36 ° C. with stirring for 3 hours. After deactivating the yeast by boiling, the yeast is subjected to decolorization and desalination purification using activated carbon or an ion exchange resin by a conventional method. Then, the mixture was concentrated and dried to obtain a powdery water-soluble sugar. The DE of this water-soluble saccharide is 19, and its composition is “TSKgel G-Oligo-P” manufactured by Tosoh Corporation.
The analysis was performed by a liquid chromatography apparatus using "W". Its saccharide composition does not include monosaccharides, but contains 1.4% by weight of disaccharides, 13.3% by weight of 3 saccharides, 8.8% by weight of 4 saccharides, 12.6% by weight of 5 saccharides, and 12.6% by weight of hexasaccharides. 15.0% by weight, and 78.9 or more saccharides were 48.9% by weight. 42.5 parts by weight of the above-mentioned water-soluble sugar, 9.2 parts by weight of crotonaldehyde, and 48.3 parts by weight of water were mixed to obtain oligo binder M shown in Table 1. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. [Example 3] DE = 19 obtained in the same manner as in Example 2
42.5 parts by weight of a water-soluble sugar, crotonaldehyde
4 parts by weight of water and 48.3 parts by weight of water were mixed to obtain an oligo binder M shown in Table 1. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. Example 4 DE = 19 obtained in the same manner as in Example 2.
42.5 parts by weight of water-soluble saccharide, crotonaldehyde 9.2
By weight, 48.3 parts by weight of water were mixed to obtain an oligo-binding agent M shown in Table 1. Next is silica sand (Iide F-6 No. 6 silica sand).
4.0 parts by weight of the oligo binder M was added to 0 parts by weight, and 0.5 part by weight of acetic acid (50% by weight of the active ingredient) was further added (based on 100 parts by weight of the solid content of the oligo binder M). 10 parts by weight) using a kneader to knead the mixture for 60 seconds to obtain a mold molding composition (kneaded sand). Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. [Comparative Example 1] DE = 25 obtained in the same manner as in Example 1.
Was mixed with 50.0 parts by weight of water-soluble sugar and 50.0 parts by weight of water to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. [Comparative Example 2] DE = 19 obtained in the same manner as in Example 2.
Was mixed with 50.0 parts by weight of water-soluble sugar and 50.0 parts by weight of water to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. [Comparative Example 3] 50.0 parts by weight of anhydrous crystalline glucose, water 5
0.0 parts by weight were mixed to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. [Comparative Example 4] A water-soluble sugar having a DE of 7 (Sanwa Starch Co., Ltd.)
Manufactured by Sundeck # 70) and 50.0 parts by weight of water to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. Comparative Example 5 42.5 parts by weight of anhydrous crystalline glucose, 9.2 parts by weight of crotonaldehyde, and 48.3 parts by weight of water were mixed to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results. [Comparative Example 6] DE = 19 obtained in the same manner as in Example 2.
17.5 parts by weight of a water-soluble sugar, glutaraldehyde
5 parts by weight and 50.0 parts by weight of water were mixed to obtain an oligo binder M shown in Table 1. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 2 shows the results.

【表1】オリゴ粘結剤M及び比較例粘結剤の性状(注
1、2) (架橋剤の種類及び酸性触媒の種類) 注1.全ての粘結剤の固形分濃度は50wt%とした。 注2.乾燥硬化処理方法は、250℃のAirで加圧に
て行った。 注3.粘結剤の固形分100重量部に対する添加量を示
す。
Table 1 Properties of oligo binder M and comparative binders (Notes 1 and 2) (Types of cross-linking agent and types of acidic catalyst) Note 1. The solid content concentration of all binders was 50% by weight. Note2. The drying and curing treatment method was performed under a pressure of 250 ° C. Air. Note3. Shows the amount of binder added to 100 parts by weight of solids.

