JPH11207369A - Ozone injection controlling method - Google Patents

Ozone injection controlling method

Info

Publication number
JPH11207369A
JPH11207369A JP1219198A JP1219198A JPH11207369A JP H11207369 A JPH11207369 A JP H11207369A JP 1219198 A JP1219198 A JP 1219198A JP 1219198 A JP1219198 A JP 1219198A JP H11207369 A JPH11207369 A JP H11207369A
Authority
JP
Japan
Prior art keywords
ozone
water
injection
treated
ozone concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1219198A
Other languages
Japanese (ja)
Inventor
Tetsufumi Watanabe
哲文 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1219198A priority Critical patent/JPH11207369A/en
Publication of JPH11207369A publication Critical patent/JPH11207369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish an optimum ozone injection controlling method injecting a desired ozone by grasping the removing effect of an objective material to be removed by an ozone treatment. SOLUTION: In the ozone injection treatment so that an ozone treated water 3 is obtained by treating a water 1 to be treated with an injected ozone concn. controlling device 7 at an ozone contract pond 2, the UV absorbance of the water 1 to be treated is measured with a UV meter 4, also the dissolved ozone concn. of the ozone treated water 3 is measured with a DO3 meter 5 provided with a UV absorbance measuring function, the feedback controlling of the injected ozone concn. controlling device 7 is executed by an arithmetic processor 8 so that the UV residual ratio of the ozone treated water 3 to the UV value of the water 1 to be treated is constant and the ozone injection controlling method is made as a basic method so that gaseous ozone is injected into the ozone contact pond 2 based on the obtained ozone concn. A UV residual ratio setting function, a THMFP residual ratio setting function, a KMnO4 consumption setting function and the upper limit setting function of the dissolved ozone concn. DO3 are provided at the arithmetic processor 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は上水及び下水の高度
浄水処理において、紫外線吸光度計と紫外線吸光度測定
機能付き溶存オゾン濃度計を用いたオゾン注入制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone injection control method using an ultraviolet absorbance meter and a dissolved ozone concentration meter with an ultraviolet absorbance measurement function in advanced water and sewage water purification treatment.

【0002】[0002]

【従来の技術】河川などから取水した原水を浄化するに
は、凝集沈澱池での凝集剤の注入,混合、撹拌及び滞留
処理により懸濁物を凝集して沈澱,分離する。このプロ
セスでは殺藻処理や鉄,マンガンなどの色度成分の除去
を目的とした塩素処理が組み込まれている。しかし近時
の大都市近郊においては、河川の汚濁が著しいため、ア
ンモニアや発ガン性物質のトリハロメタンの前駆物質で
あるフミン質を含む色度成分の含有率が高く、塩素処理
により塩素とアンモニアが反応してクロラミンを生成
し、必要以上の塩素を消費してしまう結果、塩素注入率
が高くなってTHMが増大するという問題がある。
2. Description of the Related Art In order to purify raw water taken from a river or the like, a suspension is aggregated and precipitated and separated by a coagulant pouring, mixing, stirring and retaining treatment in a coagulation sedimentation tank. This process incorporates algal killing and chlorination to remove chromatic components such as iron and manganese. However, in recent years, rivers are very polluted in the suburbs of large cities, and the content of chromaticity components including ammonia and humic substances, which are precursors of the carcinogen trihalomethane, is high. As a result of producing chloramine by reaction and consuming more chlorine than necessary, there is a problem that a chlorine injection rate is increased and THM is increased.

【0003】近年上述した物質の除去を目的として高度
浄水処理システムを浄水プロセスに組み込む方式が行わ
れるようになってきた。この高度浄水処理方法には、オ
ゾン処理や生物活性炭処理があり、例えば塩素処理の代
替としてオゾン接触池によりオゾン処理を行い、更に活
性炭処理もしくは生物濾過処理により色度成分などを除
去し、砂濾過池等で濾過した後に塩素処理を行い、浄水
池に送水する。特に生物活性炭処理の前にオゾン処理を
行うことにより、負荷変動に対する許容度や活性炭の寿
命の向上をはかることができる。
In recent years, a method of incorporating an advanced water purification system into a water purification process has been used for the purpose of removing the above-mentioned substances. This advanced water treatment method includes ozone treatment and biological activated carbon treatment.For example, ozone treatment is performed by an ozone contact pond as an alternative to chlorination treatment, and chromaticity components are removed by activated carbon treatment or biological filtration treatment. After filtering in a pond etc., chlorination is performed and water is sent to a water purification pond. In particular, by performing the ozone treatment before the biological activated carbon treatment, it is possible to improve the tolerance to load fluctuation and the life of the activated carbon.

【0004】オゾン処理の目的として、かび臭などの臭
気物質とか、フミン質などからなる色度成分の分解と除
去、有機塩素化合物の低減、鉄とかマンガンの酸化、有
機物の分解が挙げられるが、特に下水高度浄水処理の場
合にはCOD除去も目的の1つとなっている。
[0004] The purpose of the ozone treatment is to decompose and remove odorous substances such as musty odor and the like and chromatic components composed of humic substances, to reduce organic chlorine compounds, to oxidize iron and manganese, and to decompose organic substances. In the case of advanced sewage treatment, COD removal is also one of the objectives.

【0005】オゾン処理の制御方法には、オゾン注入
率一定制御、排オゾン濃度一定制御、溶存オゾン濃
度一定制御、UV値(紫外線吸光度)制御等が知られ
ているが、実際に行われているのは上記のであ
る。しかしの方法は、処理水質を直接把握して行
う方法ではなく、オゾン指標から間接的に処理効果を把
握して行う制御となっている。
[0005] Known methods of controlling ozone treatment include constant control of ozone injection rate, constant control of exhausted ozone concentration, constant control of dissolved ozone concentration, and control of UV value (ultraviolet absorbance). This is described above. However, this method is not a method of directly grasping the quality of treated water, but a control of grasping the treatment effect indirectly from the ozone index.

【0006】[0006]

【発明が解決しようとする課題】現在、地球温暖化を防
止する上で省エネルギーとCO2ガス放出量の削減が求
められており、オゾン処理においても目的とする処理効
果を維持し、且つ電力消費量をできる限り節約した方法
を採用する手段が希求されている。そのためには、オゾ
ン処理による除去目的物質の除去効果を把握してオゾン
注入量を制御する方法、つまり最適なオゾン量だけを注
入する「最適オゾン量注入制御」を確立することが必要
であるものと思慮される。
At present, energy saving and reduction of CO 2 gas emission are required in order to prevent global warming. In ozone treatment, a desired treatment effect is maintained and power consumption is reduced. There is a need for a means to adopt a method that saves as much as possible. For that purpose, it is necessary to establish a method of controlling the amount of ozone injection by grasping the removal effect of the target substance to be removed by ozone treatment, that is, "optimal ozone amount injection control" that injects only the optimum amount of ozone. It is considered.

【0007】このような考え方に立つと、前記のオゾ
ン注入率一定制御はオゾン処理効果が完全に把握できな
いため、最適オゾン量注入制御を行うことができない。
又、の排オゾン濃度一定制御との溶存オゾン濃度一
定制御は、オゾン処理効果を処理水質から直接把握して
おらず、正確な意味での最適オゾン量注入制御は行うこ
とができない。
Based on such a concept, the above-described constant control of the ozone injection rate cannot completely grasp the ozone treatment effect, so that the optimum ozone injection control cannot be performed.
In the control of the concentration of the dissolved ozone with the control of the concentration of the exhausted ozone, the effect of the ozone treatment is not directly grasped from the quality of the treated water.

【0008】従って現在行われている前記の方法
では、オゾンの過剰注入によるオゾンと電力の無駄が生
じることが懸念され、逆にオゾン注入量不足により目標
とするオゾン処理効果が得られないケースも考えられ
る。
[0008] Therefore, in the above-mentioned method, there is a concern that excessive injection of ozone may cause waste of ozone and electric power, and conversely, a target ozone treatment effect may not be obtained due to insufficient ozone injection. Conceivable.

【0009】他方において、分析技術の向上に伴って従
来測定することができなかった物質の測定が可能とな
り、その1つに臭素酸イオンがある。特に臭素酸カリウ
ムは発癌性が認められており、WHO(世界保健機関)
の飲料水ガイドラインによる臭素酸イオン濃度は25
(μg/l)以下が提案されている。
On the other hand, with the improvement of analysis technology, it has become possible to measure substances which could not be measured conventionally, and one of them is bromate ion. In particular, potassium bromate has been shown to be carcinogenic, and the WHO (World Health Organization)
Bromate ion concentration according to the drinking water guidelines of
(Μg / l) The following have been proposed.

