JP2007083186A - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP2007083186A
JP2007083186A JP2005276606A JP2005276606A JP2007083186A JP 2007083186 A JP2007083186 A JP 2007083186A JP 2005276606 A JP2005276606 A JP 2005276606A JP 2005276606 A JP2005276606 A JP 2005276606A JP 2007083186 A JP2007083186 A JP 2007083186A
Authority
JP
Japan
Prior art keywords
water
treated
ozone
injection
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005276606A
Other languages
Japanese (ja)
Other versions
JP4673709B2 (en
Inventor
Ryoichi Arimura
良一 有村
Norimitsu Abe
法光 阿部
Kenji Ide
健志 出
Chiyouko Kurihara
潮子 栗原
Taku Menju
卓 毛受
Seiichi Murayama
清一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005276606A priority Critical patent/JP4673709B2/en
Publication of JP2007083186A publication Critical patent/JP2007083186A/en
Application granted granted Critical
Publication of JP4673709B2 publication Critical patent/JP4673709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment system which can optimize an ozone injection rate, an oxidation promoting agent injection rate, and a ratio of these injection rates, and promptly cope with a water-quality change of water to be treated to enable the suppression of the amount of generated harmful disinfection by-products by using a fluorescence analyzer. <P>SOLUTION: The water to be treated is introduced into water treatment equipment 1; ozone is injected into the water to be treated from ozone injection equipment 2, and an oxidation promoting agent is injected from oxidation promoting agent injection equipment 3 to perform advanced oxidation treatment. The fluorescence intensity of the water to be treated before being introduced into the water treatment equipment 1 is measured by a fluorescence analyzer 4 for the water to be treated; water-quality indexes of the water to be treated are measured by a water-quality indexes measuring device 8, and the fluorescence intensity of the water to be treated, introduced to the water treatment equipment 1 and subjected to the advanced oxidation treatment is measured by a fluorescence analyzer 5 for treated water. A water treatment control device 6 performs injection control based on fluorescence intensity reduction rate determined from the fluorescence intensities measured by the fluorescence analyzer 4 for the water to be treated, and fluorescence analyzer 5 for the treated water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被処理水に対してオゾン及び酸化促進剤を注入して促進酸化処理を行う水処理システムに関する。   The present invention relates to a water treatment system for performing accelerated oxidation treatment by injecting ozone and an oxidation promoter into water to be treated.

近年、上水用の水源である河川・湖沼において、フミン質、農薬、ダイオキシン、環境ホルモンなどの難分解性の汚染物質が含まれていることが指摘されている。これらの物質の中には微量ではあるが生物に対し有害であり、水中から除去するか分解処理を行う必要性がある物質も多数存在する。また、河川の下流側ではさらに汚染が進んでおり、上流側に位置する下水処理場の放流水を再度浄水場の原水として利用している地域もある。またこれらの河川では有機塩素系の洗剤、農薬、更には合成洗剤、染料など種々の化学物質の混入も確認されている。さらに、産業・生活廃棄物埋立地からの浸出水による水道水源をはじめとする水環境の汚染にも十分な注意が必要な状況下にあるといえる。   In recent years, it has been pointed out that rivers and lakes that are water sources for drinking water contain persistent substances such as humic substances, agricultural chemicals, dioxins, and environmental hormones. Among these substances, there are a large number of substances that are harmful to living organisms but need to be removed from water or decomposed. In addition, there is further pollution on the downstream side of the river, and there are areas where the discharged water from the sewage treatment plant located on the upstream side is used again as raw water for the water purification plant. In these rivers, contamination of various chemical substances such as organochlorine detergents, agricultural chemicals, synthetic detergents and dyes has also been confirmed. Furthermore, it can be said that it is in a situation where sufficient attention is required for pollution of the water environment including tap water sources from leachate from industrial and domestic waste landfills.

最近ではこのような水環境の汚染を受け、浄水場における水質基準が見直され、これまで以上に水質の管理が厳しいものとなっている。この様な背景のもとに、水環境保全技術、浄水高度処理技術、および下水の高度処理技術の開発が活発に行われており、活性炭による処理、膜処理、オゾン処理、紫外線処理、生物学的な処理などの技術開発が行われている。   Recently, due to such pollution of the water environment, water quality standards at water treatment plants have been reviewed, and water quality management has become stricter than ever. Against this background, water environment conservation technology, advanced water treatment technology, and advanced sewage treatment technology are being actively developed. Treatment with activated carbon, membrane treatment, ozone treatment, ultraviolet treatment, biology Technology development such as intelligent processing is being carried out.

それらの中で、促進酸化処理(AOP、Advancsd Oxidation Process)が、有機物の酸化分解を高い割合で行うことができる処理として有望視されている。この促進酸化処理は、オゾンと過酸化水素水、又はオゾンと紫外線、或いはオゾンと過酸化水素水と紫外線とを組み合わせた処理である。促進酸化処理におけるオゾンや酸化促進剤および紫外線照射の制御方法についても多くの手法が考え出されている。酸化促進剤としては主に過酸化水素水が用いられることが多い。   Among them, accelerated oxidation treatment (AOP, Advancsd Oxidation Process) is regarded as promising as a treatment capable of performing oxidative decomposition of organic substances at a high rate. This accelerated oxidation treatment is a treatment in which ozone and hydrogen peroxide water, ozone and ultraviolet light, or ozone, hydrogen peroxide water, and ultraviolet light are combined. Many methods have been devised for the control method of ozone, oxidation promoter, and ultraviolet irradiation in the accelerated oxidation treatment. As the oxidation accelerator, hydrogen peroxide water is often used.

従来、浄水場におけるオゾン処理設備でのオゾンの注入制御方式は、溶存オゾン一定制御が主流である。すなわち、オゾン注入後、注入されたオゾンと処理対象となる有機物質との反応でオゾンが消費されることから、反応後に残ったオゾンを残留オゾン(通称、溶存オゾン)として検出し、この溶存オゾン濃度が一定となるようにオゾン注入を行う制御が主流である。この制御方式の場合、オゾン処理前の原水の水質が変動しても、一定の割合で有機物を分解するオゾン注入を行うことができ、オゾン注入を効率よく行うことができるという利点がある。   Conventionally, the ozone injection control method in the ozone treatment facility in the water purification plant has been mainly the constant control of dissolved ozone. That is, after ozone is injected, ozone is consumed by the reaction between the injected ozone and the organic substance to be treated. Control that injects ozone so that the concentration is constant is the mainstream. In the case of this control method, even if the quality of the raw water before ozone treatment fluctuates, it is possible to perform ozone injection that decomposes organic substances at a constant rate, and there is an advantage that ozone injection can be performed efficiently.

しかしながら促進酸化処理を行う場合、過酸化水素水や紫外線が用いられるため、これらによって注入されたオゾンが分解されてしまう。このため溶存オゾンが検出されなくなり、溶存オゾン濃度による制御が困難になる。したがって、原水の水質変動が起こった場合、オゾンの注入不足や過注入を引き起こし、適切な処理を行うことができない場合が発生する。   However, when the accelerated oxidation treatment is performed, hydrogen peroxide solution or ultraviolet rays are used, so that the injected ozone is decomposed. For this reason, dissolved ozone is not detected, and control by the dissolved ozone concentration becomes difficult. Therefore, when the quality of the raw water changes, ozone may be insufficiently injected or excessively injected, resulting in a case where appropriate treatment cannot be performed.

なお、溶存オゾンが検出されない状態でも、過酸化水素水や紫外線によって分解されるオゾンは、ヒドロキシラジカル(OHラジカル)とよばれるオゾンより酸化力の強い物質と変化するので、本来の目的である有機物質や臭気物質の分解処理は行われる。   Even when dissolved ozone is not detected, ozone decomposed by hydrogen peroxide or ultraviolet light changes to a substance with a higher oxidizing power than ozone called hydroxy radicals (OH radicals). Substances and odorous substances are decomposed.

また近年、従来のオゾン処理における問題点として、オゾン処理における消毒副生成物質の生成が取り上げられている。これらの消毒副生成物質の中には発がん性・毒性を持つものの存在が確認されており、水質基準でその濃度が規制されている。最近では、オゾンと臭化物イオンとの反応で生成される発がん性物質臭素酸の問題が多く取り上げられている。   In recent years, generation of disinfection by-products in ozone treatment has been taken up as a problem in conventional ozone treatment. Among these disinfection by-products, the presence of carcinogenic and toxic substances has been confirmed, and their concentrations are regulated by water quality standards. Recently, many problems of the carcinogenic substance bromic acid generated by the reaction between ozone and bromide ions have been taken up.

促進酸化処理においても、臭素酸生成の研究は多く行われている。促進酸化処理では、添加する過酸化水素水の還元作用により臭素酸の生成が抑制されるという効果が確認されている。つまり適切なオゾン注入率と酸化促進剤の注入率で促進酸化処理を行うことができれば、被処理水中の有機物質の分解も効率よく行うことができ、かつ有害な臭素酸の生成抑制も行うことができると考えられる。   In the accelerated oxidation treatment, much research on bromic acid generation has been conducted. In the accelerated oxidation treatment, it has been confirmed that the production of bromic acid is suppressed by the reducing action of the added hydrogen peroxide solution. In other words, if accelerated oxidation treatment can be performed at an appropriate ozone injection rate and oxidation accelerator injection rate, organic substances in the water to be treated can be efficiently decomposed, and harmful bromic acid production can be suppressed. It is thought that you can.