【表2】鋳型強度の経時変化 2.オリゴ粘結剤Mに各種添加剤を添加しての比較評価
実施例 [実施例6]実施例2と同様にして得られたDE=19
の水溶性糖36.1重量部、クロトンアルデヒド6.4
重量部、水溶性レゾール型フェノール樹脂(群栄化学工
業(株)製、PL−4746(固形分50重量%))1
5.0重量部、水42.5重量部を混合し、表3に示す
オリゴ粘結剤Mを得た。以下実施例1と同様の方法にて
鋳型を造型し、曲げ強度を測定した。結果を表4に示
す。 [実施例7]実施例2と同様にして得られたDE=19
の水溶性糖36.1重量部、クロトンアルデヒド6.4
重量部、大豆ペプチド蛋白(不二製油(株)製、ハイニ
ュート)7.5重量部、水50重量部を混合し、表3に
示すオリゴ粘結剤Mを得た。以下実施例1と同様の方法
にて鋳型を造型し、曲げ強度を測定した。結果を表4に
示す。 [実施例8]実施例2と同様にして得られたDE=19
の水溶性糖42.1重量部、クロトンアルデヒド7.4
重量部、シランカップリング剤(日本ユニカー(株)
製、A−1100)0.5重量部、水50.0重量部を
混合し、表3に示すオリゴ粘結剤Mを得た。以下実施例
1と同様の方法にて鋳型を造型し、曲げ強度を測定し
た。結果を表4に示す。 [実施例9]実施例2と同様にして得られたDE=19
の水溶性糖42.2重量部、クロトンアルデヒド7.5
重量部、フッ素系界面活性剤(住友3M(株)製、FC
−129)0.3重量部、水50.0重量部を混合し、
表3に示すオリゴ粘結剤Mを得た。以下実施例1と同様
の方法にて鋳型を造型し、曲げ強度を測定した。結果を
表4に示す。 [実施例10]実施例2と同様にして得られたDE=1
9の水溶性糖34.6重量部、クロトンアルデヒド6.
1重量部、水溶性レゾール型フェノール樹脂(群栄化学
工業(株)製、PL−4746(固形分50重量%))
10.0重量部、カゼイン(日成共益(株)製)3.5
重量部、シランカップリング剤(日本ユニカー(株)
製、A−1100)0.5重量部、フッ素系界面活性剤
(住友スリーエム(株)製、FC−129)0.3重量
部、水45.0重量部を混合し、表3に示すオリゴ粘結
剤Mを得た。以下実施例1と同様の方法にて鋳型を造型
し、曲げ強度を測定した。結果を表4に示す。 [比較例7]実施例2と同様にして得られたDE=19
の水溶性糖42.5重量部、水溶性レゾール型フェノー
ル樹脂(群栄化学工業(株)製、PL−4746(固形
分50重量%))15.0重量部、水42.5重量部を
混合し、水溶性の粘結剤を得た。以下実施例1と同様の
方法にて鋳型を造型し、曲げ強度を測定した。結果を表
4に示す。 [比較例8]実施例2と同様にして得られたDE=19
の水溶性糖42.5重量部、大豆ペプチド蛋白(不二製
油(株)製、ハイニュート)7.5重量部、水50.0
重量部を混合し、水溶性の粘結剤を得た。以下実施例1
と同様の方法にて鋳型を造型し、曲げ強度を測定した。
結果を表4に示す。 [比較例9]実施例2と同様にして得られたDE=19
の水溶性糖49.5重量部、シランカップリング剤(日
本ユニカー(株)製、A−1100)0.5重量部、水
50.0重量部を混合し、水溶性の粘結剤を得た。以下
実施例1と同様の方法にて鋳型を造型し、曲げ強度を測
定した。結果を表4に示す。
[Table 2] Temporal change of mold strength 2. Comparative Evaluation Example in which Various Additives were Added to Oligo Binder M [Example 6] DE = 19 obtained in the same manner as in Example 2
36.1 parts by weight of water-soluble sugar, crotonaldehyde 6.4
Parts by weight, water-soluble resol type phenol resin (PL-4746 (50% by weight of solid content), manufactured by Gunei Chemical Industry Co., Ltd.) 1
5.0 parts by weight and 42.5 parts by weight of water were mixed to obtain oligo binder M shown in Table 3. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 4 shows the results. Example 7 DE = 19 obtained in the same manner as in Example 2.
36.1 parts by weight of water-soluble sugar, crotonaldehyde 6.4
By weight, 7.5 parts by weight of soybean peptide protein (manufactured by Fuji Oil Co., Ltd., Hynute) and 50 parts by weight of water were mixed to obtain oligo binder M shown in Table 3. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 4 shows the results. Example 8 DE = 19 obtained in the same manner as in Example 2.
42.1 parts by weight of a water-soluble sugar of crotonaldehyde 7.4
Parts by weight, silane coupling agent (Nihon Unicar Co., Ltd.)
(A-1100), 0.5 parts by weight of water and 50.0 parts by weight of water to obtain an oligo binder M shown in Table 3. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 4 shows the results. Example 9 DE = 19 obtained in the same manner as in Example 2.
42.2 parts by weight of a water-soluble sugar of crotonaldehyde 7.5
Parts by weight, fluorinated surfactant (manufactured by Sumitomo 3M Co., Ltd., FC
-129) 0.3 parts by weight of water and 50.0 parts by weight of water are mixed,
An oligo binder M shown in Table 3 was obtained. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 4 shows the results. [Example 10] DE = 1 obtained in the same manner as in Example 2
34.6 parts by weight of water-soluble sugar of No. 9, crotonaldehyde 6.
1 part by weight, water-soluble resol type phenol resin (PL-4746 (50% by weight solid content), manufactured by Gunei Chemical Industry Co., Ltd.)
10.0 parts by weight, casein (manufactured by Nissei Kyoeki Co., Ltd.) 3.5
Parts by weight, silane coupling agent (Nihon Unicar Co., Ltd.)
A-1100), 0.5 parts by weight of a fluorosurfactant (FC-129, manufactured by Sumitomo 3M Limited), and 45.0 parts by weight of water. A binder M was obtained. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 4 shows the results. [Comparative Example 7] DE = 19 obtained in the same manner as in Example 2.
42.5 parts by weight of a water-soluble sugar, 15.0 parts by weight of a water-soluble resol type phenol resin (PL-4746 (solid content: 50% by weight) manufactured by Gunei Chemical Industry Co., Ltd.) and 42.5 parts by weight of water After mixing, a water-soluble binder was obtained. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 4 shows the results. [Comparative Example 8] DE = 19 obtained in the same manner as in Example 2.
42.5 parts by weight of water-soluble sugar, 7.5 parts by weight of soybean peptide protein (manufactured by Fuji Oil Co., Ltd., Hynute), and 50.0 parts of water
The parts by weight were mixed to obtain a water-soluble binder. Example 1 below
A mold was formed in the same manner as described above, and the bending strength was measured.
Table 4 shows the results. [Comparative Example 9] DE = 19 obtained in the same manner as in Example 2.
49.5 parts by weight of a water-soluble sugar, 0.5 part by weight of a silane coupling agent (A-1100, manufactured by Nippon Unicar Co., Ltd.) and 50.0 parts by weight of water are mixed to obtain a water-soluble binder. Was. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 4 shows the results.

【表3】オリゴ粘結剤M及び比較例粘結剤の性状(注
1、2、3、4) (酸硬化性樹脂、補助剤、シランカップリング剤、界面
活性剤の添加) 注1.全ての粘結剤の固形分濃度は50wt%とした。 注2.実施例における粘結剤はオリゴ糖:クロトンアル
デヒド=85:15の固形分比を持つ。 注3.実施例における粘結剤はフェノールスルホン酸を
オリゴ粘結剤100重量部に対して10重量部含む。 注4.乾燥硬化処理方法は、250℃のAirで加圧に
て行った。 注5.数値はオリゴ粘結剤Mの固形分100重量部に対
する併用重量部を示す。
Table 3 Properties of oligo binder M and comparative binder (Notes 1, 2, 3, 4) (Addition of acid-curable resin, auxiliary agent, silane coupling agent, surfactant) Note 1. The solid content concentration of all binders was 50% by weight. Note2. The binder in the examples has a solids ratio of oligosaccharide: crotonaldehyde = 85: 15. Note3. The binder in the examples contains 10 parts by weight of phenolsulfonic acid per 100 parts by weight of oligo binder. Note4. The drying and curing treatment method was performed under a pressure of 250 ° C. Air. Note5. The numerical values indicate the combined parts by weight based on 100 parts by weight of the solid content of the oligo binder M.

