JP2004243265A - Water treatment control system - Google Patents

Water treatment control system Download PDF

Info

Publication number
JP2004243265A
JP2004243265A JP2003037915A JP2003037915A JP2004243265A JP 2004243265 A JP2004243265 A JP 2004243265A JP 2003037915 A JP2003037915 A JP 2003037915A JP 2003037915 A JP2003037915 A JP 2003037915A JP 2004243265 A JP2004243265 A JP 2004243265A
Authority
JP
Japan
Prior art keywords
water treatment
water
ozone
treated
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003037915A
Other languages
Japanese (ja)
Other versions
JP4079795B2 (en
Inventor
Norimitsu Abe
部 法 光 阿
Seiichi Murayama
山 清 一 村
Kyotaro Iyasu
安 巨太郎 居
Kie Kubo
保 貴 恵 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003037915A priority Critical patent/JP4079795B2/en
Publication of JP2004243265A publication Critical patent/JP2004243265A/en
Application granted granted Critical
Publication of JP4079795B2 publication Critical patent/JP4079795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment control system which can optimize the combination of an ozone injection rate and ultraviolet irradiation, quickly cope with a quality change of water to be treated, and enables water quality measurement of a greater precision. <P>SOLUTION: The turbidity and fluorescence intensity of the water to be treated introducing into a water treatment tank 1 are detected by a turbidity meter 4 and a fluorescence analyzer 5 respectively. In a water treatment control device 6, a detection signal from the turbidity meter 4 is inputted to determine the ultraviolet irradiation, and then the ozone injection rate is determined corresponding to the ultraviolet irradiation. The water treatment control device 6 controls a power supply device 7 to irradiate ultraviolet light from an ultraviolet irradiation device 2 and controls an ozone generator 8 to inject ozone from an ozone injector 3, while using the determined ultraviolet irradiation and ozone injection rate as the target values. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムに係り、例えば、上水用原水、下水の二次処理水、産業排水或いは廃棄物埋立地の浸出水などを処理するためのシステムに関するものである。
【0002】
【従来の技術】
近年、産業排水、生活排水などによる水の汚染が進んでおり、水環境汚染が社会問題になっている。具体的には、上水用の水源である上流河川において、フミン質、農薬、ダイオキシン、環境ホルモンなどの難分解性の汚染物質が微量含まれていることが指摘されている。また、河川の下流側ではさらに汚染が進んでおり、有機塩素系の洗剤、農薬、更には合成洗剤、染料など種々の化学物質の汚染が広がっている。また、産業・生活廃棄物埋立地からの浸出水の汚染はきわめて深刻な状況下にある。この様な背景のもとに、水環境保全技術の開発が活発に行われており、活性炭による処理、膜処理、オゾン処理、紫外線処理、生物学的な処理などの技術開発が行われている。
【0003】
それらの中で、総合的な処理として有望とされている技術として、オゾンと紫外線又は過酸化水素、或いは紫外線と過酸化水素とを組み合わせた促進酸化技術(AOP、Advanced Oxidation Process)がある。これらのうち、病原性原虫の除去、農薬、内分泌かく乱物質、フミン質などの難分解性有機物等を含む水に対して処理を行う場合は、オゾンと紫外線とを組み合わせた紫外線併用オゾン水処理制御システムが採用されることが多い(例えば、特許文献1参照)。このように、オゾン注入に加えて紫外線照射を行う主な目的は、注入後に所定時間以上経過して殺菌作用を終えたオゾンを除去することであるが、この紫外線照射によってオゾンより更に強い酸化力を持つヒドロキシラジカルを生成しようとすることも意図されている(例えば、特許文献2参照)。
【0004】
図14は、このような従来の紫外線併用オゾン水処理制御システム、すなわち被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムの構成を示すブロック図である。この図において、被処理水に対する処理が行われる処理槽としてオゾン処理槽101及び紫外線処理槽102が設置されている。オゾン処理槽101にはオゾン発生装置103が配設されており、また、オゾン処理槽101の排出側には溶存オゾン計104が配設されている。紫外線処理槽102には紫外線調光器105及び紫外線照度計106が配設されており、また、紫外線処理槽102の排出側には溶存オゾン計107及び水質計108が配設されている。この水質計108は、TOC(全有機体炭素)計又は紫外線吸光度(E260)計などを用いたものである。そして、水処理制御装置109は、これらの機器を介してオゾン処理槽101及び紫外線処理槽102内の水に対する水処理制御を行うものである。
【0005】
次に、図14の動作につき説明する。被処理水である原水がオゾン処理槽101に導入され、紫外線処理槽102から処理水が排出されると、この処理水の水質が水質計108により測定される。水処理制御装置109は、設定値とこの水質計108の測定値とに基づきオゾン発生装置103によるオゾン注入率を制御する。水処理制御装置109は、また、溶存オゾン計104,107の検出値と、紫外線照度計106の検出値とに基づき、紫外線調光器105を介して紫外線ランプの出力を制御している。
【0006】
【特許文献1】
特公昭63−2433号公報
【特許文献2】
特開2000−51875号公報
【0007】
【発明が解決しようとする課題】
上記のように、従来システムでは、水処理制御装置109がオゾン注入率及び紫外線照射量を制御することにより、原水水質の変動に対処する構成としている。しかし、オゾン注入率の制御と紫外線照射量の制御とは互いにそれほど関連性を有しているわけではなく、ほぼ独立に制御が行われているため、両者の組み合わせが最適なものであるかどうかは不明であり、また、処理中に大きな水質変化が生じた場合には速やかな対処が困難なものとなっている。
【0008】
すなわち、図14の構成では、オゾン処理槽101にて被処理水に対してオゾンが注入され、その後に別個の処理槽である紫外線処理槽102にて紫外線が照射され、更にこの紫外線処理槽102から排出される処理水の水質測定に基づいてオゾン注入率が制御されるようになっている。したがって、実際に被処理水の水質が変化し、この水質変化に対応したオゾン注入及び紫外線照射が行われるまでにはかなりの時間が経過してしまうことになる。
【0009】
また、図14の構成では、水質計108としてTOC(全有機体炭素)計や紫外線吸光度(E260)計を用いているが、これらの水質計は、溶存オゾン等の薬物などの影響を受けやすく測定精度が高いとは言い難いものである。特に、紫外線吸光度(E260)計を用いた場合は、フミン質等の難分解性有機物との相関性が低くなるため一層測定精度の低下が問題となる。
【0010】