【0010】臭素酸イオンは臭化物イオンが存在する水
をオゾン処理すると容易に生成する。そのため、浄水処
理では臭素酸イオンの抑制がオゾン処理を行う上で非常
に重要な課題となっている。
[0010] Bromate ions are easily formed by ozonating water in which bromide ions are present. Therefore, in water purification treatment, suppression of bromate ions is a very important issue in performing ozone treatment.

【0011】オゾン処理における臭素酸イオン生成の抑
制法として種々の提案があるが、結局オゾン注入率とか
オゾンとの接触時間の低減、適切なCT値(=C・T,
C:溶存オゾン濃度,T:接触時間)での運転制御が通
常の手段である。
Although various proposals have been made as a method for suppressing the formation of bromate ions in the ozone treatment, after all, the ozone injection rate or the contact time with ozone is reduced, and an appropriate CT value (= CT,
Operation control at (C: dissolved ozone concentration, T: contact time) is a usual means.

【0012】オゾン処理における臭素酸イオン抑制の観
点からすると、前記の溶存オゾン濃度一定制御におい
て、溶存オゾン濃度Cと接触時間Tを用いたCT制御が
有効であるものと考えられる。しかしこの制御でも本来
の目的であるオゾン処理効果が把握されていないので、
このオゾン処理効果を高めつつ、しかも臭素酸イオン生
成を抑制するとともに電力消費量を最小限とした「最適
オゾン量注入制御」方法を確立する必要がある。
From the viewpoint of suppressing the bromate ion in the ozone treatment, it is considered that CT control using the dissolved ozone concentration C and the contact time T is effective in the above-mentioned constant control of the dissolved ozone concentration. However, even with this control, the original purpose of ozone treatment is not understood,
It is necessary to establish an "optimal ozone injection control" method that enhances the ozone treatment effect, suppresses the production of bromate ions, and minimizes power consumption.

【0013】本発明は上記の問題点に鑑み、オゾン処理
による除去目的物質の除去効果を把握して必要とするオ
ゾンを注入する「最適オゾン量注入制御」を確立するこ
とを目的とするものである。
The present invention has been made in view of the above problems, and has as its object to establish "optimal ozone amount injection control" for injecting required ozone by grasping the removal effect of a target substance to be removed by ozone treatment. is there.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1により、被処理水をオゾン接触
池で注入オゾン濃度制御装置によるオゾン処理を行うこ
とにより、水中の溶存性の微量有機物質を除去してオゾ
ン処理水を得るようにしたオゾン注入処理において、被
処理水の紫外線吸光度をUV計により測定するととも
に、オゾン処理水の溶存オゾン濃度を紫外線吸光度測定
機能付きDO3計により測定し、演算装置により被処理
水のUV値に対するオゾン処理水のUV残存率が一定に
なるように注入オゾン濃度制御装置のフィードバック制
御を行い、求めたオゾン濃度に基づいてオゾン接触池内
にオゾンガスを注入するようにしたオゾン注入制御方法
を提供する。
According to the present invention, in order to achieve the above object, according to the present invention, the water to be treated is dissolved in water by injecting the water to be treated into an ozone contact pond by an ozone concentration control device. Injection treatment to remove ozone-treated water by removing trace organic substances in water, measure the UV absorbance of the water to be treated with a UV meter and measure the dissolved ozone concentration of the ozonated water with a UV absorbance measurement function DO Measured by three meters, the feedback control of the injection ozone concentration control device is performed by the arithmetic unit so that the UV residual ratio of the ozone treated water to the UV value of the water to be treated becomes constant, and the inside of the ozone contact pond is determined based on the obtained ozone concentration. To provide an ozone injection control method for injecting ozone gas into the device.

【0015】上記演算装置に、UV残存率設定機能と溶
存オゾン濃度DO3の上限設定機能を設けてある。
The arithmetic unit is provided with a function for setting the residual UV ratio and a function for setting the upper limit of the dissolved ozone concentration DO 3 .

【0016】請求項3により、オゾン処理水の溶存オゾ
ン濃度を紫外線吸光度測定機能付きDO3計により測定
し、演算装置によりTHMFPが除去されるように前記
注入オゾン濃度制御装置のフィードバック制御を行い、
求めたオゾン濃度に基づいてオゾン接触池内にオゾンガ
スを注入するオゾン注入制御方法を提供する。
According to a third aspect of the present invention, the dissolved ozone concentration of the ozonized water is measured by a DO 3 meter having an ultraviolet absorbance measuring function, and a feedback control of the injected ozone concentration control device is performed by an arithmetic unit so that THMFP is removed.
An ozone injection control method for injecting ozone gas into an ozone contact pond based on the obtained ozone concentration is provided.

【0017】上記演算装置に、トリハロメタン生成能と
DO3の上限設定機能を設けてあり、実施に際してオゾ
ン処理によるTHMFP目標除去率設定値を決定し、被
処理水とオゾン処理水のTHMF推定値を求めてTHM
FP除去率を算出し、THMFP除去率が目標除去率に
なるように注入オゾン濃度制御装置のフィードバック制
御を行う。
The arithmetic unit is provided with an upper limit setting function for trihalomethane generation capability and DO 3 , which determines a THMFP target removal rate set value by ozone treatment at the time of execution, and calculates a THMF estimated value of the water to be treated and the ozonated water. THM in search
The FP removal rate is calculated, and the feedback control of the injected ozone concentration control device is performed so that the THMFP removal rate becomes the target removal rate.

【0018】更に請求項6により、オゾン処理水の溶存
オゾン濃度を紫外線吸光度測定機能付きDO3計により
測定し、演算装置により過マンガン酸カリウム(KMn
4)が除去されるように前記注入オゾン濃度制御装置
のフィードバック制御を行い、求めたオゾン濃度に基づ
いてオゾン接触池内にオゾンガスを注入するようにした
オゾン注入制御方法を提供する。
According to a sixth aspect of the present invention, the dissolved ozone concentration of the ozonized water is measured by a DO 3 meter equipped with an ultraviolet absorbance measuring function, and potassium permanganate (KMn) is calculated by an arithmetic unit.
An ozone injection control method is provided in which feedback control of the injection ozone concentration control device is performed so that O 4 ) is removed, and ozone gas is injected into an ozone contact pond based on the obtained ozone concentration.

【0019】上記演算装置に、KMnO4消費量とDO3
の上限設定機能を設けてあり、実施に際してオゾン処理
によるKMnO4目標除去率設定値を決定し、被処理水
とオゾン処理水のKMnO4消費量推定値を求めてKM
nO4除去率を算出し、KMnO4除去率が目標除去率に
なるように注入オゾン濃度制御装置のフィードバック制
御を行う。
In the above-mentioned arithmetic unit, KMnO 4 consumption and DO 3
The upper limit setting function is provided to determine the KMnO 4 target removal rate set value by ozone treatment at the time of implementation, and to obtain the KMnO 4 consumption estimated value of the water to be treated and the ozonated water to obtain KMnO 4.
The nO 4 removal rate is calculated, and feedback control of the injected ozone concentration control device is performed so that the KMnO 4 removal rate becomes the target removal rate.

【0020】かかるオゾン注入制御方法によれば、被処
理水用のUV計と、オゾン処理水用の紫外線吸光度測定
機能付きDO3計を用いて、被処理水のUV値に対する
オゾン処理水のUV残存率が一定になるように注入オゾ
ン濃度のフィードバック制御を行うことにより、UV残
存率からかび臭とか農薬等の難分析性の除去率が高めら
れ、且つ被処理水とオゾン処理水のTHMFP,KMn
4消費量の連続的推定と除去作用が達成される。
[0020] According to the ozone injection control method, and a UV meter for the treated water, using a UV absorbance measurement function DO 3 meter for ozone treatment of water, the ozonated water to UV value of the water to be treated UV By performing feedback control of the injected ozone concentration so that the residual rate becomes constant, the removal rate of moldy odor and difficult-to-analyze such as pesticides from the UV residual rate is increased, and THMPF, KMn and the water to be treated and the ozonated water are removed.
A continuous estimation and elimination of O 4 consumption is achieved.

【0021】上記演算装置に、UV残存率設定機能,T
HMFP残存率設定機能もしくはKMnO4消費量設定
機能と溶存オゾン濃度DO3の上限設定機能を設けたこ
とにより、被処理水のUV値が上昇しても設定されたU
V残存率までUV値が低下しない場合に、オゾン過剰注
入の防止と後段への活性炭処理などに悪影響を及ぼさな
い制御が行われ、且つDO3の上限を設定したことによ
り、臭素酸イオン生成を抑制することができる。
The arithmetic unit has a UV residual ratio setting function, T
By providing the HMFP residual rate setting function or the KMnO 4 consumption setting function and the dissolved ozone concentration DO 3 upper limit setting function, the U set even if the UV value of the water to be treated increases.
When the UV value does not decrease to the V residual ratio, control is performed so as not to adversely affect the ozone excess injection and the activated carbon treatment to the subsequent stage, and by setting the upper limit of DO 3 , bromate ion generation is reduced. Can be suppressed.