【表4】鋳型強度の経時変化 3.オリゴ粘結剤M及び比較例粘結剤の乾燥処理方法を
変えての比較評価実施例 [実施例11]実施例10と同様にして得られたオリゴ
粘結剤Mを、珪砂(飯豊F−6号珪砂)100重量部に
対して、4.0重量部添加し、更にフェノールスルホン
酸水溶液(固形分50重量%)0.2重量部を添加、混
練機にて60秒間混練し鋳型造型用組成(混練砂)を得
た。混練砂を10mm×10mm×60mmTP金型に
圧力294kPaでブローイングし、250℃に加熱さ
れたN2の熱風を圧力98kPaにて金型内に送ると共
に、53.2kPaの減圧にて金型下部より吸引し、乾
燥を2分間行い、最後に室温の乾燥空気を20秒間金型
内に圧力98kPaで通気し、造型した。得られた鋳型
の造型直後及び、恒温恒湿室(35℃、80%)内に4
8hr保管した後の、曲げ強度を測定した。結果を表6
に示す。 [実施例12]実施例11と同様にして得られた鋳型組
成物を、10mm×10mm×60mmTP金型に圧力
294kPaでブローイングし、25℃の空気を圧力1
96kPaにて金型内に通気することにより、乾燥を3
分間行い、造型した。得られた鋳型の造型直後及び、恒
温恒湿室(35℃、80%)内に48時間保管した後
の、曲げ強度を測定した。結果を表6に示す。 [実施例13]実施例11と同様にして得られた鋳型組
成物を、10mm×10mm×60mmTP金型に型込
めした後、第1図に示す様な上下式真空箱に搬入した。
真空箱内の圧力を0.8kPaとして3分間保持した。
得られた鋳型の造型直後及び、恒温恒湿室(35℃、8
0%)内に48時間保管した後の、曲げ強度を測定し
た。 また造型時及び抜型時における臭気評価を行っ
た。結果を表6に示す。 [実施例14]実施例11と同様にして得られた鋳型組
成物を、10mm×10mm×60mmTP金型に型込
めした後、第1図に示す様な上下式真空箱に搬入した。
真空箱内の圧力を48.0kPaとして15分間保持し
た。得られた鋳型の造型直後及び、恒温恒湿室(35
℃、80%)内に48時間保管した後の、曲げ強度を測
定した。また造型時及び抜型時における臭気評価を行っ
た。結果を表6に示す。 [比較例10]実施例11と同様にして得られた鋳型組
成物を、10mm×10mm×60mmTP金型に圧力
294kPaでブローイングし、450℃に加熱された
空気の熱風を圧力98kPaにて金型内に送ると共に、
53.2kPaの減圧にて金型下部より吸引し、乾燥を
1分間行い、最後に室温の乾燥空気を20秒間金型内に
圧力98kPaで通気し、造型した。得られた鋳型の造
型直後及び、恒温恒湿室(35℃、80%)内に48時
間保管した後の、曲げ強度を測定した。また造型時及び
抜型時結果における臭気評価を行った。結果を表6に示
す。 [比較例11]実施例11と同様にして得られた鋳型組
成物を、10mm×10mm×60mmTP金型に型込
めした後、第1図に示す様な上下式真空箱に搬入した。
真空箱内の圧力を60.0kPaとして20分間保持し
た。得られた鋳型の造型直後及び、恒温恒湿室(35
℃、80%)内に48時間保管した後の、曲げ強度を測
定した。また造型時及び抜型時における臭気評価を行っ
た。結果を表6に示す。
[Table 4] Temporal change of mold strength 3. Oligo Binder M and Comparative Example Comparative Evaluation Example by Changing Drying Method of Binder [Example 11] Oligo binder M obtained in the same manner as in Example 10 was treated with silica sand (Iideyo F- No. 6 silica sand) 4.0 parts by weight were added to 100 parts by weight, and 0.2 parts by weight of a phenolsulfonic acid aqueous solution (solid content: 50% by weight) was further added, and the mixture was kneaded with a kneader for 60 seconds to form a mold. A composition (kneading sand) was obtained. The kneaded sand is blown into a 10 mm × 10 mm × 60 mm TP mold at a pressure of 294 kPa, and hot air of N 2 heated to 250 ° C. is sent into the mold at a pressure of 98 kPa, and from the bottom of the mold at a reduced pressure of 53.2 kPa. Suction was performed and drying was performed for 2 minutes. Finally, dry air at room temperature was passed through the mold at a pressure of 98 kPa for 20 seconds to mold. Immediately after molding of the obtained mold, and in a thermo-hygrostat (35 ° C, 80%)
After storing for 8 hours, the bending strength was measured. Table 6 shows the results
Shown in Example 12 A mold composition obtained in the same manner as in Example 11 was blown into a 10 mm × 10 mm × 60 mm TP mold at a pressure of 294 kPa, and air at 25 ° C. was applied at a pressure of 1
Drying is performed by ventilating the mold at 96 kPa to 3
Performed for minutes and molded. The bending strength of the obtained mold was measured immediately after molding and after being stored in a thermo-hygrostat (35 ° C., 80%) for 48 hours. Table 6 shows the results. Example 13 A mold composition obtained in the same manner as in Example 11 was put into a 10 mm × 10 mm × 60 mm TP mold, and was then carried into a vertical vacuum box as shown in FIG.
The pressure in the vacuum box was set to 0.8 kPa and held for 3 minutes.
Immediately after molding of the obtained mold and in a thermo-hygrostat (35 ° C., 8
0%) for 48 hours, and the bending strength was measured. In addition, the odor was evaluated at the time of molding and at the time of removing the mold. Table 6 shows the results. Example 14 The mold composition obtained in the same manner as in Example 11 was put into a 10 mm × 10 mm × 60 mm TP mold, and then was carried into a vertical vacuum box as shown in FIG.
The pressure inside the vacuum box was kept at 48.0 kPa for 15 minutes. Immediately after molding of the obtained mold, and in a thermo-hygrostat (35
(80 ° C., 80%) for 48 hours, and the bending strength was measured. In addition, the odor was evaluated at the time of molding and at the time of removing the mold. Table 6 shows the results. Comparative Example 10 A mold composition obtained in the same manner as in Example 11 was blown into a 10 mm × 10 mm × 60 mm TP mold at a pressure of 294 kPa, and hot air of air heated to 450 ° C. was molded at a pressure of 98 kPa. Inside and
Suction was performed from the lower part of the mold under a reduced pressure of 53.2 kPa, and drying was performed for 1 minute. Finally, dry air at room temperature was passed through the mold at a pressure of 98 kPa for 20 seconds to mold. The bending strength of the obtained mold was measured immediately after molding and after being stored in a thermo-hygrostat (35 ° C., 80%) for 48 hours. The odor was evaluated at the time of molding and at the time of removing the mold. Table 6 shows the results. [Comparative Example 11] The mold composition obtained in the same manner as in Example 11 was put into a 10 mm x 10 mm x 60 mm TP mold, and then was carried into a vertical vacuum box as shown in FIG.
The pressure in the vacuum box was kept at 60.0 kPa for 20 minutes. Immediately after molding of the obtained mold, and in a thermo-hygrostat (35
(80 ° C., 80%) for 48 hours, and the bending strength was measured. In addition, the odor was evaluated at the time of molding and at the time of removing the mold. Table 6 shows the results.

