JPH11129054A - Component for making mold and mold manufacture - Google Patents

Component for making mold and mold manufacture

Info

Publication number
JPH11129054A
JPH11129054A JP31449997A JP31449997A JPH11129054A JP H11129054 A JPH11129054 A JP H11129054A JP 31449997 A JP31449997 A JP 31449997A JP 31449997 A JP31449997 A JP 31449997A JP H11129054 A JPH11129054 A JP H11129054A
Authority
JP
Japan
Prior art keywords
weight
parts
binder
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31449997A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ito
智幸 伊藤
Yuji Miyashita
雄次 宮下
Toshio Hirohashi
利夫 広橋
Akihiro Okubo
明浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP31449997A priority Critical patent/JPH11129054A/en
Publication of JPH11129054A publication Critical patent/JPH11129054A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a mixed sand of a high mold strength or moisture tolerance and a mold manufacturing method using the mixed sand. SOLUTION: The component for making a mold comprises; a water-soluble saccharide wherein an equivalent dextrose obtained from a hydrolysis process of natural oligosaccharide and/or a starch is 10-50 against 100 weight portion of an aggregate composed of a silica sand, zirconic sand and the like, or a water-soluble saccaride, molecular weight of which is equivalent to a starch hydrolysis obtainable from a hydrolysis process of a natural high polymer saccaride, and one or more acid-hardening resins of a water-soluble phenol resin, urea resin, melamine resin and furore resin. 0.5-10 weight portion of a water-soluble coking additive, wherein a weight ratio of a water soluble saccaride: an acid hardening resin = 50:50-95:5, and a solid concentration is 20-75 weight %, and an acid, whose acid dissoriation constant Ka=1×10<-5> or more are added 1-30 weight portion against 100 weight portion of the acid hardening resin. The above mold making component is filled in a mold model and dry hardened by a dried gas such as an air or the like, or is dried by removing a water from the die by decompression.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、高強度で耐湿性に優
れ、臭気の非常に少ない鋳型を得るための鋳型造型用組
成物、更に高い接着強度や耐湿性を付与する糖組成を有
する水溶性の糖類を主たる成分とし、また酸硬化性樹脂
及び酸性触媒を含む粘結剤(以下「オリゴ粘結剤A」と
呼称する)を用いた混練砂及びこれを乾燥硬化させる鋳
型の造型方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for molding a mold for obtaining a mold having a high strength and excellent moisture resistance and a very low odor, and a water-soluble composition having a sugar composition for imparting high adhesive strength and moisture resistance. Sand kneading using a saccharide as a main component and using a binder containing an acid-curable resin and an acidic catalyst (hereinafter referred to as "oligo-binder A") and a method of forming a mold for drying and curing the sand. .

【従来の技術】鋳型の造型方法には種々の方法があり、
これに使われる粘結剤も多岐にわたるが、大別して無機
粘結剤と有機粘結剤になる。無機粘結剤を用いる造型方
法としては、主に、珪酸塩をフェロシリコン(Nプロセ
ス)、ダイカルシウムシリケート(ダイカル法)あるい
はCO2ガスで硬化させる方法などがある。珪酸塩を用
いた鋳型は鋳造後の崩壊性の悪さ及び多量の廃棄物を発
生するなどの欠点がある。有機粘結剤を用いる造型方法
としては、シェルモールド法のような熱硬化性鋳型、フ
ラン樹脂やフェノール樹脂を酸あるいはエステルを用い
て硬化させる常温硬化性鋳型、またウレタン樹脂あるい
はフェノール樹脂をアミンガス、エステルガスあるいは
CO2ガスで硬化させるガス硬化性鋳型等の造型方法が
ある。これらの有機粘結剤を用いる鋳型造型時において
はホルムアルデヒド等の臭気の発生や有機溶剤、毒性の
ある硬化剤あるいは触媒の使用による作業環境の悪化等
の欠点がある。更にこれらは注湯時において粘結剤、有
機溶剤、硬化剤、触媒及び粘結剤の硬化物が熱分解して
種々の有害ガスや臭気を発生させ工場内作業環境及び工
場周辺の外部環境を悪化させる欠点がある。一方、これ
ら無機粘結剤及び有機粘結剤の上記の様な欠点のない粘
結剤としては天然物及び天然物由来のデキストリン等を
用いた水溶性糊粘結剤を用いる技術がある(特開昭52
−120225号公報、特開昭59−76642号公
報、特公平3−21254号公報)。しかしながら、実
用に供する鋳型の強度を得るには多量の水溶性糊粘結剤
を必要とし、実用的でない。また水溶性糊粘結剤を用い
た鋳型は、鋳型造型後大気中の水分の吸湿による鋳型の
強度劣化が著しいために、造型後すぐに注湯せねばなら
ないという作業工程上の制約がある。更にこれらの水溶
性糊粘結剤を水溶液で保存する場合、微生物などによる
腐敗が起こり易く、貯蔵安定性、衛生上の欠点がある。
2. Description of the Related Art There are various methods for molding a mold.
There are a wide variety of binders used for this purpose, but they are roughly divided into inorganic binders and organic binders. As a molding method using an inorganic binder, there is mainly a method of curing a silicate with ferrosilicon (N process), dicalcium silicate (dical method), or CO 2 gas. A mold using silicate has disadvantages such as poor disintegration after casting and generation of a large amount of waste. As a molding method using an organic binder, a thermosetting mold such as a shell mold method, a room temperature curable mold in which a furan resin or a phenol resin is cured using an acid or an ester, or a urethane resin or a phenol resin in an amine gas, There is a molding method such as a gas-curable mold that is cured with an ester gas or a CO 2 gas. There are drawbacks such as the generation of odors such as formaldehyde and the deterioration of the working environment due to the use of organic solvents, toxic hardeners or catalysts during mold making using these organic binders. In addition, when pouring, the binder, organic solvent, curing agent, catalyst and the cured product of the binder are thermally decomposed to generate various harmful gases and odors, thereby reducing the working environment in the factory and the external environment around the factory. There are drawbacks that make it worse. On the other hand, as binders of these inorganic binders and organic binders that do not have the above-mentioned drawbacks, there is a technique of using a water-soluble glue binder using a natural product or a dextrin derived from a natural product. Kaisho 52
-120225, JP-A-59-76642, JP-B-3-21254). However, a large amount of a water-soluble glue binder is required to obtain the strength of a practically usable mold, which is not practical. Further, a mold using a water-soluble glue binder has a restriction in the work process that the mold must be poured immediately after the molding because the strength of the mold is significantly deteriorated due to the absorption of moisture in the air after the molding. Furthermore, when these water-soluble glue binders are stored in an aqueous solution, they are easily rotted by microorganisms and the like, and have drawbacks in storage stability and hygiene.

【発明が解決しようとする課題】このような無機粘結剤
の崩壊性や廃砂の問題及び従来の水溶性糊粘結剤や有機
粘結剤の鋳型強度不足や保存安定性、作業環境や外部環
境への悪影響等の欠点を解消した鋳型を得るべく鋭意研
究した結果、水溶性の糖類、特に糖組成を制限させたオ
リゴ糖と水溶性の酸硬化性樹脂及び酸性触媒を必須成分
とし、補助剤、シランカップリング剤及び界面活性剤を
含むオリゴ粘結剤Aを用いることにより易崩壊性で砂再
生も容易であり、鋳型強度や保存安定性に優れ、かつ有
害な臭気発生による作業環境の悪化のない鋳型を得るこ
とに成功し、本発明に至った。
Problems such as disintegration of inorganic binders and waste sand, lack of mold strength and storage stability of conventional water-soluble glue binders and organic binders, work environment and As a result of intensive research to obtain a template that has eliminated disadvantages such as adverse effects on the external environment, water-soluble saccharides, especially oligosaccharides with limited sugar composition, water-soluble acid-curable resins and acidic catalysts as essential components, The use of an oligo-binding agent A containing an auxiliary agent, a silane coupling agent and a surfactant makes it easy to disintegrate and easily regenerate sand, has excellent mold strength and storage stability, and has a work environment due to harmful odor generation. Succeeded in obtaining a template without deterioration of the present invention, leading to the present invention.