本発明は上記事情に鑑みてなされたものであり、オゾン注入率と紫外線照射量との組み合わせを最適にすると共に、被処理水の水質変化に対して迅速に対応することができ、更に精度の高い水質測定を可能とする水処理制御システムを提供することを目的としている。
【0011】
【課題を解決するための手段】
上記課題を解決するための手段として、請求項1記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備えたことを特徴とする。
【0012】
請求項2記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽から排出される処理水の蛍光強度を検出する蛍光分析計と、前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備えたことを特徴とする。
【0013】
請求項3記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する第1の蛍光分析計と、前記水処理槽から排出される処理水の蛍光強度を検出する第2の蛍光分析計と、前記濁度計並びに前記第1及び第2の蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備えたことを特徴とする。
【0014】
請求項4記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、前記水処理槽から排出される処理水に含まれる溶存オゾン濃度を検出する溶存オゾン濃度計と、前記濁度計及び前記蛍光分析計並びに前記溶存オゾン濃度計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備えたことを特徴とする。
【0015】
請求項5記載の発明は、請求項1又は2記載の発明において、前記水処理制御装置は、前記濁度計の検出値の変化量が所定レベル以下の場合に、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率の制御を、電力量が最小となるように行うものである、ことを特徴とする。
【0016】
請求項6記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、前記水処理槽の出口側に配設され該水処理槽から排出される処理水の通過を許容し、しかも前記紫外線照射器から導入した紫外線光のうち特定波長の紫外線光の吸収量を測定する紫外線測定槽と、前記濁度計及び前記蛍光分析計の各検出並びに前記紫外線測定槽での測定に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備えたことを特徴とする。
【0017】
【発明の実施の形態】
図1は、第1の発明の実施形態の構成を示すブロック図である。水処理槽1には紫外線照射器2及びオゾン注入器3の双方が配設されている。そして、水処理槽1に導入される被処理水の濁度は濁度計4により検出され、また、蛍光強度は蛍光分析計5により検出されるようになっている。水処理制御装置6は、これら濁度計4及び蛍光分析計5からの検出信号の入力に基づき、電源装置7及びオゾン発生装置8を制御するようになっている。これにより、水処理槽1内に導入された被処理水に対して、紫外線照射器2からの紫外線照射量及びオゾン注入器3からのオゾン注入率を制御することができる。
【0018】
図2は、水処理制御装置6の制御原理についての説明図であり、(a)は水中有機物濃度と蛍光強度との関係を示す特性図、(b)は紫外線照射量の各大きさ毎のオゾン注入率と蛍光強度との関係を示す特性図である。図2に示されている水中有機物濃度についての制御目標値Xは予め設定されており、この制御目標値Xに対応する目標蛍光強度をFLxとする。いま、蛍光分析計5により検出された現在の蛍光強度がFLiであるとすると、水処理制御装置6はこの現在の検出蛍光強度FLiのレベルをΔFLだけ低下させて目標値FLxのレベルまで減少させればよい。そして、蛍光強度を目標レベルFLxまで低減させるためには、図2(b)の特性に基づいてオゾン注入率を決定すればよい。
【0019】
すなわち、紫外線照射量が小さなときにはFLxのレベルと曲線Puv1との交点であるI1をオゾン注入率とし、紫外線照射量が中程度のときにはFLxのレベルと曲線Puv2との交点であるI2をオゾン注入率とし、紫外線照射量が大きなときにはFLxのレベルと曲線Puv3との交点であるI3をオゾン注入率とすればよい。このように、オゾン注入率が大きなときには紫外線照射量を小さくし、逆に、オゾン注入率が小さなときには紫外線照射量を大きくすることにより蛍光強度を目標レベルに到達させることができる。そして、紫外線照射量を大、中、小のいずれとするかについては、濁度計4の検出値に基づき決定すればよい。
【0020】
次に、図1の動作を図3のフローチャートに基づき説明する。被処理水が水処理槽1に導入される際の濁度及び蛍光強度は、それぞれ濁度計4及び蛍光分析計5により検出される(ステップ1,2)。水処理制御装置6は、濁度計4からの検出信号を入力し、紫外線照射量を例えばPuv1に決定する(ステップ3)。次いで、水処理制御装置6は、オゾン注入率をこの紫外線照射量Puv1に対応する値I3に決定する(ステップ4)。そして、水処理制御装置6は、このように決定した紫外線照射量Puv1及びオゾン注入率I3を目標値として制御を実行する(ステップ5)。つまり、電源装置7を制御して紫外線照射器2から紫外線を照射させると共に、オゾン発生装置8を制御してオゾン注入器3からオゾンを注入させる。
【0021】
なお、紫外線照射器2及びオゾン注入器3の動作タイミングについては、最初にオゾン注入器3を動作させてオゾン注入が終了した後に紫外線照射器2を動作させる場合、あるいは紫外線照射器2及びオゾン注入器3を同時に動作させる場合の2通りが考えられる。但し、後者の場合には、不要となったオゾン及びヒドロキシラジカルを除去するのに必要な時間だけオゾン注入終了後も紫外線照射を続行する必要がある。
【0022】
上記の構成では、紫外線照射器2及びオゾン注入器3が水処理槽1に配設されており、紫外線照射及びオゾン注入の双方が同一の水処理槽で行われている。したがって、処理を行っている間に被処理水の水質が変化したとしても、従来装置よりもはるかに迅速に対処することができる。また、図2(b)に示した特性例を利用して紫外線照射量及びオゾン注入率を決定しているので、両者は互いに関連性を持つようになり、最適の組み合わせで水処理制御を実行することができる。更に、上記の構成では、図2(a)に示したように、水中有機物濃度の制御目標値を蛍光強度の検出に基づいて決定しているが、蛍光強度の検出は溶存オゾン等の薬物などの影響を受けにくいものである。したがって、従来装置の構成よりもフミン質等の難分解性有機物との相関性を高くすることができ測定精度が向上したものとなっている。
【0023】
図4は、第2の発明の実施形態の構成を示すブロック図である。図4が図1と異なる点は、蛍光分析計5が水処理槽1から排出される処理水の蛍光強度を検出するようになっている点である。その他の構成及び動作内容は、図1の場合と同様であるため重複した説明を省略する。この実施形態の構成によれば、水処理槽1にて実際に水処理が行われた後の処理水について蛍光強度を検出しているので、より信頼性の高い検出となっている。
【0024】
図5は、第3の発明の実施形態の構成を示すブロック図である。図1及び図4では、蛍光分析計5が水処理槽1のそれぞれ入側及び出側の水について蛍光強度を検出する構成となっていたが、この図5では水処理槽1の入側及び出側の双方の水について蛍光強度を検出する第1の蛍光分析計5A及び第2の蛍光分析計5Bが設けられている。但し、この図5の構成における水処理制御装置6は、基本的には入側の第1の蛍光分析計5Aの検出に基づいてオゾン注入率を制御し、出側の第2の蛍光分析計5Bの検出に基づいてオゾン注入率の補正を行うようになっている。
【0025】
次に、図5の動作を図6のフローチャートに基づき説明する。被処理水が水処理槽1に導入される際の濁度及び入側蛍光強度は、それぞれ濁度計4及び第1の蛍光分析計5Aにより検出される(ステップ21,22)。水処理制御装置6は、濁度計4からの検出信号を入力し、紫外線照射量を決定する(ステップ23)。次いで、水処理制御装置6は、オゾン注入率をこの決定した紫外線照射量に対応する値に決定する(ステップ24)。そして、水処理制御装置6は、このように決定した紫外線照射量及びオゾン注入率を目標値として制御を実行する(ステップ25)。つまり、電源装置7を制御して紫外線照射器2から紫外線を照射させると共に、オゾン発生装置8を制御してオゾン注入器3からオゾンを注入する。
【0026】
ステップ25の制御が実行されている間、第2の蛍光分析計5Bは出側蛍光強度を検出してその検出信号を水処理制御装置6に出力している(ステップ26)。水処理制御装置6は、この検出信号に基づきオゾン注入率の補正量を演算し(ステップ27)、ステップ23に戻るようにする。つまり、図2(b)の特性に基づき、第1の蛍光分析計5Aの入側蛍光強度により決定したオゾン注入率を、第2の蛍光分析計5Bの出側蛍光強度により補正する。これにより、より精度の高い水処理制御を行うことができる。
【0027】