【表5】オリゴ粘結剤M及び比較例粘結剤の乾燥処理方
法(注6) 注6.使用した全ての粘結剤は表3の実施例10と同様
である。
[Table 5] Drying method for oligo binder M and comparative binder (Note 6) Note6. All binders used are the same as in Example 10 in Table 3.

【表6】鋳型強度の経時変化 [Table 6] Temporal change of mold strength

【発明の効果】以上詳述した本発明によれば、水溶性の
糖類、特に制限された糖組成をもつ水溶性の糖類と二重
結合をもつアルデヒド及び酸性触媒を必須成分とする粘
結剤、更に水溶性の酸硬化性樹脂、補助剤、シランカッ
プリング剤及び界面活性剤を含む水溶性糖類粘結剤を使
用することにより、高強度で耐湿性に優れた鋳型を得る
ための鋳型造型用組成物を提供することができる。また
本発明によれば、上述した鋳型造型用組成物を乾燥気体
及び減圧乾燥を用いて、短時間で高強度の鋳型を得るこ
とが可能な鋳型の造型方法を提供することができる。
According to the present invention described in detail above, a water-soluble saccharide, particularly a water-soluble saccharide having a restricted saccharide composition, an aldehyde having a double bond and a binder containing an acidic catalyst as essential components. By using a water-soluble saccharide binder containing a water-soluble acid-curable resin, an auxiliary agent, a silane coupling agent and a surfactant, a mold for obtaining a mold having high strength and excellent moisture resistance can be obtained. Compositions can be provided. Further, according to the present invention, it is possible to provide a mold molding method capable of obtaining a high-strength mold in a short time by using the above-described composition for mold molding using a drying gas and drying under reduced pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of a method of placing a mold in a closed container and vacuum-drying the same in the mold making method of the present invention.

【図2】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の他例を示す説明図である。
FIG. 2 is an explanatory view showing another example of a method of vacuum-drying by placing a mold in a closed container in the mold making method of the present invention.

【図3】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の更に他例を示す説明図であ
る。
FIG. 3 is an explanatory view showing still another example of a method of placing a mold in a closed container and drying in a vacuum in the mold making method of the present invention.

【符号の説明】[Explanation of symbols]

1 密閉容器(真空箱) 2 鋳型 3 多孔板 4 気密可撓膜 DESCRIPTION OF SYMBOLS 1 Closed container (vacuum box) 2 Mold 3 Perforated plate 4 Airtight flexible membrane

フロントページの続き (72)発明者 大久保 明浩 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内Continuation of the front page (72) Inventor Akihiro Okubo 700, Shukudaidaicho, Takasaki City, Gunma Prefecture Gunei Chemical Industry Co., Ltd.

Claims (30)