【0022】[0022]

【発明の実施の形態】以下、図面に基づいて本発明にか
かるオゾン注入制御方法の具体的な各種実施形態例を説
明する。以下に記す各種実施形態例では、紫外線吸光度
計と紫外線吸光度測定機能付き溶存オゾン濃度計を用い
て、オゾン発生器によるオゾン注入を制御する方法を基
本手段としている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, various specific embodiments of an ozone injection control method according to the present invention will be described with reference to the drawings. In the various embodiments described below, the basic means is a method of controlling ozone injection by an ozone generator using an ultraviolet absorbance meter and a dissolved ozone concentration meter with an ultraviolet absorbance measurement function.

【0023】図1は本発明の第1実施形態例を示す概要
図であり、1は被処理水、2はオゾン接触池、3はオゾ
ン処理水、4は紫外線吸光度計(以下UV計4と略
称)、5は溶存オゾン濃度計(以下DO3計5と略
称)、6はオゾン発生器、7は注入オゾン濃度制御装
置、8は演算装置である。DO3計5は紫外線吸光度測
定機能が付与されている。又、演算装置8には、UV残
存率設定機能UV Co/Cisetと、溶存オゾン濃度DO3
上限設定機能が設けられている。
FIG. 1 is a schematic diagram showing a first embodiment of the present invention, wherein 1 is water to be treated, 2 is an ozone contact pond, 3 is ozonized water, 4 is an ultraviolet absorbance meter (hereinafter referred to as UV meter 4). 5 is a dissolved ozone concentration meter (hereinafter abbreviated as DO 3 meter 5), 6 is an ozone generator, 7 is an injection ozone concentration control device, and 8 is a calculation device. DO 3 meter 5 is provided with an ultraviolet absorbance measurement function. Further, the arithmetic unit 8 is provided with a UV residual ratio setting function UV Co / Ciset and an upper limit setting function for the dissolved ozone concentration DO 3 .

【0024】本例の基本的動作は以下の通りである。通
常の動作態様によれば、被処理水1がオゾン接触池2に
流入して、オゾン発生器6で得られるオゾンガスが注入
されて所定のオゾン処理が行われ、オゾン処理水3とし
て流出する。この過程で先ず被処理水1の紫外線吸光度
(UV値)をUV計4によって測定し、演算装置8に入
力する。更にオゾン処理水3の溶存オゾン濃度をDO3
計5により測定し、同様に演算装置8に入力する。
The basic operation of this embodiment is as follows. According to the normal operation mode, the water to be treated 1 flows into the ozone contact pond 2, the ozone gas obtained by the ozone generator 6 is injected, a predetermined ozone treatment is performed, and the treated water 1 flows out as ozonized water 3. In this process, first, the ultraviolet absorbance (UV value) of the water 1 to be treated is measured by the UV meter 4 and input to the arithmetic unit 8. Further, the dissolved ozone concentration of the ozonized water 3 is set to DO 3
It is measured by a total of 5, and is similarly input to the arithmetic unit 8.

【0025】演算装置8はオゾン処理水3のDO3計5
の測定値からUV値を求め、被処理水1のUV値に対す
るオゾン処理水3のUV残存率が一定になるように注入
オゾン濃度制御装置7のフィードバック制御を行い、求
めたオゾン濃度に基づいてオゾン発生器6からオゾン接
触池2内にオゾンガスを注入する。
The arithmetic unit 8 has a DO 3 total of 5 for the ozonized water 3.
The UV value is obtained from the measured value, and the injection ozone concentration control device 7 performs feedback control so that the UV residual ratio of the ozonized water 3 with respect to the UV value of the water 1 to be treated becomes constant, based on the obtained ozone concentration. Ozone gas is injected from the ozone generator 6 into the ozone contact pond 2.

【0026】DO3計5は、可視光吸光度に濁質補正機
能を有しており、濁質が多い試料に対しては通常のUV
値よりも濁質補正したUV値を用いる方がよい。これを
簡単に説明すると、紫外光253.7nmの吸光度(E
253.7)と浮遊物質とか濁質と相関の高い可視光5
46nmの吸光光度(E546)の各信号を、吸光光度
法の欠点である「濁質に弱い」点を克服するために、検
出部ではE253.7からE546を差し引くことによ
り、濁質によるE253.7の上乗せを補正する。これ
により試料が適度の濁質を含んでいても測定が可能とな
る。又、UVセルによるUV及び可視光吸光度(VI
S)の測定原理は、本願出願人が先に提案した特願平8
−103071号に詳細に記載されている。
The DO 3 meter 5 has a function of correcting the turbidity of the visible light absorbance.
It is better to use the turbidity-corrected UV value than the value. Briefly explaining this, the absorbance at 253.7 nm of ultraviolet light (E
253.7) and visible light 5 highly correlated with suspended solids and turbidity
In order to overcome the "weak to turbidity" point, which is a drawback of the absorptiometry method, the signal of the absorbance at 46 nm (E546) is used to subtract E546 from E253.7 in the detection unit to obtain E253. 7 is added. This enables measurement even if the sample contains a moderate turbidity. UV and visible light absorbance (VI
The measurement principle of S) is described in Japanese Patent Application No.
No. -103071.

【0027】第1実施形態例の場合、被処理水1のオゾ
ン処理効果をオゾン処理水3の溶存オゾン濃度から求め
たUV値により評価して、被処理水1のUV値に対する
オゾン処理水3のUV残存率が一定になるようにフィー
ドバック制御を行うことが運転上での大きな特徴となっ
ている。
In the case of the first embodiment, the ozone treatment effect of the water to be treated 1 is evaluated by the UV value obtained from the dissolved ozone concentration of the ozonated water 3, and the ozone treatment water 3 is compared with the UV value of the water 1 to be treated. It is a great feature in operation that feedback control is performed so that the UV residual ratio of the LED becomes constant.

【0028】ここでオゾン処理対象物質例として、かび
臭物質とか農薬の処理に着目すると、一般にこれらのか
び臭物質とか農薬自体の分析は長時間を要し、オンライ
ンでの測定もできないのが実状であって、分析によって
かび臭物質とか農薬が検出された時には、既にオゾン処
理水3は次段の浄水処理工程に移行しており、未処理の
まま水道水などに混入されてしまう惧れがある。
Here, focusing on the treatment of musty odor substances and pesticides as examples of ozone treatment target substances, the analysis of these musty odor substances and pesticides themselves generally takes a long time, and it cannot be measured online. Therefore, when the musty odor substance or the pesticide is detected by the analysis, the ozone-treated water 3 has already been transferred to the next-stage water purification treatment step, and there is a possibility that the ozone-treated water 3 may be mixed into the tap water without treatment.

【0029】これに対して第1実施形態例の場合、被処
理水1のUV値に対するオゾン処理水3のUV残存率が
一定のレベルになるようにオゾンの注入制御を行うこと
により、かび臭物質とか農薬をほぼ完全に除去すること
ができる。図2はオゾン接触時間(分)とかび臭物質,
農薬等の残存率の関係を示すグラフであり、かび臭残存
率設定値をcとし、農薬1残存率設定値をdとした場
合、UV残存率がaになるまでオゾン処理すると、かび
臭物質は設定残存率cまで除去されている。又、UV残
存率がbになるまでオゾン処理することによって農薬1
は設定残存率dまで除去することができる。従ってかび
臭物質と農薬の目標残存率、即ち除去率を設定して、そ
れに見合うUV残存率を求めてオゾン処理を行うことに
よって所望の除去結果が得られる。
On the other hand, in the case of the first embodiment, injection control of ozone is performed so that the UV residual ratio of the ozone-treated water 3 with respect to the UV value of the water 1 to be treated becomes a constant level, so that the musty odor substance is controlled. Or pesticides can be almost completely removed. Figure 2 shows ozone contact time (min) and musty odor substances,
It is a graph which shows the relationship of the residual rate of a pesticide etc., when the mold odor residual rate set value is set to c and the pesticide 1 residual rate set value is set to d, when the ozone treatment is performed until the UV residual rate becomes a, the musty odor substance is set. It has been removed up to the residual ratio c. Also, the pesticide 1 can be treated by ozone treatment until the UV residual ratio becomes b.
Can be removed up to the set residual rate d. Therefore, a desired removal result can be obtained by setting a target residual rate of the musty odor substance and the pesticide, that is, a removal rate, and obtaining an appropriate UV residual rate and performing ozone treatment.