【課題を解決するための手段】本発明を更に詳細に説明
する。本発明に用いられる骨材としては珪砂、ジルコン
砂、オリビン砂、クロマイト砂、アルミナ砂、ムライト
砂等がある。骨材100重量部に対して固形分濃度20
〜75重量%のオリゴ粘結剤Aを0.5〜10重量部、
及び酸性触媒を該オリゴ粘結剤A中の酸硬化性樹脂の固
形分100重量部に対して0.1〜30重量部添加、混
練して得られる鋳型造型用組成物を提供することが本発
明の目的の一つである。更にもう1つの目的は該鋳型造
型用組成物を所望の模型に充填し、これを乾燥して硬化
させ鋳型を造型する方法を提供することである。この乾
燥方法を更に詳しく述べると、模型の上部、下部あるい
は側部のいずれかの部分より圧力4.9〜390kPa
にて温度0〜400℃の乾燥気体を通気し、水分を強制
的に除去する。このとき同時に、乾燥気体の送風口と反
対側の部分より減圧にして強制乾燥を行うと更に効果的
であり、短時間で鋳型を硬化させることができる。更に
80℃以上の熱風乾燥を行った場合、温度50℃以下の
乾燥気体を上記の圧力と同じ条件にて鋳型内に通気し、
鋳型の冷却を行う。このとき強制乾燥時と同様に、同時
に減圧にて鋳型の冷却を行うとさらに効果的である。乾
燥の際に高周波、マイクロ波などによる誘電加熱を用い
ることも可能である。ただし、この場合も例えば空気を
通気し水分を強制的に外部に排出させる必要がある。
尚、この時乾燥用気体として空気以外にCO2、He、
Ne、Ar、N2も使用できることは自明である。また
本発明の鋳型造型方法は減圧のみによる乾燥も可能であ
る。その場合オリゴ粘結剤Aを用いて得られる混練砂を
鋳型に充填し、該鋳型を密閉容器内に収めた後、真空ポ
ンプにて真空箱内の圧力を48.0kPa以下として、
鋳型中の水分を強制除去する。真空箱内の圧力は鋳型内
の水分が除去されるまで48.0kPa以下を保持し、
乾燥硬化後大気圧(101.3kPa)に戻した後鋳型
を取り出す。鋳型を密閉容器内に収め真空乾燥する方法
には、図1に示すように、密閉容器(真空箱)1又は鋳
型2が図中の矢印のように上下に移動する上下式、又は
図2に示すように、鋳型2が図中の矢印のように左右に
移動するスライド式、更には図3に示すように、密閉容
器(真空箱)1の上部が多孔板3になっておりその上に
鋳型2を置き、鋳型2の周囲を気密可撓膜4で覆い真空
とする定置式などがある。本発明に用いられる水溶性糖
としては、詳しく後述するが、天然の少糖類及び/また
は澱粉を酸又は酵素を用いて加水分解して得られるデキ
ストロース当量(以下DEと略す)が10〜50の糖類
又は天然の高分子糖類を加水分解して得られる前記澱
粉加水分解物相当分の水溶性糖類を言う。更に好ましく
は単糖類が固形分換算で1重量%以下、2糖類が5重量
%以下、3糖類が5〜25重量%、4糖類が3〜15重
量%、5糖類が3〜20重量%、6糖類が3〜25重量
%、7糖類以上が35重量%以上の糖組成をもつ水溶性
糖類である。ここで、上記水溶性糖類の組成を外れた、
特にDEが10未満の糖類又は同等分子量の高分子糖類
を加水分解して得られる水溶性糖類を用いた場合には、
水に対する溶解度が低く、水溶液とするのに多量の水を
必要とし、鋳型の乾燥工程において長時間を要すること
となる。また、水に溶解したときの粘性も高く、砂との
混練性が悪くなり、更には得られる混練砂の流動性も悪
くなる。また、DEが50より大きい糖類又は同等分子
量の高分子糖類を加水分解して得られる水溶性糖類、即
ち単糖を多く含む水溶性糖類を用いた場合には、水溶性
及び水溶液の粘度の点では問題ないが、乾燥硬化後の高
い鋳型強度が得られない。また、耐湿性も劣り、鋳型の
保存安定性が悪くなる等の欠点があり、粘結剤として適
さない。すなわち単糖を多く含む粘結剤ではこの傾向が
強く現れる。一方、DEが10〜50の水溶性糖類又は
同等分子量の高分子糖類を加水分解して得られる水溶性
糖類、特に単糖類が固形分換算で1重量%以下、2糖類
が5重量%以下、3糖類が5〜25重量%、4糖類が3
〜15重量%、5糖類が3〜20重量%、6糖類が3〜
25重量%、7糖類以上が35重量%以上の糖組成をも
つ水溶性糖類を粘結剤として用いた場合には、水溶液と
することも容易であり、その水溶液の粘度は低いため、
砂との混練性も良く、得られる混練砂(すなわち鋳型造
型用組成物)の流動性も良い。また、実用的に充分高い
鋳型強度を得ることができる。本発明におけるオリゴ粘
結剤Aは、上述の粘結剤としての水溶性糖類の長所を維
持しつつ、水溶性糖類の微生物による腐敗を防止し、ま
た、注湯時のアルミニウムあるいは鉄の溶湯が凝固する
までの間の鋳型の形状保持に関わる熱間強度を維持する
ため、水溶性のフェノール樹脂、ユリア樹脂、メラミン
樹脂、フラン樹脂の酸硬化性樹脂の少なくとも1種類を
必須の成分として含む。オリゴ粘結剤Aには補助剤とし
て多糖類や蛋白質、ポリビニルアルコール、ポリアクリ
ル酸ソーダ、酢酸ビニル樹脂等の水溶性高分子を併用す
ることも効果的である。更にオリゴ粘結剤Aにはシラン
カップリング剤や界面活性剤を添加することにより、鋳
型のより高い常態強度とより優れた保存安定性を得る事
ができる。本発明におけるオリゴ粘結剤Aの固形分濃度
は20〜75重量%であり、好ましくは30〜65重量
%である。固形分濃度が75重量%を超える濃度では、
オリゴ粘結剤Aの粘度が高くなり、骨材と粘結剤の充分
な混練が困難になるとともに、混練砂の流動性が悪くな
る。一方、固形分量が20重量%未満では水分量が多く
鋳型の乾燥に時間がかかるばかりでなく、実用に供し得
る鋳型強度が得られない。またオリゴ粘結剤中Aの必須
成分である水溶性糖類と水溶性の酸硬化性樹脂との配合
割合は、上記固形分のうち水溶性糖類が50〜95重量
%である。固形分中の水溶性糖類の配合量が95重量%
を越える濃度では、水溶性の酸硬化性樹脂の割合が少な
く、酸硬化性樹脂の持つ鋳型強度及び耐湿性への効果が
小さく、また腐敗を防止する防菌効果も低下する。また
50重量%未満では、上記の水溶性糖類が持つ本来の長
所を充分に発揮できなくなり、逆に水溶性の酸硬化性樹
脂の割合が大きくなるため、例えば粘結剤の粘度の増
加、注湯時の臭気の発生による作業環境の悪化等をもた
らす。更に酸硬化性樹脂の硬化触媒としての酸が必要で
あり、例えば塩酸、硫酸等の無機酸、シュウ酸、ベンゼ
ンスルホン酸、ギ酸、酢酸等の有機酸であり、酸の解離
定数がKa=1×10-5以上の酸性触媒であれば特に限
定されるものではない。通常酸硬化性樹脂は常温にて酸
添加により硬化する。更に、80℃以上の熱風を使用し
た場合、熱風の熱による熱エネルギーも加わって、硬化
が非常に効率的に進むため、短い時間で硬化が完了し、
高い鋳型強度が得られる。本発明のオリゴ粘結剤Aに用
いられる水溶性糖類としては、天然に存在するもの、ま
たは天然に存在する多糖類を酸又は酵素を用いて加水分
解して得られる糖類であり、例えば原料として、馬鈴薯
澱粉、甘藷澱粉、トウモロコシ澱粉、ハイアミロースト
ウモロコシ澱粉、モチトウモロコシ澱粉、小麦澱粉、タ
ピオカ澱粉、サゴ澱粉等の澱粉質、セルロース質、キチ
ン、マンナン、ヒアルロン酸、ペクチン等の炭水化物で
あれば特に限定するものではない。また、これらの炭水
化物の加水分解も、硫酸や塩酸などの強酸や蓚酸などの
弱酸等、酸性触媒による方法や、α−アミラーゼに代表
される酵素を触媒とする方法、更にこれらの組み合わせ
など炭水化物を加水分解する方法であれば特に限定する
ものではない。 尚この加水分解の程度はDEが10〜
50又は同等分子量の高分子糖類を加水分解して得られ
る水溶性糖類でよく、より望ましくは15〜30であ
る。これら加水分解物から目的とすると組成物を得るに
は、例えばスチレン−ジビニルベンゼンスルホン酸共重
合体樹脂のNa+型イオン交換樹脂を用いることに代表
されるクロマト分離や酵母処理による低分子糖(単糖〜
3糖)の除去、更にグルコースオキシダーゼ処理による
グルコース分の除去等、その固形物中の組成が、単糖類
が固形分換算で1重量%以下、2糖類が5重量%以下、
3糖類が5〜25重量%、4糖類が3〜15重量%、5
糖類が3〜20重量%、6糖類が3〜25重量%、7糖
類以上が35重量%以上になるような分子量の分布制御
が可能な方法であれば特に限定するものではない。この
ようにして得られた糖組成物は、常法により精製を行
い、必要に応じて濃縮を行い所望の濃度の溶液とするこ
とができる。さらに乾燥を行い粉末として長期保存する
ことも可能である。本発明の粘結剤の必須成分の1つと
して、水溶性のフェノール樹脂、ユリア樹脂、メラミン
樹脂及びフラン樹脂の酸硬化性樹脂を用いる。水溶性フ
ェノール樹脂としては、レゾール型水溶性フェノール樹
脂が一般的に用いる事ができる。これらのフェノール樹
脂はフェノール類とアルデヒド類とを、アルカリまたは
酸触媒存在下で縮合させて得られるものである。フェノ
ール類としては、例えばフェノール、クレゾール、レゾ
ルシノール、ビスフェノールA、ビスフェノールF、ビ
スフェノールC、ビスフェノールH、クミルフェノー
ル、ノニルフェノール、イソプロペニルフェノール精製
残渣、ビスフェノールA精製残渣、ビスフェノールF精
製残渣、ブチルフェノール、フェニルフェノール、エチ
ルフェノール、オクチルフェノール、アミルフェノー
ル、ナフトール、カテコール、ハイドロキノン、ピロガ
ロールあるいはこれらの置換体を含めたフェノール類が
挙げられる。アルデヒド類としてはホルマリン、パラホ
ルムアルデヒド、フルフラール、α−ポリオキシメチレ
ン、アセトアルデヒド等があるがこれらに限定されるも
のではない。またこれらフェノール類とアルデヒド類と
を縮合させる触媒としては、シュウ酸、塩酸、硫酸等の
酸性物質及び有機酸金属塩、または水酸化カリウム、水
酸化ナトリウム、水酸化リチウム等のアルカリ金属の水
酸化物あるいはアルカリ土類金属の水酸化物等がある。
その他の水溶性の酸硬化性樹脂としては、尿素、メチロ
ール尿素、ジメチロール尿素、ジヒドロキシエチレン尿
素を主成分とする尿素樹脂、メラミンと前述のアルデヒ
ド類とをアルカリまたは酸を触媒として反応させてて得
られるメラミン樹脂、あるいはフルフリルアルコール樹
脂、フルフリルアルコール・フルフラール共縮合樹脂、
フルフリルアルコール・尿素共縮合樹脂、フルフリルア
ルコール・フェノール共縮合樹脂、フルフラール・フェ
ノール共縮合樹脂などを用いることができる。上記水溶
性のフェノール樹脂、ユリア樹脂、メラミン樹脂、フラ
ン樹脂は、酸性触媒存在のもと熱風乾燥時あるいは誘電
加熱により急激に高分子化又は水溶性糖類との架橋反応
により、鋳型強度の向上、注湯時の熱間強度の向上、鋳
型の耐湿性の向上による鋳型保存安定性向上に効果があ
り、また粘結剤自体の微生物などの影響による腐敗防止
に効果がある。また、補助剤としての多糖類、蛋白質、
ポリビニールアルコール、ポリアクリル酸ナトリウム、
酢酸ビニル樹脂のような水溶性高分子は水溶性糖類に比
較して水に対する溶解度が低いために水溶性糖類より乾
燥速度が速く、乾燥後には分離して強固な膜を形成す
る。この皮膜は水溶性糖類に比較して耐湿性に優れてい
るため、オリゴ粘結剤に添加した場合、鋳型の耐湿性が
向上する。多糖類とは、植物性あるいは動物性の単純多
糖類及び複合多糖類をいう。例えば、澱粉、化工澱粉、
デキストリン、セルロース、化工されたセルロース、デ
キストラン、レバン、アルギン酸類、ペクチン、ヘミセ
ルロース、グルコマンナン、ガラクトマンナン、植物ゴ
ム、ヒアルロン酸等である。蛋白質とは、ペプチドを含
む植物性あるいは動物性の蛋白質をいう。例えば、大豆
蛋白、小麦蛋白、その他豆類、穀物類の蛋白質、カゼイ
ン、アルブミン、コラーゲン、ヘモグロビン等動物、菌
類由来の蛋白質をいう。またこれらの蛋白質には植物及
び動物、菌類由来の酵素類も含まれる。ポリビニールア
ルコールには、完全鹸化物、中間鹸化物、部分鹸化物の
ポリビニールアルコールを含み、重合度200〜300
0程度のものが好ましい。また変性されたポリビニール
アルコールも含まれる。酢酸ビニル樹脂では、溶液型又
はエマルジョン型の酢酸ビニル樹脂がよく、場合により
塩化亜鉛、塩化アルミニウム、硝酸ジルコニル等の金属
塩を含み耐湿性の向上された酢酸ビニル樹脂も含まれ
る。これらの補助剤は、オリゴ粘結剤Aにその固形分1
00重量部に対して固形分で1〜30重量部使用するこ
とができる。また、これらの補助剤はオリゴ粘結剤Aに
加えて溶液とすることなく、オリゴ粘結剤Aと骨材の混
練時に添加して使用することもできる。また、本発明に
おけるオリゴ粘結剤Aには、シランカップリング剤や界
面活性剤を併用することにより、より一層混練砂の流動
性及び鋳型の強度を向上させることができる。シランカ
ップリング剤としては、γ−グリシドキシプロピルトリ
メトキシシラン、γ−アミノプロピルトリエトキシシラ
ン、γ−(2−アミノエチル)アミノプロピルトリメト
キシシラン、N−グリシジル−N,N−ビス(3−(ト
リメトキシシリル)プロピル)アミン、ウレイドプロピ
ルトリエトキシシラン等を使用することができる。上記
のシランカップリング剤は、オリゴ粘結剤Aにその固形
分100重量部に対して0.1〜5重量部添加すること
が好ましい。本発明において用いられる界面活性剤とし
ては、ノニオン界面活性剤、カチオン界面活性剤、アニ
オン界面活性剤、両性界面活性剤、シリコーン系界面活
性剤、フッ素系界面活性剤などが使用可能であり、界面
活性剤としては特に限定されない。これらの界面活性剤
は、粘結剤と骨材との濡れ性を改善する効果がある。模
型に充填する際の混練砂の流動性も向上する。流動性の
向上により、鋳型の充填密度が向上し高い鋳型強度が得
られるとともに、表面の優れた鋳型を得ることができ
る。界面活性剤の配合量は、オリゴ粘結剤Aの固形分1
00重量部に対して0.01〜5重量部が好ましい。
The present invention will be described in further detail. The aggregate used in the present invention includes silica sand, zircon sand, olivine sand, chromite sand, alumina sand, mullite sand and the like. Solids concentration 20 per 100 parts by weight of aggregate
0.5 to 10 parts by weight of 〜75% by weight of oligo binder A,
It is another object of the present invention to provide a mold molding composition obtained by adding 0.1 to 30 parts by weight of an acidic catalyst to 100 parts by weight of the solid content of the acid curable resin in the oligo binder A and kneading the mixture. This is one of the objects of the invention. Still another object is to provide a method for filling the desired molding composition into a desired model, drying and curing the same to form a mold. The drying method will be described in more detail. The pressure is 4.9 to 390 kPa from the upper, lower or side portion of the model.
A dry gas at a temperature of 0 to 400 ° C. is passed in the forcibly to remove water. At this time, it is more effective to perform the forced drying by reducing the pressure from the portion on the opposite side of the blowing port for the dry gas, and the mold can be hardened in a short time. Further, when hot air drying at 80 ° C. or more is performed, a dry gas at a temperature of 50 ° C. or less is passed through the mold under the same conditions as the above pressure,
Cool the mold. At this time, as in the case of forced drying, it is more effective to simultaneously cool the mold under reduced pressure. At the time of drying, it is also possible to use dielectric heating by high frequency, microwave, or the like. However, also in this case, it is necessary, for example, to ventilate the air and forcibly discharge the moisture to the outside.
At this time, in addition to air, CO 2 , He,
It is obvious that Ne, Ar and N 2 can also be used. Further, the mold making method of the present invention can be dried only by reduced pressure. In that case, the kneading sand obtained by using the oligo-binding agent A is filled in a mold, and the mold is placed in a closed container. Then, the pressure in the vacuum box is reduced to 48.0 kPa or less by a vacuum pump.
The water in the mold is forcibly removed. The pressure in the vacuum box is maintained at 48.0 kPa or less until moisture in the mold is removed,
After returning to atmospheric pressure (101.3 kPa) after drying and curing, the mold is taken out. As shown in FIG. 1, a method of placing a mold in a closed container and drying it in a vacuum is performed by a vertical method in which a closed container (vacuum box) 1 or a mold 2 moves up and down as indicated by an arrow in FIG. As shown in the figure, a slide type in which the mold 2 moves left and right as indicated by the arrow in the figure, and further, as shown in FIG. There is a stationary type in which the mold 2 is placed, the periphery of the mold 2 is covered with an airtight flexible film 4, and a vacuum is applied. The water-soluble saccharide used in the present invention has a dextrose equivalent (hereinafter abbreviated as DE) of 10 to 50 obtained by hydrolyzing a natural oligosaccharide and / or starch using an acid or an enzyme, which will be described later in detail. A water-soluble saccharide equivalent to the starch hydrolyzate obtained by hydrolyzing a saccharide or a natural high molecular saccharide. More preferably, the monosaccharide is 1% by weight or less in terms of solids, the disaccharide is 5% by weight or less, the trisaccharide is 5 to 25% by weight, the 4 sugars is 3 to 15% by weight, the 5 sugars is 3 to 20% by weight, Hexasaccharide is a water-soluble saccharide having a sugar composition of 3 to 25% by weight, and 7 or more saccharides having a saccharide composition of 35% by weight or more. Here, the composition of the water-soluble saccharide was deviated,
In particular, when a water-soluble saccharide obtained by hydrolyzing a saccharide having a DE of less than 10 or a high-molecular saccharide having an equivalent molecular weight is used,
The solubility in water is low, a large amount of water is required to prepare an aqueous solution, and a long time is required in the step of drying the mold. In addition, the viscosity when dissolved in water is high, and the kneading property with the sand is deteriorated, and the fluidity of the obtained kneaded sand is also deteriorated. Further, when a water-soluble saccharide obtained by hydrolyzing a saccharide having a DE of greater than 50 or a high molecular weight saccharide having an equivalent molecular weight, that is, a water-soluble saccharide containing a large amount of monosaccharide, is used, the water solubility and the viscosity of the aqueous solution are reduced. However, high mold strength after drying and curing cannot be obtained. Further, they have disadvantages such as poor moisture resistance and poor storage stability of the mold, and are not suitable as a binder. That is, this tendency appears strongly in a binder containing a large amount of monosaccharide. On the other hand, a water-soluble saccharide having a DE of 10 to 50 or a water-soluble saccharide obtained by hydrolyzing a high-molecular saccharide having an equivalent molecular weight, in particular, a monosaccharide is 1% by weight or less in terms of solid content, and a disaccharide is 5% by weight or less, 5 to 25% by weight of trisaccharide, 3 of tetrasaccharide