【特許請求の範囲】[Claims] 【請求項1】珪砂、ジルコン砂、オリビン砂、クロマイ
ト砂、アルミナ砂、ムライト砂の1種または2種以上の
骨材と、該骨材100重量部に対して、天然の少糖類及
び/または澱粉を加水分解して得られるデキストロース
当量が10〜50の水溶性糖類、または天然の高分子糖
類を加水分解して得られる前記澱粉加水分解物相当分子
量の水溶性糖類と炭素−炭素二重結合を有するアルデヒ
ド化合物から成り、それらの固形分重量比が水溶性糖
類:アルデヒド化合物=50:50〜99:1であり、
更にそれらの固形分濃度が20〜75重量%の水溶性で
ある粘結剤を0.5〜10重量部と酸の解離定数がKa
=1×10-5以上の無機酸または有機酸を前記粘結剤の
固形分100重量部に対して0.1〜25重量部添加混
合して得られることを特長とする鋳型造型用組成物。
1. An aggregate of at least one of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or A water-soluble saccharide having a dextrose equivalent of 10 to 50 obtained by hydrolyzing starch or a water-soluble saccharide having a molecular weight equivalent to the starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a carbon-carbon double bond Wherein the weight ratio of solids thereof is water-soluble saccharide: aldehyde compound = 50: 50-99: 1,
Further, 0.5 to 10 parts by weight of a water-soluble binder having a solid content concentration of 20 to 75% by weight and an acid dissociation constant of Ka
= 1 × 10 -5 or more inorganic acids or for mold formation composition that features can be obtained by mixing 0.1 to 25 parts by weight added to 100 parts by weight of solid content of an organic acid wherein the binder .
【請求項2】前記粘結剤中の糖組成が、単糖類が固形分
換算で1重量%以下、2糖類が5重量%以下、3糖類が
5〜25重量%、4糖類が3〜15重量%、5糖類が3
〜20重量%、6糖類が3〜25重量%、7糖類以上が
35重量%以上の水溶性糖類であることを特徴とする請
求項1記載の鋳型造型用組成物。
2. The saccharide composition in the binder is 1% by weight or less in terms of solid content of monosaccharides, 5% by weight or less of disaccharides, 5 to 25% by weight of trisaccharides, and 3 to 15% of tetrasaccharides. 3% by weight pentasaccharide
The composition for mold making according to claim 1, wherein the composition is a water-soluble saccharide of -20% by weight, 6-25% by weight of hexasaccharide, and 35% by weight or more of saccharides.
【請求項3】前記粘結剤に該粘結剤の固形分100重量
部に対して、水溶性のフェノール樹脂、ユリア樹脂、メ
ラミン樹脂、フラン樹脂のうち少なくとも1種類を固形
分で1〜50重量部含むことを特徴とする請求項1又は
2記載の鋳型造型用組成物。
3. A binder comprising at least one of a water-soluble phenol resin, a urea resin, a melamine resin and a furan resin in a solid content of 1 to 50 parts by weight per 100 parts by weight of the binder solid content. The composition for mold making according to claim 1 or 2, wherein the composition comprises parts by weight.
【請求項4】前記粘結剤に、該粘結剤の固形分100重
量部に対して、補助剤として多糖類、蛋白質、ポリビニ
ルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹脂
のうち少なくとも1種類を固形分で1〜30重量部含む
ことを特徴とする請求項1乃至3のいずれか1項に記載
の鋳型造型用組成物。
4. A binder comprising at least one of a polysaccharide, a protein, polyvinyl alcohol, sodium polyacrylate and a vinyl acetate resin as an adjuvant with respect to 100 parts by weight of the solid content of the binder. The composition for mold making according to any one of claims 1 to 3, wherein the composition comprises 1 to 30 parts by weight in terms of solid content.
【請求項5】前記粘結剤に、該粘結剤の固形分100重
量部に対して、シランカップリング剤0.1〜5重量部
含むことを特徴とする請求項1乃至4のいずれか1項に
記載の鋳型造型用組成物。
5. The binder according to claim 1, wherein the binder contains 0.1 to 5 parts by weight of a silane coupling agent based on 100 parts by weight of the solid content of the binder. Item 2. The composition for mold making according to Item 1.
【請求項6】前記粘結剤に、該粘結剤の固形分100重
量部に対して、界面活性剤0.01〜5重量部含むこと
を特徴とする請求項1乃至5のいずれか1項に記載の鋳
型造型用組成物。
6. The binder according to claim 1, wherein the binder contains 0.01 to 5 parts by weight of a surfactant based on 100 parts by weight of the solid content of the binder. Item 10. The composition for mold making according to item 8.
【請求項7】珪砂、ジルコン砂、オリビン砂、クロマイ
ト砂、アルミナ砂、ムライト砂の1種または2種以上の
骨材と、該骨材100重量部に対して、天然の少糖類及
び/または澱粉を加水分解して得られるデキストロース
当量が10〜50の水溶性糖類、または天然の高分子糖
類を加水分解して得られる前記澱粉加水分解物相当分子
量の水溶性糖類と炭素−炭素二重結合を有するアルデヒ
ド化合物から成り、それらの固形分重量比が水溶性糖
類:アルデヒド化合物=50:50〜99:1であり、
更にそれらの固形分濃度が20〜75重量%の水溶性で
ある粘結剤を0.5〜10重量部と酸の解離定数がKa
=1×10-5以上の無機酸または有機酸を前記粘結剤の
固形分100重量部に対して0.1〜25重量部添加混
合して得られた鋳型造型用組成物を、鋳型模型内に充填
し、次いで強制的に空気、CO2、He、Ne、Ar、
及びN2の1種または2種以上の乾燥気体にて乾燥硬化
させることを特徴とする鋳型造型方法。
7. One or more aggregates of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or A water-soluble saccharide having a dextrose equivalent of 10 to 50 obtained by hydrolyzing starch or a water-soluble saccharide having a molecular weight equivalent to the starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a carbon-carbon double bond Wherein the weight ratio of solids thereof is water-soluble saccharide: aldehyde compound = 50: 50-99: 1,
Further, 0.5 to 10 parts by weight of a water-soluble binder having a solid content concentration of 20 to 75% by weight and an acid dissociation constant of Ka
= 1 × 10 −5 or more of an inorganic acid or an organic acid is added to 0.1 to 25 parts by weight based on 100 parts by weight of the solid content of the binder, and the resulting mixture is mixed with a mold for molding. And then forcibly air, CO 2 , He, Ne, Ar,
And casting mold making method characterized by drying cured at one or more dry gas N 2.
【請求項8】前記粘結剤中の糖組成が、単糖類が固形分
換算で1重量%以下、2糖類が5重量%以下、3糖類が
5〜25重量%、4糖類が3〜15重量%、5糖類が3
〜20重量%、6糖類が3〜25重量%、7糖類以上が
35重量%以上の水溶性糖類であることを特徴とする請
求項7記載の鋳型造型方法。
8. The saccharide composition in the binder is 1% by weight or less in terms of solid content of monosaccharides, 5% by weight or less of disaccharides, 5 to 25% by weight of trisaccharides, 3 to 15% by weight of tetrasaccharides. 3% by weight pentasaccharide
The method according to claim 7, wherein the water-soluble saccharide is -20% by weight, hexasaccharides are 3-25% by weight, and 7 or more saccharides are 35% by weight or more.
【請求項9】前記粘結剤に、該粘結剤の固形分100重
量部に対して、水溶性のフェノール樹脂、ユリア樹脂、
メラミン樹脂、フラン樹脂のうち少なくとも1種類を固
形分で1〜50重量部含むことを特徴とする請求項7又
は8記載の鋳型造型方法。
9. A water-soluble phenol resin, a urea resin, and a binder, based on 100 parts by weight of a solid content of the binder.
9. The method according to claim 7, wherein at least one of melamine resin and furan resin is contained in an amount of 1 to 50 parts by weight in terms of solid content.
【請求項10】前記粘結剤に、該粘結剤の固形分100
重量部に対して、補助剤として多糖類、蛋白質、ポリビ
ニルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹
脂のうち少なくとも1種類を固形分で1〜30重量部含
むことを特徴とする請求項7乃至9のいずれか1項に記
載の鋳型造型方法。
10. The binder has a solid content of 100%.
10. The composition according to claim 7, wherein at least one of polysaccharides, proteins, polyvinyl alcohol, sodium polyacrylate, and vinyl acetate resin is contained as a supplement in an amount of 1 to 30 parts by weight as solids. The method of molding a mold according to any one of the above items.