【0030】演算装置8にUV残存率設定機能UV Co/
Cisetと、DO3の上限設定機能を設けた理由は、被処理
水1のUV値が上昇した際に、設定されたUV残存率ま
でUV値が低下しない場合には、オゾン過剰注入の防止
と後段への活性炭処理などに悪影響を及ぼさないように
するためと、臭素酸イオン生成を抑制すべくDO3の上
限を維持するためである。
The arithmetic unit 8 has a UV residual ratio setting function UV Co /
The reason why the upper limit setting function of Ciset and DO 3 is provided is that, when the UV value of the water 1 to be treated rises and the UV value does not decrease to the set UV residual ratio, it is necessary to prevent excessive ozone injection. This is for preventing an adverse effect on the activated carbon treatment and the like in the subsequent stage, and for maintaining the upper limit of DO 3 in order to suppress the formation of bromate ions.

【0031】図3はCT値(mg/l・分,C:溶存オ
ゾン濃度,T:接触時間)と臭素酸イオン生成量(mg
/l)の関係を示すグラフであり、臭素酸イオン濃度上
限設定値をaとすると、臭素酸イオン濃度をa以下にす
るためには、CT値をb以下にすれば良い。ここでオゾ
ン接触池1の滞留時間をt(分)とすると、DO3上限
設定はb/t(mg/l)で求められる。そこで本制御
を実施するオゾン接触池別に制御設定値を作成すること
により、臭素酸イオンの生成を抑制する作用が達成され
る。
FIG. 3 shows the CT value (mg / l · min, C: dissolved ozone concentration, T: contact time) and the amount of bromate ion generated (mg).
/ L) is a graph showing the relationship, where assuming that the bromate ion concentration upper limit set value is a, the CT value may be set to b or less in order to keep the bromate ion concentration at or below a. Here, assuming that the residence time of the ozone contact pond 1 is t (minutes), the DO 3 upper limit setting can be obtained by b / t (mg / l). Therefore, by creating a control set value for each ozone contact pond in which the present control is performed, an action of suppressing the generation of bromate ions is achieved.

【0032】図4は本発明の第2実施形態例を示す概要
図であり、基本的な構成は前記第1実施形態例と一致し
ているため、同一の構成部分に同一の符号を付して表示
してある。1は被処理水、2はオゾン接触池、3はオゾ
ン処理水、5はDO3計、6はオゾン発生器、7は注入
オゾン濃度制御装置、8は演算装置である。演算装置8
にはトリハロメタン生成能(THMFP)とDO3の上
限設定機能が設けられている。
FIG. 4 is a schematic diagram showing a second embodiment of the present invention. Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals. Is displayed. 1 water to be treated, 2 ozone contact basin, 3 ozonated water, 5 DO 3 meters, 6 ozone generator, 7 is injected ozone concentration control device, 8 is a computing device. Arithmetic unit 8
Is provided with a trihalomethane generating ability (THMFP) and an upper limit setting function of DO 3 .

【0033】本例の基本的動作は以下の通りである。被
処理水1がオゾン接触池2に流入して、オゾン発生器6
で得られるオゾンガスが注入されて所定のオゾン処理が
行われ、オゾン処理水3として流出する。このオゾン処
理水3の溶存オゾン濃度をDO3計5により測定し、演
算装置8に入力する。
The basic operation of this embodiment is as follows. The water 1 to be treated flows into the ozone contact pond 2 and the ozone generator 6
The ozone gas obtained in step (1) is injected to perform predetermined ozone treatment, and flows out as ozonized water 3. The dissolved ozone concentration of the ozonized water 3 is measured by the DO 3 meter 5 and input to the arithmetic unit 8.

【0034】演算装置8はオゾン処理水3の溶存オゾン
濃度からUV値を求め、オゾン処理による除去物質の1
つであるTHMFPが除去されるように注入オゾン濃度
制御装置7のフィードバック制御を行い、求めたオゾン
濃度に基づいてオゾン発生器6からオゾン接触池2内に
オゾンガスを注入する。
The arithmetic unit 8 obtains a UV value from the dissolved ozone concentration of the ozonated water 3, and calculates one of the substances removed by the ozone treatment.
Feedback control of the injection ozone concentration control device 7 is performed so that one of the THMFPs is removed, and ozone gas is injected into the ozone contact pond 2 from the ozone generator 6 based on the obtained ozone concentration.

【0035】一般にUV値とTHMFPは相関が高く、 THMFP=a・UV+b ・・・・・・・・・・・・・・・・・・・・(1) と表わすことができる。ここでa,bは係数である。
(1)式を用いてオゾン処理水3のUV値からTHMF
Pの存在量を高精度に推定することができる。
Generally, the UV value and THMFP have a high correlation, and can be expressed as THMFP = a.UV + b (1). Here, a and b are coefficients.
THMF is calculated from the UV value of the ozonized water 3 using the equation (1).
The abundance of P can be estimated with high accuracy.

【0036】本例では先ずTHMFP設定値(THMF
Pset)を決定する。次に下記の(2)式により、TH
MFPsetに見合うオゾン処理水3のUV設定値(UVs
et)を求める。
In this example, first, the THMFP set value (THMF
Pset). Next, TH is calculated by the following equation (2).
UV set value of the ozonated water 3 (UVs
et).

【0037】 UVset=(THMFPset−b)/a ・・・・・・・・・・(2) そして上記UVsetが一定になるように注入オゾン濃度
制御装置7のフィードバック制御を行う。
UVset = (THMFPset−b) / a (2) Then, the feedback control of the injection ozone concentration control device 7 is performed so that the UVset is constant.

【0038】図5の制御フロー図を用いてより具体的な
制御例を説明すると、UV値とTHMFPの相関式(Y
=aX+b)を作成する。ステップ101によりオゾン処
理水3のUV値とDO3を測定し、ステップ102でUV値
とTHMFPの相関試験により係数a,bを決定する。
そしてステップ103で前記式(1)を用いてオゾン処理
水3中のTHMFPを推定する。
A more specific control example will be described with reference to the control flow chart of FIG. 5. The correlation between the UV value and the THMFP (Y
= AX + b). In step 101, the UV value and DO 3 of the ozonized water 3 are measured, and in step 102, coefficients a and b are determined by a correlation test between the UV value and THMFP.
Then, in step 103, the THMFP in the ozonized water 3 is estimated using the above equation (1).

【0039】ステップ104では予めオゾン処理水3のT
HMFP設定とDO3の上限設定を行い、ステップ105で
THMFPの設定値から前記(2)式によりUVsetが
一定になるように注入オゾン濃度を演算し、注入オゾン
濃度制御装置7のフィードバック制御を実施する。
In step 104, the T of the ozonized water 3 is determined in advance.
HMFP setting and DO 3 upper limit setting are performed. In step 105, the injection ozone concentration is calculated from the THMFP setting value by the above equation (2) so that UVset is constant, and the feedback control of the injection ozone concentration control device 7 is performed. I do.

【0040】演算装置8にトリハロメタン生成能(TH
MFP)とDO3上限設定機能を設けた理由は、第1実
施形態例と同様に被処理水1のUV値が上昇した際に、
設定されたUV残存率までUV値が低下しない場合に
は、オゾン過剰注入の防止と後段への活性炭処理などに
悪影響を及ぼさないためと、臭素酸イオン生成を抑制す
べくDO3の上限を維持するためである。臭素酸イオン
生成を抑制するための具体的方法は前記の図3により説
明した方法を用いる。
The arithmetic unit 8 has a trihalomethane forming ability (TH
The reason why the MFP 3 ) and the DO 3 upper limit setting function are provided is that when the UV value of the water 1 to be treated rises as in the first embodiment,
If the UV value does not decrease to the set UV residual ratio, the upper limit of DO 3 is maintained to prevent bromine ion generation, because it does not adversely affect the ozone excess injection and the activated carbon treatment in the subsequent stage. To do that. As a specific method for suppressing the formation of bromate ions, the method described with reference to FIG. 3 is used.