-15% by weight, 3-20% by weight of pentasaccharide, 3% by weight of hexasaccharide
When a water-soluble saccharide having a sugar composition of 25% by weight or more, 7 or more saccharides having a sugar composition of 35% by weight or more is used as a binder, it is easy to prepare an aqueous solution, and since the viscosity of the aqueous solution is low,
The kneadability with sand is good, and the obtained kneaded sand (that is, the composition for mold making) has good flowability. In addition, a sufficiently high mold strength can be obtained for practical use. The oligo-binding agent A in the present invention, while maintaining the advantages of the water-soluble saccharide as the above-mentioned binder, prevents spoilage of the water-soluble saccharide by microorganisms. In order to maintain the hot strength involved in maintaining the shape of the mold until solidification, at least one of a water-soluble acid-curable resin such as a phenol resin, a urea resin, a melamine resin, and a furan resin is included as an essential component. It is also effective to use a water-soluble polymer such as polysaccharide, protein, polyvinyl alcohol, sodium polyacrylate, or vinyl acetate resin as an auxiliary agent for the oligo-binding agent A. Further, by adding a silane coupling agent or a surfactant to the oligo-binding agent A, it is possible to obtain higher normal strength and better storage stability of the template. The solid content concentration of the oligo binder A in the present invention is 20 to 75% by weight, preferably 30 to 65% by weight. At solids concentrations above 75% by weight,
The viscosity of the oligo-binder A increases, making it difficult to sufficiently knead the aggregate and the binder, and deteriorating the fluidity of the kneaded sand. On the other hand, when the solid content is less than 20% by weight, the amount of water is large and not only takes much time to dry the mold, but also the practically usable strength of the mold cannot be obtained. The mixing ratio of the water-soluble saccharide, which is an essential component of A in the oligo binder, and the water-soluble acid-curable resin is such that the water-soluble saccharide is 50 to 95% by weight of the solid content. 95% by weight of water-soluble saccharide in solid content
If the concentration exceeds the above range, the proportion of the water-soluble acid-curable resin is small, the effect of the acid-curable resin on the mold strength and moisture resistance is small, and the antibacterial effect of preventing rot is also reduced. If the amount is less than 50% by weight, the above-mentioned advantages of the water-soluble saccharide cannot be sufficiently exhibited, and the proportion of the water-soluble acid-curable resin becomes large. The working environment is deteriorated due to the generation of odor at the time of hot water. Further, an acid is required as a curing catalyst for the acid-curable resin, for example, an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as oxalic acid, benzenesulfonic acid, formic acid, or acetic acid, and the dissociation constant of the acid is Ka = 1. There is no particular limitation as long as the acidic catalyst is at least 10-5 . Usually, an acid-curable resin is cured at room temperature by adding an acid. Furthermore, when using hot air of 80 ° C. or higher, heat energy due to the heat of the hot air is also applied, and curing proceeds very efficiently, so curing is completed in a short time,
High mold strength is obtained. The water-soluble saccharide used for the oligo-binding agent A of the present invention is a naturally-occurring saccharide or a saccharide obtained by hydrolyzing a naturally-occurring polysaccharide with an acid or an enzyme. , Potato starch, sweet potato starch, corn starch, high amylose corn starch, waxy corn starch, wheat starch, tapioca starch, starch such as sago starch, cellulose, chitin, mannan, hyaluronic acid, especially carbohydrates such as pectin. It is not limited. Also, the hydrolysis of these carbohydrates, such as a method using an acidic catalyst such as a strong acid such as sulfuric acid or hydrochloric acid or a weak acid such as oxalic acid, a method using an enzyme represented by α-amylase as a catalyst, and further a combination of these carbohydrates. There is no particular limitation as long as it is a hydrolysis method. The degree of this hydrolysis is 10 to
A water-soluble saccharide obtained by hydrolyzing a high molecular saccharide having a molecular weight of 50 or equivalent may be used, and more preferably 15 to 30. In order to obtain a desired composition from these hydrolysates, for example, a low molecular weight saccharide (monosaccharide) obtained by chromatographic separation or yeast treatment typified by use of a Na + type ion exchange resin of a styrene-divinylbenzenesulfonic acid copolymer resin is used. sugar~
The composition in the solid substance such as the removal of trisaccharide) and the removal of glucose by glucose oxidase treatment is such that the monosaccharide is 1% by weight or less in terms of solids, the disaccharide is 5% by weight or less,
5 to 25% by weight of trisaccharide, 3 to 15% by weight of tetrasaccharide, 5
The method is not particularly limited as long as the molecular weight distribution can be controlled so that the saccharide is 3 to 20% by weight, the hexasaccharide is 3 to 25% by weight, and the 7 or more saccharides are 35% by weight or more. The saccharide composition thus obtained is purified by a conventional method, and if necessary, concentrated to obtain a solution having a desired concentration. Furthermore, it is possible to dry and store it as a powder for a long time. As one of the essential components of the binder of the present invention, an acid-curable resin such as a water-soluble phenol resin, urea resin, melamine resin and furan resin is used. As the water-soluble phenol resin, a resol-type water-soluble phenol resin can be generally used. These phenolic resins are obtained by condensing phenols and aldehydes in the presence of an alkali or acid catalyst. Examples of phenols include phenol, cresol, resorcinol, bisphenol A, bisphenol F, bisphenol C, bisphenol H, cumylphenol, nonylphenol, isopropenylphenol purified residue, bisphenol A purified residue, bisphenol F purified residue, butylphenol, phenylphenol And phenols including ethyl phenol, octyl phenol, amyl phenol, naphthol, catechol, hydroquinone, pyrogallol, and substituted products thereof. Aldehydes include, but are not limited to, formalin, paraformaldehyde, furfural, α-polyoxymethylene, acetaldehyde, and the like. Examples of a catalyst for condensing these phenols and aldehydes include acidic substances such as oxalic acid, hydrochloric acid, and sulfuric acid and metal salts of organic acids, or hydroxides of alkali metals such as potassium hydroxide, sodium hydroxide, and lithium hydroxide. And hydroxides of alkaline earth metals.
Other water-soluble acid-curable resins include urea, methylol urea, dimethylol urea, urea resin containing dihydroxyethylene urea as a main component, melamine and the above-mentioned aldehydes obtained by reacting with an alkali or an acid as a catalyst. Melamine resin, or furfuryl alcohol resin, furfuryl alcohol / furfural co-condensation resin,
Furfuryl alcohol / urea co-condensation resin, furfuryl alcohol / phenol co-condensation resin, furfural / phenol co-condensation resin, and the like can be used. The water-soluble phenolic resin, urea resin, melamine resin, and furan resin are improved in mold strength by rapid polymerization or crosslinking reaction with water-soluble saccharides by hot air drying or dielectric heating in the presence of an acidic catalyst, It is effective in improving the hot strength at the time of pouring, improving the storage stability of the mold by improving the moisture resistance of the mold, and is also effective in preventing decay due to the influence of microorganisms on the binder itself. In addition, polysaccharides, proteins,
Polyvinyl alcohol, sodium polyacrylate,
A water-soluble polymer such as a vinyl acetate resin has a lower solubility in water than a water-soluble saccharide, and thus has a higher drying rate than a water-soluble saccharide, and separates after drying to form a strong film. Since this film is more excellent in moisture resistance than the water-soluble saccharide, when added to the oligo binder, the moisture resistance of the mold is improved. The polysaccharide refers to simple or complex polysaccharides of vegetable or animal origin. For example, starch, modified starch,
Dextrin, cellulose, modified cellulose, dextran, levan, alginic acids, pectin, hemicellulose, glucomannan, galactomannan, vegetable gum, hyaluronic acid and the like. A protein refers to a vegetable or animal protein containing a peptide. For example, it refers to proteins derived from animals and fungi such as soybean protein, wheat protein, other beans, cereal proteins, casein, albumin, collagen, and hemoglobin. These proteins also include enzymes derived from plants, animals and fungi. Polyvinyl alcohol includes completely saponified, intermediate saponified, partially saponified polyvinyl alcohol, and has a polymerization degree of 200 to 300.
About 0 is preferable. Also includes modified polyvinyl alcohol. As the vinyl acetate resin, a solution-type or emulsion-type vinyl acetate resin is preferable, and in some cases, a vinyl acetate resin containing a metal salt such as zinc chloride, aluminum chloride, and zirconyl nitrate and having improved moisture resistance is also included. These adjuvants are added to the oligo-binding agent A at a solid content of 1%.
It can be used in an amount of 1 to 30 parts by weight based on the solid content based on 00 parts by weight. In addition, these auxiliaries can be used by kneading the oligo-binding agent A and the aggregate at the time of kneading, without forming a solution in addition to the oligo-binding agent A. Further, by using a silane coupling agent or a surfactant together with the oligo binder A in the present invention, the fluidity of the kneading sand and the strength of the mold can be further improved. Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, N-glycidyl-N, N-bis (3 -(Trimethoxysilyl) propyl) amine, ureidopropyltriethoxysilane and the like can be used. The silane coupling agent is preferably added to the oligo binder A in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the solid content. As the surfactant used in the present invention, a nonionic surfactant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a silicone-based surfactant, a fluorine-based surfactant, and the like can be used. The activator is not particularly limited. These surfactants have the effect of improving the wettability between the binder and the aggregate. The fluidity of the kneading sand when filling the model is also improved. By improving the fluidity, the filling density of the mold is improved, high mold strength is obtained, and a mold having an excellent surface can be obtained. The blending amount of the surfactant is 1 solid content of the oligo binder A.
It is preferably 0.01 to 5 parts by weight based on 00 parts by weight.