【請求項11】前記粘結剤に、該粘結剤の固形分100
重量部に対して、シランカップリング剤0.1〜5重量
部含むことを特徴とする請求項7乃至10のいずれか1
項に記載の鋳型造型方法。
11. The binder according to claim 1, wherein the binder has a solid content of 100.
The silane coupling agent is contained in an amount of 0.1 to 5 parts by weight based on part by weight.
The molding method according to the above item.
【請求項12】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項7乃至11のいずれか1項に記載
の鋳型造型方法。
12. The binder according to claim 1, wherein the binder has a solid content of 100.
The method according to any one of claims 7 to 11, wherein the surfactant is contained in an amount of 0.01 to 5 parts by weight with respect to part by weight.
【請求項13】珪砂、ジルコン砂、オリビン砂、クロマ
イト砂、アルミナ砂、ムライト砂の1種または2種以上
の骨材と、該骨材100重量部に対して、天然の少糖類
及び/または澱粉を加水分解して得られるデキストロー
ス当量が10〜50の水溶性糖類、または天然の高分子
糖類を加水分解して得られる前記澱粉加水分解物相当分
子量の水溶性糖類と炭素−炭素二重結合を有するアルデ
ヒド化合物から成り、それらの固形分重量比が水溶性糖
類:アルデヒド化合物= 50:50〜99:1であ
り、更にそれらの固形分濃度が20〜75重量%の水溶
性である粘結剤を0.5〜10重量部と酸の解離定数が
Ka=1×10-5以上の無機酸または有機酸を前記粘結
剤の固形分100重量部に対して0.1〜25重量部添
加混合して得られた鋳型造型用組成物を、鋳型模型内に
充填した後強制的に乾燥硬化させる方法において、温度
0℃〜80℃の乾燥気体を前記模型内に圧力4.9〜3
90kPaにて通気し、あるいは前記圧力にて通気と同
時に1.33〜101kPaの減圧にて吸引する事を特
徴とする鋳型造型方法。
13. An aggregate of at least one of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or A water-soluble saccharide having a dextrose equivalent of 10 to 50 obtained by hydrolyzing starch or a water-soluble saccharide having a molecular weight equivalent to the starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a carbon-carbon double bond Which have a solid content weight ratio of water-soluble saccharide: aldehyde compound = 50: 50-99: 1 and a solid content concentration of 20-75% by weight of water-soluble caking. 0.5 to 10 parts by weight of an agent and 0.1 to 25 parts by weight of an inorganic or organic acid having a dissociation constant of Ka = 1 × 10 −5 or more based on 100 parts by weight of the solid content of the binder Casting obtained by adding and mixing The molding composition, in a method of forcibly dried and cured after filling in the mold model, pressure temperature 0 ° C. to 80 ° C. in a dry gas into said model from 4.9 to 3
A method for molding a mold, characterized in that aeration is performed at 90 kPa, or suction is performed at a reduced pressure of 1.33 to 101 kPa simultaneously with aeration at the above pressure.
【請求項14】前記粘結剤中の糖組成が、単糖類が固形
分換算で1重量%以下、2糖類が5重量%以下、3糖類
が5〜25重量%、4糖類が3〜15重量%、5糖類が
3〜20重量%、6糖類が3〜25重量%、7糖類以上
が35重量%以上の水溶性糖類であることを特徴とする
請求項13記載の鋳型造型方法。
14. The saccharide composition in the binder is 1% by weight or less in terms of solid content of monosaccharides, 5% by weight or less of disaccharides, 5 to 25% by weight of trisaccharides, 3 to 15% by weight of tetrasaccharides. 14. The method according to claim 13, wherein the water-soluble saccharide is 3 to 20% by weight of a pentasaccharide, 3 to 25% by weight of a hexasaccharide, and 35% by weight or more of 7 or more saccharides.
【請求項15】前記粘結剤に、該粘結剤の固形分100
重量部に対して、水溶性のフェノール樹脂、ユリア樹
脂、メラミン樹脂、フラン樹脂のうち少なくとも1種類
を固形分で1〜50重量部含むことを特徴とする請求項
13又は14記載の鋳型造型方法。
15. The binder according to claim 15, wherein the binder has a solid content of 100.
The method according to claim 13, wherein at least one of a water-soluble phenol resin, a urea resin, a melamine resin, and a furan resin is contained in an amount of 1 to 50 parts by weight on a solid basis with respect to parts by weight. .
【請求項16】前記粘結剤に、該粘結剤の固形分100
重量部に対して、補助剤として多糖類、蛋白質、ポリビ
ニルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹
脂のうち少なくとも1種類を固形分で1〜30重量部含
むことを特徴とする請求項13乃至15のいずれか1項
に記載の鋳型造型方法。
16. The binder has a solid content of 100%.
16. The composition according to claim 13, wherein at least one of a polysaccharide, a protein, polyvinyl alcohol, sodium polyacrylate, and a vinyl acetate resin is contained as a supplement in an amount of 1 to 30 parts by weight as solids. The method of molding a mold according to any one of the above items.
【請求項17】前記粘結剤に、該粘結剤の固形分100
重量部に対して、シランカップリング剤0.1〜5重量
部含むことを特徴とする請求項13乃至16のいずれか
1項に記載の鋳型造型用組成物。
17. A method according to claim 17, wherein the binder has a solid content of 100.
The composition for mold making according to any one of claims 13 to 16, wherein the composition contains 0.1 to 5 parts by weight of a silane coupling agent with respect to part by weight.
【請求項18】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項13乃至17のいずれか1項に記
載の鋳型造型方法。
18. The binder according to claim 1, wherein the binder has a solid content of 100.
The method according to any one of claims 13 to 17, wherein the surfactant is contained in an amount of 0.01 to 5 parts by weight based on part by weight.
【請求項19】珪砂、ジルコン砂、オリビン砂、クロマ
イト砂、アルミナ砂、ムライト砂の1種または2種以上
の骨材と、該骨材100重量部に対して、天然の少糖類
及び/または澱粉を加水分解して得られるデキストロー
ス当量が10〜50の水溶性糖類、または天然の高分子
糖類を加水分解して得られる前記澱粉加水分解物相当分
子量の水溶性糖類と炭素−炭素二重結合を有するアルデ
ヒド化合物から成り、それらの固形分重量比が水溶性糖
類:アルデヒド化合物= 50:50〜99:1であ
り、更にそれらの固形分濃度が20〜75重量%の水溶
性である粘結剤を0.5〜10重量部と酸の解離定数が
Ka=1×10-5以上の無機酸または有機酸を前記粘結
剤の固形分100重量部に対して0.1〜25重量部添
加混合して得られた鋳型造型用組成物を、鋳型模型内に
充填した後強制的に乾燥硬化させる方法において、温度
80〜400℃の乾燥気体を該模型内に圧力4.9〜3
90kPaにて通気し、あるいは前記圧力にて通気と同
時に1.33〜101kPaの減圧にて吸引した後、温
度50℃以下の乾燥気体を前記圧力で通気し、急冷する
ことを特徴とする鋳型造型方法。
19. One or more aggregates of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or A water-soluble saccharide having a dextrose equivalent of 10 to 50 obtained by hydrolyzing starch or a water-soluble saccharide having a molecular weight equivalent to the starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a carbon-carbon double bond Which have a solid content weight ratio of water-soluble saccharide: aldehyde compound = 50: 50-99: 1 and a solid content concentration of 20-75% by weight of water-soluble caking. 0.5 to 10 parts by weight of an agent and 0.1 to 25 parts by weight of an inorganic or organic acid having a dissociation constant of Ka = 1 × 10 −5 or more based on 100 parts by weight of the solid content of the binder Casting obtained by adding and mixing The molding composition, in a method of forcibly dried and cured after filling in the mold model, pressure drying gas temperature 80 to 400 ° C. in 該模 the type 4.9 to 3
Aerating at 90 kPa, or at the same time as aeration at a reduced pressure of 1.33 to 101 kPa, followed by aerating a dry gas at a temperature of 50 ° C. or less at the pressure and quenching. Method.
【請求項20】前記粘結剤中の糖組成が、単糖類が固形
分換算で1重量%以下、2糖類が5重量%以下、3糖類
が5〜25重量%、4糖類が3〜15重量%、5糖類が
3〜20重量%、6糖類が3〜25重量%、7糖類以上
が35重量%以上の水溶性糖類であることを特徴とする
請求項19記載の鋳型造型方法。