従来、オゾン処理による消毒副生成物質である臭素酸の生成抑制のための制御として、溶存オゾン濃度と接触時間の積(通称CT値、C:濃度、T:時間)を用いた制御方式がある(例えば、特許文献1参照)。この方式によるとCT値が所定の値を超えた場合、溶存オゾン濃度の分解操作を開始し、臭素酸の生成を抑制する。溶存オゾン濃度分解手段として、紫外線照射や過酸化水素水添加が用いられる。   Conventionally, there is a control system that uses the product of dissolved ozone concentration and contact time (commonly known as CT value, C: concentration, T: time) as a control for suppressing the production of bromic acid, a disinfection by-product by ozone treatment. (For example, refer to Patent Document 1). According to this method, when the CT value exceeds a predetermined value, the decomposition operation of the dissolved ozone concentration is started and the production of bromic acid is suppressed. As a means for decomposing dissolved ozone concentration, ultraviolet irradiation or hydrogen peroxide water addition is used.

この手法は促進酸化処理の応用である。しかしながらこの手法だとCT値が検出される範囲で、ある程度の溶存オゾン濃度が既に生成されていることとなり、この溶存オゾンにより臭素酸が生成してしまう危険性がある。   This technique is an application of accelerated oxidation treatment. However, with this method, a certain amount of dissolved ozone concentration has already been generated in the range where the CT value is detected, and there is a risk that brominated acid will be generated by this dissolved ozone.

また、促進酸化処理を行う際に処理前後のTOC(全有機物質炭素)濃度をオゾン注入率と酸化促進剤注入率の制御因子として用いる方式もある(例えば、特許文献2参照)。促進酸化処理は被処理水中の有機物質の無機化も行うのでTOCの減少を監視するのは確かに有効である。   Also, there is a method in which the TOC (total organic carbon) concentration before and after the treatment is used as a control factor for the ozone injection rate and the oxidation promoter injection rate when performing the accelerated oxidation treatment (see, for example, Patent Document 2). Since the accelerated oxidation treatment also mineralizes organic substances in the treated water, it is certainly effective to monitor the decrease in TOC.

しかし促進酸化処理は有機物質の無機化を行う一方で、有機物質の低分子化を行い、オゾン処理後段の生物活性炭による有機物質の分解・除去を行いやすい形態にするという作用もある。この有機物質の低分子化の場合、TOC濃度は変化しないことになるので、促進酸化処理における有機物質の分解の進捗を把握するためには、その他の測定装置・センサを追加する必要がある。   However, the accelerated oxidation treatment has the effect of making the organic substance inorganic while at the same time reducing the molecular weight of the organic substance and making it easy to decompose and remove the organic substance by biological activated carbon after the ozone treatment. In the case of lowering the molecular weight of this organic substance, the TOC concentration does not change, so it is necessary to add other measuring devices and sensors in order to grasp the progress of the decomposition of the organic substance in the accelerated oxidation treatment.

促進酸化処理における有機物の指標として濁度および蛍光強度を用い、濁度および蛍光強度に基づき紫外線照射を制御する方式がある(例えば、特許文献3参照)。蛍光強度は水中の有機物質濃度と高い相関があり、オゾン処理および促進酸化処理における有機物質の分解状況をよく表している。蛍光強度は有機物質の無機化および低分子化のどちらの場合でもその値が減少するという特徴がある。特許文献3における方式は紫外線照射型の促進酸化処理に関して記述されており、その他の酸化促進剤注入方に関する記述はない。
特開2000−117274号公報 特開平11−290878号公報 特開2004−243265号公報
There is a system in which turbidity and fluorescence intensity are used as indicators of organic matter in the accelerated oxidation treatment, and ultraviolet irradiation is controlled based on the turbidity and fluorescence intensity (see, for example, Patent Document 3). The fluorescence intensity has a high correlation with the concentration of organic substances in water, and well represents the state of decomposition of organic substances in ozone treatment and accelerated oxidation treatment. The fluorescence intensity is characterized by a decrease in the value of both inorganic and low molecular organic substances. The method in Patent Document 3 is described with respect to the ultraviolet irradiation type accelerated oxidation treatment, and there is no description about other methods of injecting the oxidation accelerator.
JP 2000-117274 A JP-A-11-290878 JP 2004-243265 A

上記のように、上水用原水、下水の二次処理水、産業排水或いは廃棄物埋立地の浸出水などを処理する場合、促進酸化処理を適切に行えば、有機物質を高い割合で分解し消毒副生成物質である臭素酸の生成も抑制されるという利点がある。しかしながら過酸化水素水の注入や紫外線の照射を行うと溶存オゾンが消費され、従来の溶存オゾン濃度によるオゾン注入制御が困難になるという課題がある。特に、オゾン処理前の原水の水質変動が大きな処理場ではオゾンの注入と酸化促進剤の注入を過不足なく、かつ有効な処理となるような注入率を決定する制御方式が必要である。   As described above, when treating raw water for sewage, secondary treated water for sewage, industrial effluent or leachate from waste landfill, etc., if accelerated oxidation treatment is performed appropriately, organic substances are decomposed at a high rate. There is an advantage that the production of bromic acid, which is a disinfection by-product, is also suppressed. However, when hydrogen peroxide solution is injected or ultraviolet rays are irradiated, dissolved ozone is consumed, and there is a problem that conventional ozone injection control based on the dissolved ozone concentration becomes difficult. In particular, in a treatment plant where the quality of raw water before ozone treatment is large, a control method is required that determines the injection rate so that ozone injection and oxidation accelerator injection can be performed effectively without excessive or insufficient ozone injection.

本発明の目的は、蛍光分析計を用いることによってオゾン注入率と酸化促進剤注入率及びそれらの注入比率を最適にすると共に、被処理水の水質変化に対して迅速に対応することができ、有害な消毒副生成物質の生成量も抑制することを可能とする水処理システムを提供することにある。   The object of the present invention is to optimize the ozone injection rate and the oxidation promoter injection rate and their injection ratio by using a fluorescence analyzer, and can respond quickly to changes in the quality of the water to be treated. An object of the present invention is to provide a water treatment system capable of suppressing the amount of harmful disinfecting by-product produced.

本発明の水処理システムは、被処理水を導入し、この被処理水に対しオゾン注入設備からオゾンを注入し、かつ酸化促進剤注入設備から酸化促進剤を注入して促進酸化処理を行う水処理設備と、この水処理設備に導入される前の被処理水の蛍光強度を測定する被処理水蛍光分析計、同被処理水の水質指標を測定する水質指標測定装置、及び前記水処理設備に導入され促進酸化処理された処理水の蛍光強度を測定する処理水蛍光分析計と、前記被処理水蛍光分析計及び前記処理水蛍光分析計で測定された各蛍光強度から求まる蛍光強度減少率に基き前記オゾン注入設備のオゾン注入率を求め、かつ前記水質指標測定装置により測定された被処理水の水質指標測定値に基きオゾン注入率と酸化促進剤注入率との最適な注入比率を算出し、この最適な注入比率と前記求められたオゾン注入率とから前記酸化促進剤注入設備の酸化促進剤注入率を求める水処理制御装置とを備えたことを特徴とする。   The water treatment system of the present invention introduces water to be treated, injects ozone from the ozone injection facility into the water to be treated, and injects an oxidation accelerator from the oxidation accelerator injection facility to perform the accelerated oxidation treatment. A treatment facility, a treated water fluorescence analyzer for measuring the fluorescence intensity of the treated water before being introduced into the water treatment facility, a water quality indicator measuring device for measuring a water quality indicator of the treated water, and the water treatment facility A treated water fluorescence analyzer that measures the fluorescence intensity of the treated water introduced and promoted oxidation treatment, and the fluorescence intensity decrease rate obtained from each fluorescence intensity measured by the treated water fluorescence analyzer and the treated water fluorescence analyzer The ozone injection rate of the ozone injection facility is obtained based on the above, and the optimal injection ratio between the ozone injection rate and the oxidation promoter injection rate is calculated based on the water quality indicator measurement value of the treated water measured by the water quality indicator measuring device. And this is the best That from the injection ratio and the determined ozone injection rate and a water treatment control apparatus for determining the pro-oxidant injection rate of the pro-oxidant injection equipment characterized.

また、本発明の水処理システムは、被処理水を導入し、この被処理水に対しオゾン注入設備からオゾンを注入し、かつ酸化促進剤注入設備から酸化促進剤を注入して促進酸化処理を行う水処理設備と、この水処理設備に導入される前の被処理水の蛍光強度を測定する被処理水蛍光分析計、及び同被処理水の水質指標を測定する水質指標測定装置と、前記被処理水の蛍光強度に対応したオゾン注入率が予め設定され、前記被処理水蛍光分析計で測定された蛍光強度に基き前記オゾン注入設備のオゾン注入率を求め、かつ前記水質指標測定装置により測定された被処理水の水質指標測定値に基きオゾン注入率と酸化促進剤注入率との最適な注入比率を算出し、この最適な注入比率と前記求められたオゾン注入率とから前記酸化促進剤注入設備の酸化促進剤注入率を求める水処理制御装置とを備えた構成でもよい。   Moreover, the water treatment system of the present invention introduces water to be treated, injects ozone from the ozone injection facility into the water to be treated, and injects an oxidation accelerator from the oxidation accelerator injection facility to perform the accelerated oxidation treatment. A water treatment facility to be performed, a treated water fluorescence analyzer for measuring the fluorescence intensity of the treated water before being introduced into the water treatment facility, a water quality indicator measuring device for measuring the water quality indicator of the treated water, and The ozone injection rate corresponding to the fluorescence intensity of the water to be treated is preset, the ozone injection rate of the ozone injection facility is obtained based on the fluorescence intensity measured by the fluorescence analyzer for water to be treated, and the water quality indicator measuring device Calculate the optimal injection ratio between the ozone injection rate and the oxidation promoter injection rate based on the measured water quality index measured value of the treated water, and promote the oxidation from the optimal injection ratio and the obtained ozone injection rate. Acid in agent injection equipment A water treatment control apparatus for determining the accelerator injection rate may be configured with a.