【実施例】以下、実施例を挙げて本発明に係る鋳型造型
用組成物及び鋳型造型法を更に詳しく説明する。但し、
本発明は下記実施例に限定されることなく、その要旨の
範囲内で種々変形実施が可能である。 1.酸硬化性樹脂の種類、添加比率及び酸性触媒の種類
を変えての比較評価実施例 [実施例1]水分13%のトウモロコシ澱粉を固形分で
30重量%の水懸濁液になるように調整する。水酸化カ
ルシウムを用いpHを6.2とする。対澱粉固形分当た
り0.1重量%のα−アミラーゼ(ターマミル、ノボノ
ルディスクインダストリー社製)を添加し、107℃に
て5分間加熱処理し澱粉液化液を得る。更にこの液化液
を90℃で1時間処理後、蓚酸添加により酵素反応を停
止させる。常法により、活性炭やイオン交換樹脂による
脱色・脱塩精製をする。この水溶性糖のDEは25であ
った。得られたDE=25の水溶性糖を35%濃度水溶
液となるように調整し、該水溶性糖の固形分に対し、市
販のドライイースト(日本製粉(株) ふっくらパンド
ライイースト)を0.5重量%添加し、撹拌下36℃で
3時間処理する。酵母を煮沸失活後常法により活性炭や
イオン交換樹脂による脱色・脱塩精製する。次いで濃縮
乾燥を行い粉末状の水溶性糖を得た。この水溶性糖のD
Eは19であり、その組成を東ソー(株)製「TSKg
el G−Oligo−PW」を用いた液体クロマトグ
ラフィー装置により分析した。その糖組成は、単糖類は
含まず、2糖類が1.4重量%、3糖類が13.3重量
%、4糖類が8.8重量%、5糖類が12.6重量%、
6糖類が15.0重量%、7糖類以上が48.9重量%
であった。上記水溶性糖(以下オリゴ糖)42.5重量
部、水溶性レゾール型フェノール樹脂(群栄化学工業
(株)製 PL−4746、固形分50重量%)15.
0重量部、水42.5重量部を混合し、表1に示すオリ
ゴ粘結剤を得た。次に珪砂(フラタリー珪砂)100重
量部に対して該オリゴ粘結剤Aを4.0重量部添加し、
更にオリゴ粘結剤A中の酸硬化性樹脂の固形分100重
量部に対してフェノールススルホン酸(固形分50重量
%)10.0重量部を添加し、混練機にて、60秒間混
練し鋳型造型用組成物(混練砂)を得た。混練砂を10
mm× 10mm×60mmテストピース金型に圧力2
94kPaでブローイングし、250℃に加熱した空気
の熱風を圧力98kPaにて金型内に送ると共に、5
3.2kPaの減圧にて金型下部より吸引し、乾燥を2
分間行い、最後に室温の乾燥空気を20秒間金型内に圧
力98kPaで通気し、造型した。得られた鋳型の造型
直後及び、恒温恒湿室(室温35℃、湿度 80%)内
に48時間保管した後の、曲げ強度を測定した。また造
型時及び抜型時における臭気テストを行った。結果を表
2に示す。臭気評価方法は、気温25℃、湿度60%の
条件下で、10名(女性2名を含む)の臭気パネラーに
よる官能評価を行った。得られた官能評価値の平均値で
評価した。この数値が低い程、臭気が低いことを意味す
る。 [実施例2]実施例1と同様にして得られたオリゴ糖3
0.0重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)40.0重量部、
水30.0重量部を混合し、表1に示すオリゴ粘結剤A
を得た。またオリゴ粘結剤A中の酸硬化性樹脂の固形分
100重量部に対して、酸性触媒としてフェノールスル
ホン酸を10.0重量部添加混合した。以下実施例1と
同様の方法にて鋳型を造型し、曲げ強度を測定した。ま
た造型時及び抜型時における臭気テストを行った。結果
を表2に示す。 [実施例3]実施例1と同様にして得られたオリゴ糖4
2.5重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)15.0重量部、
水42.5重量部を混合し、表1に示すオリゴ粘結剤A
を得た。またオリゴ粘結剤A中の酸硬化性樹脂の固形分
100重量部に対して、酸性触媒として酢酸を10.0
重量部添加混合した。以下実施例1と同様の方法にて鋳
型を造型し、曲げ強度を測定した。また造型時及び抜型
時における臭気テストを行った。結果を表2に示す。 [実施例4]実施例1と同様にして得られたオリゴ糖4
2.5重量部、ユリア樹脂(群栄化学(株)製 UL−
3331、固形分60重量%)12.5重量部、水4
5.0重量部を混合し、表1に示すオリゴ粘結剤Aを得
た。またオリゴ粘結剤A中の酸硬化性樹脂の固形分10
0重量部に対して、酸性触媒としてフェノールスルホン
酸を10.0重量部添加混合した。以下実施例1と同様
の方法にて鋳型を造型し、曲げ強度を測定した。また造
型時及び抜型時における臭気テストを行った。結果を表
2に示す。 [実施例5]実施例1と同様にして得られたオリゴ糖4
2.5重量部、メラミン樹脂(群栄化学(株)製 ML
−1216 固形分60重量%)12.5重量部、水4
5.0重量部を混合し、表1に示すオリゴ粘結剤Aを得
た。またオリゴ粘結剤A中の酸硬化性樹脂の固形分10
0重量部に対して、酸性触媒としてフェノールスルホン
酸を10.0重量部添加混合した。以下実施例1と同様
の方法にて鋳型を造型し、曲げ強度を測定した。また造
型時及び抜型時における臭気テストを行った。結果を表
2に示す。 [比較例1]実施例1と同様にして得られたオリゴ糖5
0.0重量部、水50.0重量部を混合し、水溶性の粘
結剤を得た。以下実施例1と同様の方法にて鋳型を造型
し、曲げ強度を測定した。また造型時及び抜型時におけ
る臭気テストを行った。結果を表2に示す。 [比較例2]単糖類の含有量が固形分換算で3.3重量
%、2糖類が17.8重量%、3糖類が14.6重量
%、4糖類が13.2重量%、5糖類が9.4重量%、
6糖類が9.4重量%、7糖類以 上10糖以下が3
2.3重量%の糖組成を持つ糖50重量部と水50.0
重量部を混合し、水溶性の粘結剤を得た。以下実施例1
と同様の方法にて鋳型を造型し、曲げ強度を測定した。
結果を表2に示す。 [比較例3]実施例1と同様にして得られたオリゴ糖4
2.5重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)15.0重量部、
水42.5重量部を混合し、表1に示すオリゴ粘結剤A
を得た。以下実施例1と同様の方法にて鋳型を造型し、
曲げ強度を測定した。また造型時及び抜型時における臭
気テストを行った。結果を表2に示す。 [比較例4]実施例1と同様にして得られたオリゴ糖1
5.0重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)70.0重量部、
水15.0重量部を混合し、水溶性の粘結剤を得た。ま
た該水溶性粘結剤中の酸硬化性樹脂の固形分100重量
部に対して、酸性触媒としてフェノールスルホン酸を1
0.0重量部添加混合した。以下実施例1と同様の方法
にて鋳型を造型し、曲げ強度を測定した。また造型時及
び抜型時における臭気テストを行った。結果を表2に示
す。
The present invention will be described in more detail with reference to the following examples. However,
The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the invention. 1. Comparative Evaluation Example in Which Kind of Acid-Curable Resin, Addition Ratio and Kind of Acid Catalyst are Changed [Example 1] A corn starch having a water content of 13% was adjusted to be a 30% by weight solid suspension in water. I do. The pH is adjusted to 6.2 using calcium hydroxide. 0.1% by weight of α-amylase (termamamil, manufactured by Novo Nordisk Industries) is added to the solid content of starch, followed by heat treatment at 107 ° C. for 5 minutes to obtain a liquefied starch solution. Furthermore, after treating this liquefied liquid at 90 ° C. for 1 hour, the enzyme reaction is stopped by adding oxalic acid. Decolorization and desalination purification using activated carbon or ion exchange resin is carried out by a conventional method. The DE of this water-soluble sugar was 25. The obtained water-soluble saccharide with DE = 25 was adjusted to be a 35% concentration aqueous solution, and a commercially available dry yeast (Nippon Flour Milling Co., Ltd. Fluffy Pan Dry Yeast) was added to the solid content of the water-soluble sugar. 5% by weight are added and treated at 36 ° C. for 3 hours with stirring. After deactivating the yeast by boiling, the yeast is subjected to decolorization and desalination purification using activated carbon or an ion exchange resin by a conventional method. Then, the mixture was concentrated and dried to obtain a powdery water-soluble sugar. D of this water-soluble sugar
E is 19, and its composition is “TSKg” manufactured by Tosoh Corporation.
el G-Oligo-PW "was used for analysis with a liquid chromatography apparatus. Its saccharide composition does not include monosaccharides, but includes 1.4% by weight of disaccharides, 13.3% by weight of trisaccharides, 8.8% by weight of tetrasaccharides, 12.6% by weight of pentasaccharides,
Hexasaccharide 15.0% by weight, 7 or more saccharides 48.9% by weight
Met. 14. 42.5 parts by weight of the above-mentioned water-soluble saccharide (hereinafter, oligosaccharide), water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd., solid content: 50% by weight)
0 parts by weight and 42.5 parts by weight of water were mixed to obtain an oligo binder shown in Table 1. Next, 4.0 parts by weight of the oligo binder A was added to 100 parts by weight of silica sand (flatary silica sand),
Further, 10.0 parts by weight of phenol sulfonic acid (solids content of 50% by weight) was added to 100 parts by weight of the solid content of the acid curable resin in the oligo binder A, and the mixture was kneaded for 60 seconds by a kneader. A composition for mold making (kneading sand) was obtained. 10 kneading sand
mm × 10mm × 60mm Test piece pressure 2
The hot air of air blown at 94 kPa and heated to 250 ° C. is sent into the mold at a pressure of 98 kPa, and
Suction from the lower part of the mold under reduced pressure of 3.2 kPa,
After that, dry air at room temperature was passed through the mold at a pressure of 98 kPa for 20 seconds, and molded. The bending strength of the obtained mold was measured immediately after molding and after being stored for 48 hours in a thermo-hygrostat (room temperature 35 ° C., humidity 80%). Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results. In the odor evaluation method, sensory evaluation was performed by 10 odor panelists (including two women) under the conditions of a temperature of 25 ° C. and a humidity of 60%. Evaluation was made based on the average of the obtained sensory evaluation values. The lower the value, the lower the odor. [Example 2] Oligosaccharide 3 obtained in the same manner as in Example 1
0.0 parts by weight, 40.0 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.)
30.0 parts by weight of water were mixed, and the oligo binder A shown in Table 1 was mixed.
I got Further, 10.0 parts by weight of phenolsulfonic acid as an acidic catalyst was added and mixed with 100 parts by weight of the solid content of the acid curable resin in the oligo binder A. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results. [Example 3] Oligosaccharide 4 obtained in the same manner as in Example 1
2.5 parts by weight, 15.0 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.)
42.5 parts by weight of water were mixed, and oligo binder A shown in Table 1 was mixed.
I got Acetic acid was added as an acidic catalyst to 10.0 parts by weight based on 100 parts by weight of the solid content of the acid curable resin in the oligo binder A.
Parts by weight were added and mixed. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results. [Example 4] Oligosaccharide 4 obtained in the same manner as in Example 1
2.5 parts by weight, urea resin (Gunei Chemical Co., Ltd. UL-
3331, solid content 60% by weight) 12.5 parts by weight, water 4
5.0 parts by weight were mixed to obtain an oligo binder A shown in Table 1. The solid content of the acid curable resin in the oligo binder A is 10%.
To 0 parts by weight, 10.0 parts by weight of phenolsulfonic acid was added and mixed as an acidic catalyst. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results. [Example 5] Oligosaccharide 4 obtained in the same manner as in Example 1
2.5 parts by weight, melamine resin (ML manufactured by Gunei Chemical Co., Ltd.)
-1216 solid content 60% by weight) 12.5 parts by weight, water 4
5.0 parts by weight were mixed to obtain an oligo binder A shown in Table 1. The solid content of the acid curable resin in the oligo binder A is 10%.
To 0 parts by weight, 10.0 parts by weight of phenolsulfonic acid was added and mixed as an acidic catalyst. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results. [Comparative Example 1] Oligosaccharide 5 obtained in the same manner as in Example 1
0.0 parts by weight and 50.0 parts by weight of water were mixed to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results. [Comparative Example 2] The content of monosaccharides was 3.3% by weight in terms of solid content, 17.8% by weight of disaccharides, 14.6% by weight of trisaccharides, 13.2% by weight of tetrasaccharides, and pentasaccharides. Is 9.4% by weight,
Hexasaccharide is 9.4% by weight, 7 to 10 sugars is 3
50 parts by weight of sugar having a sugar composition of 2.3% by weight and water 50.0
The parts by weight were mixed to obtain a water-soluble binder. Example 1 below
A mold was formed in the same manner as described above, and the bending strength was measured.
Table 2 shows the results. [Comparative Example 3] Oligosaccharide 4 obtained in the same manner as in Example 1
2.5 parts by weight, 15.0 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.)
42.5 parts by weight of water were mixed, and oligo binder A shown in Table 1 was mixed.
I got Hereinafter, a mold is formed in the same manner as in Example 1,
The bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results. [Comparative Example 4] Oligosaccharide 1 obtained in the same manner as in Example 1
5.0 parts by weight, 70.0 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.)
15.0 parts by weight of water were mixed to obtain a water-soluble binder. Further, phenolsulfonic acid as an acidic catalyst was added to 100 parts by weight of the solid content of the acid-curable resin in the water-soluble binder.
0.0 parts by weight were added and mixed. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 2 shows the results.