20. The saccharide composition in the binder according to claim 1, wherein the monosaccharide is 1% by weight or less in terms of solids, the disaccharide is 5% by weight or less, the trisaccharide is 5 to 25% by weight, and the tetrasaccharide is 3 to 15%. 20. The method according to claim 19, wherein the water-soluble saccharide is 3 to 20% by weight of a pentasaccharide, 3 to 25% by weight of a hexasaccharide, and 35% by weight or more of 7 or more saccharides.
【請求項21】前記粘結剤に、該粘結剤の固形分100
重量部に対して、水溶性のフェノール樹脂、ユリア樹
脂、メラミン樹脂、フラン樹脂のうち少なくとも1種類
を固形分で1〜50重量部含むことを特徴とする請求項
19又は20記載の鋳型造型方法。
21. A binder having a solid content of 100
21. The mold molding method according to claim 19, wherein at least one of a water-soluble phenol resin, a urea resin, a melamine resin, and a furan resin is contained in an amount of 1 to 50 parts by weight on a solid basis with respect to parts by weight. .
【請求項22】前記粘結剤に、該粘結剤の固形分100
重量部に対して、補助剤として多糖類、蛋白質、ポリビ
ニルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹
脂のうち少なくとも1種類を固形分で1〜30重量部含
むことを特徴とする請求項19乃至21のいずれか1項
に記載の鋳型造型方法。
22. The binder according to claim 1, wherein the binder has a solid content of 100.
22. The composition according to claim 19, wherein at least one of a polysaccharide, a protein, polyvinyl alcohol, sodium polyacrylate and a vinyl acetate resin is contained in an amount of 1 to 30 parts by weight as a solid content with respect to parts by weight. The method of molding a mold according to any one of the above items.
【請求項23】前記粘結剤に、該粘結剤の固形分100
重量部に対して、シランカップリング剤0.1〜5重量
部含むことを特徴とする請求項19乃至22のいずれか
1項に記載の鋳型造型用組成物。
23. A binder having a solid content of 100
The composition for mold making according to any one of claims 19 to 22, comprising 0.1 to 5 parts by weight of a silane coupling agent with respect to part by weight.
【請求項24】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項19乃至23のいずれか1項に記
載の鋳型造型方法。
24. The binder according to claim 1, wherein the binder has a solid content of 100.
The method according to any one of claims 19 to 23, wherein the surfactant is contained in an amount of 0.01 to 5 parts by weight with respect to part by weight.
【請求項25】珪砂、ジルコン砂、オリビン砂、クロマ
イト砂、アルミナ砂、ムライト砂の1種または2種以上
の骨材と、該骨材100重量部に対して、天然の少糖類
及び/または澱粉を加水分解して得られるデキストロー
ス当量が10〜50の水溶性糖類、または天然の高分子
糖類を加水分解して得られる前記澱粉加水分解物相当分
子量の水溶性糖類と炭素−炭素二重結合を有するアルデ
ヒド化合物から成り、それらの固形分重量比が水溶性糖
類:アルデヒド化合物= 50:50〜99:1であ
り、更にそれらの固形分濃度が20〜75重量%の水溶
性である粘結剤を0.5〜10重量部と酸の解離定数が
Ka=1×10-5以上の無機酸または有機酸を前記粘結
剤の固形分100重量部に対して0.1〜25重量部添
加混合して得られた鋳型造型用組成物を、鋳型模型内に
充填した後強制的に乾燥硬化させる方法において、前記
鋳型造型用組成物を密閉容器内に収めた後、容器内の圧
力を48.0kPa以下を保持し、鋳型中の水分を強制
的に除去し、乾燥硬化することを特徴とする鋳型造型方
法。
25. One or more aggregates of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or A water-soluble saccharide having a dextrose equivalent of 10 to 50 obtained by hydrolyzing starch or a water-soluble saccharide having a molecular weight equivalent to the starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a carbon-carbon double bond Which have a solid content weight ratio of water-soluble saccharide: aldehyde compound = 50: 50-99: 1 and a solid content concentration of 20-75% by weight of water-soluble caking. 0.5 to 10 parts by weight of an agent and 0.1 to 25 parts by weight of an inorganic or organic acid having a dissociation constant of Ka = 1 × 10 −5 or more based on 100 parts by weight of the solid content of the binder Casting obtained by adding and mixing In a method of forcibly drying and curing the molding composition after filling it into a mold model, after placing the molding composition in a closed container, the pressure in the container is maintained at 48.0 kPa or less, A mold molding method characterized by forcibly removing moisture in a mold and drying and curing.
【請求項26】前記粘結剤中の糖組成が、単糖類が固形
分換算で1重量%以下、2糖類が5重量%以下、3糖類
が5〜25重量%、4糖類が3〜15重量%、5糖類が
3〜20重量%、6糖類が3〜25重量%、7糖類以上
が35重量%以上の水溶性糖類であることを特徴とする
請求項25記載の鋳型造型方法。
26. The saccharide composition in the binder according to the present invention is such that monosaccharides are 1% by weight or less in terms of solid content, 2 saccharides are 5% by weight or less, 3 saccharides are 5 to 25% by weight, and 4 saccharides are 3 to 15%. 26. The method according to claim 25, wherein the water-soluble saccharide is 3 to 20% by weight of pentasaccharide, 3 to 25% by weight of hexasaccharide, and 35% by weight or more of 7 or more saccharides.
【請求項27】前記粘結剤に、該粘結剤の固形分100
重量部に対して、水溶性のフェノール樹脂、ユリア樹
脂、メラミン樹脂、フラン樹脂のうち少なくとも1種類
を固形分で1〜50重量部含むことを特徴とする請求項
25又は26記載の鋳型造型方法。
27. The binder according to claim 1, wherein the binder has a solid content of 100.
27. The method of claim 25 or 26, wherein at least one of a water-soluble phenol resin, a urea resin, a melamine resin, and a furan resin is contained in an amount of 1 to 50 parts by weight on a solid basis with respect to parts by weight. .
【請求項28】前記粘結剤に、該粘結剤の固形分100
重量部に対して、補助剤として多糖類、蛋白質、ポリビ
ニルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹
脂のうち少なくとも1種類を固形分で1〜30重量部含
むことを特徴とする請求項25乃至27のいずれか1項
に記載の鋳型造型方法。
28. A method according to claim 28, wherein the binder has a solid content of 100.
28. The composition according to claim 25, wherein at least one of a polysaccharide, a protein, polyvinyl alcohol, sodium polyacrylate and a vinyl acetate resin is contained as a supplement in an amount of 1 to 30 parts by weight as solids. The method of molding a mold according to any one of the above items.
【請求項29】前記粘結剤に、該粘結剤の固形分100
重量部に対して、シランカップリング剤0.1〜5重量
部含むことを特徴とする請求項25乃至28のいずれか
1項に記載の鋳型造型用組成物。
29. The binder according to claim 1, wherein the binder has a solid content of 100.
The composition for mold making according to any one of claims 25 to 28, comprising 0.1 to 5 parts by weight of a silane coupling agent with respect to part by weight.
【請求項30】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項25乃至29のいずれか1項に記
載の鋳型造型方法。
30. A binder having a solid content of 100
The method according to any one of claims 25 to 29, wherein the surfactant is contained in an amount of 0.01 to 5 parts by weight based on part by weight.
JP2775698A 1998-01-26 1998-01-26 Molding composition for mold and molding method for mold Pending JPH11207432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2775698A JPH11207432A (en) 1998-01-26 1998-01-26 Molding composition for mold and molding method for mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2775698A JPH11207432A (en) 1998-01-26 1998-01-26 Molding composition for mold and molding method for mold