さらに、本発明の水処理システムは、被処理水を導入し、この被処理水に対しオゾン注入設備からオゾンを注入し、かつ酸化促進剤注入設備から酸化促進剤を注入して促進酸化処理を行う水処理設備と、この水処理設備に導入される前の被処理水の水質指標を測定する水質指標測定装置、及び前記水処理設備に導入され促進酸化処理された処理水の蛍光強度を測定する処理水蛍光分析計と、前記処理水の目標とする蛍光強度が予め設定され、前記処理水蛍光分析計で測定された蛍光強度が、前記予め設定された蛍光強度となる前記オゾン注入設備のオゾン注入率を求め、かつ前記水質指標測定装置により測定された被処理水の水質指標測定値に基きオゾン注入率と酸化促進剤注入率との最適な注入比率を算出し、この最適な注入比率と前記求められたオゾン注入率とから前記酸化促進剤注入設備の酸化促進剤注入率を求める水処理制御装置とを備えた構成でもよい。   Furthermore, the water treatment system of the present invention introduces water to be treated, injects ozone into the water to be treated from an ozone injection facility, and injects an oxidation accelerator from the oxidation accelerator injection facility to perform accelerated oxidation treatment. The water treatment facility to be performed, the water quality indicator measuring device for measuring the water quality indicator of the treated water before being introduced into the water treatment facility, and the fluorescence intensity of the treated water introduced into the water treatment facility and subjected to the accelerated oxidation treatment A treatment water fluorescence analyzer, a target fluorescence intensity of the treatment water is preset, and the fluorescence intensity measured by the treatment water fluorescence analyzer is the preset fluorescence intensity of the ozone injection facility Obtaining the ozone injection rate and calculating the optimal injection ratio between the ozone injection rate and the oxidation accelerator injection rate based on the measured value of the water quality index of the treated water measured by the water quality index measuring device. And said request Was the ozone injection rate from the pro-oxidant injection equipment prooxidant injection rate water treatment control apparatus for determining a may be configured with.

本発明では、水質指標測定装置により測定される水質指標値は、被処理水に注入されるオゾンの分解特性に影響を及ぼす因子であるpH、水温、アルカリ度の少なくともいずれか1つあるいはpH、水温、アルカリ度を組み合わせた指標と、被処理水中においてオゾンにより分解される有機物質の量と相関がある蛍光強度、全有機炭素濃度、紫外線吸光度のうち少なくともいずれか1つもしくは蛍光強度、全有機炭素濃度、紫外線吸光度を組み合わせた指標とのいずれかである。   In the present invention, the water quality index value measured by the water quality index measuring device is a factor that affects the decomposition characteristics of ozone injected into the water to be treated, pH, water temperature, at least one of alkalinity or pH, An indicator that combines water temperature and alkalinity with the amount of organic substances that are decomposed by ozone in the treated water. At least one of fluorescence intensity, total organic carbon concentration, ultraviolet absorbance, or fluorescence intensity, total organic It is either an index combining carbon concentration and ultraviolet absorbance.

また、本発明では、水処理制御装置には、オゾン注入設備のオゾン注入率と酸化促進剤注入設備の酸化促進剤注入率との基準となる注入比率が予め設定され、水質指標測定装置により測定された被処理水の水質指標測定値に基き、前記基準となる注入比率を補正して最適な注入比率を算出する。   In the present invention, the water treatment control device is preset with an injection ratio that is a reference between the ozone injection rate of the ozone injection facility and the oxidation accelerator injection rate of the oxidation accelerator injection facility, and is measured by the water quality indicator measurement device. Based on the measured water quality indicator value of the treated water, the optimum injection ratio is calculated by correcting the reference injection ratio.

また、本発明では、水処理設備に導入された後の処理水に残留する酸化促進剤の濃度を測定する酸化促進剤測定手段をさらに設け、水処理制御装置は、この酸化促進剤測定手段で測定された酸化促進剤の濃度が、予め設定された濃度となるように酸化促進剤注入率を調整するようにしてもよい。   Further, in the present invention, an oxidation accelerator measuring means for measuring the concentration of the oxidation accelerator remaining in the treated water after being introduced into the water treatment facility is further provided, and the water treatment control device is the oxidation accelerator measuring means. The injection rate of the oxidation accelerator may be adjusted so that the measured concentration of the oxidation accelerator becomes a preset concentration.

また、本発明では、蛍光分析計は、“340〜350nm”の波長範囲内にある特定波長の励起光を使用するとともに、“420〜430nm”の波長範囲内にある特定波長の蛍光強度を使用する。   In the present invention, the fluorescence analyzer uses excitation light having a specific wavelength within the wavelength range of “340 to 350 nm” and also uses fluorescence intensity of the specific wavelength within the wavelength range of “420 to 430 nm”. To do.

また、本発明では、酸化促進剤注入設備は、過酸化水素水を注入する。   In the present invention, the oxidation accelerator injection facility injects hydrogen peroxide water.

さらに、本発明では、オゾンが注入される水処理設備の水槽内に紫外線照射を行う紫外線照射器をさらに設け、水処理制御装置は、前記水処理設備に過酸化水素水を注入させるときに前記紫外線照射器による紫外線照射を行わせるようにしてもよい。   Furthermore, in the present invention, an ultraviolet irradiator that performs ultraviolet irradiation is further provided in a water tank of a water treatment facility into which ozone is injected, and the water treatment control device is configured to inject hydrogen peroxide water into the water treatment facility. You may make it perform ultraviolet irradiation by an ultraviolet irradiation device.

本発明によれば、オゾン注入率と酸化促進剤注入率との組み合わせを最適にすると共に、溶存オゾン濃度が検出されない条件であっても、蛍光強度の減少率または促進酸化処理前後における蛍光強度の測定値を用いることによって、被処理水の水質変化に対してもオゾンの注入率を適切に調整することができる。さらに、難分解性物質に対しても高い分解力を可能とし、かつ有害な消毒副生成物質臭素酸の生成を抑制することができる。   According to the present invention, the combination of the ozone injection rate and the oxidation accelerator injection rate is optimized, and even when the dissolved ozone concentration is not detected, the fluorescence intensity decrease rate or the fluorescence intensity before and after the accelerated oxidation treatment is increased. By using the measured value, it is possible to appropriately adjust the ozone injection rate even with respect to changes in the quality of the water to be treated. Furthermore, it is possible to achieve a high decomposing power even for a hardly decomposable substance, and to suppress generation of harmful disinfecting by-product substance bromic acid.

以下、本発明による水処理システムの一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a water treatment system according to the present invention will be described in detail with reference to the drawings.

図1は、第1の実施の形態における水処理システムの構成を示している。ここでは浄水場における一般的なオゾン処理設備を例としている。   FIG. 1 shows a configuration of a water treatment system according to the first embodiment. Here, a typical ozone treatment facility in a water purification plant is taken as an example.

1は水処理設備で、その内部は、オゾンが注入されるオゾン接触槽1aおよび反応時間を確保するための滞留槽1bに区分されている。この水処理設備1は、図示左方の上流側から被処理水を導入し、この被処理水に対しオゾン注入設備2からオゾンを注入し、かつ酸化促進剤注入設備3から酸化促進剤を注入して促進酸化処理を行う。そして、滞留槽1bを経て、図示右方の下流側に排出される。   1 is a water treatment facility, and the inside thereof is divided into an ozone contact tank 1a into which ozone is injected and a retention tank 1b for ensuring reaction time. The water treatment facility 1 introduces water to be treated from the upstream side on the left side of the figure, injects ozone from the ozone injection facility 2 into the water to be treated, and injects an oxidation accelerator from the oxidation accelerator injection facility 3. Then, an accelerated oxidation treatment is performed. And it discharges | emits to the downstream of the right side of illustration through the retention tank 1b.

オゾン注入設備2はオゾン発生装置7を有し、後述する水処理制御装置6により、水処理設備1のオゾン接触槽1aに対するオゾン注入率が制御される。また、酸化促進剤注入設備3は、酸化促進剤貯槽を有し、同じく水処理制御装置6により、水処理設備1のオゾン接触槽1aに対する酸化促進剤の注入率が制御される。なお、この酸化促進剤注入設備3は、酸化促進剤として過酸化水素水を注入する。   The ozone injection facility 2 has an ozone generator 7, and an ozone injection rate for the ozone contact tank 1 a of the water treatment facility 1 is controlled by a water treatment controller 6 described later. Moreover, the oxidation promoter injection equipment 3 has an oxidation promoter storage tank, and the injection rate of the oxidation promoter into the ozone contact tank 1a of the water treatment equipment 1 is controlled by the water treatment control device 6 as well. The oxidation accelerator injection facility 3 injects hydrogen peroxide as an oxidation accelerator.

上記水処理設備1の上流側には、凝集沈でん処理水槽10が設置されている。この凝集沈でん処理水槽10には蛍光分析計4及び水質指標測定装置8が設けられ、これらの測定値は前記水処理制御装置6に入力される。蛍光分析計4は、下流側に接続する水処理設備1に導入される前の被処理水の蛍光強度を測定する。したがって、この蛍光分析計4を被処理水蛍光分析計と呼ぶ。水質指標測定装置8は、同じく水処理設備1に導入される被処理水の水質指標(詳細は後述する)を測定する。   On the upstream side of the water treatment facility 1, a coagulation sedimentation treatment water tank 10 is installed. The coagulation sedimentation treatment water tank 10 is provided with a fluorescence analyzer 4 and a water quality indicator measuring device 8, and these measured values are input to the water treatment control device 6. The fluorescence analyzer 4 measures the fluorescence intensity of the water to be treated before being introduced into the water treatment facility 1 connected to the downstream side. Therefore, this fluorescence analyzer 4 is called a to-be-treated water fluorescence analyzer. The water quality index measuring device 8 measures a water quality index (details will be described later) of water to be treated that is also introduced into the water treatment facility 1.

また、水処理設備1にも蛍光分析計5を設けており、その測定値は水処理制御装置6に入力される。この蛍光分析計5は、水処理装置1に導入され後述するように促進酸化処理された処理水の蛍光強度を測定する。したがって、この蛍光分析計5を処理水蛍光分析計と呼ぶ。   The water treatment facility 1 is also provided with a fluorescence analyzer 5, and the measured value is input to the water treatment controller 6. This fluorescence analyzer 5 measures the fluorescence intensity of treated water introduced into the water treatment apparatus 1 and subjected to accelerated oxidation treatment as will be described later. Therefore, this fluorescence analyzer 5 is called a treated water fluorescence analyzer.

ここで、蛍光分析計4,5は、“340〜350nm”の波長範囲内にある特定波長の励起光を使用するとともに、“420〜430nm”の波長範囲内にある特定波長の蛍光強度を使用する。   Here, the fluorescence analyzers 4 and 5 use excitation light having a specific wavelength within a wavelength range of “340 to 350 nm” and use fluorescence intensity of a specific wavelength within a wavelength range of “420 to 430 nm”. To do.

前記水処理制御装置6は、前述した各測定値を入力して、オゾン注入設備2によるオゾン注入率及び酸化促進剤注入設備3による酸化促進剤の注入率を求めて、これらの水処理設備1への注入制御を行う。すなわち、水処理制御装置6は、被処理水蛍光分析計4と処理水蛍光分析計5とで測定した各蛍光強度から、蛍光強度減少率を求め、この蛍光強度減少率に基き、オゾン注入設備2のオゾン注入率を求める。また、水質指標測定装置8により測定された被処理水の水質指標測定値に基き、オゾン注入率と酸化促進剤注入率との最適な注入比率を算出する。そして、この最適な注入比率と、前述のように求められたオゾン注入率とから、酸化促進剤注入設備3の酸化促進剤注入率を求める。   The water treatment control device 6 inputs each measurement value described above, obtains the ozone injection rate by the ozone injection facility 2 and the injection rate of the oxidation promoter by the oxidation promoter injection facility 3, and these water treatment facilities 1 Control injection into That is, the water treatment control device 6 obtains a fluorescence intensity reduction rate from each fluorescence intensity measured by the to-be-treated water fluorescence analyzer 4 and the treated water fluorescence analyzer 5, and based on this fluorescence intensity reduction rate, an ozone injection facility The ozone injection rate of 2 is obtained. Moreover, based on the water quality index measured value of the water to be treated measured by the water quality index measuring device 8, the optimum injection ratio between the ozone injection rate and the oxidation accelerator injection rate is calculated. And the oxidation promoter injection rate of the oxidation promoter injection equipment 3 is calculated | required from this optimal injection | pouring ratio and the ozone injection rate calculated | required as mentioned above.

以下、水処理制御装置6によるオゾン注入制御について記述する。   Hereinafter, ozone injection control by the water treatment controller 6 will be described.

まず、蛍光強度の減少率は以下の式(1)により算出される。   First, the decrease rate of fluorescence intensity is calculated by the following formula (1).

蛍光強度減少率=(処理前蛍光強度−処理後蛍光強度)/処理前蛍光強度・・・(1)
水処理制御装置6には、処理前蛍光強度と処理後蛍光強度の蛍光強度減少率が、促進酸化処理を行うことによっていくつになればいいのかという設定値を予め設定しておく。図2は、通常のオゾン処理におけるオゾン注入率と蛍光強度減少率との相関を示すグラフである。蛍光強度の減少率はオゾン注入率に対して直線関係ではなく曲線を描く。これはオゾン注入初期の段階でオゾンにより分解しやすい物質が速やかに分解され、その後分解の遅い物質が徐々に分解されていくためである。
Fluorescence intensity reduction rate = (fluorescence intensity before treatment−fluorescence intensity after treatment) / fluorescence intensity before treatment (1)
In the water treatment control device 6, a set value is set in advance as to what the fluorescence intensity decrease rate of the pre-treatment fluorescence intensity and the post-treatment fluorescence intensity should be achieved by performing the accelerated oxidation treatment. FIG. 2 is a graph showing the correlation between the ozone injection rate and the fluorescence intensity reduction rate in normal ozone treatment. The decrease rate of the fluorescence intensity draws a curve rather than a linear relationship with the ozone injection rate. This is because substances that are easily decomposed by ozone are rapidly decomposed at the initial stage of ozone injection, and then substances that are slowly decomposed are gradually decomposed.

有機物質(トリハロメタン生成能)の低減やカビ臭の除去といったオゾン処理の目的を達成するためには、蛍光強度の減少は7割〜8割くらいが適切である。水処理制御装置6では入力された処理前の蛍光強度(被処理水蛍光分析計4の測定値)と設定された蛍光強度減少率を基に、処理後の蛍光強度の目標値が算出される。よって算出される処理後の蛍光強度の目標値を設定値とし、処理後の蛍光強度(処理水蛍光分析計5の測定値)が設定値となるようにオゾン発生装置7によるオゾン注入率を制御する。   In order to achieve the purpose of ozone treatment such as reduction of organic substances (trihalomethane formation ability) and removal of mold odor, it is appropriate to reduce the fluorescence intensity by about 70% to 80%. The water treatment control device 6 calculates the target value of the fluorescence intensity after treatment based on the inputted fluorescence intensity before treatment (measured value of the water fluorescence analyzer 4 to be treated) and the set fluorescence intensity decrease rate. . Therefore, the target value of the fluorescence intensity after processing calculated is set as a set value, and the ozone injection rate by the ozone generator 7 is controlled so that the fluorescence intensity after processing (measured value of the treated water fluorescence analyzer 5) becomes the set value. To do.

また、水処理制御装置6は、水質指標測定装置8からの各水質指標の検出信号の入力に基づき、オゾン注入率と酸化促進剤注入率の最適な注入比率を算出する機能を持っている。通常、促進酸化処理において過酸化水素水を注入する場合、過酸化水素水:オゾンの注入比率は、処理効率の点から0.3〜0.5が良いとされている。これを基準となる処理効率と呼ぶ。   In addition, the water treatment control device 6 has a function of calculating the optimum injection ratio of the ozone injection rate and the oxidation accelerator injection rate based on the input of the detection signal of each water quality indicator from the water quality indicator measuring device 8. Usually, when hydrogen peroxide water is injected in the accelerated oxidation treatment, the injection ratio of hydrogen peroxide water: ozone is considered to be 0.3 to 0.5 from the viewpoint of processing efficiency. This is called the standard processing efficiency.

しかし、この注入比率は、オゾンの反応特性に影響を及ぼす因子であるpH、水温、アルカリ度の値や、処理対象となる有機物質の量と相関がある蛍光強度、全有機炭素濃度、紫外線吸光度の値によって最適な注入比率が変化する。そこで、水処理制御装置6ではこれらの水質指標を入力し、各々の水質指標によって、前記基準となる処理効率を補正することにより、過酸化水素水:オゾンの最適な注入比率を決定し、より効率的な促進酸化処理を可能とする。   However, this injection ratio depends on the values of pH, water temperature, and alkalinity, which are factors that affect the reaction characteristics of ozone, and the fluorescence intensity, total organic carbon concentration, and ultraviolet absorbance that correlate with the amount of organic substances to be treated. The optimum injection ratio varies depending on the value of. Therefore, the water treatment control device 6 inputs these water quality indexes, and determines the optimum injection ratio of hydrogen peroxide water: ozone by correcting the standard treatment efficiency by each water quality index, and more Enables efficient accelerated oxidation treatment.

すなわち、水処理制御装置6は、前述した蛍光強度の減少率により求められたオゾン注入率と、処理前の水質指標をもとに算出された酸化促進剤:オゾンの最適な注入比率とにより、酸化促進剤の注入率を求め、注入制御する。つまりオゾン注入率が変動しても、算出された最適な注入比率を維持するように過酸化水素水の注入率も調整されることになる。   That is, the water treatment control device 6 is based on the ozone injection rate obtained from the rate of decrease in the fluorescence intensity described above, and the oxidation promoter: optimum ozone injection ratio calculated based on the water quality index before treatment. The injection rate of the oxidation accelerator is obtained and the injection is controlled. That is, even if the ozone injection rate fluctuates, the injection rate of the hydrogen peroxide solution is also adjusted so as to maintain the calculated optimal injection rate.

これにより、水処理設備1内に導入された被処理水に対して、オゾン注入設備2からのオゾン注入率及び酸化促進剤注入設備3からの酸化促進剤注入を最適に制御することができる。すなわち、オゾン注入率を促進酸化処理前後の蛍光強度の減少率が一定になるように調整するので、溶存オゾン濃度が検出されない条件の下でも、ある一定の割合で流入する有機物質を分解することができる。また、酸化促進剤の注入比率も、処理前の水質指標をもとに最適注入比率が算出されるので、より効率的な促進酸化処理を行うことができる。さらに過酸化水素水を添加することによって生成するヒドロキシラジカルによって難分解性有機物の分解も行うことができ、有害な臭素酸の生成も抑制することができる。   Thereby, with respect to the water to be treated introduced into the water treatment facility 1, the ozone injection rate from the ozone injection facility 2 and the oxidation accelerator injection from the oxidation accelerator injection facility 3 can be optimally controlled. That is, the ozone injection rate is adjusted so that the rate of decrease in the fluorescence intensity before and after the accelerated oxidation treatment is constant, so that the inflowing organic substances can be decomposed at a certain rate even under conditions where the dissolved ozone concentration is not detected. Can do. Further, since the optimum injection ratio is calculated based on the water quality index before the treatment, the more efficient accelerated oxidation treatment can be performed. Furthermore, it is possible to decompose a hardly decomposable organic substance by a hydroxy radical generated by adding hydrogen peroxide solution, and to suppress generation of harmful bromic acid.

なお、上記説明では、酸化促進剤として過酸化水素水を例に挙げたが、本発明における酸化促進剤はこれに限定するものではない。また、図1では水処理設備1において、オゾンが注入されるオゾン接触槽1aおよび反応時間を確保するために設けられている滞留槽1bが1池のみ設けられているが、本発明における水処理設備1の形状はこれに限定されるものではなく、オゾン接触槽が2池、3池あってもよい。この場合はオゾンが注入される各池において酸化促進剤が注入される構造となるものとする。   In the above description, hydrogen peroxide is used as an example of the oxidation accelerator, but the oxidation accelerator in the present invention is not limited to this. In FIG. 1, the water treatment facility 1 has only one ozone contact tank 1 a into which ozone is injected and a residence tank 1 b provided for securing reaction time. The shape of the facility 1 is not limited to this, and there may be two ponds and three ponds of ozone contact tanks. In this case, the structure is such that an oxidation accelerator is injected into each pond into which ozone is injected.

次に、図3及び図4で示す第2の実施の形態について説明する。図3の実施の形態に係わる水処理システムにおいては、図1で示した水処理設備1での処理水の蛍光強度を測定する蛍光分析計5を省いた点が異なるのみであり、他は図1の実施の形態と略同じである。   Next, a second embodiment shown in FIGS. 3 and 4 will be described. The water treatment system according to the embodiment of FIG. 3 is different only in that the fluorescence analyzer 5 for measuring the fluorescence intensity of the treated water in the water treatment facility 1 shown in FIG. 1 is omitted. This is substantially the same as the first embodiment.

図3に示す第2の実施の形態では、水処理設備1に導入される被処理水の蛍光強度は蛍光分析計4により検出される。水処理制御装置6は、蛍光分析計4からの検出信号の入力に基づきオゾン発生装置7を制御する。すなわち、水処理制御装置6には、処理前の蛍光強度に対するオゾン注入率の関係を予め設定しておく。図4は、処理前の被処理水中の各蛍光強度の大きさ毎のオゾン注入率と蛍光強度減少率との相関を示す特性図の一例である。   In the second embodiment shown in FIG. 3, the fluorescence intensity of the water to be treated introduced into the water treatment facility 1 is detected by the fluorescence analyzer 4. The water treatment control device 6 controls the ozone generator 7 based on the detection signal input from the fluorescence analyzer 4. That is, in the water treatment control device 6, the relationship of the ozone injection rate with respect to the fluorescence intensity before treatment is set in advance. FIG. 4 is an example of a characteristic diagram showing a correlation between an ozone injection rate and a fluorescence intensity reduction rate for each fluorescence intensity in the water to be treated before treatment.

図4によると、入口の蛍光強度が大きいほど、同じ蛍光強度の減少率を達成するために注入するオゾン量も多くなることが分かる。水処理制御装置6では入力された処理前の蛍光強度の大きさに応じて図4で示したような特性曲線を設定しておく。そして、目標とする蛍光強度減少率に応じてオゾン注入率を算出し、この算出したオゾン注入率をもとにオゾン発生装置7を制御する。   According to FIG. 4, it can be seen that the greater the fluorescence intensity at the entrance, the greater the amount of ozone that is injected to achieve the same rate of decrease in fluorescence intensity. In the water treatment control device 6, a characteristic curve as shown in FIG. 4 is set in accordance with the inputted fluorescence intensity before the treatment. Then, the ozone injection rate is calculated according to the target fluorescence intensity reduction rate, and the ozone generator 7 is controlled based on the calculated ozone injection rate.

この制御方式は、原水の水質変動の小さい処理水にオゾン注入を行うときには有効である。また、ここでは予め入力された特性曲線と蛍光強度減少率によるオゾン注入率の調整について説明したが、制御方法はこれに限定されるものではなく、処理前の蛍光強度を指標としたフィードフォワード的にオゾン注入率を調整する制御を行う制御方式に関するものとする。   This control method is effective when ozone is injected into treated water with small fluctuations in raw water quality. In addition, the adjustment of the ozone injection rate based on the characteristic curve input in advance and the fluorescence intensity reduction rate has been described here, but the control method is not limited to this, and a feedforward method using the fluorescence intensity before processing as an index. And a control method for controlling the ozone injection rate.

また、水処理制御装置6は、水質指標測定装置8からの各水質指標の検出信号の入力に基づきオゾン注入率と酸化促進剤注入率の最適な注入比率を算出する機能を持っている。この算出方法については、前述したとおりである。すなわち、水処理制御装置6は、酸化促進剤の注入制御に当って、先ず、前述した処理前の蛍光強度によりオゾン注入率を求める。そして、この求められたオゾン注入率と、処理前の水質指標をもとに算出された過酸化水素水:オゾンの最適な注入比率とにより、酸化促進剤の注入率を決定し、注入制御する。   In addition, the water treatment control device 6 has a function of calculating an optimal injection ratio of the ozone injection rate and the oxidation accelerator injection rate based on the input of detection signals of the respective water quality indicators from the water quality indicator measurement device 8. This calculation method is as described above. That is, in the injection control of the oxidation accelerator, the water treatment control device 6 first obtains the ozone injection rate based on the fluorescence intensity before the treatment described above. Then, the injection rate of the oxidation accelerator is determined by controlling the injection rate based on the obtained ozone injection rate and the optimal hydrogen peroxide water: ozone injection rate calculated based on the water quality index before treatment. .

これにより、水処理設備1内に導入された被処理水に対して、オゾン注入設備2からのオゾン注入率及び酸化促進剤注入設備3からの酸化促進剤注入を制御することができる。   Thereby, it is possible to control the ozone injection rate from the ozone injection facility 2 and the oxidation promoter injection from the oxidation promoter injection facility 3 for the water to be treated introduced into the water treatment facility 1.

このように、処理前の蛍光強度が処理の対象となる有機物質量と高い相関があることを利用し、処理前の蛍光強度の大きさによってオゾン注入率を決定し、それにあわせ酸化促進剤の注入率も調整する。ここでは酸化促進剤の注入比率が、処理前の水質指標をもとに最適注入比率に算出されるので、より効率的な促進酸化処理を行うことができる。   In this way, utilizing the fact that the fluorescence intensity before treatment is highly correlated with the amount of organic substance to be treated, the ozone injection rate is determined by the magnitude of the fluorescence intensity before treatment, and the oxidation accelerator is injected accordingly. Also adjust the rate. Here, since the injection ratio of the oxidation promoter is calculated as the optimal injection ratio based on the water quality index before the treatment, more efficient accelerated oxidation treatment can be performed.

次に、図5及び図6で示す第3の実施の形態について説明する。図5の実施の形態では、図1で示した第1の実施の形態に対して、水処理設備1に導入される被処理水の蛍光強度を測定する蛍光分析計4を省いた点が異なるのみであり、他は図1と略同じである。   Next, a third embodiment shown in FIGS. 5 and 6 will be described. The embodiment shown in FIG. 5 differs from the first embodiment shown in FIG. 1 in that the fluorescence analyzer 4 that measures the fluorescence intensity of the water to be treated introduced into the water treatment facility 1 is omitted. The rest is substantially the same as FIG.

この図5に示す実施の形態において、水処理設備1に導入された後の処理水の蛍光強度は蛍光分析計5により検出される。水処理制御装置6は、蛍光分析計5からの検出信号の入力に基づきオゾン発生装置7を制御する。すなわち、水処理制御装置6には、処理後の蛍光強度の目標値を予め設定しておく。   In the embodiment shown in FIG. 5, the fluorescence intensity of the treated water after being introduced into the water treatment facility 1 is detected by the fluorescence analyzer 5. The water treatment controller 6 controls the ozone generator 7 based on the detection signal input from the fluorescence analyzer 5. That is, the target value of the fluorescence intensity after processing is set in advance in the water treatment control device 6.

図6は通常のオゾン処理において、処理後の蛍光強度と有害な消毒副生成物質である臭素酸生成濃度との相関を示す特性図の一例である。図6から、処理後の蛍光強度がある値(限界蛍光強度:X)より低くなってしまうと、つまりオゾンを過剰に注入してしまうと、規制値以上の臭素酸が生成することが分かる。促進酸化処理においては注入する過酸化水素水の還元作用により臭素酸の生成は抑制されるが、有機物の大部分が分解されてしまうポイントと臭素酸の生成が始まるポイントはある程度一致しているので、図6より促進酸化処理後の蛍光強度の目標値を推測することができる。そこで、水処理制御装置6では臭素酸生成が規制値以上になる蛍光強度より高い蛍光強度(図6における蛍光強度設定値:X)を、処理後の蛍光強度の目標値と設定し、設定された処理後の蛍光強度を目標値としてオゾン注入を制御する。 FIG. 6 is an example of a characteristic diagram showing the correlation between the fluorescence intensity after the treatment and the concentration of bromic acid that is a harmful disinfection by-product in the normal ozone treatment. From FIG. 6, it is understood that if the fluorescence intensity after treatment becomes lower than a certain value (limit fluorescence intensity: X 1 ), that is, if ozone is excessively injected, bromine acid exceeding the regulation value is generated. . In the accelerated oxidation treatment, the production of bromic acid is suppressed by the reduction action of the injected hydrogen peroxide solution, but the point at which most of the organic substances are decomposed and the point at which the production of bromic acid begins coincides to some extent. From FIG. 6, the target value of the fluorescence intensity after the accelerated oxidation treatment can be estimated. Therefore, the water treatment control device 6 sets and sets the fluorescence intensity higher than the fluorescence intensity at which bromic acid generation exceeds the regulation value (fluorescence intensity setting value: X 2 in FIG. 6) as the target value of the fluorescence intensity after treatment. The ozone injection is controlled using the processed fluorescence intensity as a target value.

また、水処理制御装置6は、水質指標測定装置8からの各水質指標の検出信号の入力に基づきオゾン注入率と酸化促進剤注入率の最適な注入比率を算出する機能を持っている。この算出方法については、前述のとおりである。すなわち、水処理制御装置6は、酸化促進剤の注入制御に当って、先ず、上述のように処理後の蛍光強度を目標値に追従させるためのオゾン注入率を求める、そして、このオゾン注入率と、処理前の水質指標をもとに算出された酸化促進剤:オゾンの最適な注入比率とにより、酸化促進剤の注入率を決定し、注入制御する。つまり、オゾン注入率が変化しても、算出された酸化促進剤:オゾンの注入比率が一定となるように、注入される酸化促進剤の注入率も調整される。   In addition, the water treatment control device 6 has a function of calculating an optimal injection ratio of the ozone injection rate and the oxidation accelerator injection rate based on the input of detection signals of the respective water quality indicators from the water quality indicator measurement device 8. This calculation method is as described above. That is, in controlling the injection of the oxidation accelerator, the water treatment control device 6 first obtains an ozone injection rate for causing the fluorescence intensity after treatment to follow the target value as described above, and this ozone injection rate. Then, the injection rate of the oxidation accelerator is determined and controlled according to the optimal injection ratio of the oxidation promoter: ozone calculated based on the water quality index before treatment. In other words, even if the ozone injection rate changes, the injection rate of the injected oxidation accelerator is also adjusted so that the calculated oxidation promoter: ozone injection ratio is constant.

これにより、水処理設備1内に導入された被処理水に対して、オゾン注入設備2からのオゾン注入率及び酸化促進剤注入設備3からの酸化促進剤注入を制御することができる。   Thereby, it is possible to control the ozone injection rate from the ozone injection facility 2 and the oxidation promoter injection from the oxidation promoter injection facility 3 for the water to be treated introduced into the water treatment facility 1.

次に、図7で示す第4の実施の形態を説明する。この第4の実施の形態による水処理システムでは、図1、図3、図5で示した各実施の形態における水処理設備1に導入された後の、処理水に残留する酸化促進剤の濃度を測定する酸化促進剤測定装置9を設けた点が異なるのみであり、他は図1、図3、図5で示した各実施の形態と略同じである。なお、図7は、図1で示した実施の形態に酸化促進剤測定装置9を付加したものとして図示している。   Next, a fourth embodiment shown in FIG. 7 will be described. In the water treatment system according to the fourth embodiment, the concentration of the oxidation promoter remaining in the treated water after being introduced into the water treatment facility 1 in each of the embodiments shown in FIG. 1, FIG. 3, and FIG. The only difference is the provision of an oxidation accelerator measuring device 9 for measuring NO, and the others are substantially the same as those of the embodiments shown in FIGS. FIG. 7 shows that the oxidation accelerator measuring device 9 is added to the embodiment shown in FIG.

図7の実施の形態において、水処理設備1に対しては、オゾン注入設備2及び酸化促進剤注入設備3が配設されている。そして、水処理設備1に導入される被処理水の蛍光強度は蛍光分析計4により検出され、水処理設備1に導入された後の処理水の蛍光強度は蛍光分析計5により検出される。水処理制御装置6は、これらの蛍光分析計4および蛍光分析計5からの検出信号の入力に基づきオゾン発生装置7を制御する。   In the embodiment of FIG. 7, an ozone injection facility 2 and an oxidation accelerator injection facility 3 are arranged for the water treatment facility 1. The fluorescence intensity of the water to be treated introduced into the water treatment facility 1 is detected by the fluorescence analyzer 4, and the fluorescence intensity of the treated water introduced into the water treatment facility 1 is detected by the fluorescence analyzer 5. The water treatment control device 6 controls the ozone generator 7 based on the detection signal input from the fluorescence analyzer 4 and the fluorescence analyzer 5.

このオゾン注入率の算出方法については、前述した図1の実施の形態において記述したとおりである。なお、オゾン注入率の算出方法は、図3及び図5で示した実施の形態でのオゾン注入率の算出方法であってもよい。   The method for calculating the ozone injection rate is as described in the embodiment of FIG. The method for calculating the ozone injection rate may be the method for calculating the ozone injection rate in the embodiment shown in FIGS.

また、水処理制御装置6には、酸化促進剤測定装置9から、水処理設備1に導入された後の処理水に残留する酸化促進剤の濃度測定値が入力されている。酸化促進剤の注入率は、この酸化促進剤測定装置9によって測定される残留する酸化促進剤の濃度を一定と保つように調整される。過酸化水素水を用いた促進酸化処理における臭素酸の生成は残留する過酸化水素水が無くなってから臭素酸の生成が始まる事が知られている。これは過酸化水素水による還元作用が無くなるため臭素酸の生成反応が進むことによると思われる。   In addition, the water treatment control device 6 receives from the oxidation accelerator measuring device 9 a measured value of the concentration of the oxidation promoter remaining in the treated water after being introduced into the water treatment facility 1. The injection rate of the oxidation accelerator is adjusted so as to keep the concentration of the remaining oxidation accelerator measured by the oxidation accelerator measuring device 9 constant. It is known that the production of bromic acid in the accelerated oxidation treatment using hydrogen peroxide solution starts from the generation of bromic acid after the remaining hydrogen peroxide solution disappears. This is thought to be due to the progress of the bromic acid formation reaction because the reducing action by the hydrogen peroxide solution disappears.

これにより、水処理設備1内に導入された被処理水に対して、オゾン注入設備2からのオゾン注入率は蛍光分析計4,5の測定値により調整され、酸化促進剤注入設備3からの酸化促進剤注入率は、残留する酸化促進剤の濃度を測定する酸化促進剤測定装置9の測定値に基づいて制御することができる。   Thereby, the ozone injection rate from the ozone injection facility 2 is adjusted by the measured values of the fluorescence analyzers 4 and 5 with respect to the water to be treated introduced into the water treatment facility 1, and from the oxidation accelerator injection facility 3. The injection rate of the oxidation accelerator can be controlled based on the measured value of the oxidation accelerator measuring device 9 that measures the concentration of the remaining oxidation accelerator.

このように、オゾン注入率を蛍光強度の測定値により調整するので、溶存オゾン濃度が検出されない条件の下でもある一定の割合で流入する有機物質を分解することができる。また、酸化促進剤の注入比率も、残留する過酸化水素水の濃度を一定と保つように注入されるので、有害な消毒副生成物質である臭素酸の生成を抑制しつつ、より効率的な促進酸化処理を行うことができる。   As described above, since the ozone injection rate is adjusted by the measured value of the fluorescence intensity, the organic substance flowing in at a certain rate can be decomposed even under the condition that the dissolved ozone concentration is not detected. Moreover, since the injection ratio of the oxidation accelerator is also injected so as to keep the concentration of the remaining hydrogen peroxide solution constant, it is more efficient while suppressing the production of bromic acid, which is a harmful disinfection by-product. An accelerated oxidation treatment can be performed.

次に、図8で示す第5の実施の形態を説明する。この第5の実施の形態による水処理システムでは、図1、図3、図5、図7で示した各実施の形態における水処理設備1において、オゾンが注入されるオゾン接触槽1a内に紫外線照射を行う紫外線照射器11を設けた点が異なるのみであり、他は図1、図3、図5、図7で示した各実施の形態と略同じである。なお、図8は、図1で示した実施の形態に紫外線照射器11を付加したものとして図示している。   Next, a fifth embodiment shown in FIG. 8 will be described. In the water treatment system according to the fifth embodiment, ultraviolet rays are injected into the ozone contact tank 1a into which ozone is injected in the water treatment facility 1 in each of the embodiments shown in FIG. 1, FIG. 3, FIG. 5, and FIG. The only difference is that an ultraviolet irradiator 11 that performs irradiation is provided, and the others are substantially the same as those of the embodiments shown in FIGS. 1, 3, 5, and 7. FIG. 8 shows the embodiment shown in FIG. 1 with an ultraviolet irradiator 11 added.

図8に示す実施の形態において、水処理設備1に対してはオゾン注入設備2及び酸化促進剤注入設備3が配設されている。そして、水処理設備1に導入される被処理水の蛍光強度は蛍光分析計4により検出され、水処理設備1に導入された後の処理水の蛍光強度は蛍光分析計5により検出される。水処理制御装置6は、これらの蛍光分析計4および蛍光分析計5からの検出信号の入力に基づきオゾン発生装置7を制御する。   In the embodiment shown in FIG. 8, an ozone injection facility 2 and an oxidation accelerator injection facility 3 are provided for the water treatment facility 1. The fluorescence intensity of the water to be treated introduced into the water treatment facility 1 is detected by the fluorescence analyzer 4, and the fluorescence intensity of the treated water introduced into the water treatment facility 1 is detected by the fluorescence analyzer 5. The water treatment control device 6 controls the ozone generator 7 based on the detection signal input from the fluorescence analyzer 4 and the fluorescence analyzer 5.

このオゾン注入率の算出方法については、前述した図1の実施の形態において記述したとおりである。また、オゾン注入率の算出方法は、図3及び図5で示した実施の形態でのオゾン注入率の算出方法であってもよい。   The method for calculating the ozone injection rate is as described in the embodiment of FIG. Further, the ozone injection rate calculation method may be the ozone injection rate calculation method in the embodiment shown in FIGS. 3 and 5.