図7は、第4の発明の実施形態の構成を示すブロック図である。図7が図1と異なる点は、水処理槽1の出側に溶存オゾン濃度計9が設けられ、図1では省略されていた紫外線照射量演算手段10及びオゾン注入率演算手段11が図示されている点である。そして、溶存オゾン濃度計9の検出信号は、この紫外線照射量演算手段10及びオゾン注入率演算手段11に出力されるようになっている。
【0028】
次に、図7の動作を図8のフローチャートに基づき説明する。被処理水が水処理槽1に導入される際の濁度及び入側蛍光強度は、それぞれ濁度計4及び蛍光分析計5により検出される(ステップ31,32)。水処理制御装置6は、濁度計4からの検出信号を入力し、紫外線照射量を決定する(ステップ33)。次いで、水処理制御装置6は、オゾン注入率をこの決定した紫外線照射量に対応する値に決定する(ステップ34)。そして、水処理制御装置6は、このように決定した紫外線照射量及びオゾン注入率を目標値として制御を実行する(ステップ35)。つまり、電源装置7を制御して紫外線照射器2から紫外線を照射させると共に、オゾン発生装置8を制御してオゾン注入器3からオゾンを注入する。
【0029】
ステップ35の制御が実行されている間、溶存オゾン濃度計9は水処理槽1から排出される処理水に含まれる溶存オゾン濃度を検出して、その検出信号を水処理制御装置6の紫外線照射量演算手段10及びオゾン注入率演算手段11に出力している(ステップ36)。紫外線照射量演算手段10及びオゾン注入率演算手段11は、この検出信号の入力に基づき、それぞれ紫外線照射量及びオゾン注入率の補正量を演算し(ステップ37)、ステップ33,34に戻って再度紫外線照射量及びオゾン注入率を決定する。つまり、図7の構成では、水処理制御装置6が、当初は図2(b)の特性に基づき紫外線照射量及びオゾン注入率を決定したが、水処理槽1から排出される処理水に含まれる溶存オゾン濃度の検出に基づき、図2(b)の特性自体を修正するようにしている。
【0030】
図9は、第5の発明の実施形態の構成を示すブロック図である。図9が図1と異なる点は、水処理制御装置6が電力コスト演算手段12を有している点である。通常は、紫外線照射量及びオゾン注入率は濁度計4及び蛍光分析計5の検出に基づき決定すべきであるが、上水道などで、例えば、晴れの日が何日も続いたような場合、被処理水の濁度は安定したものとなる。したがって、このような場合は電力量が最小となるように紫外線照射量及びオゾン注入率を決定することがランニングコスト低減の観点から要求される。図9の構成はこのような要求に応えるためのものである。
【0031】
図10は、電力コストについての特性図であり、(a)は紫外線照射量と紫外線電力コストとの間の関係を示す特性図、(b)はオゾン注入率とオゾン電力コストとの間の関係を示す特性図である。図10(a)において、紫外線照射量Puv1,Puv2,Puv3に対応する紫外線電力コストの値はCuv1,Cuv2,Cuv3となっており、また、図10(b)において、オゾン注入率I1,I2,I3に対応するオゾン電力コストの値はCI1,CI2,CI3となっている。
【0032】
次に、図9の動作を図11のフローチャートに基づき説明する。いま、水処理制御装置6が濁度計4から入力した検出値の変化量が所定時間以上にわたって所定量以下であり、被処理水の濁度は安定状態にあるものとする。そして、水処理制御装置6の電力コスト演算手段12は、蛍光分析計5からの検出値を入力し(ステップ41)、紫外線照射量とオゾン注入率の組合せについて電力コストを演算する(ステップ42)。
【0033】
図10(a)において、例えば、紫外線照射量Puv3を選択したときの電力コストはCuv3であり、また、このとき選択されるオゾン注入率はI1であって(∵紫外線照射量が大きいときはオゾン注入率は小さくなる)、その電力コストはCI1である。したがって、合計電力コストはCuv3+CI1である。一方、紫外線照射量Puv1を選択したときの電力コストはCuv1であり、また、このとき選択されるオゾン注入率はI3であって(∵紫外線照射量が小さいときはオゾン注入率は大きくなる)、その電力コストはCI3である。したがって、合計電力コストはCuv1+CI3である。
【0034】
次いで、水処理制御装置6は、上記の演算結果のうち最小値に係る紫外線照射量及びオゾン注入率を制御実行値として決定し(ステップ43)、これに基づき制御を実行する(ステップ44)。例えば、Cuv3+CI1の方がCuv1+CI3よりも小さなものであったとすると、水処理制御装置6は、紫外線照射量をPuv3、オゾン注入率をI1と決定する。
【0035】
このように、この第5の発明によれば、濁度が安定状態にあるとの前提の下に、電力コストが最も低くなる紫外線照射量とオゾン注入率との組合せを選択することができる。したがって、ランニングコストを低減することができ、経済的に有利な水処理制御システムを実現することができる。
【0036】
図12は、第6の発明の実施形態の構成を示すブロック図である。この図12の構成は、図7の構成において、溶存オゾン濃度計9の代わりに紫外線測定槽13を用いたものと考えることができる。すなわち、水処理槽1の出口側には、内部に紫外線測定器14を有する紫外線測定槽13が配設されている。そして、この紫外線測定器14には、紫外線照射器2からの特定波長(この実施形態では、254nmの波長とする)の紫外線光が光導入管15により導入されるようになっている。
【0037】
図13は、図12における紫外線測定器14の詳細な構成を示す部分拡大図である。この図に示すように、紫外線測定器14は、略円筒形状の紫外線吸収セル16と、紫外線吸収セル16の周面上に取り付けられた受光器17とで構成されている。紫外線照射器2から光導入管15により導入された紫外線光は紫外線吸収セル16を透過して受光器17に到達し、受光器17の受光量に対応する信号が光電変換されて紫外線照射量演算手段10及びオゾン注入率演算手段11に送出されるようになっている。
【0038】
制御実行中に受光器17の受光量が低下した場合、水処理制御装置6は紫外線照射器2からの紫外線照射量が増加するように電源装置7の出力を増大させるフィードバック制御を行うが、それでも受光器17の受光量が上昇しない場合はオゾン注入器3からのオゾン注入率を低下させるようにオゾン発生装置8を制御する。このような制御により、蛍光や薬物の影響を回避し、紫外線照射量及びオゾン注入率の制御を高精度で行うことができる。
【0039】
なお、図12に示した例では、水処理槽1の出口側に紫外線測定槽13のみを配設した構成を示したが、図7に示した溶存オゾン濃度計9も併せて配設する構成とすることも可能である。これにより、一層高精度な制御を行うことができる。
【0040】
【発明の効果】
以上のように、本発明によれば、オゾン注入率と紫外線照射量との組み合わせを最適にすると共に、被処理水の水質変化に対して迅速に対応することができ、更に精度の高い水質測定を可能とする水処理制御システムを実現することができる。
【図面の簡単な説明】
【図1】第1の発明の実施形態の構成を示すブロック図。
【図2】水処理制御装置6の制御原理についての説明図であり、(a)は水中有機物濃度と蛍光強度との関係を示す特性図、(b)は紫外線照射量の各大きさ毎のオゾン注入率と蛍光強度との関係を示す特性図である。
【図3】図1の動作を説明するためのフローチャート。
【図4】第2の発明の実施形態の構成を示すブロック図。
【図5】第3の発明の実施形態の構成を示すブロック図。
【図6】図5の動作を説明するためのフローチャート。
【図7】第4の発明の実施形態の構成を示すブロック図。
【図8】図7の動作を説明するためのフローチャート。
【図9】第5の発明の実施形態の構成を示すブロック図。
【図10】電力コストについての特性図であり、(a)は紫外線照射量と紫外線電力コストとの間の関係を示す特性図、(b)はオゾン注入率とオゾン電力コストとの間の関係を示す特性図である。
【図11】図9の動作を説明するためのフローチャート。
【図12】第6の発明の実施形態の構成を示すブロック図。
【図13】図12における紫外線測定器14の詳細な構成を示す部分拡大図。
【図14】従来システムの構成を示すブロック図。
【符号の説明】
1 水処理槽
2 紫外線照射器
3 オゾン注入器
4 濁度計
5 蛍光分析計
5A 第1の蛍光分析計
5B 第2の蛍光分析計
6 水処理制御装置
7 電源装置
8 オゾン発生装置
9 溶存オゾン濃度計
10 紫外線照射量演算手段
11 オゾン注入率演算手段
12 電力コスト演算手段
13 紫外線測定槽
14 紫外線測定器
15 光導入管
16 紫外線吸収セル
17 受光器
FLi 検出蛍光強度
FLx 目標蛍光強度
Puv1〜Puv3 紫外線照射量
I1〜I3 オゾン注入率
Cuv1〜Cuv3 紫外線電力コスト
CI1〜CI3 オゾン電力コスト
101 オゾン処理槽
102 紫外線処理槽
103 オゾン発生装置
104 溶存オゾン計
105 紫外線調光器
106 紫外線照度計
107 溶存オゾン計
108 水質計
109 水処理制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation for treated water, for example, raw water for tap water, secondary treatment water for sewage, industrial wastewater or waste landfill. The present invention relates to a system for treating leachate and the like.