Publications (1)

Publication Number Publication Date
JPH11207432A true JPH11207432A (en) 1999-08-03

Family

ID=12229869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2775698A Pending JPH11207432A (en) 1998-01-26 1998-01-26 Molding composition for mold and molding method for mold

Country Status (1)

Country Link
JP (1) JPH11207432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001369A (en) * 2001-06-14 2003-01-07 Sintokogio Ltd Bentonite-coated sand and usage therefor
WO2020070819A1 (en) * 2018-10-03 2020-04-09 花王株式会社 Binder composition for forming mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001369A (en) * 2001-06-14 2003-01-07 Sintokogio Ltd Bentonite-coated sand and usage therefor
WO2020070819A1 (en) * 2018-10-03 2020-04-09 花王株式会社 Binder composition for forming mold

Similar Documents

Publication Publication Date Title
US4089691A (en) Method for manufacturing foundry cores
US4711669A (en) Method of manufacturing a bonded particulate article by reacting a hydrolyzed amylaceous product and a heterocyclic compound
US4814012A (en) Method of manufacturing a bonded particulate article by reacting a hydrolyzed amylaceous product and a heterocyclic compound
EP1088012B1 (en) Fiber glass binder compositions and process therefor
EP0111398B1 (en) Alkali metal silicate binder compositions
US4098770A (en) Spray-dried phenolic adhesives
JPWO2006003945A1 (en) Mold making method and mold
JPH11129054A (en) Component for making mold and mold manufacture
JPH02500031A (en) Method for producing urea-formaldehyde resin
JPH11138234A (en) Composition for forming mold and method for forming mold
JPH11207432A (en) Molding composition for mold and molding method for mold
WO1990015094A1 (en) Expandable phenolic resin composition and method of producing the same
JPH11104785A (en) Mold forming method
JP2000000632A (en) Molding method
JPH10146643A (en) Molding composition for mold and molding method for mold
JPS62282743A (en) Phenol formaldehyde resin binder
JP2000000630A (en) Method for molding mold
JP2006289376A (en) Method for making mold
JP2003159703A (en) Board manufacturing method
JP2002011544A (en) Composition for molding sweeping mold
JPH09276984A (en) Manufacture of resin coating sand
CN106975463A (en) A kind of melamine resin type nanometer cotton particle eliminating smell agent and preparation method thereof
CN114274301A (en) Insect-expelling density plate made of plant fiber particles and manufacturing method thereof
JPH0791352B2 (en) Method for producing novolac type phenolic resin for shell mold
JPH06248040A (en) Production of biodegradable phenol resin