また、水処理制御装置6は、水質指標測定装置8からの各水質指標の検出信号の入力に基づきオゾン注入率と酸化促進剤注入率の最適な注入比率を算出する機能を持っている。この算出方法については、図1で示した実施の形態で記述したとおりである。なお、酸化促進剤注入率の算出方法には、図7で説明した第4の実施の形態による残留する酸化促進剤の濃度に基づいて調整される方法であってもよい。   In addition, the water treatment control device 6 has a function of calculating an optimal injection ratio of the ozone injection rate and the oxidation accelerator injection rate based on the input of detection signals of the respective water quality indicators from the water quality indicator measurement device 8. This calculation method is as described in the embodiment shown in FIG. The method of calculating the oxidation accelerator injection rate may be a method adjusted based on the concentration of the remaining oxidation accelerator according to the fourth embodiment described with reference to FIG.

この図8の実施の形態では、酸化促進剤を加えるのと同時に、紫外線照射を行う紫外線照射器10により被処理水中に紫外線が照射される。これにより、オゾン+過酸化水素水+紫外線、の促進酸化処理を行うことができ、難分解性の有機物質の分解を高い分解力で行うことができる。   In the embodiment of FIG. 8, ultraviolet rays are irradiated into the water to be treated by the ultraviolet irradiator 10 that performs ultraviolet irradiation simultaneously with the addition of the oxidation accelerator. Thereby, the accelerated oxidation treatment of ozone + hydrogen peroxide water + ultraviolet light can be performed, and the hard-to-decompose organic substance can be decomposed with high decomposing power.

本発明による水処理システムの第1の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 1st embodiment of a water treatment system by the present invention. 同上第1の実施の形態におけるオゾン注入率と蛍光強度減少率との関係を示す特性図である。It is a characteristic view which shows the relationship between the ozone injection rate and fluorescence intensity reduction rate in 1st Embodiment same as the above. 本発明の第2の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 2nd embodiment of the present invention. 同上第2の実施の形態における被処理水中の蛍光強度毎のオゾン注入率と蛍光強度減少率との相関を示す特性図である。It is a characteristic view which shows the correlation with the ozone injection rate for every fluorescence intensity in to-be-processed water in 2nd Embodiment same as the above, and fluorescence intensity reduction rate. 本発明の第3の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 3rd embodiment of the present invention. 同上第2の実施の形態における処理後の蛍光強度と有害な消毒副生成物質である臭素酸生成濃度との相関を示す特性図である。It is a characteristic view which shows the correlation with the fluorescence intensity after the process in 2nd Embodiment same as the above, and the bromic acid production | generation density | concentration which is a harmful | toxic disinfection by-product substance. 本発明の第4の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 4th embodiment of the present invention. 本発明の第5の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 5th embodiment of the present invention.

符号の説明Explanation of symbols

1 水処理設備
2 オゾン注入設備
3 酸化促進剤注入設備
4 被処理水蛍光分析計
5 処理水蛍光分析計
6 水処理制御装置
7 オゾン発生装置
8 水質指標測定装置
9 酸化促進剤測定装置
11 紫外線照射器
DESCRIPTION OF SYMBOLS 1 Water treatment equipment 2 Ozone injection equipment 3 Oxidation promoter injection equipment 4 To-be-treated water fluorescence analyzer 5 Treated water fluorescence analyzer 6 Water treatment control device 7 Ozone generator 8 Water quality index measuring device 9 Oxidation promoter measurement device 11 UV irradiation vessel

Claims (9)

被処理水を導入し、この被処理水に対しオゾン注入設備からオゾンを注入し、かつ酸化促進剤注入設備から酸化促進剤を注入して促進酸化処理を行う水処理設備と、
この水処理設備に導入される前の被処理水の蛍光強度を測定する被処理水蛍光分析計、同被処理水の水質指標を測定する水質指標測定装置、及び前記水処理設備に導入され促進酸化処理された処理水の蛍光強度を測定する処理水蛍光分析計と、
前記被処理水蛍光分析計及び前記処理水蛍光分析計で測定された各蛍光強度から求まる蛍光強度減少率に基き前記オゾン注入設備のオゾン注入率を求め、かつ前記水質指標測定装置により測定された被処理水の水質指標測定値に基きオゾン注入率と酸化促進剤注入率との最適な注入比率を算出し、この最適な注入比率と前記求められたオゾン注入率とから前記酸化促進剤注入設備の酸化促進剤注入率を求める水処理制御装置と
を備えたことを特徴とする水処理システム。
A water treatment facility that introduces water to be treated, injects ozone from the ozone injection facility into the water to be treated, and injects an oxidation accelerator from the oxidation accelerator injection facility to perform an accelerated oxidation treatment; and
Fluorescence analyzer for water to be treated for measuring the fluorescence intensity of water to be treated before being introduced into the water treatment facility, a water quality indicator measuring device for measuring the water quality indicator for the water to be treated, and being introduced and promoted in the water treatment facility A treated water fluorescence analyzer that measures the fluorescence intensity of the treated treated water;
The ozone injection rate of the ozone injection facility was obtained based on the fluorescence intensity decrease rate obtained from each fluorescence intensity measured by the treated water fluorescence analyzer and the treated water fluorescence analyzer, and measured by the water quality indicator measuring device. An optimal injection ratio between the ozone injection rate and the oxidation promoter injection rate is calculated based on the measured value of the water quality index of the water to be treated, and the oxidation accelerator injection equipment is calculated from the optimal injection ratio and the obtained ozone injection rate. A water treatment system comprising: a water treatment control device for obtaining an injection rate of the oxidation accelerator.
被処理水を導入し、この被処理水に対しオゾン注入設備からオゾンを注入し、かつ酸化促進剤注入設備から酸化促進剤を注入して促進酸化処理を行う水処理設備と、
この水処理設備に導入される前の被処理水の蛍光強度を測定する被処理水蛍光分析計、及び同被処理水の水質指標を測定する水質指標測定装置と、
前記被処理水の蛍光強度に対応したオゾン注入率が予め設定され、前記被処理水蛍光分析計で測定された蛍光強度に基き前記オゾン注入設備のオゾン注入率を求め、かつ前記水質指標測定装置により測定された被処理水の水質指標測定値に基きオゾン注入率と酸化促進剤注入率との最適な注入比率を算出し、この最適な注入比率と前記求められたオゾン注入率とから前記酸化促進剤注入設備の酸化促進剤注入率を求める水処理制御装置と
を備えたことを特徴とする水処理システム。
A water treatment facility that introduces water to be treated, injects ozone from the ozone injection facility into the water to be treated, and injects an oxidation accelerator from the oxidation accelerator injection facility to perform an accelerated oxidation treatment; and
A treated water fluorescence analyzer that measures the fluorescence intensity of the treated water before being introduced into the water treatment facility, and a water quality indicator measuring device that measures the water quality indicator of the treated water;
The ozone injection rate corresponding to the fluorescence intensity of the treated water is preset, the ozone injection rate of the ozone injection facility is obtained based on the fluorescence intensity measured by the treated water fluorescence analyzer, and the water quality index measuring device The optimal injection ratio between the ozone injection rate and the oxidation accelerator injection rate is calculated based on the measured water quality index measured by the water, and the oxidation rate is calculated from the optimal injection ratio and the obtained ozone injection rate. A water treatment system comprising: a water treatment control device for obtaining an oxidation accelerator injection rate of the accelerator injection facility.
被処理水を導入し、この被処理水に対しオゾン注入設備からオゾンを注入し、かつ酸化促進剤注入設備から酸化促進剤を注入して促進酸化処理を行う水処理設備と、
この水処理設備に導入される前の被処理水の水質指標を測定する水質指標測定装置、及び前記水処理設備に導入され促進酸化処理された処理水の蛍光強度を測定する処理水蛍光分析計と、
前記処理水の目標とする蛍光強度が予め設定され、前記処理水蛍光分析計で測定された蛍光強度が、前記予め設定された蛍光強度となる前記オゾン注入設備のオゾン注入率を求め、かつ前記水質指標測定装置により測定された被処理水の水質指標測定値に基きオゾン注入率と酸化促進剤注入率との最適な注入比率を算出し、この最適な注入比率と前記求められたオゾン注入率とから前記酸化促進剤注入設備の酸化促進剤注入率を求める水処理制御装置と
を備えたことを特徴とする水処理システム。
A water treatment facility that introduces water to be treated, injects ozone from the ozone injection facility into the water to be treated, and injects an oxidation accelerator from the oxidation accelerator injection facility to perform an accelerated oxidation treatment; and
A water quality indicator measuring device for measuring a water quality indicator of water to be treated before being introduced into the water treatment facility, and a treated water fluorescence analyzer for measuring the fluorescence intensity of the treated water introduced into the water treatment facility and subjected to accelerated oxidation treatment When,
The target fluorescence intensity of the treated water is set in advance, the fluorescence intensity measured with the treated water fluorescence analyzer is determined as the ozone injection rate of the ozone injection facility that is the preset fluorescence intensity, and the Based on the water quality index measurement value of the water to be treated measured by the water quality index measuring device, the optimal injection ratio between the ozone injection rate and the oxidation accelerator injection rate is calculated, and this optimal injection ratio and the obtained ozone injection rate are calculated. A water treatment control device for obtaining an oxidation accelerator injection rate of the oxidation accelerator injection facility from the water treatment system.
水質指標測定装置により測定される水質指標値は、
被処理水に注入されるオゾンの分解特性に影響を及ぼす因子であるpH、水温、アルカリ度の少なくともいずれか1つあるいはpH、水温、アルカリ度を組み合わせた指標と、
被処理水中においてオゾンにより分解される有機物質の量と相関がある蛍光強度、全有機炭素濃度、紫外線吸光度のうち少なくともいずれか1つもしくは蛍光強度、全有機炭素濃度、紫外線吸光度を組み合わせた指標と
のいずれかであることを特徴とする請求項1乃至請求項3のいずれかに記載の水処理システム。
The water quality index value measured by the water quality index measuring device is
An index that combines at least one of pH, water temperature, and alkalinity, which is a factor affecting the decomposition characteristics of ozone injected into the water to be treated, or a combination of pH, water temperature, and alkalinity;
An indicator that combines at least one of fluorescence intensity, total organic carbon concentration, and ultraviolet absorbance, or a combination of fluorescence intensity, total organic carbon concentration, and ultraviolet absorbance, which has a correlation with the amount of organic substances decomposed by ozone in the water to be treated The water treatment system according to any one of claims 1 to 3, wherein the water treatment system is any one of the above.
水処理制御装置には、オゾン注入設備のオゾン注入率と酸化促進剤注入設備の酸化促進剤注入率との基準となる注入比率が予め設定され、水質指標測定装置により測定された被処理水の水質指標測定値に基き、前記基準となる注入比率を補正して最適な注入比率を算出することを特徴とする請求項1乃至請求項4のいずれかに記載の水処理システム。   In the water treatment control device, an injection ratio serving as a reference between the ozone injection rate of the ozone injection facility and the oxidation promoter injection rate of the oxidation accelerator injection facility is set in advance, and the water to be treated measured by the water quality indicator measuring device is set. 5. The water treatment system according to claim 1, wherein an optimal injection ratio is calculated by correcting the reference injection ratio based on a water quality index measurement value. 水処理設備に導入された後の処理水に残留する酸化促進剤の濃度を測定する酸化促進剤測定手段をさらに設け、
水処理制御装置は、この酸化促進剤測定手段で測定された酸化促進剤の濃度が、予め設定された濃度となるように酸化促進剤注入率を調整する
ことを特徴とする請求項1乃至請求5のいずれかに記載の水処理システム。
Further provided is an oxidation accelerator measuring means for measuring the concentration of the oxidation accelerator remaining in the treated water after being introduced into the water treatment facility,
The water treatment control device adjusts the injection rate of the oxidation accelerator so that the concentration of the oxidation accelerator measured by the oxidation accelerator measuring means becomes a preset concentration. The water treatment system according to any one of 5.
蛍光分析計は、“340〜350nm”の波長範囲内にある特定波長の励起光を使用するとともに、“420〜430nm”の波長範囲内にある特定波長の蛍光強度を使用することを特徴とする請求項1乃至請求項6のいずれかに記載の水処理システム。   The fluorescence analyzer is characterized by using excitation light having a specific wavelength within a wavelength range of “340 to 350 nm” and using fluorescence intensity at a specific wavelength within a wavelength range of “420 to 430 nm”. The water treatment system according to any one of claims 1 to 6. 酸化促進剤注入設備は、過酸化水素水を注入することを特徴とする請求項1乃至請求項7のいずれかに記載の水処理システム。   The water treatment system according to any one of claims 1 to 7, wherein the oxidation accelerator injection facility injects hydrogen peroxide water. オゾンが注入される水処理設備の水槽内に紫外線照射を行う紫外線照射器をさらに設け、
水処理制御装置は、前記水処理設備に過酸化水素水を注入させるときに前記紫外線照射器による紫外線照射を行わせる
ことを特徴とする請求項1乃至請求項8のいずれかに記載の水処理システム。
An ultraviolet irradiator that irradiates ultraviolet rays in a water tank of a water treatment facility into which ozone is injected is further provided.
9. The water treatment according to claim 1, wherein the water treatment control device causes the ultraviolet irradiator to perform ultraviolet irradiation when hydrogen peroxide water is injected into the water treatment facility. system.
JP2005276606A 2005-09-22 2005-09-22 Water treatment system Active JP4673709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276606A JP4673709B2 (en) 2005-09-22 2005-09-22 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276606A JP4673709B2 (en) 2005-09-22 2005-09-22 Water treatment system

Publications (2)

Publication Number Publication Date
JP2007083186A true JP2007083186A (en) 2007-04-05
JP4673709B2 JP4673709B2 (en) 2011-04-20

Family

ID=37970707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276606A Active JP4673709B2 (en) 2005-09-22 2005-09-22 Water treatment system

Country Status (1)

Country Link
JP (1) JP4673709B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610221A1 (en) * 2012-01-02 2013-07-03 Siemens Aktiengesellschaft Method and arrangement for a water treatment
JP2015160145A (en) * 2014-02-25 2015-09-07 株式会社東芝 Water treatment apparatus, and water treatment method
JP2016040534A (en) * 2014-08-12 2016-03-24 リオン株式会社 Viable particle counting system, viable particle counting method
JP2016040533A (en) * 2014-08-12 2016-03-24 リオン株式会社 Viable particle counting system, viable particle counting method and water quality management system
JP2017185442A (en) * 2016-04-05 2017-10-12 メタウォーター株式会社 Accelerated oxidation treatment method and accelerated oxidation treatment device
WO2019198831A1 (en) * 2018-04-12 2019-10-17 株式会社東芝 Accelerated oxidation water treatment system and method
JP2020089841A (en) * 2018-12-06 2020-06-11 株式会社東芝 Water treatment controlling device, water treatment system, and water treatment device
WO2020122012A1 (en) * 2018-12-11 2020-06-18 株式会社 東芝 Water treatment system, controller of water treatment system and water treatment method
WO2021117316A1 (en) * 2019-12-13 2021-06-17 株式会社東芝 Water treatment system and water treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281893A (en) * 1991-03-11 1992-10-07 Meidensha Corp System for controlling ozone treatment
JPH09276882A (en) * 1996-04-18 1997-10-28 Meidensha Corp Ozone contact tank of pressure downward injection type and control method therefor
JP2004097992A (en) * 2002-09-11 2004-04-02 Toshiba Corp Ozone-accelerated oxidation water treatment apparatus using ultraviolet ray together and ozone accelerated oxidation module
JP2004243265A (en) * 2003-02-17 2004-09-02 Toshiba Corp Water treatment control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281893A (en) * 1991-03-11 1992-10-07 Meidensha Corp System for controlling ozone treatment
JPH09276882A (en) * 1996-04-18 1997-10-28 Meidensha Corp Ozone contact tank of pressure downward injection type and control method therefor
JP2004097992A (en) * 2002-09-11 2004-04-02 Toshiba Corp Ozone-accelerated oxidation water treatment apparatus using ultraviolet ray together and ozone accelerated oxidation module
JP2004243265A (en) * 2003-02-17 2004-09-02 Toshiba Corp Water treatment control system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610221A1 (en) * 2012-01-02 2013-07-03 Siemens Aktiengesellschaft Method and arrangement for a water treatment
WO2013102512A1 (en) * 2012-01-02 2013-07-11 Siemens Aktiengesellschaft Method and arrangement for a water treatment
JP2015160145A (en) * 2014-02-25 2015-09-07 株式会社東芝 Water treatment apparatus, and water treatment method
JP2016040534A (en) * 2014-08-12 2016-03-24 リオン株式会社 Viable particle counting system, viable particle counting method
JP2016040533A (en) * 2014-08-12 2016-03-24 リオン株式会社 Viable particle counting system, viable particle counting method and water quality management system
JP2017185442A (en) * 2016-04-05 2017-10-12 メタウォーター株式会社 Accelerated oxidation treatment method and accelerated oxidation treatment device
WO2019198831A1 (en) * 2018-04-12 2019-10-17 株式会社東芝 Accelerated oxidation water treatment system and method
JP2019181386A (en) * 2018-04-12 2019-10-24 株式会社東芝 Accelerated oxidized water treatment system and method
JP2020089841A (en) * 2018-12-06 2020-06-11 株式会社東芝 Water treatment controlling device, water treatment system, and water treatment device
WO2020116655A1 (en) * 2018-12-06 2020-06-11 株式会社東芝 Water treatment control device, water treatment system, and water treatment device
WO2020122012A1 (en) * 2018-12-11 2020-06-18 株式会社 東芝 Water treatment system, controller of water treatment system and water treatment method
JP2020093194A (en) * 2018-12-11 2020-06-18 株式会社東芝 Water treatment system, controller of water treatment system, and water treatment method
WO2021117316A1 (en) * 2019-12-13 2021-06-17 株式会社東芝 Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP4673709B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4673709B2 (en) Water treatment system
Cai et al. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation
Yousefi et al. Mineralization of high saline petrochemical wastewater using Sonoelectro-activated persulfate: degradation mechanisms and reaction kinetics
Gottschalk et al. Ozonation of water and waste water: A practical guide to understanding ozone and its applications
Monteagudo et al. Ferrioxalate-induced solar photo-Fenton system for the treatment of winery wastewaters
Monteagudo et al. Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe (II) and ultrasonic irradiation
Bustos-Terrones et al. Degradation of organic matter from wastewater using advanced primary treatment by O3 and O3/UV in a pilot plant
KR101459376B1 (en) Water treatment apparatus having control system and water treatment process using thereof
JP2008207090A (en) Water treatment method and apparatus
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP2007196175A (en) Treatment method and arrangement of waste water
JP2010063954A (en) Liquid treatment apparatus
JP2005279409A (en) Treatment method of organometallic compound-containing waste water
JP4660211B2 (en) Water treatment control system and water treatment control method
JP2008194558A (en) Water treatment system and method
KR101169877B1 (en) The method for settings of operation parameters in advanced oxidation processesAOPs
JP3697933B2 (en) Water treatment method and apparatus using ozone
US20140131285A1 (en) Method and Arrangement for a Water Treatment
JP3617334B2 (en) Water treatment method and apparatus
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
Zakaria et al. Influence of dosage, pH and contact time in stabilized landfill leachate treatment using ozone/zirconium tetrachloride catalytic oxidation
JP2007326047A (en) Water treatment control device
JP2008272761A (en) Accelerated oxidation treatment apparatus
JP4331048B2 (en) Ozone water treatment control system
JP3889294B2 (en) Water treatment system using a fluorescence analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R151 Written notification of patent or utility model registration

Ref document number: 4673709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3