[0002]
[Prior art]
In recent years, water pollution by industrial wastewater, domestic wastewater and the like has been progressing, and water environmental pollution has become a social problem. Specifically, it has been pointed out that the upstream river, which is a water source for water supply, contains trace amounts of persistent substances such as humic substances, pesticides, dioxins, and environmental hormones. Further, the pollution is further advanced on the downstream side of the river, and contamination of various chemical substances such as organic chlorine-based detergents, pesticides, synthetic detergents, and dyes is spreading. The pollution of leachate from industrial and domestic waste landfills is extremely serious. Against this background, the development of water environment conservation technology is being actively conducted, and technologies such as activated carbon treatment, membrane treatment, ozone treatment, ultraviolet treatment, and biological treatment are being developed. .
[0003]
Among them, a promising technology as a comprehensive treatment includes an advanced oxidation process (AOP, Advanced Oxidation Process) using a combination of ozone and ultraviolet light or hydrogen peroxide, or ultraviolet light and hydrogen peroxide. Of these, in the case of removing pathogenic protozoa, treating pesticides, endocrine disruptors, and water containing persistent substances such as humic substances, etc., it is necessary to control ozone water treatment using ultraviolet light combined with ozone and ultraviolet light. A system is often employed (for example, see Patent Document 1). As described above, the main purpose of performing the ultraviolet irradiation in addition to the ozone injection is to remove ozone that has been sterilized after a predetermined time has elapsed after the injection. It is also intended to generate a hydroxy radical having (see, for example, Patent Document 2).
[0004]
FIG. 14 is a block diagram showing the configuration of such a conventional ultraviolet combined ozone water treatment control system, that is, a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation on the water to be treated. In this figure, an ozone treatment tank 101 and an ultraviolet treatment tank 102 are provided as treatment tanks for performing treatment on the water to be treated. An ozone generator 103 is provided in the ozone treatment tank 101, and a dissolved ozone meter 104 is provided on the discharge side of the ozone treatment tank 101. An ultraviolet dimmer 105 and an ultraviolet illuminometer 106 are provided in the ultraviolet processing tank 102, and a dissolved ozone meter 107 and a water quality meter 108 are provided on the discharge side of the ultraviolet processing tank 102. The water quality meter 108 uses a TOC (total organic carbon) meter, an ultraviolet absorbance (E260) meter, or the like. The water treatment control device 109 controls water treatment of the water in the ozone treatment tank 101 and the ultraviolet treatment tank 102 via these devices.
[0005]
Next, the operation of FIG. 14 will be described. When the raw water to be treated is introduced into the ozone treatment tank 101 and the treated water is discharged from the ultraviolet treatment tank 102, the quality of the treated water is measured by the water quality meter 108. The water treatment control device 109 controls the ozone injection rate of the ozone generator 103 based on the set value and the measurement value of the water quality meter 108. The water treatment control device 109 also controls the output of the ultraviolet lamp via the ultraviolet dimmer 105 based on the detection values of the dissolved ozone meters 104 and 107 and the detection value of the ultraviolet illuminometer 106.
[0006]
[Patent Document 1]
JP-B-63-2433 [Patent Document 2]
JP 2000-51875 A
[Problems to be solved by the invention]
As described above, in the conventional system, the water treatment control device 109 controls the ozone injection rate and the ultraviolet ray irradiation amount to cope with the fluctuation of the raw water quality. However, the control of the ozone injection rate and the control of the UV irradiation dose are not so closely related to each other, and are controlled almost independently, so whether the combination of the two is optimal or not. It is unknown, and it is difficult to deal with large changes in water quality during treatment.
[0008]
That is, in the configuration of FIG. 14, ozone is injected into the water to be treated in the ozone treatment tank 101, and thereafter, ultraviolet rays are irradiated in an ultraviolet treatment tank 102 which is a separate treatment tank. The ozone injection rate is controlled based on the measurement of the quality of the treated water discharged from the plant. Therefore, the quality of the water to be treated actually changes, and a considerable time elapses before ozone injection and ultraviolet irradiation corresponding to the change in the water quality are performed.
[0009]
In the configuration of FIG. 14, a TOC (total organic carbon) meter and an ultraviolet absorbance (E260) meter are used as the water quality meter 108. However, these water quality meters are easily affected by drugs such as dissolved ozone. It is hard to say that the measurement accuracy is high. In particular, when an ultraviolet absorbance (E260) meter is used, the correlation with a hardly decomposable organic substance such as a humic substance is reduced, so that the measurement accuracy is further reduced.
[0010]
The present invention has been made in view of the above circumstances, and while optimizing the combination of the ozone injection rate and the amount of ultraviolet irradiation, it is possible to quickly respond to the change in the quality of the water to be treated, and further improve the accuracy. It is an object of the present invention to provide a water treatment control system that enables high water quality measurement.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation of water to be treated, wherein the ultraviolet irradiation device and the ozone injection device are arranged. A water treatment tank for introducing the water to be treated, a turbidity meter for detecting turbidity of the water to be introduced to the water treatment tank, and a water to be treated introduced to the water treatment tank. A fluorescence analyzer for detecting the fluorescence intensity of water, and a water treatment control device for controlling an ultraviolet irradiation amount of the ultraviolet irradiator and an ozone injection rate of the ozone injector based on each detection of the turbidity meter and the fluorescence analyzer. And characterized in that:
[0012]
According to a second aspect of the present invention, there is provided a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation with respect to water to be treated, wherein an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is treated. A water treatment tank to be introduced, a turbidity meter that detects the turbidity of the water to be treated introduced into the water treatment tank, and a fluorescence analyzer that detects the fluorescence intensity of the treated water discharged from the water treatment tank, And a water treatment control device for controlling an ultraviolet irradiation amount of the ultraviolet irradiator and an ozone injection rate of the ozone injector based on each detection of the turbidity meter and the fluorescence analyzer.
[0013]
According to a third aspect of the present invention, in the water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation on the water to be treated, an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is treated with water. A water treatment tank to be introduced, a turbidity meter for detecting turbidity of the water to be treated introduced into the water treatment tank, and a first fluorescence for detecting a fluorescence intensity of the water to be treated introduced to the water treatment tank An analyzer, a second fluorescence analyzer for detecting the fluorescence intensity of the treated water discharged from the water treatment tank, and the turbidity meter and the first and second fluorescence analyzers based on the respective detections. A water treatment control device for controlling the amount of ultraviolet irradiation of the ultraviolet irradiator and the ozone injection rate of the ozone injector.
[0014]
The invention according to claim 4 is a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation on the water to be treated, wherein an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is treated with water. A water treatment tank to be introduced, a turbidity meter that detects the turbidity of the water to be treated introduced into the water treatment tank, and a fluorescence analyzer that detects the fluorescence intensity of the water to be treated introduced to the water treatment tank A dissolved ozone concentration meter for detecting a dissolved ozone concentration contained in the treated water discharged from the water treatment tank, and the ultraviolet irradiation based on each detection of the turbidity meter, the fluorescence analyzer, and the dissolved ozone concentration meter. A water treatment control device for controlling the amount of ultraviolet irradiation of the vessel and the ozone injection rate of the ozone injector.