【表1】 注1.全ての粘結剤の固形分濃度は50wt%とした。 注2.乾燥硬化処理方法は、250℃のエアーで加圧に
て行った。 注3.酸硬化性樹脂100重量部に対する添加量を示
す。
[Table 1] Note 1. The solid content concentration of all binders was 50% by weight. Note2. The drying and curing method was performed by pressurizing with air at 250 ° C. Note3. The amount added is based on 100 parts by weight of the acid-curable resin.

【表2】 注4.造型時及び抜型時の臭気官能評価。評価数値は各
パネラーの平均点 臭気評価基準 1: 刺激臭、不快臭をほとんど感じない。 2: 刺激臭、不快臭を僅かに感じる。 3: 刺激臭、不快臭を感じる。 4: 刺激臭、不快臭を強く感じる。 2.オリゴ粘結剤中の添加剤(補助剤、シランカップリ
ング剤、界面活性剤)を変えての比較評価実施例 [実施例6]実施例1と同様にして得られたオリゴ糖4
0.0重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)13.0重量部、
プルラン(林原(株)製 トリグルコA)3.5重量
部、水43.5重量部を混合し、表3に示すオリゴ粘結
剤Aを得た。また、オリゴ粘結剤A中の酸硬化性樹脂の
固形分100重量部に対して、酸性触媒としてフェノー
ルスルホン酸を10.0重量部添加混合した。以下実施
例1と同様の方法にて鋳型を造型し、曲げ強度を測定し
た。また造型時及び抜型時における臭気テストを行っ
た。結果を表4に示す。 [実施例7]実施例1と同様にして得られたオリゴ糖3
6.5重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)12.0重量部、
大豆ペプチド蛋白(不二製油(株)製 ハイニュート)
7.5重量部、水43.0重量部を混合し、表3に示す
オリゴ粘結剤Aを得た。またオリゴ粘結剤A中の酸硬化
性樹脂の固形分100重量部に対して、酸性触媒として
フェノールスルホン酸を10.0重量部添加混合した。
以下実施例1と同様の方法にて鋳型を造型し、曲げ強度
を測定した。また造型時及び抜型時における臭気テスト
を行った。結果を表4に示す。 [実施例8]実施例1と同様にして得られたオリゴ糖4
2.0重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)15.0重量部、
シランカップリング剤(日本ユニカー(株)製 A−1
100)0.5重量部、水42.5重量部を混合し、表
3に示すオリゴ粘結剤Aを得た。 またオリゴ粘結剤A
中の酸硬化性樹脂の固形分100重量部に対して、酸性
触媒としてフェノールスルホン酸を10.0重量部添加
混合した。以下実施例1と同様の方法にて鋳型を造型
し、曲げ強度を測定した。また造型時及び抜型時におけ
る臭気テストを行った。結果を表4に示す。 [実施例9]実施例1と同様にして得られたオリゴ糖4
2.0重量部、水溶性レゾール型フェノール樹脂(群栄
化学工業(株)製 PL−4746)14.8重量部、
フッ素系界面活性剤(住友スリーエム(株)製 FC−
129)0.6重量部、水42.6重量部を混合し、表
3に示すオリゴ粘結剤Aを得た。またオリゴ粘結剤A中
の酸硬化性樹脂の固形分100重量部に対して、酸性触
媒としてフェノールンスルホン酸を10.0重量部添加
混合した。以下実施例1と同様の方法にて鋳型を造型
し、曲げ強度を測定した。また造型時及び抜型時におけ
る臭気テストを行った。結果を表4に示す。 [実施例10]実施例1と同様にして得られたオリゴ糖
40.0重量部、水溶性レゾール型フェノール樹脂(群
栄化学工業(株)製 PL−4746)14.3重量
部、カゼイン(日成共益(株)製)3.5重量部、シラ
ンカップリング剤(日本ユニカー(株)製 A−110
0)0.5重量部、フッ素系界面活性剤(住友3M
(株)製 FC−129)0.2重量部、水41.5重
量部を混合し、表3に示すオリゴ粘結剤Aを得た。また
オリゴ粘結剤A中の酸硬化性樹脂の固形分100重量部
に対して、酸性触媒としてフェノールスルホン酸を1
0.0重量部添加混合した。以下実施例1と同様の方法
にて鋳型を造型し、曲げ強度を測定した。 また造型時
及び抜型時における臭気テストを行った。結果を表4に
示す。 [比較例5]実施例1と同様にして得られたオリゴ糖4
2.5重量部、大豆ペプチド蛋白(不二製油(株)製
ハイニュート)7.5重量部、水50.0重量部を混合
し、水溶性の粘結剤を得た。以下実施例1と同様の方法
にて鋳型を造型し、曲げ強度を測定した。また造型時及
び抜型時における臭気テストを行った。結果を表4に示
す。 [比較例6]実施例1と同様にして得られたオリゴ糖4
9.5重量部、シランカップリング剤(日本ユニカー
(株)製 A−1100)0.5重量部、水50.0重
量部を混合し、水溶性の粘結剤を得た。以下実施例1と
同様の方法にて鋳型を造型し、曲げ強度を測定した。ま
た、造型時及び抜型時における臭気テストを行った。結
果を表4に示す。
[Table 2] Note4. Sensory evaluation of odor at the time of molding and removal. The evaluation value is the average score of each panel. Odor evaluation criteria 1: Almost no irritating odor or unpleasant odor. 2: Irritating odor and unpleasant odor are slightly felt. 3: Irritating odor and unpleasant odor are felt. 4: Irritating odor and unpleasant odor are strongly felt. 2. Comparative Evaluation Example by Changing Additives (Auxiliary Agent, Silane Coupling Agent, Surfactant) in Oligo Binder [Example 6] Oligosaccharide 4 obtained in the same manner as in Example 1
0.0 part by weight, 13.0 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.)
3.5 parts by weight of pullulan (Trigluco A manufactured by Hayashibara Co., Ltd.) and 43.5 parts by weight of water were mixed to obtain an oligo-binding agent A shown in Table 3. Further, 10.0 parts by weight of phenolsulfonic acid as an acidic catalyst was added and mixed with 100 parts by weight of the solid content of the acid curable resin in the oligo binder A. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 4 shows the results. [Example 7] Oligosaccharide 3 obtained in the same manner as in Example 1
6.5 parts by weight, 12.0 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.),
Soy peptide protein (Fuji Oil Co., Ltd. High Newt)
7.5 parts by weight of water and 43.0 parts by weight of water were mixed to obtain an oligo binder A shown in Table 3. Further, 10.0 parts by weight of phenolsulfonic acid as an acidic catalyst was added and mixed with 100 parts by weight of the solid content of the acid curable resin in the oligo binder A.
Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 4 shows the results. [Example 8] Oligosaccharide 4 obtained in the same manner as in Example 1
2.0 parts by weight, 15.0 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.)
Silane coupling agent (A-1 manufactured by Nihon Unicar Co., Ltd.)
100) 0.5 parts by weight of water and 42.5 parts by weight of water were mixed to obtain an oligo binder A shown in Table 3. Oligo binder A
To 100 parts by weight of the solid content of the acid-curable resin therein, 10.0 parts by weight of phenolsulfonic acid as an acidic catalyst was added and mixed. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 4 shows the results. [Example 9] Oligosaccharide 4 obtained in the same manner as in Example 1
2.0 parts by weight, 14.8 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gun Ei Chemical Industry Co., Ltd.)
Fluorosurfactant (FC- manufactured by Sumitomo 3M Limited)
129) 0.6 parts by weight and 42.6 parts by weight of water were mixed to obtain an oligo binder A shown in Table 3. Further, 10.0 parts by weight of phenolic sulfonic acid as an acidic catalyst was added to and mixed with 100 parts by weight of the solid content of the acid curable resin in the oligo binder A. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 4 shows the results. [Example 10] 40.0 parts by weight of an oligosaccharide obtained in the same manner as in Example 1, 14.3 parts by weight of a water-soluble resol type phenol resin (PL-4746, manufactured by Gunei Chemical Industry Co., Ltd.), and casein ( 3.5 parts by weight of Nissei Kyoeki Co., Ltd., silane coupling agent (A-110 manufactured by Nippon Unicar Co., Ltd.)
0) 0.5 parts by weight, fluorine-based surfactant (Sumitomo 3M
0.2 parts by weight of FC-129 (manufactured by K.K.) and 41.5 parts by weight of water were mixed to obtain oligo binder A shown in Table 3. Further, phenolsulfonic acid as an acidic catalyst is added to 100 parts by weight of the solid content of the acid-curable resin in the oligo-binding agent A.
0.0 parts by weight were added and mixed. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 4 shows the results. [Comparative Example 5] Oligosaccharide 4 obtained in the same manner as in Example 1
2.5 parts by weight, soy peptide protein (manufactured by Fuji Oil Co., Ltd.)
(Hynew) 7.5 parts by weight and 50.0 parts by weight of water were mixed to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed during molding and at the time of removing the mold. Table 4 shows the results. [Comparative Example 6] Oligosaccharide 4 obtained in the same manner as in Example 1
9.5 parts by weight, 0.5 parts by weight of a silane coupling agent (A-1100 manufactured by Nippon Unicar Co., Ltd.) and 50.0 parts by weight of water were mixed to obtain a water-soluble binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Further, an odor test was performed at the time of molding and at the time of removing the mold. Table 4 shows the results.

【表3】 注1.全ての粘結剤の固形分濃度は50wt%とした。 注2.実施例における粘結剤はオリゴ糖:酸硬化性樹脂
=85:15の固形分比を持つ。 注3.全ての粘結剤はフェノールスルホン酸を酸硬化性
樹脂100重量部に対して10重量部含む。 注4.乾燥硬化処理方法は、250℃のエアーで加圧に
て行った。 注5.数値はオリゴ粘結剤Aの固形分100重量部に対
する併用重量部を示す。
[Table 3] Note 1. The solid content concentration of all binders was 50% by weight. Note2. The binder in the examples has a solid content ratio of oligosaccharide: acid-curable resin = 85: 15. Note3. All binders contain 10 parts by weight of phenolsulfonic acid per 100 parts by weight of the acid-curable resin. Note4. The drying and curing method was performed by pressurizing with air at 250 ° C. Note5. The numerical values indicate the combined weight parts based on 100 parts by weight of the solid content of the oligo binder A.