【0041】図6は本発明の第3実施形態例を示す概要
図であり、基本的な構成は前記第1実施形態例と一致し
ているため、同一の構成部分に同一の符号を付して表示
してある。1は被処理水、2はオゾン接触池、3はオゾ
ン処理水、4はUV計、5はDO3計、6はオゾン発生
器、7は注入オゾン濃度制御装置、8は演算装置であ
る。この演算装置8には、THMFP残存率設定、溶存
オゾン濃度DO3の上限設定機能が設けられている。
FIG. 6 is a schematic diagram showing a third embodiment of the present invention. Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals. Is displayed. 1 water to be treated, 2 ozone contact basin, 3 ozonated water, 4 UV meter, 5 DO 3 meters, 6 ozone generator, 7 is injected ozone concentration control device, 8 is a computing device. The arithmetic unit 8 is provided with a THMFP residual ratio setting function and an upper limit setting function of the dissolved ozone concentration DO 3 .

【0042】本例は被処理水1のTHMFP変動に対し
ても安定したTHMFP除去率が得られることが特徴と
なっている。通常オゾン処理は有機物の質的変化を伴う
ため、UV値とTHMFPの関係はオゾン処理前後で異
なることが考えられるため、オゾン処理の前後に分けて
UV値とTHMFPの相関式を作成する。
The present embodiment is characterized in that a stable THMFP removal rate can be obtained even with respect to the THMFP fluctuation of the water 1 to be treated. Normally, ozone treatment involves a qualitative change in organic matter, so the relationship between UV value and THMFP may differ before and after ozone treatment. Therefore, a correlation equation between UV value and THMFP is created separately before and after ozone treatment.

【0043】 オゾン処理前:THMFP1=a1・UV1+b1 ・・・・・・・・・・・(3) オゾン処理後:THMFP2=a2・UV2+b2 ・・・・・・・・・・・(4) THMFP除去率=1−THMFP2/THMFP1 ・・・・・・・・・(5) ここでa1,a2,b1,b2は係数であり、THMF
P1とTHMFP2は被処理水1とオゾン処理水3のT
HMFP推定値である。
Before ozone treatment: THMFP1 = a1 · UV1 + b1 (3) After ozone treatment: THMFP2 = a2 · UV2 + b2 (4) THMFP Removal rate = 1−THMFP2 / THMFP1 (5) where a1, a2, b1, and b2 are coefficients and THMF
P1 and THMFP2 are the T of the water 1 to be treated and the ozonated water 3
This is the HMFP estimation value.

【0044】第3実施形態例の基本的動作として、被処
理水1がオゾン接触池2に流入し、オゾン発生器6で得
られるオゾンガスが注入されて所定のオゾン処理が行わ
れ、オゾン処理水3として流出する。この過程で被処理
水1のUV値をUV計4によって測定し、演算装置8に
入力する。更にオゾン処理水3の溶存オゾン濃度DO3
をDO3計5により測定し、同様に演算装置8に入力す
る。
As a basic operation of the third embodiment, the water to be treated 1 flows into the ozone contact pond 2 and the ozone gas obtained by the ozone generator 6 is injected to perform a predetermined ozone treatment. Outflow as 3. In this process, the UV value of the water to be treated 1 is measured by the UV meter 4 and input to the arithmetic unit 8. Furthermore, the dissolved ozone concentration DO 3 of the ozonized water 3
Is measured by the DO 3 meter 5 and input to the arithmetic unit 8 in the same manner.

【0045】演算装置8は、オゾン処理水3の溶存オゾ
ン濃度からUV値を求め、オゾン処理による除去物質の
1つであるTHMFPが除去されるように注入オゾン濃
度制御装置7のフィードバック制御を行い、求めたオゾ
ン濃度に基づいてオゾン発生器6からオゾン接触池2内
にオゾンガスを注入する。
The arithmetic unit 8 obtains a UV value from the dissolved ozone concentration of the ozonated water 3 and performs feedback control of the injected ozone concentration control unit 7 so that THMFP, which is one of the substances removed by the ozone treatment, is removed. Then, ozone gas is injected into the ozone contact pond 2 from the ozone generator 6 based on the obtained ozone concentration.

【0046】本例では、THMFPのオゾン処理による
目標除去率設定値(THMF除去率set)を決定する。
次に式(3)(4)から被処理水1とオゾン処理水3の
THMF推定値であるTHMFP1とTHMFP2を求
めて、式(5)によりTHMFP除去率を算出する。そ
してTHMFP除去率が目標除去率設定値(THMF除
去率set)になるように注入オゾン濃度制御装置7のフ
ィードバック制御を行う。
In this example, a target removal rate set value (THMF removal rate set) by the ozone treatment of the THMFP is determined.
Next, THMF1 and THMFP2, which are THMF estimated values of the to-be-treated water 1 and the ozone-treated water 3, are obtained from Expressions (3) and (4), and the THMFP removal rate is calculated by Expression (5). Then, feedback control of the injected ozone concentration control device 7 is performed so that the THMFP removal rate becomes the target removal rate set value (THMF removal rate set).

【0047】図7の制御フロー図を用いてより具体的な
制御例を説明すると、オゾン処理前のUV値とTHMF
Pの相関式(Y=a1X+b1)とオゾン処理後のUV
値とTHMFPの相関式(Y=a2X+b2)を作成す
る。次にステップ201によりオゾン処理水3のUV値と
DO3及び被処理水1のUV値を測定し、ステップ202で
UV値とTHMFPの相関試験により式(3)(4)の
係数を決定する。そしてステップ203で式(4)を用い
てオゾン処理水3中のTHMFPを推定し、式(3)に
より被処理水1のTHMFPを推定する。
A more specific control example will be described with reference to the control flow chart of FIG. 7. The UV value before ozone treatment and the THMF
Correlation formula of P (Y = a1X + b1) and UV after ozone treatment
A correlation equation (Y = a2X + b2) between the value and the THMFP is created. Next, in step 201, the UV value of the ozone-treated water 3 and the DO 3 and the UV value of the water to be treated 1 are measured, and in step 202, the coefficients of the equations (3) and (4) are determined by a correlation test between the UV value and THMFP. . Then, in step 203, the THMFP in the ozonized water 3 is estimated by using the equation (4), and the THMFP of the water 1 is estimated by the equation (3).

【0048】ステップ204では予めオゾン処理水3のT
HMFP残存率Co/Ciを演算により求め、ステップ205で
THMFP残存率Co/Ci設定とDO3の上限設定を行い、
ステップ206で式(5)のTHMFP除去率が目標除去
率設定値(THMF除去率set)になるように注入オゾ
ン濃度制御装置7のフィードバック制御を実施する。
In step 204, the T of the ozonized water 3 is
The HMFP residual ratio Co / Ci is obtained by calculation, and in step 205, the THMFP residual ratio Co / Ci is set and the upper limit of DO 3 is set.
In step 206, feedback control of the injected ozone concentration control device 7 is performed so that the THMFP removal rate of the equation (5) becomes the target removal rate set value (THMF removal rate set).

【0049】演算装置8にTHMFPの残存率とDO3
の上限設定機能を設けた理由は、被処理水1のUV値が
上昇した際に、設定されたUV残存率までUV値が低下
しない場合にオゾン過剰注入の防止と後段への活性炭処
理などに悪影響を及ぼさないためと、臭素酸イオン生成
を抑制すべくDO3の上限を維持するためである。臭素
酸イオン生成を抑制するための具体的方法は図3により
説明した方法を用いることは第2実施形態例と同一であ
る。
The remaining ratio of THMFP and DO 3
The reason for providing the upper limit setting function is to prevent excessive ozone injection and activate carbon treatment to the subsequent stage when the UV value of the water 1 to be treated rises and the UV value does not decrease to the set UV residual ratio. This is because the upper limit of DO 3 is maintained so as not to have an adverse effect and to suppress the production of bromate ions. The specific method for suppressing the formation of bromate ions uses the method described with reference to FIG. 3, which is the same as in the second embodiment.

【0050】図8は本発明の第4実施形態例を示す概要
図であり、1は被処理水、2はオゾン接触池、3はオゾ
ン処理水、5はDO3計、6はオゾン発生器、7は注入
オゾン濃度制御装置、8は演算装置である。演算装置8
には過マンガン酸カリウム(KMnO4)消費量設定と
DO3の上限設定機能が設けられている。
[0050] Figure 8 is a schematic diagram showing a fourth embodiment of the present invention, 1 is the water to be treated, 2 ozone contact basin, 3 ozonated water, 5 DO 3 meters, 6 ozone generator , 7 is an injection ozone concentration control device, and 8 is an arithmetic device. Arithmetic unit 8
Is provided with a potassium permanganate (KMnO 4 ) consumption setting function and a DO 3 upper limit setting function.