[0015]
According to a fifth aspect of the present invention, in the first or second aspect of the present invention, the water treatment control device is configured to irradiate the ultraviolet irradiator with ultraviolet light when the amount of change in the detection value of the turbidity meter is equal to or less than a predetermined level. The amount and the ozone injection rate of the ozone injector are controlled so as to minimize the electric energy.
[0016]
The invention according to claim 6 is a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation on the water to be treated, wherein an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is treated with water. A water treatment tank to be introduced, a turbidity meter that detects the turbidity of the water to be treated introduced into the water treatment tank, and a fluorescence analyzer that detects the fluorescence intensity of the water to be treated introduced to the water treatment tank The apparatus is disposed on the outlet side of the water treatment tank, allows passage of treated water discharged from the water treatment tank, and measures an absorption amount of ultraviolet light of a specific wavelength among ultraviolet light introduced from the ultraviolet irradiator. An ultraviolet ray measuring tank, and water for controlling the ultraviolet irradiation amount of the ultraviolet ray irradiator and the ozone injection rate of the ozone injector based on each detection of the turbidity meter and the fluorescence analyzer and the measurement in the ultraviolet ray measuring tank. And a processing control device. And wherein the door.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention. The water treatment tank 1 is provided with both an ultraviolet irradiator 2 and an ozone injector 3. Then, the turbidity of the water to be treated introduced into the water treatment tank 1 is detected by a turbidimeter 4, and the fluorescence intensity is detected by a fluorescence analyzer 5. The water treatment control device 6 controls the power supply device 7 and the ozone generator 8 based on the input of the detection signals from the turbidity meter 4 and the fluorescence analyzer 5. Thereby, the amount of ultraviolet irradiation from the ultraviolet irradiator 2 and the ozone injection rate from the ozone injector 3 can be controlled for the water to be treated introduced into the water treatment tank 1.
[0018]
FIGS. 2A and 2B are explanatory diagrams illustrating the control principle of the water treatment control device 6, wherein FIG. 2A is a characteristic diagram showing the relationship between the concentration of organic matter in water and the fluorescence intensity, and FIG. FIG. 4 is a characteristic diagram showing a relationship between an ozone injection rate and a fluorescence intensity. The control target value X for the organic matter concentration in water shown in FIG. 2 is set in advance, and the target fluorescence intensity corresponding to the control target value X is FLx. Now, assuming that the current fluorescence intensity detected by the fluorescence analyzer 5 is FLi, the water treatment control device 6 lowers the level of the current detected fluorescence intensity FLi by ΔFL and decreases the level to the target value FLx. Just do it. Then, in order to reduce the fluorescence intensity to the target level FLx, the ozone injection rate may be determined based on the characteristics shown in FIG.
[0019]
That is, when the amount of ultraviolet irradiation is small, I1 which is the intersection of the level of FLx and the curve Puv1 is the ozone injection rate, and when the amount of ultraviolet irradiation is medium, I2 which is the intersection of the level of FLx and the curve Puv2 is the ozone injection rate. When the UV irradiation amount is large, I3, which is the intersection of the level of FLx and the curve Puv3, may be set as the ozone injection rate. As described above, when the ozone injection rate is high, the amount of ultraviolet irradiation is reduced, and conversely, when the ozone injection rate is low, the amount of ultraviolet irradiation is increased, so that the fluorescence intensity can reach the target level. Whether the ultraviolet irradiation amount is large, medium, or small may be determined based on the detection value of the turbidimeter 4.
[0020]
Next, the operation of FIG. 1 will be described based on the flowchart of FIG. Turbidity and fluorescence intensity when the water to be treated is introduced into the water treatment tank 1 are detected by the turbidimeter 4 and the fluorescence analyzer 5, respectively (steps 1 and 2). The water treatment control device 6 receives the detection signal from the turbidity meter 4 and determines the amount of ultraviolet irradiation, for example, to Puv1 (step 3). Next, the water treatment control device 6 determines the ozone injection rate to a value I3 corresponding to the ultraviolet irradiation amount Puv1 (step 4). Then, the water treatment control device 6 executes the control with the ultraviolet ray irradiation amount Puv1 and the ozone injection rate I3 determined as described above as target values (step 5). That is, the power supply device 7 is controlled to irradiate ultraviolet rays from the ultraviolet irradiator 2, and the ozone generator 8 is controlled to inject ozone from the ozone injector 3.
[0021]
Regarding the operation timing of the ultraviolet irradiator 2 and the ozone injector 3, the operation of the ultraviolet irradiator 2 after the first operation of the ozone injector 3 and the completion of the ozone injection, or the operation timing of the ultraviolet irradiator 2 and the ozone injector 3 There are two cases where the devices 3 are operated simultaneously. However, in the latter case, it is necessary to continue the ultraviolet irradiation after the ozone injection is completed for a time necessary to remove the unnecessary ozone and hydroxyl radical.
[0022]
In the above configuration, the ultraviolet irradiator 2 and the ozone injector 3 are provided in the water treatment tank 1, and both the ultraviolet irradiation and the ozone injection are performed in the same water treatment tank. Therefore, even if the quality of the water to be treated changes during the treatment, it can be dealt with much more quickly than with the conventional apparatus. In addition, since the ultraviolet irradiation amount and the ozone injection rate are determined using the characteristic example shown in FIG. 2B, the two are related to each other, and the water treatment control is executed in an optimal combination. can do. Further, in the above configuration, as shown in FIG. 2A, the control target value of the concentration of the organic matter in water is determined based on the detection of the fluorescence intensity. Is less susceptible to the effects of Therefore, the correlation with the hardly decomposable organic substances such as humic substances can be increased as compared with the configuration of the conventional apparatus, and the measurement accuracy is improved.
[0023]
FIG. 4 is a block diagram showing the configuration of the second embodiment of the present invention. FIG. 4 differs from FIG. 1 in that the fluorescence analyzer 5 detects the fluorescence intensity of the treated water discharged from the water treatment tank 1. Other configurations and operation contents are the same as those in the case of FIG. According to the configuration of this embodiment, since the fluorescence intensity is detected for the treated water after the actual water treatment in the water treatment tank 1, the detection is more reliable.
[0024]
FIG. 5 is a block diagram showing a configuration of the third embodiment of the present invention. 1 and 4, the fluorescence analyzer 5 is configured to detect the fluorescence intensity of the water on the inlet side and the outlet side of the water treatment tank 1, respectively. However, in FIG. A first fluorescence analyzer 5A and a second fluorescence analyzer 5B for detecting the fluorescence intensity of both waters on the exit side are provided. However, the water treatment control device 6 in the configuration of FIG. 5 basically controls the ozone injection rate based on the detection of the first fluorescence analyzer 5A on the input side and the second fluorescence analyzer on the exit side. The ozone injection rate is corrected based on the detection of 5B.
[0025]
Next, the operation of FIG. 5 will be described based on the flowchart of FIG. The turbidity and the incoming fluorescence intensity when the water to be treated is introduced into the water treatment tank 1 are detected by the turbidimeter 4 and the first fluorescence analyzer 5A, respectively (steps 21 and 22). The water treatment control device 6 receives the detection signal from the turbidimeter 4 and determines the amount of ultraviolet irradiation (step 23). Next, the water treatment control device 6 determines the ozone injection rate to a value corresponding to the determined ultraviolet irradiation amount (step 24). Then, the water treatment control device 6 performs the control with the thus determined ultraviolet irradiation amount and ozone injection rate as target values (step 25). That is, the power supply device 7 is controlled to irradiate ultraviolet rays from the ultraviolet irradiator 2, and the ozone generator 8 is controlled to inject ozone from the ozone injector 3.