【表4】 注6.造型時及び抜型時の臭気官能評価。評価数値は各
パネラーの平均点 臭気評価基準 1: 刺激臭、不快臭をほとんど感じない。 2: 刺激臭、不快臭を僅かに感じる。 3: 刺激臭、不快臭を感じる。 4: 刺激臭、不快臭を強く感じる。 3.乾燥処理方法を変えての比較評価実施例 [実施例11]実施例10と同様にして得られたオリゴ
粘結剤Aを珪砂(フラタリー珪砂)100重量部に対し
て4.0重量部添加し、更に、オリゴ粘結剤A中の酸硬
化性樹脂の固形分100重量部に対して、フェノールス
ルホン酸を10.0重量部を添加し、混練機にて60秒
間混練し鋳型造型用組成物(混練砂)を得た。混練砂を
10mm×10mm×60mmTP金型に圧力294k
Paでブローイングし、250℃に加熱したN2の熱風
を圧力98kPaにて金型内に送ると共に53.2kP
aの減圧にて金型下部より吸引し、乾燥を2分間行い、
最後に室温の乾燥空気を20秒間金型内に圧力98kP
aで通気し、造型した。表5に乾燥処理方法、乾燥条件
を示す。得られた鋳型の造型直後及び、恒温恒湿室(3
5℃、80%)内に48時間保管した後の、曲げ強度を
測定した。また、造型時及び抜型時における臭気テスト
を行った。結果を表6に示す。 [実施例12]実施例11と同様にして得られた鋳型造
型用組成物(混練砂)を10mm×10mm×60mm
TP金型に圧力294kPaでブローイングし、350
℃に加熱した空気の熱風を圧力98kPaにて金型内に
送ると共に、53.2kPaの減圧にて金型下部より吸
引し、乾燥を1分間行い、最後に室温の乾燥空気を20
秒間金型内に圧力98kPaで通気し、造型した。得ら
れた鋳型の造型直後及び、恒温恒湿室(35℃、80
%)内に48時間保管した後の、曲げ強度を測定した。
また、造型時及び抜型時における臭気テストを行った。
結果を表6に示す。 [実施例13]実施例11と同様にして得られた鋳型造
型用組成物(混練砂)を10mm×10mm×60mm
TP金型に圧力294kPaでブローイングし、25℃
の空気を圧力196kPaにて金型内に通気することに
より、乾燥を3分間行い造型した。得られた鋳型の造型
直後及び、恒温恒湿室(35℃、80%)内に48時間
保管した後の、曲げ強度を測定した。また、造型時及び
抜型時における臭気テストを行った。結果を表6に示
す。 [実施例14]実施例11と同様にして得られた鋳型造
型用組成物(混練砂)を10mm×10mm×60mm
TP金型に型込めした後、図1に示すような上下式の密
閉容器(真空箱)1に搬入した。真空箱内の圧力を0.
8kPaとして3分間保持した。得られた鋳型の造型直
後及び、恒温恒湿室(35℃、80%)内に48時間保
管した後の、曲げ強度を測定した。また、造型時及び抜
型時における臭気テストを行った。結果を表6に示す。 [実施例15]実施例11と同様にして得られた鋳型造
型用組成物(混練砂)を10mm×10mm×60mm
TP金型に型込めした後、図1に示すような上下式の密
閉容器(真空箱)1に搬入した。真空箱内の圧力を4
8.0kPaとして15分間保持した。 得られた鋳型
の造型直後及び、恒温恒湿室(35℃、80%)内に4
8時間保管した後の、曲げ強度を測定した。また、造型
時及び抜型時における臭気テストを行った。結果を表6
に示す。 [比較例7]実施例11と同様にして得られた鋳型造型
用組成物(混練砂)を、10mm×10mm×60mm
テストピース金型に、圧力294kPaでブローイング
し、450℃に加熱した空気の熱風を圧力98kPaに
て金型内に送ると共に53.2kPaの減圧にて金型下
部より吸引し、乾燥を1分間行い、最後に室温の乾燥空
気を20秒間金型内に圧力98kPaで通気し、造型し
た。得られた鋳型の造型直後及び、恒温恒湿室(35
℃、80%)内に48時間保管した後の、曲げ強度を測
定した。また、造型時及び抜型時における臭気テストを
行った。 結果を表6に示す。 [比較例8]実施例11と同様にして得られた鋳型造型
用組成物(混練砂)を10mm×10mm×60mmテ
ストピース金型に型込めした後、図1に示すような上下
式の密閉容器(真空箱)1に搬入した。真空箱内の圧力
を60.0kPaとして20分間保持した。得られた鋳
型の造型直後及び、恒温恒湿室(35℃、80%)内に
48時間保管した後の、曲げ強度を測定した。また、造
型時及び抜型時における臭気テストを行った。結果を表
6に示す。
[Table 4] Note6. Sensory evaluation of odor at the time of molding and removal. The evaluation value is the average score of each panel. Odor evaluation criteria 1: Almost no irritating odor or unpleasant odor. 2: Irritating odor and unpleasant odor are slightly felt. 3: Irritating odor and unpleasant odor are felt. 4: Irritating odor and unpleasant odor are strongly felt. 3. Comparative Evaluation Example by Changing Drying Method [Example 11] 4.0 parts by weight of oligo binder A obtained in the same manner as in Example 10 was added to 100 parts by weight of silica sand (flatary silica sand). Further, 10.0 parts by weight of phenolsulfonic acid is added to 100 parts by weight of the solid content of the acid-curable resin in the oligo-binding agent A, and the mixture is kneaded with a kneader for 60 seconds to form a composition for mold molding. (Kneading sand) was obtained. The kneading sand is pressure 294k in a 10mm × 10mm × 60mm TP mold.
The hot air of N 2 blown with Pa and heated to 250 ° C. is sent into the mold at a pressure of 98 kPa, and 53.2 kP
Suction from the bottom of the mold under the reduced pressure of a, and perform drying for 2 minutes.
Finally, dry air at room temperature is injected into the mold for 20 seconds at a pressure of 98 kP.
a), and molded. Table 5 shows the drying method and drying conditions. Immediately after molding of the obtained mold and in a thermo-hygrostat (3
(5 ° C., 80%) for 48 hours, and then the bending strength was measured. Further, an odor test was performed at the time of molding and at the time of removing the mold. Table 6 shows the results. [Example 12] 10 mm x 10 mm x 60 mm of the composition for molding a mold (kneading sand) obtained in the same manner as in Example 11
Blowing into TP mold with pressure of 294kPa, 350
The hot air of air heated to 100 ° C. is sent into the mold at a pressure of 98 kPa, and is sucked from the lower part of the mold at a reduced pressure of 53.2 kPa, and dried for 1 minute.
The air was passed through the mold at a pressure of 98 kPa for 2 seconds to mold. Immediately after molding of the obtained mold and in a thermo-hygrostat (35 ° C., 80
%), And the flexural strength after storage for 48 hours was measured.
Further, an odor test was performed at the time of molding and at the time of removing the mold.
Table 6 shows the results. Example 13 A composition for molding a mold (kneading sand) obtained in the same manner as in Example 11 was mixed with 10 mm × 10 mm × 60 mm.
Blowing into TP mold at pressure 294kPa, 25 ℃
Was passed through the mold at a pressure of 196 kPa to dry for 3 minutes to complete molding. The bending strength of the obtained mold was measured immediately after molding and after being stored in a thermo-hygrostat (35 ° C., 80%) for 48 hours. Further, an odor test was performed at the time of molding and at the time of removing the mold. Table 6 shows the results. [Example 14] A composition for molding a mold (kneading sand) obtained in the same manner as in Example 11 was mixed with 10 mm x 10 mm x 60 mm.
After being put into the TP mold, it was carried into a vertical closed container (vacuum box) 1 as shown in FIG. Set the pressure in the vacuum box to 0.
The pressure was kept at 8 kPa for 3 minutes. The bending strength of the obtained mold was measured immediately after molding and after being stored in a thermo-hygrostat (35 ° C., 80%) for 48 hours. Further, an odor test was performed at the time of molding and at the time of removing the mold. Table 6 shows the results. [Example 15] A composition (kneading sand) for molding a mold obtained in the same manner as in Example 11 was 10 mm x 10 mm x 60 mm.
After being put into the TP mold, it was carried into a vertical closed container (vacuum box) 1 as shown in FIG. Set the pressure in the vacuum box to 4
It was kept at 8.0 kPa for 15 minutes. Immediately after molding of the obtained mold, and in a thermo-hygrostat (35 ° C, 80%)
After storing for 8 hours, the bending strength was measured. Further, an odor test was performed at the time of molding and at the time of removing the mold. Table 6 shows the results
Shown in [Comparative Example 7] A composition for molding a mold (kneading sand) obtained in the same manner as in Example 11 was mixed with 10 mm x 10 mm x 60 mm.
The test piece mold was blown at a pressure of 294 kPa, hot air of air heated to 450 ° C. was sent into the mold at a pressure of 98 kPa, and was sucked from the lower part of the mold at a reduced pressure of 53.2 kPa, followed by drying for 1 minute. Finally, dry air at room temperature was passed through the mold at a pressure of 98 kPa for 20 seconds to form a mold. Immediately after molding of the obtained mold, and in a thermo-hygrostat (35
(80 ° C., 80%) for 48 hours, and the bending strength was measured. Further, an odor test was performed at the time of molding and at the time of removing the mold. Table 6 shows the results. [Comparative Example 8] A composition for molding (kneading sand) obtained in the same manner as in Example 11 was put into a 10 mm x 10 mm x 60 mm test piece mold, and then closed up and down as shown in FIG. It was carried into a container (vacuum box) 1. The pressure in the vacuum box was kept at 60.0 kPa for 20 minutes. The bending strength of the obtained mold was measured immediately after molding and after being stored in a thermo-hygrostat (35 ° C., 80%) for 48 hours. Further, an odor test was performed at the time of molding and at the time of removing the mold. Table 6 shows the results.

【表5】 注7.全ての粘結剤の固形濃度は50wt%とした。 注8.オリゴ糖:酸硬化性樹脂の固形分量比を示す。 注9.数値はオリゴ粘結剤Aの固形分100重量部に対
する併用重量部を示す。
[Table 5] Note7. The solid concentration of all binders was 50 wt%. Note8. It shows the solid content ratio of oligosaccharide: acid-curable resin. Note 9. The numerical values indicate the combined weight parts based on 100 parts by weight of the solid content of the oligo binder A.

【表6】 注10.造型時及び抜型時の臭気官能評価。 評価数値
は各パネラーの平均点 臭気評価基準 1: 刺激臭、不快臭をほとんど感じない。 2: 刺激臭、不快臭を僅かに感じる。 3: 刺激臭、不快臭を感じる。 4: 刺激臭、不快臭を強く感じる。
[Table 6] Note10. Sensory evaluation of odor at the time of molding and removal. The evaluation value is the average score of each panel. Odor evaluation criteria 1: Almost no irritating odor or unpleasant odor. 2: Irritating odor and unpleasant odor are slightly felt. 3: Irritating odor and unpleasant odor are felt. 4: Irritating odor and unpleasant odor are strongly felt.

【発明の効果】以上詳述した本発明によれば、特殊な糖
組成をもつ水溶性糖類と水溶性の酸硬化性樹脂、補助
剤、シランカップリング剤及び界面活性剤を含むオリゴ
粘結剤Aを使用することにより、高強度で耐湿性に優
れ、臭気の非常に少ない鋳型を得るための鋳型造型用組
成物を提供することができる。また、本発明によれば、
上述した鋳型造型用組成物を熱風及び減圧乾燥により、
短時間で高強度の鋳型を得ることが可能な鋳型の造型方
法を提供することができる。
According to the present invention described in detail above, an oligo binder containing a water-soluble saccharide having a special sugar composition and a water-soluble acid-curable resin, an auxiliary agent, a silane coupling agent and a surfactant. By using A, it is possible to provide a mold molding composition for obtaining a mold having high strength, excellent moisture resistance, and very low odor. According to the present invention,
By hot air and reduced pressure drying the composition for mold making described above,
It is possible to provide a mold molding method capable of obtaining a high-strength mold in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of a method of placing a mold in a closed container and vacuum-drying the same in the mold making method of the present invention.

【図2】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の他例を示す説明図である。
FIG. 2 is an explanatory view showing another example of a method of vacuum-drying by placing a mold in a closed container in the mold making method of the present invention.

【図3】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の更に他例を示す説明図であ
る。
FIG. 3 is an explanatory view showing still another example of a method of placing a mold in a closed container and drying in a vacuum in the mold making method of the present invention.

【符号の説明】[Explanation of symbols]

1 密閉容器(真空箱) 2 鋳型 3 多孔板 4 気密可撓膜 DESCRIPTION OF SYMBOLS 1 Closed container (vacuum box) 2 Mold 3 Perforated plate 4 Airtight flexible membrane

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B22C 9/02 101 B22C 9/02 101C 9/12 9/12 H (72)発明者 大久保 明浩 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code FI B22C 9/02 101 B22C 9/02 101C 9/12 9/12 H (72) Inventor Akihiro Okubo 700, Shukudaizamachi, Takasaki City, Gunma Prefecture Gunei Chemical Industry Co., Ltd.