【0051】本例の基本的動作は、前記各例と同様に被
処理水1がオゾン接触池2に流入して、オゾン発生器6
で得られるオゾンガスが注入されて所定のオゾン処理が
行われ、オゾン処理水3として流出する。このオゾン処
理水3の溶存オゾン濃度をDO3計5により測定し、演
算装置8に入力する。
The basic operation of this embodiment is the same as in each of the above embodiments, except that the water 1 to be treated flows into the ozone contact pond 2 and the ozone generator 6
The ozone gas obtained in step (1) is injected to perform predetermined ozone treatment, and flows out as ozonized water 3. The dissolved ozone concentration of the ozonized water 3 is measured by the DO 3 meter 5 and input to the arithmetic unit 8.

【0052】演算装置8はオゾン処理水3の溶存オゾン
濃度からUV値を求め、オゾン処理による除去物質の1
つであるKMnO4が除去されるように注入オゾン濃度
制御装置7のフィードバック制御を行い、求めたオゾン
濃度に基づいてオゾン発生器6からオゾン接触池2内に
オゾンガスを注入する。
The arithmetic unit 8 obtains a UV value from the dissolved ozone concentration of the ozonated water 3, and calculates 1
The ozone gas is injected into the ozone contact pond 2 from the ozone generator 6 based on the obtained ozone concentration based on the feedback control of the injection ozone concentration control device 7 so that KMnO 4 is removed.

【0053】UV値とKMnO4の相関性に基づいて、 KMnO4消費量=a・UV+b ・・・・・・・・・・・・・・・・・・・・(6) と表わすことができる。ここでa,bは係数である。
(6)式を用いてオゾン処理水3のUV値からKMnO
4の存在量を高精度に推定することができる。
Based on the correlation between the UV value and KMnO4, it can be expressed as: KMnO4 consumption = a.UV + b (6). Here, a and b are coefficients.
From the UV value of the ozonized water 3 using the equation (6),
4 can be estimated with high accuracy.

【0054】本例では先ずKMnO4消費量設定値(K
MnO4消費量set)を決定する。次に下記の(7)式に
より、KMnO4消費量setに見合うオゾン処理水3の
UV設定値(UVset)を求める。
In this example, first, the KMnO 4 consumption set value (K
MnO 4 consumption set) is determined. Next, a UV set value (UVset) of the ozonized water 3 corresponding to the KMnO4 consumption amount set is obtained by the following equation (7).

【0055】 UVset=(KMnO4消費量set−b)/a ・・・・・・・・・・(7) そして上記UVsetが一定になるように注入オゾン濃度
制御装置7のフィードバック制御を行う。
UVset = (KMnO4 consumption amount set-b) / a (7) Then, feedback control of the injection ozone concentration controller 7 is performed so that the UVset is constant.

【0056】図9の制御フロー図を用いてより具体的な
制御例を説明すると、先ずUV値とKMnO4消費量の
相関式(Y=aX+b)を作成する。ステップ301によ
りオゾン処理水3のUV値とDO3を測定し、ステップ3
02でUV値とKMnO4消費量の相関試験により式
(6)の係数a,bを決定する。そしてステップ303で
式(6)を用いてオゾン処理水3中のKMnO4消費量
を推定する。
A more specific control example will be described with reference to the control flow chart of FIG. 9. First, a correlation equation (Y = aX + b) between the UV value and the KMnO 4 consumption is created. In step 301, the UV value and DO 3 of the ozonized water 3 are measured.
At 02, the coefficients a and b of the equation (6) are determined by a correlation test between the UV value and the KMnO 4 consumption. Then, in step 303, the KMnO 4 consumption amount in the ozonized water 3 is estimated using the equation (6).

【0057】ステップ304では予めオゾン処理水3のK
MnO4消費量設定とDO3の上限設定を行い、ステップ
305でKMnO4消費量の設定値から前記(7)式により
UVsetが一定になるように注入オゾン濃度を演算し、
注入オゾン濃度制御装置7のフィードバック制御を実施
する。
In step 304, the K of the ozonized water 3 is determined in advance.
Set MnO 4 consumption and DO 3 upper limit
In step 305, the injected ozone concentration is calculated from the set value of the KMnO 4 consumption by the above equation (7) so that UVset is constant.
The feedback control of the injection ozone concentration control device 7 is performed.

【0058】演算装置8にKMnO4消費量設定とDO3
の上限設定機能を設けた理由は、第1実施形態例と同様
に被処理水1のUV値が上昇した際に、設定されたUV
残存率までUV値が低下しない場合のオゾン過剰注入の
防止と後段への活性炭処理などに悪影響を及ぼさないた
めと、臭素酸イオン生成を抑制すべくDO3の上限を維
持するためである。臭素酸イオン生成を抑制するための
具体的方法は図3により説明した方法を用いる。
The KMnO 4 consumption setting and DO 3
The reason for providing the upper limit setting function is that when the UV value of the water to be treated 1 rises, as in the first embodiment, the set UV
The reason is to prevent excessive ozone injection when the UV value does not decrease to the residual ratio, not to have an adverse effect on the activated carbon treatment in the subsequent stage, and to maintain the upper limit of DO 3 to suppress the formation of bromate ions. As a specific method for suppressing the formation of bromate ions, the method described with reference to FIG. 3 is used.

【0059】図10は本発明の第5実施形態例を示す概
要図であり、基本的な構成は前記各実施形態例と一致し
ており、1は被処理水、2はオゾン接触池、3はオゾン
処理水、4はUV計、5はDO3計、6はオゾン発生
器、7は注入オゾン濃度制御装置、8は演算装置であ
る。この演算装置8には、KMnO4消費量残存率設定
と溶存オゾン濃度DO3の上限設定機能が設けられてい
る。
FIG. 10 is a schematic view showing a fifth embodiment of the present invention. The basic structure is the same as that of each of the above embodiments. ozonated water, the 4 UV meter, 5 DO 3 meters, 6 ozone generator, 7 is injected ozone concentration control device, 8 is a computing device. The arithmetic unit 8 is provided with a function for setting the remaining KMnO 4 consumption rate and an upper limit for the dissolved ozone concentration DO 3 .

【0060】本例は被処理水1のKMnO4消費量変動
に対しても安定したKMnO4除去率が得られることが
特徴となっている。前記したようにオゾン処理は有機物
の質的変化を伴うため、UV値とKMnO4消費量の関
係はオゾン処理前後で異なることが考えられるため、オ
ゾン処理の前後に分けてUV値とKMnO4消費量の相
関式を作成する。
The present embodiment is characterized in that a stable KMnO 4 removal rate can be obtained even when the KMnO 4 consumption of the water to be treated 1 fluctuates. As described above, since the ozone treatment involves a qualitative change in organic matter, the relationship between the UV value and the KMnO 4 consumption may differ before and after the ozone treatment. Therefore, the UV value and the KMnO 4 consumption are divided before and after the ozone treatment. Create a quantity correlation equation.

【0061】 オゾン処理前:KMnO4消費量1=a1・UV1+b1 ・・・・・(8) オゾン処理後:KMnO4消費量2=a2・UV2+b2 ・・・・・(9) KMnO4除去率= 1−KMnO4消費量2/KMnO4消費量1 ・・・・・・・・・・・・(10) ここでa1,a2,b1,b2は係数であり、KMnO
4消費量1とKMnO4消費量2は被処理水1とオゾン処
理水3の各推定値である。
Before ozone treatment: KMnO 4 consumption 1 = a1 · UV1 + b1 (8) After ozone treatment: KMnO 4 consumption 2 = a2 · UV2 + b2 (9) KMnO 4 removal rate = 1−KMnO 4 consumption 2 / KMnO 4 consumption 1 (10) where a1, a2, b1, and b2 are coefficients and KMnO 4
4 Consumption 1 and KMnO 4 consumption 2 are estimated values of the water 1 to be treated and the ozone-treated water 3.

【0062】第3実施形態例の基本的動作として、先ず
被処理水1がオゾン接触池2に流入し、オゾン発生器6
で得られるオゾンガスが注入されて所定のオゾン処理が
行われ、オゾン処理水3として流出する。この過程で被
処理水1のUV値をUV計4によって測定し、演算装置
8に入力する。更にオゾン処理水3の溶存オゾン濃度を
DO3計5により測定し、同様に演算装置8に入力す
る。
As a basic operation of the third embodiment, first, the water 1 to be treated flows into the ozone contact pond 2 and the ozone generator 6
The ozone gas obtained in step (1) is injected to perform predetermined ozone treatment, and flows out as ozonized water 3. In this process, the UV value of the water to be treated 1 is measured by the UV meter 4 and input to the arithmetic unit 8. Further, the dissolved ozone concentration of the ozonized water 3 is measured by the DO 3 meter 5 and is similarly input to the arithmetic unit 8.

【0063】演算装置8は、オゾン処理水3の溶存オゾ
ン濃度からUV値を演算によって求め、オゾン処理によ
る除去物質の1つであるKMnO4が除去されるように
注入オゾン濃度制御装置7のフィードバック制御を行
い、求めたオゾン濃度に基づいてオゾン発生器6からオ
ゾン接触池2内にオゾンガスを注入する。
The arithmetic unit 8 calculates the UV value from the dissolved ozone concentration of the ozonated water 3 by calculation, and the feedback of the injected ozone concentration control unit 7 so that KMnO 4 which is one of the substances removed by the ozone treatment is removed. Control is performed, and ozone gas is injected into the ozone contact pond 2 from the ozone generator 6 based on the obtained ozone concentration.

【0064】本例では、オゾン処理によるKMnO4
費量目標除去率設定値(KMnO4除去率set)を決定す
る。次に式(8)(9)から被処理水1とオゾン処理水
3のKMnO4消費量推定値であるTHMFP1とTH
MFP2を求めて、式(10)によりKMnO4除去率
を算出する。そしてKMnO4除去率が目標除去率設定
値(KMnO4除去率set)になるように注入オゾン濃度
制御装置7のフィードバック制御を行う。
In this example, the target value of the KMnO 4 consumption target removal rate set by the ozone treatment (KMnO 4 removal rate set) is determined. Next, THMFP1 and THM, which are estimated values of KMnO 4 consumption of the water 1 to be treated and the ozone-treated water 3 from the equations (8) and (9), respectively.
Seeking MFP 2, and calculates the KMnO 4 removal rate by the equation (10). Then, feedback control of the injected ozone concentration control device 7 is performed so that the KMnO 4 removal rate becomes the target removal rate set value (KMnO 4 removal rate set).

【0065】図11の制御フロー図を用いてより具体的
な制御例を説明すると、オゾン処理前のUV値とKMn
4消費量の相関式(Y=a1X+b1)とオゾン処理
後のUV値とKMnO4の相関式(Y=a2X+b2)
を作成する。次にステップ401によりオゾン処理水3の
UV値とDO3及び被処理水1のUV値を測定し、ステ
ップ402でUV値とKMnO4消費量の相関試験により式
(8)(9)の係数を決定する。そしてステップ403で
式(9)を用いてオゾン処理水3中のKMnO4消費量
を推定し、式(8)により被処理水1のTHMFPを推
定する。
A more specific control example will be described with reference to the control flow chart of FIG.
Correlation formula of O 4 consumption (Y = a1X + b1) and correlation formula of UV value and KMnO 4 after ozone treatment (Y = a2X + b2)
Create Next, in step 401, the UV value of the ozonized water 3 and the UV value of DO 3 and the water 1 to be treated are measured. In step 402, the coefficient of the formulas (8) and (9) is obtained by a correlation test between the UV value and the consumption of KMnO 4. To determine. Then, in step 403, the KMnO 4 consumption amount in the ozonized water 3 is estimated by using the equation (9), and the THMFP of the water 1 is estimated by the equation (8).

【0066】ステップ404では予めオゾン処理水3のK
MnO4残存率Co/Ciを演算により求め、ステップ405で
KMnO4残存率Co/Ci設定とDO3の上限設定を行い、
ステップ406で式(10)のKMnO4除去率が目標除去
率設定値(KMnO4除去率set)になるように注入オゾ
ン濃度制御装置7のフィードバック制御を実施する。
In step 404, the K of the ozone-treated water 3 is previously determined.
The MnO 4 residual ratio Co / Ci is obtained by calculation, and in step 405, the KMnO 4 residual ratio Co / Ci is set and the upper limit of DO 3 is set.
In step 406, the feedback control of the injected ozone concentration controller 7 is performed so that the KMnO 4 removal rate of the equation (10) becomes the target removal rate set value (KMnO 4 removal rate set).

【0067】演算装置8にKMnO4消費量設定とDO3
の上限設定機能を設けた理由は前記第4実施形態例で説
明した通りであり、臭素酸イオン生成を抑制するための
具体的方法は図3により説明した方法を用いる。
The setting of KMnO 4 consumption and DO 3
The reason why the upper limit setting function is provided is as described in the fourth embodiment, and a specific method for suppressing the formation of bromate ions uses the method described with reference to FIG.

【0068】[0068]

【発明の効果】以上詳細に説明したように、本発明によ
ればオゾン注入処理における被処理水の紫外線吸光度を
UV計により測定するとともに、オゾン処理水の溶存オ
ゾン濃度を紫外線吸光度測定機能付きDO3計により測
定し、演算装置により被処理水のUV値に対するオゾン
処理水のUV残存率が一定になるように注入オゾン濃度
制御装置のフィードバック制御を行うことが基本手段で
あり、オゾン処理によるUV残存率からかび臭物質とか
農薬等の難分析性物質の混入を把握して、連続的に除去
することができる。
As described above in detail, according to the present invention, the UV absorbance of the water to be treated in the ozone injection treatment is measured by a UV meter, and the dissolved ozone concentration of the ozonized water is measured by a DO with ultraviolet absorbance measurement function. The basic means is to perform feedback control of the injected ozone concentration control device so that the UV residual ratio of the ozone-treated water to the UV value of the water to be treated is kept constant by the arithmetic unit. From the residual rate, it is possible to grasp the contamination of a difficult-to-analyze substance such as musty odor substance or pesticide, and it can be continuously removed.

【0069】更に演算装置に、UV残存率設定機能,T
HMFP残存率設定機能もしくはKMnO4消費量設定
機能と溶存オゾン濃度DO3の上限設定機能を設けたこ
とにより、被処理水とオゾン処理水のTHMFP,KM
nO4消費量の残存率の連続的推定と除去を行うことが
できる。特に演算装置にUV残存率設定機能と溶存オゾ
ン濃度DO3の上限設定機能を設けたことにより、被処
理水のUV値が上昇した場合に設定されたUV残存率ま
でUV値が低下しない時にオゾン過剰注入の防止と後段
への活性炭処理などに悪影響を及ぼさない制御が行わ
れ、且つ臭化物イオンが存在する水をオゾン処理する際
に生成する臭素酸イオンを抑制することができる。
Further, a UV residual ratio setting function, T
By providing the HMFP residual ratio setting function or the KMnO 4 consumption setting function and the dissolved ozone concentration DO 3 upper limit setting function, THMPF, KM
Continuous estimation and removal of the residual rate of nO 4 consumption can be performed. Ozone, especially when the provision of the UV residual rate setting function and capping function of the concentration of dissolved ozone DO 3 to the arithmetic unit, UV value does not decrease until the UV residual rate of UV value of the water to be treated is set when elevated Control is performed so as not to adversely affect the excess injection and the activated carbon treatment in the subsequent stage, and it is possible to suppress bromate ions generated when ozone treatment is performed on water containing bromide ions.

【0070】従って本発明によれば、オゾン処理による
除去目的物質の残存率を把握してオゾン注入量を制御す
ることにより、電力の無駄をなくした「最適オゾン量注
入制御」を確立し、オゾン処理条件の管理を精度高く実
施することができるという効果を発揮する。
Therefore, according to the present invention, “optimal ozone injection control” that eliminates waste of electric power is established by grasping the residual ratio of the target substance to be removed by ozone treatment and controlling the amount of ozone injected. This has the effect that the management of processing conditions can be performed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるオゾン注入方法の第1実施形態
例を示す概要図。
FIG. 1 is a schematic view showing a first embodiment of an ozone injection method according to the present invention.

【図2】オゾン接触時間(分)とかび臭物質,農薬等の
残存率の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between ozone contact time (minutes) and residual rates of musty odor substances, pesticides, and the like.

【図3】CT値と臭素酸イオン生成量の関係を示すグラ
フ。
FIG. 3 is a graph showing the relationship between the CT value and the amount of bromate ion generated.

【図4】本発明の第2実施形態例を示す概要図。FIG. 4 is a schematic diagram showing a second embodiment of the present invention.

【図5】第2実施形態例の制御フロー図。FIG. 5 is a control flowchart of the second embodiment.

【図6】本発明の第3実施形態例を示す概要図。FIG. 6 is a schematic diagram showing a third embodiment of the present invention.

【図7】第3実施形態例の制御フロー図。FIG. 7 is a control flowchart of the third embodiment.

【図8】本発明の第4実施形態例を示す概要図。FIG. 8 is a schematic diagram showing a fourth embodiment of the present invention.

【図9】第4実施形態例の制御フロー図。FIG. 9 is a control flowchart of the fourth embodiment.

【図10】本発明の第5実施形態例を示す概要図。FIG. 10 is a schematic diagram showing a fifth embodiment of the present invention.

【図11】第5実施形態例の制御フロー図。FIG. 11 is a control flowchart of the fifth embodiment.

【符号の説明】[Explanation of symbols]

1…被処理水 2…オゾン接触池 3…オゾン処理水 4…UV計 5…DO3計 6…オゾン発生器 7…注入オゾン濃度制御装置 8…演算装置DESCRIPTION OF SYMBOLS 1 ... Treatment water 2 ... Ozone contact pond 3 ... Ozonated water 4 ... UV meter 5 ... DO 3 meter 6 ... Ozone generator 7 ... Injection ozone concentration control device 8 ... Calculation device

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被処理水をオゾン接触池で注入オゾン濃
度制御装置によるオゾン処理を行うことにより、水中の
溶存性の微量有機物質を除去してオゾン処理水を得るよ
うにしたオゾン注入処理において、 被処理水の紫外線吸光度をUV計により測定するととも
に、オゾン処理水の溶存オゾン濃度を紫外線吸光度測定
機能付きDO3計により測定し、演算装置により被処理
水のUV値に対するオゾン処理水のUV残存率が一定に
なるように注入オゾン濃度制御装置のフィードバック制
御を行い、求めたオゾン濃度に基づいてオゾン接触池内
にオゾンを注入することを特徴とするオゾン注入制御方
法。
1. An ozone injecting process for injecting water to be treated into an ozone contact pond and performing ozone treatment by an ozone concentration control device to remove dissolved trace organic substances in the water to obtain ozonated water. , as well as determined by UV meter UV absorbance of the treatment water, the dissolved ozone concentration in the ozonated water was measured by UV absorbance measurement function DO 3 meters, with an arithmetic device ozonated water to UV value of the water to be treated UV An ozone injection control method, comprising: performing feedback control of an injection ozone concentration control device so that a residual ratio becomes constant, and injecting ozone into an ozone contact pond based on the obtained ozone concentration.
【請求項2】 前記演算装置に、UV残存率設定機能と
溶存オゾン濃度DO3の上限設定機能を設けたことを特
徴とする請求項1に記載のオゾン注入制御方法。
2. The ozone injection control method according to claim 1, wherein the arithmetic unit is provided with a UV residual ratio setting function and a dissolved ozone concentration DO 3 upper limit setting function.
【請求項3】 被処理水をオゾン接触池で注入オゾン濃
度制御装置によるオゾン処理を行うことにより、水中の
溶存性の微量有機物質を除去してオゾン処理水を得るよ
うにしたオゾン注入処理において、 オゾン処理水の溶存オゾン濃度を紫外線吸光度測定機能
付きDO3計により測定し、演算装置によりTHMFP
が除去されるように前記注入オゾン濃度制御装置のフィ
ードバック制御を行い、求めたオゾン濃度に基づいてオ
ゾン接触池内にオゾンガスを注入することを特徴とする
オゾン注入制御方法。
3. An ozone injecting process for injecting water to be treated into an ozone contact pond and performing ozone treatment by an ozone concentration controller to remove dissolved trace organic substances in the water to obtain ozonated water. , the dissolved ozone concentration in the ozonated water was measured by UV absorbance measurement function DO 3 meters, THMFP the arithmetic unit
An ozone gas injection control method, wherein feedback control of the injection ozone concentration control device is performed so that ozone gas is removed, and ozone gas is injected into the ozone contact pond based on the obtained ozone concentration.
【請求項4】 前記演算装置に、トリハロメタン生成能
とDO3の上限設定機能を設けたことを特徴とする請求
項3に記載のオゾン注入制御方法。
4. The ozone injection control method according to claim 3, wherein the arithmetic unit is provided with a trihalomethane generating ability and an upper limit setting function of DO 3 .
【請求項5】 オゾン処理によるTHMFP目標除去率
設定値を決定し、被処理水とオゾン処理水のTHMF推
定値を求めてTHMFP除去率を算出し、THMFP除
去率が目標除去率になるように注入オゾン濃度制御装置
のフィードバック制御を行うことを特徴とする請求項3
に記載のオゾン注入制御方法。
5. A THMFP target removal rate set value by ozone treatment is determined, a THMF estimation value is calculated by obtaining a THMF estimation value of the water to be treated and ozonized water, and the THMFP removal rate is set to the target removal rate. 4. The feedback control of the injection ozone concentration control device is performed.
3. The method for controlling ozone injection according to item 1.
【請求項6】 被処理水をオゾン接触池で注入オゾン濃
度制御装置によるオゾン処理することにより、水中の溶
存性の微量有機物質を除去してオゾン処理水を得るよう
にしたオゾン注入処理において、 オゾン処理水の溶存オゾン濃度を紫外線吸光度測定機能
付きDO3計により測定し、演算装置により過マンガン
酸カリウムが除去されるように前記注入オゾン濃度制御
装置のフィードバック制御を行い、求めたオゾン濃度に
基づいてオゾン接触池内にオゾンガスを注入することを
特徴とするオゾン注入制御方法。
6. An ozone injecting process for injecting water to be treated into an ozone contact pond by an ozone concentration control device to remove dissolved trace organic substances in the water to obtain ozonated water. the dissolved ozone concentration in the ozonated water was measured by UV absorbance measurement function dO 3 meters, the arithmetic unit performs feedback control of the injection ozone concentration control device as potassium permanganate is removed, the ozone concentration determined An ozone injection control method characterized by injecting ozone gas into an ozone contact pond based on the above.
【請求項7】 前記演算装置に、KMnO4消費量とD
3の上限設定機能を設けたことを特徴とする請求項6
に記載のオゾン注入制御方法。
7. The arithmetic unit includes a KMnO 4 consumption amount and a D
7. An O 3 upper limit setting function is provided.
3. The method for controlling ozone injection according to item 1.
【請求項8】 オゾン処理によるKMnO4目標除去率
設定値を決定し、被処理水とオゾン処理水のKMnO4
消費量推定値を求めてKMnO4除去率を算出し、KM
nO4除去率が目標除去率になるように注入オゾン濃度
制御装置のフィードバック制御を行うことを特徴とする
請求項6に記載のオゾン注入制御方法。
8. A KMnO 4 target removal rate set value by the ozone treatment is determined, and the KMnO 4 of the water to be treated and the ozonized water are determined.
The KMnO 4 removal rate is calculated by obtaining the estimated consumption amount, and KM
ozone injection control method according to claim 6 nO 4 removal rate and performs feedback control of the injection ozone concentration control device so that the target removal rate.
JP1219198A 1998-01-26 1998-01-26 Ozone injection controlling method Pending JPH11207369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219198A JPH11207369A (en) 1998-01-26 1998-01-26 Ozone injection controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219198A JPH11207369A (en) 1998-01-26 1998-01-26 Ozone injection controlling method

Publications (1)

Publication Number Publication Date
JPH11207369A true JPH11207369A (en) 1999-08-03

Family

ID=11798521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219198A Pending JPH11207369A (en) 1998-01-26 1998-01-26 Ozone injection controlling method

Country Status (1)

Country Link
JP (1) JPH11207369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968569B2 (en) 2006-08-01 2015-03-03 Metawater Co., Ltd. Method for recycling wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968569B2 (en) 2006-08-01 2015-03-03 Metawater Co., Ltd. Method for recycling wastewater

Similar Documents

Publication Publication Date Title
JP2007083186A (en) Water treatment system
Wojtenko et al. Performance of ozone as a disinectant for combined sewer overflow
JP2007185610A (en) Device for controlling injection of flocculant
KR20130008828A (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
JPH07124593A (en) Highly advanced water purifying treatment method
JP4660211B2 (en) Water treatment control system and water treatment control method
JPH11207369A (en) Ozone injection controlling method
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP3602661B2 (en) Ozone injection device control system
JPH11207368A (en) Ozone injection controlling method
JP2000061481A (en) Control method for ozone injection
JP2015221424A (en) Organic wastewater treatment method and apparatus
JPH08164396A (en) Method for controlling ozone injection and device therefor
JP4170610B2 (en) Water quality control system
JP3889294B2 (en) Water treatment system using a fluorescence analyzer
JP2007326047A (en) Water treatment control device
JP2000288561A (en) Water treatment method and apparatus using ozone
JP4831782B2 (en) Wastewater treatment method and system
JP2007014955A (en) Water-quality control system
JP2005324121A (en) Water treatment method and water treatment apparatus
JP4358037B2 (en) Water treatment equipment
JPH0242559B2 (en)
JPS62176594A (en) Water treatment method
JP2003088882A (en) Method for water treatment
JP2000107778A (en) Method and apparatus for treating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040823

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A02