[0026]
While the control of step 25 is being executed, the second fluorescence analyzer 5B detects the exit fluorescence intensity and outputs the detection signal to the water treatment control device 6 (step 26). The water treatment control device 6 calculates a correction amount of the ozone injection rate based on the detection signal (step 27), and returns to step 23. That is, based on the characteristics of FIG. 2B, the ozone injection rate determined by the incoming fluorescence intensity of the first fluorescence analyzer 5A is corrected by the outgoing fluorescence intensity of the second fluorescence analyzer 5B. Thereby, more accurate water treatment control can be performed.
[0027]
FIG. 7 is a block diagram showing the configuration of the fourth embodiment of the present invention. FIG. 7 differs from FIG. 1 in that a dissolved ozone concentration meter 9 is provided on the outlet side of the water treatment tank 1, and an ultraviolet irradiation amount calculating means 10 and an ozone injection rate calculating means 11, which are omitted in FIG. That is the point. Then, the detection signal of the dissolved ozone concentration meter 9 is output to the ultraviolet ray irradiation amount calculating means 10 and the ozone injection rate calculating means 11.
[0028]
Next, the operation of FIG. 7 will be described based on the flowchart of FIG. The turbidity and the incoming fluorescence intensity when the water to be treated is introduced into the water treatment tank 1 are detected by the turbidimeter 4 and the fluorescence analyzer 5, respectively (steps 31 and 32). The water treatment control device 6 receives the detection signal from the turbidity meter 4 and determines the amount of ultraviolet irradiation (step 33). Next, the water treatment control device 6 determines the ozone injection rate to a value corresponding to the determined ultraviolet irradiation amount (step 34). Then, the water treatment control device 6 executes the control with the thus determined ultraviolet irradiation amount and ozone injection rate as target values (step 35). That is, the power supply device 7 is controlled to irradiate ultraviolet rays from the ultraviolet irradiator 2, and the ozone generator 8 is controlled to inject ozone from the ozone injector 3.
[0029]
During the execution of the control in step 35, the dissolved ozone concentration meter 9 detects the concentration of dissolved ozone contained in the treated water discharged from the water treatment tank 1, and outputs the detection signal to the ultraviolet irradiation of the water treatment control device 6. The output is sent to the amount calculating means 10 and the ozone injection rate calculating means 11 (step 36). Based on the input of the detection signal, the ultraviolet ray irradiation amount calculating means 10 and the ozone injection rate calculating means 11 calculate the ultraviolet irradiation amount and the ozone injection rate correction amount respectively (step 37), return to steps 33 and 34, and again. Determine the amount of UV irradiation and the ozone injection rate. That is, in the configuration of FIG. 7, the water treatment control device 6 initially determines the ultraviolet irradiation dose and the ozone injection rate based on the characteristics of FIG. The characteristic itself shown in FIG. 2B is modified based on the detection of the dissolved ozone concentration.
[0030]
FIG. 9 is a block diagram showing a configuration of the fifth embodiment of the present invention. FIG. 9 differs from FIG. 1 in that the water treatment control device 6 includes an electric power cost calculation unit 12. Normally, the amount of ultraviolet irradiation and the ozone injection rate should be determined based on the detection of the turbidimeter 4 and the fluorescence analyzer 5, but in the case of water supply, for example, when a sunny day continues for many days, The turbidity of the water to be treated is stable. Therefore, in such a case, it is required from the viewpoint of running cost reduction to determine the amount of ultraviolet irradiation and the ozone injection rate so that the amount of power is minimized. The configuration of FIG. 9 is to meet such a demand.
[0031]
FIGS. 10A and 10B are characteristic diagrams with respect to the power cost. FIG. 10A is a characteristic diagram showing a relationship between the ultraviolet irradiation amount and the ultraviolet power cost, and FIG. 10B is a relationship between the ozone injection rate and the ozone power cost. FIG. In FIG. 10 (a), the values of the ultraviolet power costs corresponding to the ultraviolet irradiation doses Puv1, Puv2, Puv3 are Cuv1, Cuv2, Cuv3, and in FIG. 10 (b), the ozone injection rates I1, I2, The value of the ozone power cost corresponding to I3 is CI1, CI2, CI3.
[0032]
Next, the operation of FIG. 9 will be described based on the flowchart of FIG. Now, it is assumed that the change amount of the detection value input from the turbidity meter 4 by the water treatment control device 6 is equal to or less than a predetermined amount over a predetermined time, and the turbidity of the water to be treated is in a stable state. Then, the power cost calculating means 12 of the water treatment control device 6 inputs the detection value from the fluorescence analyzer 5 (step 41), and calculates the power cost for the combination of the ultraviolet irradiation amount and the ozone injection rate (step 42). .
[0033]
In FIG. 10A, for example, the power cost when the ultraviolet irradiation amount Puv3 is selected is Cuv3, and the ozone injection rate selected at this time is I1 (∵Ozone when the ultraviolet irradiation amount is large, The injection rate is smaller), and its power cost is CI1. Therefore, the total power cost is Cuv3 + CI1. On the other hand, the power cost when the ultraviolet irradiation amount Puv1 is selected is Cuv1, and the ozone injection rate selected at this time is I3 (∵The ozone injection rate increases when the ultraviolet irradiation amount is small). Its power cost is CI3. Therefore, the total power cost is Cuv1 + CI3.
[0034]
Next, the water treatment control device 6 determines, as the control execution value, the ultraviolet ray irradiation amount and the ozone injection rate corresponding to the minimum value among the above calculation results (step 43), and executes control based on this (step 44). For example, assuming that Cuv3 + CI1 is smaller than Cuv1 + CI3, the water treatment control device 6 determines the amount of ultraviolet irradiation as Puv3 and the ozone injection rate as I1.
[0035]
As described above, according to the fifth aspect, it is possible to select the combination of the ultraviolet irradiation amount and the ozone injection rate that minimizes the power cost under the assumption that the turbidity is in a stable state. Therefore, the running cost can be reduced, and an economically advantageous water treatment control system can be realized.
[0036]
FIG. 12 is a block diagram showing the configuration of the sixth embodiment of the present invention. The configuration in FIG. 12 can be considered to be a configuration in which an ultraviolet ray measuring tank 13 is used instead of the dissolved ozone concentration meter 9 in the configuration in FIG. That is, on the outlet side of the water treatment tank 1, an ultraviolet ray measuring tank 13 having an ultraviolet ray measuring device 14 therein is provided. Then, ultraviolet light of a specific wavelength (in this embodiment, a wavelength of 254 nm) from the ultraviolet irradiator 2 is introduced into the ultraviolet measuring device 14 by the light introducing tube 15.
[0037]
FIG. 13 is a partially enlarged view showing a detailed configuration of the ultraviolet ray measuring device 14 in FIG. As shown in this figure, the ultraviolet ray measuring device 14 is composed of a substantially cylindrical ultraviolet ray absorbing cell 16 and a light receiver 17 mounted on the peripheral surface of the ultraviolet ray absorbing cell 16. Ultraviolet light introduced from the ultraviolet irradiator 2 by the light introducing tube 15 passes through the ultraviolet absorption cell 16 and reaches the light receiver 17, and a signal corresponding to the amount of light received by the light receiver 17 is photoelectrically converted to calculate the amount of ultraviolet irradiation. It is sent to the means 10 and the ozone injection rate calculating means 11.