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】珪砂、ジルコン砂、オリビン砂、クロマイ
ト砂、アルミナ砂、ムライト砂の1種または2種以上の
骨材と、該骨材100重量部に対して、天然の少糖類及
び/又は澱粉を加水分解して得られるデキストロース当
量が10〜50の水溶性糖類、又は天然の高分子糖類を
加水分解して得られる前記澱粉加水分解物相当分子量の
水溶性糖類と水溶性のフェノール樹脂、ユリア樹脂、メ
ラミン樹脂、フラン樹脂の1種または2種以上の酸硬化
性樹脂から成り、それらの固形分重量比が水溶性糖類:
酸硬化性樹脂=50:50〜95:5であり、更にそれ
らの固形分濃度が20〜75重量%の水溶性である粘結
剤を0.5〜10重量部と酸硬化させるための酸の解離
定数がKa=1×10-5以上の無機酸または有機酸を酸
硬化性樹脂100重量部に対して1〜30重量部添加混
合して得られることを特徴とする鋳型造型用組成物。
1. Aggregates of one or more of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or A dextrose equivalent obtained by hydrolyzing starch, a water-soluble saccharide having a molecular weight of 10 to 50, or a starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a water-soluble phenol resin, It is composed of one or more acid-curable resins of urea resin, melamine resin, and furan resin, and their solid content weight ratio is water-soluble saccharide:
Acid curable resin = 50: 50-95: 5, and an acid for curing the water-soluble binder having a solid concentration of 20-75% by weight with 0.5-10 parts by weight. Characterized in that the composition is obtained by adding and mixing 1 to 30 parts by weight of an inorganic acid or organic acid having a dissociation constant of Ka = 1 × 10 −5 or more with respect to 100 parts by weight of the acid-curable resin. .
【請求項2】前記粘結剤中の糖組成が、単糖類が固形分
換算で1重量%以下、2糖類が5重量%以下、3糖類が
5〜25重量%、4糖類が3〜15重量%、5糖類が3
〜20重量%、6糖類が3〜25重量%、7糖類以上が
35重量%以上の水溶性の糖類であることを特徴とする
請求項1記載の鋳型造型用組成物。
2. The saccharide composition in the binder is 1% by weight or less in terms of solid content of monosaccharides, 5% by weight or less of disaccharides, 5 to 25% by weight of trisaccharides, and 3 to 15% of tetrasaccharides. 3% by weight pentasaccharide
The composition for mold making according to claim 1, wherein the composition is a water-soluble saccharide of -20% by weight, 6-25% by weight of hexasaccharide, and 35% by weight or more of 7 or more saccharides.
【請求項3】前記粘結剤に、該粘結剤の固形分100重
量部に対して、補助剤として多糖類、蛋白質、ポリビニ
ルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹脂
のうち少なくとも1種類を固形分で1〜30重量部含む
ことを特徴とする請求項1又は2記載の鋳型造型用組成
物。
3. The binder according to claim 1, wherein at least one of polysaccharides, proteins, polyvinyl alcohol, sodium polyacrylate and vinyl acetate resin is used as an auxiliary with respect to 100 parts by weight of the solid content of the binder. The composition for mold making according to claim 1, wherein the composition comprises 1 to 30 parts by weight in terms of solid content.
【請求項4】前記粘結剤に、該粘結剤の固形分100重
量部に対して、シランカップリング剤0.1〜5重量部
含むことを特徴とする請求項1乃至3のいずれか1項に
記載の鋳型造型用組成物。
4. The binder according to claim 1, wherein the binder contains 0.1 to 5 parts by weight of a silane coupling agent based on 100 parts by weight of the solid content of the binder. Item 2. The composition for mold making according to Item 1.
【請求項5】前記粘結剤に、該粘結剤の固形分100重
量部に対して、界面活性剤0.01〜5重量部含むこと
を特徴とする請求項1乃至4のいずれか1項に記載の鋳
型造型用組成物。
5. The binder according to claim 1, wherein the binder contains 0.01 to 5 parts by weight of a surfactant based on 100 parts by weight of the solid content of the binder. Item 10. The composition for mold making according to item 8.
【請求項6】珪砂、ジルコン砂、オリビン砂、クロマイ
ト砂、アルミナ砂、ムライト砂の1種または2種以上の
骨材と、該骨材100重量部に対して、天然の少糖類及
び/又は澱粉を加水分解して得られるデキストロース当
量が10〜50の水溶性糖類、又は天然の高分子糖類を
加水分解して得られる前記澱粉加水分解物相当分子量の
水溶性糖類と水溶性のフェノール樹脂、ユリア樹脂、メ
ラミン樹脂、フラン樹脂の1種または2種以上の酸硬化
性樹脂から成り、それらの固形分重量比が水溶性糖類:
酸硬化性樹脂=50:50〜95:5であり、更にそれ
らの固形分濃度が20〜75重量%の水溶性である粘結
剤を0.5〜10重量部と酸硬化させるための酸の解離
定数がKa=1×10-5以上の無機酸または有機酸を酸
硬化性樹脂100重量部に対して1〜30重量部添加混
合して得られた鋳型造型用組成物を、鋳型模型内に充填
し、次いで強制的に空気、CO 2、He、Ne、Ar、
及びN2の1種または2種以上の乾燥気体にて乾燥硬化
させることを特徴とする鋳型造型方法。
6. Silica sand, zircon sand, olivine sand, kuromai
Sand, alumina sand, mullite sand
Aggregate and natural oligosaccharides and 100 parts by weight of the aggregate
Dextrose obtained by hydrolysis of starch and / or starch
Amount of water-soluble saccharide of 10 to 50 or natural high molecular saccharide
Of the starch hydrolyzate equivalent molecular weight obtained by hydrolysis
Water-soluble sugars and water-soluble phenolic resins, urea resins,
Acid curing of one or more of lamin resin and furan resin
Water-soluble saccharides comprising a water-soluble saccharide:
Acid-curable resin = 50: 50-95: 5, furthermore
Water-soluble caking with a solid content of 20 to 75% by weight
Dissociation of acid to cure acid with 0.5 to 10 parts by weight of agent
The constant is Ka = 1 × 10-FiveThe above inorganic or organic acid
Add 1-30 parts by weight to 100 parts by weight of curable resin
Filling the mold molding composition obtained by combining
And then force air, CO Two, He, Ne, Ar,
Curing with one or more dry gases of N2 and N2
A method of molding a mold, characterized in that the method comprises:
【請求項7】前記粘結剤中の糖組成が、単糖類が固形分
換算で1重量%以下、2糖類が5重量%以下、3糖類が
5〜25重量%、4糖類が3〜15重量%、5糖類が3
〜20重量%、6糖類が3〜25重量%、7糖類以上が
35重量%以上の水溶性の糖類であることを特徴とする
請求項6記載の鋳型造型方法。
7. The saccharide composition in the binder is 1% by weight or less of monosaccharide in terms of solid content, 5% by weight or less of disaccharide, 5 to 25% by weight of trisaccharide, and 3 to 15% of tetrasaccharide. 3% by weight pentasaccharide
The method according to claim 6, wherein the water-soluble saccharide is -20% by weight, 3-25% by weight of hexasaccharide, and 35% by weight or more of 7 or more saccharides.
【請求項8】前記粘結剤に、該粘結剤の固形分100重
量部に対して、補助剤として多糖類、蛋白質、ポリビニ
ルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹脂
のうち少なくとも1種類を固形分で1〜30重量部含む
ことを特徴とする請求項6又は7記載の鋳型造型方法。
8. The binder comprises at least one of a polysaccharide, a protein, polyvinyl alcohol, sodium polyacrylate and a vinyl acetate resin as an auxiliary agent per 100 parts by weight of the solid content of the binder. The method of claim 6 or 7, wherein the solid content is 1 to 30 parts by weight.
【請求項9】前記粘結剤に、該粘結剤の固形分100重
量部に対して、シランカップリング剤0.1〜5重量部
含むことを特徴とする請求項6乃至8のいずれか1項に
記載の鋳型造型方法。
9. The binder according to claim 6, wherein the binder contains 0.1 to 5 parts by weight of a silane coupling agent based on 100 parts by weight of the solid content of the binder. Item 2. The method of molding a mold according to Item 1.
【請求項10】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項6乃至9のいずれか1項に記載の
鋳型造型用組成物。
10. The binder has a solid content of 100%.
The composition for mold making according to any one of claims 6 to 9, wherein the composition contains 0.01 to 5 parts by weight of a surfactant based on parts by weight.
【請求項11】珪砂、ジルコン砂、オリビン砂、クロマ
イト砂、アルミナ砂、ムライト砂の1種または2種以上
の骨材と、当該骨材100重量部に対して、天然の少糖
類及び/又は澱粉を加水分解して得られるデキストロー
ス当量が10〜50の水溶性糖類、又は天然の高分子糖
類を加水分解して得られるデキストロース当量の水溶性
糖類と水溶性のフェノール樹脂、ユリア樹脂、メラミン
樹脂、フラン樹脂の1種または2種以上の酸硬化性樹脂
から成り、それらの固形分重量比が水溶性糖:酸硬化性
樹脂=50:50〜95:5であり、更にそれらの固形
分濃度が20〜75重量%の水溶性である粘結剤を0.
5〜10重量部と酸硬化させるための酸の解離定数がK
a=1×10-5以上の無機酸または有機酸を酸硬化性樹
脂100重量部に対して1〜30重量部添加混合して得
られた鋳型造型用組成物を、鋳型模型内に充填した後強
制的に乾燥硬化させる方法において、温度0〜80℃の
乾燥気体を該模型内に圧力4.9〜390kPaにて通
気し或いは前記圧力にて通気と同時に1.33〜101
kPaの減圧にて吸引することを特徴とする鋳型造型方
法。
11. An aggregate of at least one of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand and natural oligosaccharides and / or 100 parts by weight of the aggregate. Water-soluble saccharides having a dextrose equivalent of 10 to 50 obtained by hydrolyzing starch, or water-soluble saccharides having a dextrose equivalent obtained by hydrolyzing natural high molecular weight saccharides and a water-soluble phenol resin, urea resin, melamine resin , A furan resin or one or more acid-curable resins, and their solid content weight ratio is water-soluble sugar: acid-curable resin = 50: 50 to 95: 5, and their solid content concentration Contains 20 to 75% by weight of a water-soluble binder.
5 to 10 parts by weight, and the dissociation constant of the acid for acid curing is K
The composition for mold molding obtained by adding and mixing 1 to 30 parts by weight of an inorganic acid or an organic acid of a = 1 × 10 −5 or more with respect to 100 parts by weight of the acid-curable resin was filled in a mold model. In a method of forcibly drying and hardening, a dry gas at a temperature of 0 to 80 ° C. is passed through the model at a pressure of 4.9 to 390 kPa, or 1.33 to 101 at the same time as the ventilation at the pressure.
A mold molding method, wherein suction is performed at a reduced pressure of kPa.
【請求項12】前記粘結剤中の糖組成が、単糖類が固形
分換算で1重量%以下、2糖類が5重量%以下、3糖類
が5〜25重量%、4糖類が3〜15重量%、5糖類が
3〜20重量%、6糖類が3〜25重量%、7糖類以上
が35重量%以上の水溶性の糖類であることを特徴とす
る請求項11記載の鋳型造型方法。
12. The saccharide composition of the binder is 1% by weight or less in terms of solid content of monosaccharides, 5% by weight or less of disaccharides, 5 to 25% by weight of trisaccharides, 3 to 15% by weight of tetrasaccharides. The method according to claim 11, wherein the saccharide is a water-soluble saccharide of 3 to 20% by weight, pentasaccharide is 3 to 20% by weight, hexasaccharide is 3 to 25% by weight, and 7 or more saccharides is 35% by weight or more.
【請求項13】前記粘結剤に、該粘結剤の固形分100
重量部に対して、補助剤として多糖類、蛋白質、ポリビ
ニルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹
脂のうち少なくとも1種類を固形分で1〜30重量部含
むことを特徴とする請求項11又は12記載の鋳型造型
方法。
13. The binder according to claim 1, wherein the binder has a solid content of 100.
13. The method according to claim 11, wherein at least one of polysaccharides, proteins, polyvinyl alcohol, sodium polyacrylate, and vinyl acetate resin is contained as a supplement in an amount of 1 to 30 parts by weight as a solid content. The molding method according to the above.
【請求項14】前記粘結剤に、該粘結剤の固形分100
重量部に対して、シランカップリング剤0.1〜5重量
部含むことを特徴とする請求項11乃至13のいずれか
1項に記載の鋳型造型方法。
14. The binder according to claim 1, wherein said binder has a solid content of 100.
The method according to any one of claims 11 to 13, wherein the silane coupling agent is contained in an amount of 0.1 to 5 parts by weight based on part by weight.
【請求項15】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項11乃至14のいずれか1項に記
載の鋳型造型方法。
15. The binder according to claim 15, wherein the binder has a solid content of 100.
The method according to any one of claims 11 to 14, wherein the surfactant is contained in an amount of 0.01 to 5 parts by weight based on part by weight.
【請求項16】珪砂、ジルコン砂、オリビン砂、クロマ
イト砂、アルミナ砂、ムライト砂の1種または2種以上
の骨材と、当該骨材100重量部に対して、天然の少糖
類及び/又は澱粉を加水分解して得られるデキストロー
ス当量が10〜50の水溶性糖類、又は天然の高分子糖
類を加水分解して得られる前記澱粉加水分解物相当分子
量の水溶性糖類と水溶性のフェノール樹脂、ユリア樹
脂、メラミン樹脂、フラン樹脂の1種または2種以上の
酸硬化性樹脂から成り、それらの固形分重量比が水溶性
糖類:酸硬化性樹脂=50:50〜95:5であり、更
にそれらの固形分濃度が20〜75重量%の水溶性であ
る粘結剤を0.5〜10重量部と酸硬化させるための酸
の解離定数がKa=1×10-5以上の無機酸または有機
酸を酸硬化性樹脂100重量部に対して1〜30重量部
添加混合して得られた鋳型造型用組成物を、鋳型模型内
に充填した後強制的に乾燥硬化させる方法において、温
度80〜400℃の乾燥気体を該模型内に圧力4.9〜
390kPaにて通気し、あるいは前記圧力にて通気と
同時に1.33〜101kPaの減圧にて吸引した後、
温度50℃以下の乾燥気体を前記圧力で通気し、急冷す
ることを特徴とする鋳型造型方法。
16. One or more aggregates of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or A dextrose equivalent obtained by hydrolyzing starch, a water-soluble saccharide having a molecular weight of 10 to 50, or a starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a water-soluble phenol resin, It comprises one or more acid-curable resins of urea resin, melamine resin, and furan resin, and their solid content weight ratio is water-soluble saccharide: acid-curable resin = 50: 50 to 95: 5; An inorganic acid having an acid dissociation constant of Ka = 1 × 10 −5 or more for acid curing of 0.5 to 10 parts by weight of a water-soluble binder having a solid concentration of 20 to 75% by weight or Organic curable resin 1 In a method of forcibly drying and curing the composition for mold molding obtained by adding and mixing 1 to 30 parts by weight with respect to 0 part by weight of the composition for molding, the dry gas having a temperature of 80 to 400 ° C. Pressure 4.9 ~ in the model
After aeration at 390 kPa or suction at a reduced pressure of 1.33 to 101 kPa simultaneously with aeration at the above pressure,
A method for molding a mold, characterized in that a dry gas having a temperature of 50 ° C. or lower is passed through the above-mentioned pressure and rapidly cooled.
【請求項17】前記粘結剤中の糖組成が、単糖類が固形
分換算で1重量%以下、2糖類が5重量%以下、3糖類
が5〜25重量%、4糖類が3〜15重量%、5糖類が
3〜20重量%、6糖類が3〜25重量%、7糖類以上
が35重量%以上の水溶性の糖類であることを特徴とす
る請求項16記載の鋳型造型方法。
17. The saccharide composition in the binder is such that the monosaccharide is 1% by weight or less in terms of solid content, the 2 saccharides are 5% by weight or less, the 3 saccharides are 5 to 25% by weight, and the 4 saccharides are 3 to 15%. 17. The method according to claim 16, wherein the water-soluble saccharide is 3 to 20% by weight of the pentasaccharide, 3 to 25% by weight of the hexasaccharide, and 35% by weight or more of the 7 or more saccharides.
【請求項18】前記粘結剤に、該粘結剤の固形分100
重量部に対して、補助剤として多糖類、蛋白質、ポリビ
ニルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹
脂のうち少なくとも1種類を固形分で1〜30重量部含
むことを特徴とする請求項16又は17記載の鋳型造型
方法。
18. The binder according to claim 1, wherein the binder has a solid content of 100.
18. The composition according to claim 16, wherein at least one of polysaccharides, proteins, polyvinyl alcohol, sodium polyacrylate, and vinyl acetate resin is contained as a supplement in an amount of 1 to 30 parts by weight as a solid content. The molding method according to the above.
【請求項19】前記粘結剤に、該粘結剤の固形分100
重量部に対して、シランカップリング剤0.1〜5重量
部含むことを特徴とする請求項16乃至18のいずれか
1項に記載の鋳型造型方法。
19. A method according to claim 19, wherein the binder has a solid content of 100.
The method according to any one of claims 16 to 18, wherein the silane coupling agent is contained in an amount of 0.1 to 5 parts by weight based on part by weight.
【請求項20】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項16乃至19のいずれか1項に記
載の鋳型造型方法。
20. The binder according to claim 1, wherein the binder has a solid content of 100.
The method according to any one of claims 16 to 19, wherein the surfactant is contained in an amount of 0.01 to 5 parts by weight with respect to part by weight.
【請求項21】珪砂、ジルコン砂、オリビン砂、クロマ
イト砂、アルミナ砂、ムライト砂の1種または2種以上
の骨材と、当該骨材100重量部に対して、天然の少糖
類及び/又は澱粉を加水分解して得られるデキストロー
ス当量が10〜50の水溶性糖類、又は天然の高分子糖
類を加水分解して得られる前記澱粉加水分解物相当分子
量の水溶性糖類と水溶性のフェノール樹脂、ユリア樹
脂、メラミン樹脂、フラン樹脂の1種または2種以上の
酸硬化性樹脂から成り、それらの固形分重量比が水溶性
糖類:酸硬化性樹脂=50:50〜95:5であり、更
にそれらの固形分濃度が20〜75重量%の水溶性であ
る粘結剤を0.5〜10重量部と酸硬化させるための酸
の解離定数がKa=1×10-5以上の無機酸または有機
酸を酸硬化性樹脂100重量部に対して1〜30重量部
添加混合して得られた鋳型造型用組成物を、鋳型模型内
に充填した後強制的に乾燥硬化させる方法において、該
鋳型造型用組成物を密閉容器内に収めた後、容器内の圧
力を48kPa以下に保持し、鋳型中の水分を強制的に
除去し、乾燥硬化することを特徴とする鋳型造型方法。
21. One or more aggregates of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and natural oligosaccharides and / or 100 parts by weight of the aggregates. A dextrose equivalent obtained by hydrolyzing starch, a water-soluble saccharide having a molecular weight of 10 to 50, or a starch hydrolyzate obtained by hydrolyzing a natural high molecular weight saccharide, and a water-soluble phenol resin, It comprises one or more acid-curable resins of urea resin, melamine resin, and furan resin, and their solid content weight ratio is water-soluble saccharide: acid-curable resin = 50: 50 to 95: 5; An inorganic acid having an acid dissociation constant of Ka = 1 × 10 −5 or more for acid curing of 0.5 to 10 parts by weight of a water-soluble binder having a solid concentration of 20 to 75% by weight or Organic curable resin 1 In a method of forcibly drying and hardening the composition for molding obtained by adding and mixing 1 to 30 parts by weight of the composition for molding to 0 part by weight with respect to 0 part by weight, the composition for molding is sealed in a closed container. A method for molding a mold, comprising: maintaining the pressure in a container at 48 kPa or less, forcibly removing moisture in the mold, and drying and hardening the mold.
【請求項22】前記粘結剤中の糖組成が、単糖類が固形
分換算で1重量%以下、2糖類が5重量%以下、3糖類
が5〜25重量%、4糖類が3〜15重量%、5糖類が
3〜20重量%、6糖類が3〜25重量%、7糖類以上
が35重量%以上の水溶性の糖類であることを特徴とす
る請求項21記載の鋳型造型方法。
22. The saccharide composition of the binder according to the present invention is such that the monosaccharide is 1% by weight or less in terms of solids, the disaccharide is 5% by weight or less, the trisaccharide is 5 to 25% by weight, and the tetrasaccharide is 3 to 15%. 22. The method according to claim 21, wherein the saccharide is a water-soluble saccharide in which the pentasaccharide is 3 to 20% by weight, the hexasaccharide is 3 to 25% by weight, and the 7 or more saccharides are 35% by weight or more.
【請求項23】前記粘結剤に、該粘結剤の固形分100
重量部に対して、補助剤として多糖類、蛋白質、ポリビ
ニルアルコール、ポリアクリル酸ソーダ、酢酸ビニル樹
脂のうち少なくとも1種類を固形分で1〜30重量部含
むことを特徴とする請求項21又は22記載の鋳型造型
方法。
23. A binder having a solid content of 100
23. A solid content of at least one of polysaccharides, proteins, polyvinyl alcohol, sodium polyacrylate, and vinyl acetate resin as an auxiliary agent, based on the weight part, wherein the solid content is 1 to 30 parts by weight. The molding method according to the above.
【請求項24】前記粘結剤に、該粘結剤の固形分100
重量部に対して、シランカップリング剤0.1〜5重量
部含むことを特徴とする請求項21乃至23のいずれか
1項に記載の鋳型造型方法。
24. The binder according to claim 1, wherein the binder has a solid content of 100.
The method according to any one of claims 21 to 23, wherein the silane coupling agent is contained in an amount of 0.1 to 5 parts by weight with respect to part by weight.
【請求項25】前記粘結剤に、該粘結剤の固形分100
重量部に対して、界面活性剤0.01〜5重量部含むこ
とを特徴とする請求項21乃至24のいずれか1項に記
載の鋳型造型方法。
25. A binder having a solid content of 100
The method according to any one of claims 21 to 24, wherein the surfactant is contained in an amount of 0.01 to 5 parts by weight based on part by weight.
JP31449997A 1997-10-30 1997-10-30 Component for making mold and mold manufacture Pending JPH11129054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31449997A JPH11129054A (en) 1997-10-30 1997-10-30 Component for making mold and mold manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31449997A JPH11129054A (en) 1997-10-30 1997-10-30 Component for making mold and mold manufacture

Publications (1)

Publication Number Publication Date
JPH11129054A true JPH11129054A (en) 1999-05-18

Family

ID=18054038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31449997A Pending JPH11129054A (en) 1997-10-30 1997-10-30 Component for making mold and mold manufacture

Country Status (1)

Country Link
JP (1) JPH11129054A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003945A1 (en) 2004-07-02 2006-01-12 Sintokogio, Ltd. Molding process and molds made by the process
US7500840B2 (en) 2004-03-23 2009-03-10 Sintokogio, Ltd. Apparatus for molding a mold and a metal used therefor
WO2011030795A1 (en) * 2009-09-10 2011-03-17 リグナイト株式会社 Binder-coated refractory, casting mold and method for producing casting mold
CN102527923A (en) * 2012-01-04 2012-07-04 福州大学 Glucose-phenol resin adhesive for foundry and a preparation method of same
US8490677B2 (en) * 2003-09-02 2013-07-23 Sintokogio, Ltd. Method for forming molds and core for casting metal
WO2020070819A1 (en) * 2018-10-03 2020-04-09 花王株式会社 Binder composition for forming mold
US20200199022A1 (en) * 2018-12-20 2020-06-25 Saint-Gobain Isover Binding compound based on furan resin, reducing sugar and/or non-reducing sugar

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8490677B2 (en) * 2003-09-02 2013-07-23 Sintokogio, Ltd. Method for forming molds and core for casting metal
US7500840B2 (en) 2004-03-23 2009-03-10 Sintokogio, Ltd. Apparatus for molding a mold and a metal used therefor
WO2006003945A1 (en) 2004-07-02 2006-01-12 Sintokogio, Ltd. Molding process and molds made by the process
US8109319B2 (en) 2004-07-02 2012-02-07 Sintokogio, Ltd. Molding process and the resulting mold
JPWO2011030795A1 (en) * 2009-09-10 2013-02-07 リグナイト株式会社 Binder coated refractory, mold, mold manufacturing method
CN102639264A (en) * 2009-09-10 2012-08-15 力格奈特株式会社 Binder-coated refractory, casting mold and method for producing casting mold
WO2011030795A1 (en) * 2009-09-10 2011-03-17 リグナイト株式会社 Binder-coated refractory, casting mold and method for producing casting mold
EP2476495A4 (en) * 2009-09-10 2015-08-12 Lignyte Co Ltd Binder-coated refractory, casting mold and method for producing casting mold
JP2015164746A (en) * 2009-09-10 2015-09-17 リグナイト株式会社 Method of manufacturing mold
JP5801200B2 (en) * 2009-09-10 2015-10-28 リグナイト株式会社 Mold manufacturing method
US9744586B2 (en) 2009-09-10 2017-08-29 Lignyte Co., Ltd. Binder coated refractories, casting mold using the same, and method of manufacturing casting mold using the same
CN102527923A (en) * 2012-01-04 2012-07-04 福州大学 Glucose-phenol resin adhesive for foundry and a preparation method of same
WO2020070819A1 (en) * 2018-10-03 2020-04-09 花王株式会社 Binder composition for forming mold
US20200199022A1 (en) * 2018-12-20 2020-06-25 Saint-Gobain Isover Binding compound based on furan resin, reducing sugar and/or non-reducing sugar

Similar Documents

Publication Publication Date Title
EP0111398B1 (en) Alkali metal silicate binder compositions
EP1952908B1 (en) Process for making molds
JP4003807B2 (en) Mold making method and mold
JPH11129054A (en) Component for making mold and mold manufacture
KR100901912B1 (en) Method of forming mold and core for metal casting
JPH11138234A (en) Composition for forming mold and method for forming mold
JPH02500031A (en) Method for producing urea-formaldehyde resin
JPH11207432A (en) Molding composition for mold and molding method for mold
JP2000000632A (en) Molding method
JPH11104785A (en) Mold forming method
JPH10146643A (en) Molding composition for mold and molding method for mold
JP4453084B2 (en) Mold making method
JPH11267789A (en) Composition for forming mold and forming method of mold using this composition
JP2000000630A (en) Method for molding mold
JPS62282743A (en) Phenol formaldehyde resin binder
JP2002011544A (en) Composition for molding sweeping mold
CN112142936A (en) Additive manufacturing rapid prototyping furan resin and preparation method thereof
CN1640906A (en) Urea-formaldehyde adhesive with low free formaldehyde and expanding characteristic and its preparation method
JP3161563B2 (en) Mold production method
JPH09276984A (en) Manufacture of resin coating sand
JP3324718B2 (en) Binder-curing agent kit for mold production
US2446991A (en) Melamine-formaldehyde resins plasticized with alkali lactate
CN114274301A (en) Insect-expelling density plate made of plant fiber particles and manufacturing method thereof
JPH10237207A (en) Expandable phenolic resin composition
JP3248825B2 (en) Mold production method