JPH11104785A - Mold forming method - Google Patents

Mold forming method

Info

Publication number
JPH11104785A
JPH11104785A JP28767997A JP28767997A JPH11104785A JP H11104785 A JPH11104785 A JP H11104785A JP 28767997 A JP28767997 A JP 28767997A JP 28767997 A JP28767997 A JP 28767997A JP H11104785 A JPH11104785 A JP H11104785A
Authority
JP
Japan
Prior art keywords
mold
sand
weight
parts
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28767997A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ito
智幸 伊藤
Yuji Miyashita
雄次 宮下
Toshio Hirohashi
利夫 広橋
Akihiro Okubo
明浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP28767997A priority Critical patent/JPH11104785A/en
Publication of JPH11104785A publication Critical patent/JPH11104785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold which is easily disintegrable, easy in regeneration into sand, excellent in mold strength and does not cause the deterioration of working environment due to hazardous odor occurrence. SOLUTION: In this mold forming method, the composition of mold is as follows: one or more aggregate of silicon sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand; and natural oligosaccharide group and/or starch of 2-10 monosaccharide unit or oligosaccharide of 2-10 monosaccharide unit being obtained from high polymer saccharide group; and one or more thermosetting resin of water soluble phenolic resin, urea resin, melamine resin, and epoxy resin against 100 weight portion aggregate. The weight ratio of solids content is as follows; oligosaccharide: thermosetting resin = 50:50=95:5. Furthermore, the mold forming composite being obtained by adding and mixing 0.5-10 weight portion of water soluble oligo caking additive, solids content concentration of which is 20-75 wt.%, is filled in a mold model. Then, after the mold is stored in a closed container, the water in the mold is compulsorily removed at the container inner pressure of 48 kPa or less, and is dry-hardened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明はオリゴ糖を主たる成分と
するオリゴ粘結剤を用いた鋳型造型用組成物を減圧乾燥
硬化させ鋳型を得る鋳型造型方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mold by drying and curing a composition for molding using an oligoadhesive containing an oligosaccharide as a main component under reduced pressure.

【従来の技術】鋳型の造型方法には種々の方法があり、
これに使われる粘結剤も多岐にわたるが、大別して無機
粘結剤と有機粘結剤になる。無機粘結剤を用いる造型方
法としては主に珪酸塩をフェロシリコン(Nプロセ
ス)、ダイカルシウムシリケート(ダイカル法)あるい
はCO2ガスで硬化させる方法などがある。珪酸塩を用
いた鋳型は鋳造後の崩壊性の悪さ及び多量の廃棄物を発
生するなどの欠点がある。有機粘結剤を用いる造型方法
としては、シェルモールド法のような熱硬化性鋳型、フ
ラン樹脂やフェノール樹脂を酸或いはエステルを用いて
硬化させる常温硬化性鋳型、またウレタン樹脂或いはフ
ェノール樹脂をアミンガス、エステルガス或いはCO2
ガスで硬化させるガス硬化性鋳型等の造型方法がある。
これらの有機粘結剤を用いる鋳型造型時においてはホル
ムアルデヒド等の臭気の発生や有機溶剤、毒性のある硬
化剤或いは触媒の使用による作業環境の悪化等の欠点が
ある。更にこれらは注湯時において粘結剤、有機溶剤、
硬化剤、触媒及び粘結剤の硬化物が熱分解して種々の有
害ガスや臭気を発生させ工場内作業環境及び工場周辺の
外部環境を悪化させる欠点がある。一方、これら無機粘
結剤及び有機粘結剤の上記の様な欠点のない粘結剤とし
ては天然物及び天然物由来のデキストリン等を用いた水
溶性糊粘結剤を用いる技術がある(特開昭52−120
225公報、特開昭59−76642公報、特公平3−
21254公報など)。しかしながら、実用に供する鋳
型の強度を得るには多量の水溶性糊粘結剤を必要とす
る。また水溶性糊粘結剤を用いた鋳型は、鋳型造型後大
気中の水分の吸湿による鋳型の強度劣化が著しいため、
造型後すぐに注湯せねばならないという作業工程上の制
約がある。更にこれらの水溶性糊粘結剤を水溶液で保存
する場合、微生物などによる腐敗が起こり易く、貯蔵安
定性、衛生上の欠点がある。またこれら水溶性糊粘結剤
を用いた鋳型の乾燥硬化方法及び造型方法に関する技術
が、特公昭61−20384公報、特開昭57−978
36公報、特開昭57−175053公報等に見られ
る。しかしこれら鋳型造型時には混練砂の加熱、熱風の
送風による強制乾燥の方法が用いられているが、設備及
び熱エネルギーコストによる経済的に不利な面がある。
2. Description of the Related Art There are various methods for molding a mold.
There are a wide variety of binders used for this purpose, but they are roughly divided into inorganic binders and organic binders. As a molding method using an inorganic binder, there is a method of hardening a silicate mainly with ferrosilicon (N process), dicalcium silicate (dical method), or CO 2 gas. A mold using silicate has disadvantages such as poor disintegration after casting and generation of a large amount of waste. As a molding method using an organic binder, a thermosetting mold such as a shell mold method, a room temperature curable mold in which a furan resin or a phenol resin is cured using an acid or an ester, or an urethane resin or a phenol resin in an amine gas, Ester gas or CO 2
There is a molding method such as a gas-curable mold that cures with a gas.
At the time of mold making using these organic binders, there are drawbacks such as generation of odors such as formaldehyde and deterioration of the working environment due to the use of organic solvents, toxic hardeners or catalysts. In addition, these are binders, organic solvents,
There is a disadvantage that the cured product of the curing agent, the catalyst and the binder is thermally decomposed to generate various harmful gases and odors, thereby deteriorating the working environment in the factory and the external environment around the factory. On the other hand, as binders of these inorganic binders and organic binders that do not have the above-mentioned drawbacks, there is a technique of using a water-soluble glue binder using a natural product or a dextrin derived from a natural product. 52-120
225, JP-A-59-76642, JP-B 3-
21254 publication). However, a large amount of a water-soluble glue binder is required to obtain the strength of a practically usable mold. In addition, molds using a water-soluble glue binding agent, because the strength of the mold is significantly deteriorated due to the absorption of moisture in the air after the molding,
There is a restriction in the work process that the pouring must be performed immediately after molding. Furthermore, when these water-soluble glue binders are stored in an aqueous solution, they are easily rotted by microorganisms and the like, and have drawbacks in storage stability and hygiene. Techniques relating to a method of drying and curing a mold using these water-soluble glue binders and a method of forming a mold are disclosed in JP-B-61-20384 and JP-A-57-978.
36 and JP-A-57-175053. However, at the time of molding these molds, a method of heating the kneading sand and forcibly drying by blowing hot air is used, but there is an economic disadvantage due to equipment and heat energy costs.

【発明が解決しようとする課題】上述のような無機粘結
剤の崩壊性や廃砂の問題及び従来の水溶性糊粘結剤や有
機粘結剤の鋳型強度不足や保存安定性、作業環境や外部
環境への悪影響等の欠点を解消した鋳型を得るべく鋭意
研究した結果、オリゴ糖と水溶性の熱硬化性樹脂を必須
成分とし、補助剤、シランカップリング剤及び界面活性
剤を含むオリゴ粘結剤を用い、更に、真空ポンプを使用
して減圧乾燥硬化させることにより、易崩壊性で砂再生
も容易であり、鋳型強度や保存安定性に優れ、且つ有害
な臭気発生による作業環境の悪化のない鋳型を得ること
に成功し、本発明に至った。
The problems of the disintegration of the inorganic binder and the waste sand as described above, the lack of mold strength, the storage stability, and the working environment of conventional water-soluble glue binders and organic binders. As a result of intensive research to obtain a mold that has solved the drawbacks such as adverse effects on the environment and the external environment, oligosaccharides and water-soluble thermosetting resins are essential components, and oligosaccharides containing auxiliary agents, silane coupling agents and surfactants By using a binder and drying and hardening under reduced pressure using a vacuum pump, it is easy to disintegrate and sand is easy to regenerate, excellent in mold strength and storage stability, and in the work environment due to harmful odor generation. The inventors succeeded in obtaining a template without deterioration, and reached the present invention.

【課題を解決するための手段】本発明の造型方法は、珪
砂、ジルコン砂、オリビン砂、クロマイト砂、アルミナ
砂、ムライト砂の1種または2種以上の骨材と、該骨材
100重量部に対して、単糖ユニットが2〜10の天然
の少糖類及び/または澱粉あるいは高分子糖類から得ら
れる単糖ユニットが2〜10のオリゴ糖と水溶性のフェ
ノー樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂の
1種又は2種以上の熱硬化性樹脂から成り、それらの固
形分重量比がオリゴ糖:熱硬化性樹脂=50:50〜9
5:5であり、更にそれらの固形分濃度が20〜75重
量%の水溶性であるオリゴ粘結剤を0.5〜10重量部
添加混合して得られる鋳型造型用組成物を鋳型模型内に
充填し、該鋳型を密閉容器内に収めた後、容器内圧力4
8kPa以下として鋳型中の水分を強制的に除去し、乾
燥硬化させることを特徴とするものである。本発明を更
に詳細に説明する。本発明に用いられる骨材としては珪
砂、ジルコン砂、オリビン砂、クロマイト砂、アルミナ
砂、ムライト砂等がある。骨材100重量部に対して固
形分濃度20〜75重量%のオリゴ粘結剤を0.5〜1
0重量部添加し、骨材と粘結剤を混練して得られる混練
砂を所望の模型に充填し、これを減圧乾燥して硬化させ
鋳型を造型する方法を提供することである。この本発明
は鋳型造型方法の1つであるVRH法の応用であり、真
空造型する方法である。この乾燥方法を更に詳しく述べ
ると、オリゴ粘結剤を用いて得られる混練砂を鋳型に充
填し、該鋳型を密閉容器内に収めた後、真空ポンプにて
真空箱内の圧力を48.0kPa以下として、鋳型中の
水分を強制除去する。真空箱内の圧力は鋳型内の水分が
除去されるまで48.0kPa以下を保持し、乾燥硬化
後大気圧(101.3kPa)に戻した後鋳型を取り出
す。鋳型を密閉容器内に収め真空乾燥する方法には、図
1に示すように、密閉容器(真空箱)1又は鋳型2が図
中の矢印のように上下に移動する上下式、又は図2に示
すように、鋳型2が図中の矢印のように左右に移動する
スライド式、更には図3に示すように、密閉容器(真空
箱)1の上部が多孔板3になっておりその上に鋳型2を
置き、鋳型2の周囲を気密可撓膜4で覆い真空とする定
置式などがある。本発明に用いられるオリゴ糖として
は、単糖ユニットが2〜10である天然の少糖類あるい
は例えば澱粉などの多糖類を酸又は酵素を用いて加水分
解して得られる糖類をいう。 なお本発明において用い
られるオリゴ糖以外の糖類でユニットが1の糖類を単
糖、ユニットが11以上の糖類を多糖類と呼称する。多
糖類を粘結剤として用いた場合には、水に対する溶解度
が低く、水溶液とするのに多量の水を必要とし、鋳型の
乾燥工程において長時間を要することとなる。また、水
に溶解したときの粘性も高く、骨材との混練性が悪くな
り、更には得られる混練砂の流動性も悪くなる。単糖を
粘結剤として用いた場合には、水溶性及び水溶液の粘度
の点では適切であるが、乾燥硬化後の高い鋳型強度が得
られない。また、耐湿性も劣り、鋳型の保存安定性が悪
くなる等の欠点があり、粘結剤として適さない。一方、
オリゴ糖を粘結剤として用いた場合には、水溶液とする
ことも容易であり、その水溶液の粘度は低いため、砂と
の混練性も良く、得られる混練砂(すなわち鋳型造型用
組成物)の流動性も良い。また、実用的に充分高い鋳型
強度を得ることができる。本発明におけるオリゴ粘結剤
は、上述の粘結剤としてのオリゴ糖の長所を維持しつ
つ、オリゴ糖の微生物による腐敗を防止し、また、注湯
時のアルミニウムあるいは鉄の溶湯が凝固するまでの間
の鋳型の形状保持に関わる熱間強度を維持させるため、
水溶性のフェノール樹脂、ユリア樹脂、メラミン樹脂、
エポキシ樹脂の少なくとも1種類を必須の成分として含
む。これらの樹脂類は、注湯の熱により熱硬化し、鋳型
に耐熱性を与える役目をする。オリゴ粘結剤には補助剤
として多糖類や蛋白質、ポリビニルアルコール、ポリア
クリル酸ソーダ、等の水溶性高分子を併用することがで
きる。更にオリゴ粘結剤にはシランカップリング剤や界
面活性剤も含むことができ、鋳型のより高い常態強度
と、より優れた保存安定性を得ることができる。本発明
におけるオリゴ粘結剤の固形分濃度は20〜75重量%
であり、好ましくは30〜65重量%である。固形分濃
度が75重量%を超える濃度では、オリゴ粘結剤の粘度
が高くなり、骨材と粘結剤の充分な混練が困難になると
ともに、混練砂の流動性が悪くなる。一方、固形分濃度
が20重量%未満では水分量が多く鋳型の乾燥に時間が
かかるばかりでなく、実用に供し得る鋳型強度が得られ
ない。また、オリゴ粘結剤中の必須成分であるオリゴ糖
と水溶性の熱硬化性樹脂との配合割合は、上記固形分の
うちオリゴ糖が50〜95重量%である。固形分中のオ
リゴ糖の配合量が95重量%を越える濃度では、水溶性
の熱硬化性樹脂の割合が少なく、熱硬化性樹脂の持つ鋳
型強度及び耐湿性への効果が小さく、また腐敗を防止す
る防菌効果も低下する。また、50重量%未満では、上
記のオリゴ糖が持つ本来の長所を充分に発揮出来なくな
り、逆に水溶性の熱硬化性樹脂の割合が大きくなるた
め、例えば粘結剤の粘度の増加、注湯時の臭気の発生に
よる作業環境の悪化等をもたらす。本発明におけるオリ
ゴ粘結剤に用いられるオリゴ糖としては、天然に存在す
るもの、または天然に存在する多糖類を酸又は酵素を用
いて加水分解して得られる糖類であり、例えば澱粉を約
20〜50%程度の水懸濁液として、これに酸又はα−
アミラーゼ、さらにはβ−アミラーゼを添加し加水分解
を行う。酸で加水分解する場合は約70〜150℃、α
−アミラーゼの場合は70〜100℃、続いてβ−アミ
ラーゼで加水分解する場合は50〜70℃で糊液状態の
澱粉を加水分解して、単糖ユニット2〜10の範囲の所
望の分子量分布で反応を止める。反応終了後、酸を用い
た場合はアルカリにより中和を行い、酵素を用いた場合
には酵素を失活させる必要がある。また得られた単糖ユ
ニット2〜10の糖組成を持つオリゴ糖溶液は、必要に
応じて濃縮を行い所望の濃度の溶液とすることができ
る。さらに乾燥を行い粉末として長期間保存することも
可能である。本発明の粘結剤の必須成分の1つとして、
水溶性のフェノール樹脂、ユリア樹脂、メラミン樹脂及
びエポキシ樹脂などの熱硬化性樹脂を用いる。水溶性フ
ェノール樹脂としては、レゾール型水溶性フェノール樹
脂、ノボラック型水溶性フェノール樹脂、エマルジョン
タイプの水分散型フェノール樹脂を用いることができ
る。これらのフェノール樹脂はフェノール類とアルデヒ
ド類とを、アルカリ又は酸触媒存在下で縮合させて得ら
れるものである。フェノール類としては、例えばフェノ
ール、クレゾール、レゾルシノール、ビスフェノール
A、ビスフェノールF、ビスフェノールC、ビスフェノ
ールH、クミルフェノール、ノニルフェノール、イソプ
ロペニルフェノール精製残渣、ビスフェノールA精製残
渣、ビスフェノールF精製残渣、ブチルフェノール、フ
ェニルフェノール、エチルフェノール、オクチルフェノ
ール、アミルフェノール、ナフトール、カテコール、ハ
イドロキノン、ピロガロール或いはこれらの置換体を含
めたフェノール類が挙 げられる。アルデヒド類として
はホルマリン、パラホルムアルデヒド、フルフラール、
αーポリオキシメチレン、アセトアルデヒド等があるが
これらに限定されるものではない。また、これらフェノ
ール類とアルデヒド類とを縮合させる触媒としては、シ
ュウ酸、塩酸、硫酸等の酸性物質及び有機酸金属塩、又
は水酸化カリウム、水酸化ナトリウム、水酸化リチウム
等のアルカリ金属の水酸化物或いはアルカリ土類金属の
水酸化物等がある。その他の水溶性の熱硬化性樹脂とし
ては、尿素、メチロール尿素、ジメチロール尿素、ジヒ
ドロキシエチレン尿素を主成分とする尿素樹脂、メラミ
ンと前述のアルデヒド類とをアルカリ又は酸を触媒とし
て反応させて得られるメラミン樹脂、或いはフェノール
類或いはフェノールノボラック樹脂とエピクロルヒドリ
ンとの反応により得られるグリシジル基を持った化合物
を含むエポキシ樹脂を用いることができる。その他「接
着ハンドブック」(日本接着協会編)第2編5章熱硬化
性接着剤記載の定義及び製造法に準じたものも利用する
ことができる。これら水溶性のフェノール樹脂、ユリア
樹脂、メラミン樹脂、エポキシ樹脂は、真空乾燥後の加
熱や注湯の熱による高分子化又はオリゴ糖との架橋反応
により、鋳型強度の向上、注湯時の熱間強度の向上の効
果がある。更に、鋳型の耐湿性の向上による鋳型保存安
定性向上に効果があり、また粘結剤自体の微生物などの
影響による腐敗防止に効果がある。また、補助剤として
の多糖類、蛋白質、ポリビニールアルコール、ポリアク
リル酸ナトリウムのような水溶性高分子はオリゴ糖に比
較して水に対する溶解度が低いためにオリゴ糖より乾燥
速度が速く、乾燥後には分離して強固な膜を形成する。
この皮膜はオリゴ糖に比較して耐湿性に優れているた
め、オリゴ糖粘結剤に添加した場合、鋳型の耐湿性が向
上する。多糖類とは、植物性あるいは動物性の単純多糖
類及び複合多糖類をいう。例えば、澱粉、化工澱粉、デ
キストリン、セルロース、化工されたセルロース、デキ
ストラン、レバン、アルギン酸類、ペクチン、ヘミセル
ロース、グルコマンナン、ガラクトマンナン、植物ゴ
ム、ヒアルロン酸等である。蛋白質とは、ペプチドを含
む植物性あるいは動物性の蛋白質をいう。例えば、大豆
蛋白質、小麦蛋白質、その他豆類、穀物類の蛋白質、カ
ゼイン、アルブミン、コラーゲン、ヘモグロビン等動
物、菌類由来の蛋白質をいう。またこれらの蛋白質には
植物及び動物、菌類由来の酵素類も含まれる。ポリビニ
ールアルコールには、完全鹸化物、中間鹸化物、部分鹸
化物のポリビニールアルコールを含み、重合度200〜
3000程度のものが好ましい。また変性されたポリビ
ニールアルコールも含まれる。これらの補助剤は、オリ
ゴ粘結剤にその固形分100重量部に対して固形分で1
〜30重量部使用することができる。また、これらの補
助剤はオリゴ粘結剤と骨材の混練時に添加し、混練して
使用することもできる。また本発明におけるオリゴ粘結
剤には、シランカップリング剤や界面活性剤を併用する
ことにより、より一層混練砂の流動性及び鋳型の強度を
向上させることができる。シランカップリング剤として
は、γ−グリシドキシプロピルトリメトキシシラン、γ
−アミノプロピルトリエトキシシラン、γ−(2−アミ
ノエチル)アミノプロピルトリメトキシシラン、N−グ
リシジル−N,N−ビス(3−(トリメトキシシリル)
プロピル)アミン等を使用することができる。上記のシ
ランカップリング剤は、オリゴ粘結剤にその固形分10
0重量部に対して0.1〜5重量部添加することが好ま
しい。本発明に用いることができる界面活性剤として
は、ノニオン界面活性剤、カチオン界面活性剤、アニオ
ン界面活性剤、両性界面活性剤、シリコーン系界面活性
剤、フッ素系界面活性剤等が使用可能であり、界面活性
剤としては特に限定されない。これら界面活性剤は骨材
と粘結剤との濡れ性を改善する効果があり、さらに模型
に充填する際の混練砂の流動性も向上する。流動性の向
上により、鋳型の充填密度が向上し、高い鋳型強度が得
られるとともに、表面の優れた鋳型を得ることができ
る。界面活性剤の配合量は、オリゴ粘結剤の固形分10
0重量部に対して0.01〜5重量部が好ましい。
According to the present invention, there is provided a molding method comprising one or more aggregates of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and 100 parts by weight of the aggregate. On the other hand, a monosaccharide unit having 2 to 10 natural oligosaccharides and / or a monosaccharide unit obtained from starch or a high molecular saccharide has 2 to 10 oligosaccharides and a water-soluble phenol resin, urea resin, melamine resin, It is composed of one or more thermosetting resins of epoxy resin, and their solid content weight ratio is oligosaccharide: thermosetting resin = 50: 50-9.
5: 5, and 0.5 to 10 parts by weight of a water-soluble oligo-binding agent having a solids concentration of 20 to 75% by weight was added and mixed. And the mold is placed in a closed container.
The method is characterized in that the water in the mold is forcibly removed at a pressure of 8 kPa or less and dried and cured. The present invention will be described in more detail. The aggregate used in the present invention includes silica sand, zircon sand, olivine sand, chromite sand, alumina sand, mullite sand and the like. Oligo binder having a solid content of 20 to 75% by weight based on 100 parts by weight of aggregate
It is an object of the present invention to provide a method in which 0 parts by weight are added, kneaded sand obtained by kneading an aggregate and a binder is filled in a desired model, which is dried under reduced pressure and cured to form a mold. The present invention is an application of the VRH method, which is one of the mold making methods, and is a method for vacuum forming. The drying method will be described in more detail. A kneaded sand obtained by using an oligo binder is filled in a mold, the mold is placed in a closed container, and the pressure in the vacuum box is increased to 48.0 kPa by a vacuum pump. In the following, the water in the mold is forcibly removed. The pressure in the vacuum box is kept at 48.0 kPa or less until moisture in the mold is removed, and after drying and curing, the pressure is returned to the atmospheric pressure (101.3 kPa), and then the mold is taken out. As shown in FIG. 1, a method of placing a mold in a closed container and drying it in a vacuum is performed by a vertical method in which a closed container (vacuum box) 1 or a mold 2 moves up and down as indicated by an arrow in FIG. As shown in the figure, a slide type in which the mold 2 moves left and right as indicated by the arrow in the figure, and further, as shown in FIG. There is a stationary type in which the mold 2 is placed, the periphery of the mold 2 is covered with an airtight flexible film 4, and a vacuum is applied. The oligosaccharide used in the present invention refers to a natural oligosaccharide having a monosaccharide unit of 2 to 10 or a saccharide obtained by hydrolyzing a polysaccharide such as starch using an acid or an enzyme. In the present invention, saccharides other than oligosaccharides having one unit are called monosaccharides, and saccharides having 11 or more units are called polysaccharides. When a polysaccharide is used as a binder, the solubility in water is low, a large amount of water is required to prepare an aqueous solution, and a long time is required in the mold drying step. In addition, the viscosity when dissolved in water is high, and the kneadability with the aggregate is deteriorated, and the fluidity of the obtained kneaded sand is also deteriorated. When a monosaccharide is used as a binder, it is appropriate in terms of water solubility and viscosity of an aqueous solution, but does not provide high mold strength after drying and curing. Further, they have disadvantages such as poor moisture resistance and poor storage stability of the mold, and are not suitable as a binder. on the other hand,
When an oligosaccharide is used as a binder, it is easy to prepare an aqueous solution, and since the viscosity of the aqueous solution is low, the kneadability with sand is good, and the obtained kneaded sand (that is, a composition for mold molding) is obtained. Has good fluidity. In addition, a sufficiently high mold strength can be obtained for practical use. The oligo-binding agent in the present invention prevents the decay of the oligosaccharide by microorganisms while maintaining the advantages of the oligosaccharide as the above-mentioned binding agent, and until the molten aluminum or iron at the time of pouring solidifies. In order to maintain the hot strength involved in maintaining the shape of the mold during
Water-soluble phenolic resin, urea resin, melamine resin,
It contains at least one type of epoxy resin as an essential component. These resins are heat-cured by the heat of the molten metal and serve to impart heat resistance to the mold. Water-soluble polymers such as polysaccharides, proteins, polyvinyl alcohol, and sodium polyacrylate can be used together as auxiliary agents in the oligo binder. Further, the oligo-binding agent may also contain a silane coupling agent or a surfactant, so that higher normal strength of the template and better storage stability can be obtained. The solid content concentration of the oligo binder in the present invention is 20 to 75% by weight.
And preferably 30 to 65% by weight. If the solid content exceeds 75% by weight, the viscosity of the oligo binder increases, making it difficult to sufficiently knead the aggregate and the binder and deteriorating the fluidity of the kneaded sand. On the other hand, when the solid concentration is less than 20% by weight, the amount of water is large and not only takes much time to dry the mold, but also a practically usable mold strength cannot be obtained. The mixing ratio of the oligosaccharide as an essential component in the oligo binder and the water-soluble thermosetting resin is such that the oligosaccharide is 50 to 95% by weight of the solid content. If the content of the oligosaccharide in the solid content exceeds 95% by weight, the proportion of the water-soluble thermosetting resin is small, the effect of the thermosetting resin on the mold strength and moisture resistance is small, and rot is prevented. The antibacterial effect to prevent is also reduced. On the other hand, if the content is less than 50% by weight, the above-mentioned advantages of the oligosaccharide cannot be sufficiently exhibited, and conversely, the proportion of the water-soluble thermosetting resin becomes large. The working environment is deteriorated due to the generation of odor at the time of hot water. The oligosaccharide used in the oligo binder in the present invention is a naturally occurring one or a saccharide obtained by hydrolyzing a naturally occurring polysaccharide with an acid or an enzyme. About 50% as an aqueous suspension to which acid or α-
Amylase and further β-amylase are added for hydrolysis. When hydrolyzed with acid, about 70-150 ° C, α
-Amylases are hydrolyzed at 70-100 ° C, followed by β-amylase at 50-70 ° C to hydrolyze starch in a paste state to obtain a desired molecular weight distribution in the range of monosaccharide units 2-10. Stop the reaction with. After the completion of the reaction, it is necessary to neutralize with an alkali when using an acid and deactivate the enzyme when using an enzyme. The obtained oligosaccharide solution having the saccharide composition of the monosaccharide units 2 to 10 can be concentrated as required to obtain a solution having a desired concentration. Furthermore, it is possible to dry and store it as a powder for a long time. As one of the essential components of the binder of the present invention,
A thermosetting resin such as a water-soluble phenol resin, urea resin, melamine resin, and epoxy resin is used. As the water-soluble phenol resin, a resol-type water-soluble phenol resin, a novolak-type water-soluble phenol resin, and an emulsion-type water-dispersible phenol resin can be used. These phenolic resins are obtained by condensing phenols and aldehydes in the presence of an alkali or acid catalyst. Examples of phenols include phenol, cresol, resorcinol, bisphenol A, bisphenol F, bisphenol C, bisphenol H, cumylphenol, nonylphenol, isopropenylphenol purified residue, bisphenol A purified residue, bisphenol F purified residue, butylphenol, phenylphenol And phenols including ethyl phenol, octyl phenol, amyl phenol, naphthol, catechol, hydroquinone, pyrogallol, and substituted substances thereof. Aldehydes include formalin, paraformaldehyde, furfural,
α-Polyoxymethylene, acetaldehyde, etc., but not limited thereto. Examples of the catalyst for condensing these phenols and aldehydes include acidic substances such as oxalic acid, hydrochloric acid, and sulfuric acid, and organic acid metal salts, or alkali metal water such as potassium hydroxide, sodium hydroxide, and lithium hydroxide. There are oxides or hydroxides of alkaline earth metals. As other water-soluble thermosetting resins, urea, methylol urea, dimethylol urea, urea resin containing dihydroxyethylene urea as a main component, melamine and the above aldehydes are obtained by reacting with an alkali or an acid as a catalyst. A melamine resin or an epoxy resin containing a compound having a glycidyl group obtained by reacting a phenol or a phenol novolak resin with epichlorohydrin can be used. In addition, those based on the definition and manufacturing method described in “Adhesion Handbook” (edited by the Japan Adhesion Association), Vol. 2, Chapter 5, Chapter 5 can also be used. These water-soluble phenolic resins, urea resins, melamine resins, and epoxy resins improve the mold strength and increase the heat during pouring by heating after vacuum drying or polymerizing by the heat of pouring or crosslinking reaction with oligosaccharides. This has the effect of improving the inter-strength. Further, it is effective in improving the storage stability of the mold by improving the moisture resistance of the mold, and is also effective in preventing decay due to the influence of microorganisms on the binder itself. In addition, water-soluble polymers such as polysaccharides, proteins, polyvinyl alcohol, and sodium polyacrylate as adjuvants have a lower drying rate than oligosaccharides due to their lower solubility in water than oligosaccharides. Separates to form a strong film.
Since this film is superior to oligosaccharides in moisture resistance, when added to an oligosaccharide binder, the moisture resistance of the mold is improved. The polysaccharide refers to simple or complex polysaccharides of vegetable or animal origin. For example, starch, modified starch, dextrin, cellulose, modified cellulose, dextran, levan, alginic acids, pectin, hemicellulose, glucomannan, galactomannan, vegetable gum, hyaluronic acid and the like. A protein refers to a vegetable or animal protein containing a peptide. For example, it refers to proteins derived from animals and fungi such as soybean protein, wheat protein, other beans, cereal proteins, casein, albumin, collagen, and hemoglobin. These proteins also include enzymes derived from plants, animals and fungi. Polyvinyl alcohol includes completely saponified, intermediate saponified, partially saponified polyvinyl alcohol, and has a polymerization degree of 200 to
Those having about 3000 are preferred. Also includes modified polyvinyl alcohol. These adjuvants are added to the oligo binder at a solid content of 1 part by weight per 100 parts by weight of the solid content.
Up to 30 parts by weight can be used. These auxiliaries can be added at the time of kneading the oligo binder and the aggregate, and can be used after kneading. Further, by using a silane coupling agent or a surfactant in combination with the oligo binder in the present invention, the fluidity of the kneading sand and the strength of the mold can be further improved. As the silane coupling agent, γ-glycidoxypropyltrimethoxysilane, γ
-Aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, N-glycidyl-N, N-bis (3- (trimethoxysilyl)
Propyl) amine and the like can be used. The above silane coupling agent is added to the oligo binder in a solid content of 10%.
It is preferable to add 0.1 to 5 parts by weight to 0 part by weight. As the surfactant that can be used in the present invention, a nonionic surfactant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a silicone-based surfactant, a fluorine-based surfactant, and the like can be used. The surfactant is not particularly limited. These surfactants have an effect of improving the wettability between the aggregate and the binder, and also improve the fluidity of the kneaded sand when filling the model. By improving the fluidity, the filling density of the mold is improved, high mold strength is obtained, and a mold having an excellent surface can be obtained. The blending amount of the surfactant is 10% of the solid content of the oligo binder.
0.01 to 5 parts by weight per 0 parts by weight is preferred.

【実施例】以下、実施例をあげて本発明に係わる鋳型造
型方法を更に詳しく説明する。但し、本発明は下記実施
例に限定されるものではなく、その要旨の範囲内で種々
変形実施が可能である。 [実施例1]コーンスターチを出発原料とし、以下のよ
うにしてオリゴ糖溶液を調整した。コーンスターチに水
を加えて30%懸濁液とした後、pHを6.0に調整
し、懸濁液100重量部に対して、α−アミラーゼ(大
和化成(株)製クライスターゼT10)を0.03重量
部添加して90〜100℃にて加水分解反応を行った。
Oligo PW(東ソー(株)製)のカラムを使用し
た高速液体クロマトグラフィーによる分析で平均単糖ユ
ニットが5前後になったところでシュウ酸を添加してp
H4.3以下とし、反応を終了した。 次いで濃縮乾燥
を行い粉末状のオリゴ糖を得た。平均単糖ユニットは
5.7であった。該オリゴ糖42.5重量部、アルカリ
性レゾール型フェノール樹脂(群栄ボーデン(株)製T
PA−14、固形分50重量%)15.0重量部、水4
2.5重量部を混合しオリゴ糖粘結剤を得た。次に珪砂
(飯豊F−6号珪砂)100重量部に対して該オリゴ
粘結剤を4.0重量部添加し、混練機にて、60秒間混
練し混練砂を得た。混練砂を10mm×10mm×60
mmテストピース5個取り用アルミ金型に型込めした
後、図1に示す様な上下式の密閉容器(真空箱)1に搬
入した。真空箱内の圧力を0.8kPaとして1〜5分
間保持した。得られた鋳型の造型直後及び、恒温恒湿室
(25℃、60%)内に48時間保管した後の曲げ強度
を測定した。結果を表1に示す。 [実施例2]実施例1と同様にして得られたオリゴ糖4
2.5重量部、アルカリ性レゾール型フェノール樹脂
(群栄ボーデン(株)製 TPA−14)11重量部、
カゼイン(日成共益(株)製)3.5重量部、シランカ
ップリング剤(日本ユニカー(株)製 A−1100)
0.5重量部、水42.5重量部を混合し、オリゴ粘結
剤を得た。以下実施例1と同様の方法にて鋳型を造型
し、曲げ強度を測定した。結果を表1に示す。 [実施例3]実施例2と同様にして得られたオリゴ粘結
剤を珪砂(飯豊F−6号珪砂) 100重量部に対して
4.0重量部添加し、混練機にて、60秒間混練し混練
砂を得た。混練砂を10mm×10mm×60mmテス
トピース5個取り用アルミ金型に型込めした後、図1に
示す様な上下式の密閉容器(真空箱)1に搬入した。真
空箱内の圧力を24.0kPaとして1〜10分間保持
した。得られた鋳型の造型直後及び、恒温恒湿室(25
℃、60%)内に48時間保管した後の曲げ強度を測定
した。 結果を表1に示す。 [実施例4]実施例2と同様にして得られたオリゴ粘結
剤を珪砂(飯豊F−6号珪砂)100重量部に対して
4.0重量部添加し、混練機にて、60秒間混練し混練
砂を得た。混練砂を10mm×10mm×60mmテス
トピース5個取り用アルミ金型に型込めした後、図1に
示す様な上下式の密閉容器(真空箱)1に搬入した。真
空箱内の圧力を48.0kPaとして1〜20分間保持
した。得られた鋳型の造型直後及び、恒温恒湿室(25
℃、60%)内に48時間保管した後の曲げ強度を測定
した。結果を表1に示す。 [比較例1]実施例2と同様にして得られたオリゴ粘結
剤を珪砂(飯豊F−6号珪砂) 100重量部に対して
4.0重量部添加し、混練機にて、60秒間混練し混練
砂を得た。 混練砂を10mm×10mm×60mmテ
ストピース5個取り用アルミ金型に型込めした後、図1
に示す様な上下式の密閉容器(真空箱)1に搬入した。
真空箱内の圧力を60.0kPaとして5〜30分間保
持した。得られた鋳型の造型直後及び、恒温恒湿室(2
5℃、60%)内に48時間保管した後の曲げ強度を測
定した。結果を表1に示す。 [比較例2]実施例1と同様にして得られたオリゴ糖4
6.0重量部、カゼイン(日成共益(株)製)3.5重
量部、シランカップリング剤(日本ユニカー(株)製
A−1100)0.5重量部、水50.0重量部を混合
し、オリゴ粘結剤を得た。次ぎに、該オリゴ粘結剤を珪
砂(飯豊F−6号珪砂)100重量部に対して4.0重
量部添加し、混練機にて、60秒間混練し混練砂を得
た。混練砂を10mm×10mm×60mmテストピー
ス5個取り用アルミ金型に型込めした後、250℃の熱
風を圧力98kPaにて2分間、金型内に送り熱風乾燥
を行った。最後に室温の乾燥空気を20秒間金型内に圧
力98kPaで通気し、造型した。得られた鋳型の造型
直後及び、恒温恒湿室(25℃、60%)内に48時間
保管した後の曲げ強度を測定した。結果を表1に示す。
EXAMPLES Hereinafter, the method of molding a mold according to the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist. [Example 1] Using corn starch as a starting material, an oligosaccharide solution was prepared as follows. Water was added to the corn starch to make a 30% suspension, the pH was adjusted to 6.0, and α-amylase (Kristase T10, manufactured by Daiwa Kasei Co., Ltd.) was added to 100 parts by weight of the suspension. After adding 0.03 parts by weight, a hydrolysis reaction was carried out at 90 to 100 ° C.
Oxalic acid was added when the average monosaccharide unit became about 5 in the analysis by high performance liquid chromatography using a column of Oligo PW (manufactured by Tosoh Corporation).
H4.3 or less, and the reaction was completed. Then, concentration and drying were performed to obtain a powdered oligosaccharide. The average monosaccharide unit was 5.7. 42.5 parts by weight of the oligosaccharide, an alkaline resole type phenol resin (manufactured by Gunei Boden Co.
PA-14, solid content 50% by weight) 15.0 parts by weight, water 4
2.5 parts by weight were mixed to obtain an oligosaccharide binder. Next, the oligo was added to 100 parts by weight of silica sand (Iidero F-6 No. 6 silica sand).
4.0 parts by weight of a binder was added and kneaded with a kneader for 60 seconds to obtain kneaded sand. 10mm × 10mm × 60
After having been molded into an aluminum mold for taking 5 mm test pieces, it was carried into a vertical closed container (vacuum box) 1 as shown in FIG. The pressure in the vacuum box was set to 0.8 kPa and maintained for 1 to 5 minutes. The bending strength of the obtained mold was measured immediately after molding and after being stored for 48 hours in a thermo-hygrostat (25 ° C., 60%). Table 1 shows the results. [Example 2] Oligosaccharide 4 obtained in the same manner as in Example 1
2.5 parts by weight, 11 parts by weight of an alkaline resole type phenol resin (TPA-14 manufactured by Gunei Boden Co., Ltd.)
3.5 parts by weight of casein (manufactured by Nissei Kyoei Co., Ltd.), silane coupling agent (A-1100 manufactured by Nippon Unicar Co., Ltd.)
0.5 parts by weight and 42.5 parts by weight of water were mixed to obtain an oligo binder. Thereafter, a mold was formed in the same manner as in Example 1, and the bending strength was measured. Table 1 shows the results. [Example 3] 4.0 parts by weight of an oligo-binding agent obtained in the same manner as in Example 2 was added to 100 parts by weight of silica sand (Iideyo F-6 No. 6 silica sand), and the mixture was kneaded for 60 seconds. The mixture was kneaded to obtain a kneaded sand. The kneaded sand was put into an aluminum mold for taking 5 test pieces of 10 mm × 10 mm × 60 mm and then was carried into a vertical closed container (vacuum box) 1 as shown in FIG. The pressure in the vacuum box was kept at 24.0 kPa for 1 to 10 minutes. Immediately after molding of the obtained mold and in a thermo-hygrostat (25
(° C., 60%) for 48 hours. Table 1 shows the results. [Example 4] 4.0 parts by weight of an oligo-binding agent obtained in the same manner as in Example 2 was added to 100 parts by weight of silica sand (Iideyo F-6 silica sand), and the mixture was kneaded for 60 seconds. The mixture was kneaded to obtain a kneaded sand. The kneaded sand was put into an aluminum mold for taking 5 test pieces of 10 mm × 10 mm × 60 mm and then was carried into a vertical closed container (vacuum box) 1 as shown in FIG. The pressure in the vacuum box was set to 48.0 kPa and maintained for 1 to 20 minutes. Immediately after molding of the obtained mold and in a thermo-hygrostat (25
(° C., 60%) for 48 hours. Table 1 shows the results. [Comparative Example 1] 4.0 parts by weight of an oligo-binding agent obtained in the same manner as in Example 2 was added to 100 parts by weight of silica sand (Iideyo F-6 No. 6 silica sand) and the mixture was kneaded for 60 seconds. The mixture was kneaded to obtain a kneaded sand. After embedding the kneaded sand in an aluminum mold for taking 5 test pieces of 10 mm x 10 mm x 60 mm, Fig. 1
The container was carried into a vertical closed container (vacuum box) 1 as shown in FIG.
The pressure in the vacuum box was set to 60.0 kPa and maintained for 5 to 30 minutes. Immediately after molding of the obtained mold and in a thermo-hygrostat (2
(5 ° C., 60%) for 48 hours. Table 1 shows the results. [Comparative Example 2] Oligosaccharide 4 obtained in the same manner as in Example 1
6.0 parts by weight, 3.5 parts by weight casein (manufactured by Nissei Kyoeki Co., Ltd.), silane coupling agent (manufactured by Nippon Unicar Co., Ltd.)
A-1100) 0.5 parts by weight of water and 50.0 parts by weight of water were mixed to obtain an oligo binder. Next, 4.0 parts by weight of the oligo binder was added to 100 parts by weight of silica sand (Iideyo F-6 No. 6 silica sand), and the mixture was kneaded with a kneader for 60 seconds to obtain kneaded sand. After kneading sand was put into an aluminum mold for taking 5 test pieces of 10 mm × 10 mm × 60 mm, hot air at 250 ° C. was sent into the mold at a pressure of 98 kPa for 2 minutes, and hot air drying was performed. Lastly, dry air at room temperature was passed through the mold at a pressure of 98 kPa for 20 seconds to mold. The bending strength of the obtained mold was measured immediately after molding and after being stored for 48 hours in a thermo-hygrostat (25 ° C., 60%). Table 1 shows the results.

【表1】鋳型強度及び経畤変化 [Table 1] Mold strength and change

【発明の効果】以上詳述した本発明によれば、オリゴ糖
と水溶性の熱硬化樹脂、補助剤、シランカップリング剤
及び界面活性剤を含むオリゴ粘結剤を使用して混練砂を
製造し、該混練砂を減圧乾燥硬化させることにより、短
時間で、高強度であり、耐湿性に優れ、臭気の非常に少
ない鋳型を得ることが可能な鋳型造型方法を提供するこ
とができる。
According to the present invention described in detail above, kneaded sand is produced using an oligosaccharide and a water-soluble thermosetting resin, an auxiliary agent, an oligo-binding agent containing a silane coupling agent and a surfactant. Then, the kneaded sand is dried and cured under reduced pressure to provide a mold molding method capable of obtaining a mold having high strength, excellent moisture resistance, and extremely low odor in a short time.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年12月11日[Submission date] December 11, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of a method of placing a mold in a closed container and vacuum-drying the same in the mold making method of the present invention.

【図2】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の他例を示す説明図である。
FIG. 2 is an explanatory view showing another example of a method of vacuum-drying by placing a mold in a closed container in the mold making method of the present invention.

【図3】本発明の鋳型造型方法において鋳型を密閉容器
内に収め真空乾燥する方法の他例を示す説明図である。
FIG. 3 is an explanatory view showing another example of a method of placing a mold in a closed vessel and drying in a vacuum in the mold making method of the present invention.

【符合の説明】 1 密閉容器(真空箱) 2 鋳型 3 多孔板 4 気密可撓膜[Description of symbols] 1 Closed container (vacuum box) 2 Mold 3 Perforated plate 4 Airtight flexible membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 明浩 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Akihiro Okubo 700 Shukudaizamachi, Takasaki City, Gunma Prefecture Gunei Chemical Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 珪砂、ジルコン砂、オリビン砂、クロマ
イト砂、アルミナ砂、ムライト砂の1種または2種以上
の骨材と、該骨材100重量部に対して、単糖ユニット
が2〜10の天然の少糖類及び/または澱粉あるいは高
分子糖類から得られる単糖ユニットが2〜10のオリゴ
糖と水溶性のフェノー樹脂、ユリア樹脂、メラミン樹
脂、エポキシ樹脂の1種又は2種以上の熱硬化性樹脂か
ら成り、それらの固形分重量比がオリゴ糖:熱硬化性樹
脂=50:50〜95:5であり、更にそれらの固形分
濃度が20〜75重量%の水溶性であるオリゴ粘結剤を
0.5〜10重量部添加混合して得られる鋳型造型用組
成物を鋳型模型内に充填し、該鋳型を密閉容器内に収め
た後、容器内圧力48kPa以下として鋳型中の水分を
強制的に除去し、乾燥硬化することを特徴とする鋳型造
型方法。
1. One or more aggregates of silica sand, zircon sand, olivine sand, chromite sand, alumina sand, and mullite sand, and the monosaccharide unit is 2 to 10 with respect to 100 parts by weight of the aggregates. A monosaccharide unit obtained from natural oligosaccharides and / or starch or high molecular weight saccharides and 2 to 10 oligosaccharides and one or more heat-soluble phenolic resins, urea resins, melamine resins and epoxy resins Water-soluble oligo viscosities which consist of curable resins and whose solid content weight ratio is oligosaccharide: thermosetting resin = 50: 50-95: 5 and whose solid content concentration is 20-75% by weight The composition for mold molding obtained by adding and mixing 0.5 to 10 parts by weight of a binder is filled in a mold model, and the mold is placed in a closed container. Forcibly removed and dried A mold molding method characterized by curing.
【請求項2】 前記オリゴ粘結剤に、オリゴ粘結剤の固
形分100重両部に対して、補助剤として多糖類、蛋白
質、ポリビニルアルコール、ポリアクリル酸ソーダのう
ち少なくとも1種類を固形分で1〜30重両部含むこと
を特徴とする請求項1記載の鋳型造型方法。
2. The oligo binder according to claim 1, wherein at least one of polysaccharides, proteins, polyvinyl alcohol and sodium polyacrylate is used as an adjuvant with respect to 100 parts by weight of the solid content of the oligo binder. The method according to claim 1, wherein 1 to 30 parts are included.
【請求項3】 前記オリゴ粘結剤に、オリゴ粘結剤の固
形分100重両部に対して、シランカップリング剤0.
1〜5重両部含むことを特徴とする請求項1または2記
載の鋳型造型方法。
3. The silane coupling agent is added to the oligo binder in an amount of 100 parts by weight of the solid content of the oligo binder.
The method according to claim 1, wherein the mold includes one to five parts.
【請求項4】 前記オリゴ粘結剤に、オリゴ粘結剤の固
形分100重両部に対して、界面活性剤0.01〜5重
両部含むことを特徴とする請求項1乃至3のいずれかに
記載の鋳型造型方法。
4. The method according to claim 1, wherein the oligo binder contains 0.01 to 5 parts by weight of a surfactant with respect to 100 parts by weight of the solid content of the oligo binder. The mold molding method according to any one of the above.
JP28767997A 1997-10-03 1997-10-03 Mold forming method Pending JPH11104785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28767997A JPH11104785A (en) 1997-10-03 1997-10-03 Mold forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28767997A JPH11104785A (en) 1997-10-03 1997-10-03 Mold forming method

Publications (1)

Publication Number Publication Date
JPH11104785A true JPH11104785A (en) 1999-04-20

Family

ID=17720327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28767997A Pending JPH11104785A (en) 1997-10-03 1997-10-03 Mold forming method

Country Status (1)

Country Link
JP (1) JPH11104785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058366B2 (en) 2002-12-09 2006-06-06 Sony Ericsson Mobile Communications Ab Wireless terminal providing sound pressure level dissipation through channeled porting of sound
EP1769860A1 (en) * 2004-07-02 2007-04-04 Sintokogio, Ltd. Molding process and molds made by the process
KR100893423B1 (en) 2004-07-02 2009-04-17 신토고교 가부시키가이샤 Molding process and molds made by the process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058366B2 (en) 2002-12-09 2006-06-06 Sony Ericsson Mobile Communications Ab Wireless terminal providing sound pressure level dissipation through channeled porting of sound
EP1769860A1 (en) * 2004-07-02 2007-04-04 Sintokogio, Ltd. Molding process and molds made by the process
EP1769860A4 (en) * 2004-07-02 2008-02-06 Sintokogio Ltd Molding process and molds made by the process
KR100893423B1 (en) 2004-07-02 2009-04-17 신토고교 가부시키가이샤 Molding process and molds made by the process

Similar Documents

Publication Publication Date Title
JP5429516B2 (en) Furan resin composition for mold production and use thereof
JP2831794B2 (en) Method of manufacturing sand mold for castings
JPH11104785A (en) Mold forming method
US5405881A (en) Ester cured no-bake foundry binder systems
JPH11129054A (en) Component for making mold and mold manufacture
JP2018086661A (en) Binding material for cast, binder-coated refractory and manufacturing method for the same, cast manufacturing method, and casting method
JP2000000632A (en) Molding method
JPH11138234A (en) Composition for forming mold and method for forming mold
JPS62282743A (en) Phenol formaldehyde resin binder
JPH11267789A (en) Composition for forming mold and forming method of mold using this composition
JP6216637B2 (en) Self-hardening mold manufacturing method, mold binder kit, and mold composition
JPH10146643A (en) Molding composition for mold and molding method for mold
JP5951227B2 (en) Mold manufacturing method
JPH11207432A (en) Molding composition for mold and molding method for mold
JPS62127140A (en) Resin coated sand for shell mold
JP2000000630A (en) Method for molding mold
JPH11244991A (en) Manufacture of resin coated sand
JP2002011544A (en) Composition for molding sweeping mold
JP3161563B2 (en) Mold production method
JP3324718B2 (en) Binder-curing agent kit for mold production
JPH09276984A (en) Manufacture of resin coating sand
JP3464975B2 (en) Binder composition for shaving mold
JP2002102999A (en) Resin coated sand for shell mold
JP2542144B2 (en) Binder composition for organic ester-curable foundry sand and method for producing mold using the same
JP2983380B2 (en) Binder