[0038]
If the amount of light received by the light receiver 17 decreases during the execution of the control, the water treatment control device 6 performs feedback control to increase the output of the power supply device 7 so that the amount of ultraviolet irradiation from the ultraviolet irradiator 2 increases. If the amount of light received by the light receiver 17 does not increase, the ozone generator 8 is controlled so as to reduce the ozone injection rate from the ozone injector 3. By such control, the influence of the fluorescence and the drug can be avoided, and the control of the ultraviolet irradiation amount and the ozone injection rate can be performed with high accuracy.
[0039]
In the example shown in FIG. 12, only the ultraviolet ray measuring tank 13 is provided on the outlet side of the water treatment tank 1, but the dissolved ozone concentration meter 9 shown in FIG. 7 is also provided. It is also possible. As a result, more accurate control can be performed.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to optimize the combination of the ozone injection rate and the ultraviolet irradiation amount, and to quickly respond to a change in the water quality of the water to be treated, and to perform a more accurate water quality measurement. Can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of the first invention.
FIGS. 2A and 2B are explanatory diagrams illustrating a control principle of a water treatment control device, wherein FIG. 2A is a characteristic diagram showing a relationship between an organic matter concentration in water and a fluorescence intensity, and FIG. FIG. 4 is a characteristic diagram showing a relationship between an ozone injection rate and a fluorescence intensity.
FIG. 3 is a flowchart for explaining the operation of FIG. 1;
FIG. 4 is a block diagram showing a configuration of an embodiment of the second invention.
FIG. 5 is a block diagram showing a configuration of an embodiment of the third invention.
FIG. 6 is a flowchart for explaining the operation of FIG. 5;
FIG. 7 is a block diagram showing a configuration of an embodiment of the fourth invention.
FIG. 8 is a flowchart for explaining the operation of FIG. 7;
FIG. 9 is a block diagram showing a configuration of an embodiment of the fifth invention.
FIGS. 10A and 10B are characteristic diagrams of electric power cost, in which FIG. 10A is a characteristic diagram showing a relationship between an ultraviolet irradiation dose and an ultraviolet electric power cost, and FIG. 10B is a relationship between an ozone injection rate and an ozone electric power cost. FIG.
FIG. 11 is a flowchart for explaining the operation of FIG. 9;
FIG. 12 is a block diagram showing a configuration of an embodiment of the sixth invention.
13 is a partially enlarged view showing a detailed configuration of the ultraviolet ray measuring device 14 in FIG.
FIG. 14 is a block diagram showing a configuration of a conventional system.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 water treatment tank 2 ultraviolet irradiator 3 ozone injector 4 turbidimeter 5 fluorescence analyzer 5A first fluorescence analyzer 5B second fluorescence analyzer 6 water treatment controller 7 power supply device 8 ozone generator 9 dissolved ozone concentration Total 10 UV irradiation amount calculating means 11 Ozone injection rate calculating means 12 Power cost calculating means 13 UV measuring tank 14 UV measuring instrument 15 Light introduction tube 16 UV absorbing cell 17 Photodetector FLi Detected fluorescence intensity FLx Target fluorescence intensity Puv1 to Puv3 UV irradiation Amount I1 to I3 Ozone injection rate Cuv1 to Cuv3 Ultraviolet power cost CI1 to CI3 Ozone power cost 101 Ozone treatment tank 102 Ultraviolet treatment tank 103 Ozone generator 104 Dissolved ozone meter 105 Ultraviolet light dimmer 106 Ultraviolet illuminometer 107 Dissolved ozone meter 108 Water quality 109 water treatment control equipment

Claims (6)

被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、
前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備えたことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for treated water,
An ultraviolet irradiator and an ozone injector are provided, and a water treatment tank for introducing the water to be treated,
A turbidity meter for detecting the turbidity of the water to be treated introduced into the water treatment tank,
A fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank,
A water treatment control device that controls the amount of ultraviolet irradiation of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on each detection of the turbidity meter and the fluorescence analyzer;
A water treatment control system comprising:
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽から排出される処理水の蛍光強度を検出する蛍光分析計と、
前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備えたことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for treated water,
An ultraviolet irradiator and an ozone injector are provided, and a water treatment tank for introducing the water to be treated,
A turbidity meter for detecting the turbidity of the water to be treated introduced into the water treatment tank,
A fluorescence analyzer for detecting the fluorescence intensity of the treated water discharged from the water treatment tank,
A water treatment control device that controls the amount of ultraviolet irradiation of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on each detection of the turbidity meter and the fluorescence analyzer;
A water treatment control system comprising:
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する第1の蛍光分析計と、
前記水処理槽から排出される処理水の蛍光強度を検出する第2の蛍光分析計と、
前記濁度計並びに前記第1及び第2の蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備えたことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for treated water,
An ultraviolet irradiator and an ozone injector are provided, and a water treatment tank for introducing the water to be treated,
A turbidity meter for detecting the turbidity of the water to be treated introduced into the water treatment tank,
A first fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank;
A second fluorescence analyzer for detecting the fluorescence intensity of the treated water discharged from the water treatment tank;
A water treatment control device that controls the amount of ultraviolet irradiation of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on each detection of the turbidity meter and the first and second fluorescence analyzers;
A water treatment control system comprising:
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、
前記水処理槽から排出される処理水に含まれる溶存オゾン濃度を検出する溶存オゾン濃度計と、
前記濁度計及び前記蛍光分析計並びに前記溶存オゾン濃度計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備えたことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for treated water,
An ultraviolet irradiator and an ozone injector are provided, and a water treatment tank for introducing the water to be treated,
A turbidity meter for detecting the turbidity of the water to be treated introduced into the water treatment tank,
A fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank,
A dissolved ozone concentration meter for detecting a dissolved ozone concentration contained in the treated water discharged from the water treatment tank,
A water treatment control device that controls the amount of ultraviolet irradiation of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on each detection of the turbidity meter, the fluorescence analyzer, and the dissolved ozone concentration meter,
A water treatment control system comprising:
前記水処理制御装置は、前記濁度計の検出値の変化量が所定レベル以下の場合に、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率の制御を、電力量が最小となるように行うものである、
ことを特徴とする請求項1又は2記載の水処理制御システム。
The water treatment control device controls the ultraviolet irradiation amount of the ultraviolet irradiation device and the ozone injection rate of the ozone injection device when the change amount of the detection value of the turbidity meter is equal to or less than a predetermined level. It is done so that
The water treatment control system according to claim 1 or 2, wherein:
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、
前記水処理槽の出口側に配設され該水処理槽から排出される処理水の通過を許容し、しかも前記紫外線照射器から導入した紫外線光のうち特定波長の紫外線光の吸収量を測定する紫外線測定槽と、
前記濁度計及び前記蛍光分析計の各検出並びに前記紫外線測定槽での測定に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備えたことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for treated water,
An ultraviolet irradiator and an ozone injector are provided, and a water treatment tank for introducing the water to be treated,
A turbidity meter for detecting the turbidity of the water to be treated introduced into the water treatment tank,
A fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank,
It is disposed on the outlet side of the water treatment tank, allows passage of treated water discharged from the water treatment tank, and measures the absorption amount of ultraviolet light of a specific wavelength among ultraviolet light introduced from the ultraviolet irradiator. An ultraviolet ray measuring tank,
A water treatment control device that controls the amount of ultraviolet irradiation of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on each detection of the turbidity meter and the fluorescence analyzer and measurement in the ultraviolet measurement tank,
A water treatment control system comprising:
JP2003037915A 2003-02-17 2003-02-17 Water treatment control system Expired - Fee Related JP4079795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037915A JP4079795B2 (en) 2003-02-17 2003-02-17 Water treatment control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037915A JP4079795B2 (en) 2003-02-17 2003-02-17 Water treatment control system

Publications (2)

Publication Number Publication Date
JP2004243265A true JP2004243265A (en) 2004-09-02
JP4079795B2 JP4079795B2 (en) 2008-04-23

Family

ID=33022575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037915A Expired - Fee Related JP4079795B2 (en) 2003-02-17 2003-02-17 Water treatment control system

Country Status (1)

Country Link
JP (1) JP4079795B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083186A (en) * 2005-09-22 2007-04-05 Toshiba Corp Water treatment system
JP2008062201A (en) * 2006-09-08 2008-03-21 Toshiba Corp Water treating system and water treatment method
US20100206787A1 (en) * 2007-09-17 2010-08-19 Ytzhak Rozenberg Control of oxidation processes in ultraviolet liquid treatment systems
CN103482752A (en) * 2013-10-15 2014-01-01 无锡艾科瑞思产品设计与研究有限公司 Device and method for eliminating algal toxin in water body through ultraviolet light-micro ozone technology
US8802007B2 (en) 2007-03-01 2014-08-12 Kabushiki Kaisha Toshiba Ultraviolet irradiation system and water quality monitoring instrument
CN104071879A (en) * 2014-06-27 2014-10-01 深圳市开天源自动化工程有限公司 Method for continuously separating out copper ions from copper body under induction of ultraviolet light source
JP2014526709A (en) * 2011-09-23 2014-10-06 ナルコ カンパニー Method for monitoring and controlling wastewater treatment streams
WO2019127541A1 (en) * 2017-12-29 2019-07-04 深圳前海小有技术有限公司 Sterilization head and sterilization device with light source monitoring function
WO2019127546A1 (en) * 2017-12-29 2019-07-04 深圳前海小有技术有限公司 Sterilization tip with light source monitoring function, and sterilization device
JP2019174000A (en) * 2018-03-27 2019-10-10 東京瓦斯株式会社 Range hood system and method for setting price of uv lamp
US10558512B2 (en) 2013-02-08 2020-02-11 Xylem Ip Holdings Llc Ballast water tank recirculation treatment system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225895A (en) * 1990-12-28 1992-08-14 Meidensha Corp Ozonizing device
JPH1133567A (en) * 1997-07-25 1999-02-09 Meidensha Corp Ozone decomposing method and apparatus
JPH1147771A (en) * 1997-07-31 1999-02-23 Meidensha Corp Continuous water passing type water treatment apparatus
JP2000051875A (en) * 1998-08-05 2000-02-22 Fuji Electric Co Ltd Control of water treatment operation by ozone and ultraviolet rays
JP2000117274A (en) * 1998-10-16 2000-04-25 Fuji Electric Co Ltd Water treatment and device therefor
JP2002307083A (en) * 2001-04-16 2002-10-22 Toshiba Corp Accelerated oxidation treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225895A (en) * 1990-12-28 1992-08-14 Meidensha Corp Ozonizing device
JPH1133567A (en) * 1997-07-25 1999-02-09 Meidensha Corp Ozone decomposing method and apparatus
JPH1147771A (en) * 1997-07-31 1999-02-23 Meidensha Corp Continuous water passing type water treatment apparatus
JP2000051875A (en) * 1998-08-05 2000-02-22 Fuji Electric Co Ltd Control of water treatment operation by ozone and ultraviolet rays
JP2000117274A (en) * 1998-10-16 2000-04-25 Fuji Electric Co Ltd Water treatment and device therefor
JP2002307083A (en) * 2001-04-16 2002-10-22 Toshiba Corp Accelerated oxidation treatment apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083186A (en) * 2005-09-22 2007-04-05 Toshiba Corp Water treatment system
JP4673709B2 (en) * 2005-09-22 2011-04-20 株式会社東芝 Water treatment system
JP4690976B2 (en) * 2006-09-08 2011-06-01 株式会社東芝 Water treatment system and water treatment method
JP2008062201A (en) * 2006-09-08 2008-03-21 Toshiba Corp Water treating system and water treatment method
US8802007B2 (en) 2007-03-01 2014-08-12 Kabushiki Kaisha Toshiba Ultraviolet irradiation system and water quality monitoring instrument
US20100206787A1 (en) * 2007-09-17 2010-08-19 Ytzhak Rozenberg Control of oxidation processes in ultraviolet liquid treatment systems
JP2014526709A (en) * 2011-09-23 2014-10-06 ナルコ カンパニー Method for monitoring and controlling wastewater treatment streams
US10558512B2 (en) 2013-02-08 2020-02-11 Xylem Ip Holdings Llc Ballast water tank recirculation treatment system
CN103482752A (en) * 2013-10-15 2014-01-01 无锡艾科瑞思产品设计与研究有限公司 Device and method for eliminating algal toxin in water body through ultraviolet light-micro ozone technology
CN104071879A (en) * 2014-06-27 2014-10-01 深圳市开天源自动化工程有限公司 Method for continuously separating out copper ions from copper body under induction of ultraviolet light source
WO2019127541A1 (en) * 2017-12-29 2019-07-04 深圳前海小有技术有限公司 Sterilization head and sterilization device with light source monitoring function
WO2019127546A1 (en) * 2017-12-29 2019-07-04 深圳前海小有技术有限公司 Sterilization tip with light source monitoring function, and sterilization device
JP2019174000A (en) * 2018-03-27 2019-10-10 東京瓦斯株式会社 Range hood system and method for setting price of uv lamp

Also Published As

Publication number Publication date
JP4079795B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
Zhang et al. Predicting the contribution of chloramines to contaminant decay during ultraviolet/hydrogen peroxide advanced oxidation process treatment for potable reuse
Keen et al. Identifying the factors that influence the reactivity of effluent organic matter with hydroxyl radicals
Dotson et al. UV/H2O2 treatment of drinking water increases post-chlorination DBP formation
Jonstrup et al. Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes
JP4079795B2 (en) Water treatment control system
Chen et al. Elimination of UV-quenching substances from MBR-and SAARB-treated mature landfill leachates in an ozonation process: A comparative study
KR101306155B1 (en) Autocontrol system and method of uv and hydrogen peroxide dose using real-time hydroxyl radical scavenging and hydroxyl radical reacting index measurement device
Caldwell et al. A risk‐based approach to managing active pharmaceutical ingredients in manufacturing effluent
Domenjoud et al. Ozone-based processes applied to municipal secondary effluents
Chen et al. Decomposition of 2-naphthalenesulfonate in aqueous solution by ozonation with UV radiation
JP4673709B2 (en) Water treatment system
Plantard et al. Coupling of photocatalytic and separation processes as a contribution to mineralization of wastewater
Liu et al. Effect of factors on decolorization of azo dye methyl orange by oxone/natural sunlight in aqueous solution
Tang et al. Advanced treatment of bio-treated Chinese patent medicine wastewater using ozone/peroxymonosulfate-upflow biological aerated filter
Cavalcante et al. Modeling carbonate/bicarbonate and nitrate disturbance during secondary effluent disinfection by UV/H2O2 and UV/ozone
Chen et al. Non-thermal plasma degradation of dye wastewater assisted by reverse osmosis process through interfacial mass transfer enhancement
Li et al. Decolourization of acid chrome blue K by persulfate
Gonzalez et al. Application of solar advanced oxidation processes to the degradation of the antibiotic sulfamethoxazole
Sanchis et al. Solar photo-Fenton with simultaneous addition of ozone for the treatment of real industrial wastewaters
Tang et al. Degradation treatment of concentrated landfill leachate by catalytic ozonation in a microbubble reactor
JP4660211B2 (en) Water treatment control system and water treatment control method
Njoyim et al. Plasma-chemical treatment of industrial wastewaters from brewery “Brasseries du Cameroun”, Bafoussam factory
JP2008194558A (en) Water treatment system and method
JP2008272761A (en) Accelerated oxidation treatment apparatus
CN104364634B (en) For determining the method and apparatus that free radical consumes potential energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4079795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees