JPH11204830A - Manufacture of semiconductor light emitting element - Google Patents

Manufacture of semiconductor light emitting element

Info

Publication number
JPH11204830A
JPH11204830A JP10312453A JP31245398A JPH11204830A JP H11204830 A JPH11204830 A JP H11204830A JP 10312453 A JP10312453 A JP 10312453A JP 31245398 A JP31245398 A JP 31245398A JP H11204830 A JPH11204830 A JP H11204830A
Authority
JP
Japan
Prior art keywords
electrode
layer
light emitting
emitting diode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10312453A
Other languages
Japanese (ja)
Other versions
JP3262087B2 (en
Inventor
Masaki Mori
正樹 森
Masahiro Kotaki
正宏 小滝
Masato Tamaki
真人 田牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP31245398A priority Critical patent/JP3262087B2/en
Publication of JPH11204830A publication Critical patent/JPH11204830A/en
Application granted granted Critical
Publication of JP3262087B2 publication Critical patent/JP3262087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen bonding defect and short circuit failure between electrodes in a light emitting diode having a pair of positive and negative electrodes on the same plane, and improve an emitted light intensity. SOLUTION: A light emitting diode 10 has a pair of positive and negative electrodes i.e., electrode 7 of an i-layer 5 and electrode 8 of a high-carrier-concn. n<+> layer 3, an SiO2 insulation layer 9 is formed on a part of the electrode 7 and the entire i-layer 5, so that the exposed areas of the electrodes 7, 8 are approximately equal to thereby approximately equalize the heights of solder bumps 17, 18 formed on the electrodes 7, 8 and lessen the bonding defect of a lead frame 20 of the light emitting diode 10 to lead members 21, 22. By covering near parts of the electrode face to the electrode 8 with the insulation layer 9, the electrode 7 is separated from the electrode 8 to lessen the short circuit failure, the area of the electrode 7 can be possibly large, and hence the light emitting diode 10 can improve the emitted light intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、同一面側に正負一対の
電極が形成された半導体発光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor light emitting device having a pair of positive and negative electrodes formed on the same surface.

【0002】[0002]

【従来技術】従来、同一面側に正負一対の電極を有する
青色の発光ダイオードとしてGaN系の化合物半導体を
用いたものが知られている。そのGaN 系の化合物半導
体は直接遷移であることから発光効率が高いこと、光の
3原色の1つである青色を発光色とすること等から注目
されている。このようなGaN 系の化合物半導体を用い
た発光ダイオードは、サファイヤ基板上に直接又は窒化
アルミニウムから成るバッファ層を介在させて、n導電
型のGaN 系の化合物半導体から成るn層を成長させ、
そのn層の上にp型不純物を添加してi型のGaN 系の
化合物半導体から成るi層を成長させた構造をとってい
る(特開昭62−119196号公報、特開昭63−1
88977号公報)。
2. Description of the Related Art Heretofore, there has been known a blue light-emitting diode having a pair of positive and negative electrodes on the same surface side using a GaN-based compound semiconductor. The GaN-based compound semiconductor has attracted attention because of its direct transition, which has high luminous efficiency, and that blue, one of the three primary colors of light, is used as the luminescent color. In such a light emitting diode using a GaN-based compound semiconductor, an n-type GaN-based compound semiconductor is grown on a sapphire substrate directly or with a buffer layer made of aluminum nitride interposed therebetween.
A structure in which an i-layer made of an i-type GaN-based compound semiconductor is grown on the n-layer by adding a p-type impurity (Japanese Patent Laid-Open Nos. 62-119196 and 63-1).
88977).

【0003】[0003]

【発明が解決しようとする課題】ここで、上述の発光ダ
イオードの発光強度を向上させるには、i層の電極部の
電極面積をなるべく大きくすれば良いことが知られてい
る。一方、発光ダイオードのn層の電極部はi層の一部
に設けられた孔内を利用して形成されているので、i層
の電極部のように大きくできないことになる。従って、
i層の電極部とn層の電極部との電極面積は異なって形
成されることになる。これら正負一対の電極部に形成さ
れたはんだバンプの高さには数十μm 程度の差が生じて
いた。すると、図6に示したように、発光ダイオード6
0をリードフレーム70のリード部材71,72にボン
ディングする場合に、i層側の電極67のはんだバンプ
高さとの差によりn層側の電極68がリードフレーム7
0に接合されないという不良が発生していた。又、例え
発光ダイオード60がリードフレームのリード部材7
1,72に接合されても、発光ダイオード60の光軸が
リードフレーム70に対して傾いてしまうという問題が
あった。
Here, it is known that the light emission intensity of the above-described light emitting diode can be improved by increasing the electrode area of the electrode portion of the i layer as much as possible. On the other hand, the electrode portion of the n-layer of the light emitting diode is formed by utilizing the inside of a hole provided in a part of the i-layer, and therefore cannot be as large as the electrode portion of the i-layer. Therefore,
The electrode areas of the i-layer electrode portion and the n-layer electrode portion are formed differently. The height of the solder bumps formed on the pair of positive and negative electrodes had a difference of about several tens of μm. Then, as shown in FIG.
0 is bonded to the lead members 71 and 72 of the lead frame 70, the electrode 68 on the n-layer side
A defect of not being bonded to 0 occurred. Also, even if the light emitting diode 60 is connected to the lead member 7
There is a problem that the optical axis of the light emitting diode 60 is inclined with respect to the lead frame 70 even if the light emitting diode 60 is bonded to the lead frame 70.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、ボンディ
ング不良を低減すると同時にその際などにおける電極間
のショート不良を低減でき、且つ、発光強度の向上にも
有効な極めて生産性が高い発光ダイオードの製造方法を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. It is an object of the present invention to reduce bonding defects and short-circuit defects between electrodes at the same time, and An object of the present invention is to provide a method for manufacturing a light-emitting diode having extremely high productivity, which is effective for improving the light emission intensity.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、同一面側に正負一対の電極が形成され
た半導体発光素子の製造方法において、前記正負一対の
電極の露出面積がほぼ同じとなるようにそれらの部分を
除いて前記電極側を覆う絶縁層を形成することを特徴と
する。
According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor light emitting device having a pair of positive and negative electrodes formed on the same surface, wherein the exposed area of the pair of positive and negative electrodes is reduced. An insulating layer covering the electrode side except for those portions is formed so as to be substantially the same.

【0006】[0006]

【作用及び効果】本発明は、同一面側に形成された正負
一対の電極の露出面積がほぼ同じとなるようにそれらの
部分を除いて前記電極側を覆う絶縁層を設けることで、
発光ダイオードの正負一対の電極の見かけ上の面積を同
じ大きさにすることができた。これにより、発光ダイオ
ードの正負一対の電極に形成されるはんだバンプ高さを
略等しくできる。つまり、発光ダイオードは接合におけ
るボンディング不良が低減された。又、正負一対の電極
における露出電極間の間隔を絶縁層により離すことがで
きる。つまり、発光ダイオードは電極間が隣接している
ことによるボンディングの際などにおける電極間のショ
ート不良が低減された。又、絶縁層が正負一対の電極間
に存在することにより発光ダイオードの発光に関係する
電極の電極面積を極力大きくできる。つまり、発光ダイ
オードは発光強度を向上させることができた。
According to the present invention, an insulating layer is provided so as to cover the electrode side except for those portions so that the exposed areas of the pair of positive and negative electrodes formed on the same surface side are substantially the same.
The apparent area of the pair of positive and negative electrodes of the light emitting diode could be made the same. Thereby, the height of the solder bumps formed on the pair of positive and negative electrodes of the light emitting diode can be made substantially equal. That is, in the light emitting diode, bonding failure in bonding was reduced. Further, the interval between the exposed electrodes of the pair of positive and negative electrodes can be separated by the insulating layer. That is, in the light emitting diode, short-circuit failure between the electrodes at the time of bonding or the like due to adjacent electrodes is reduced. In addition, since the insulating layer exists between the pair of positive and negative electrodes, the electrode area of the electrode related to light emission of the light emitting diode can be increased as much as possible. That is, the light emitting diode was able to improve the light emission intensity.

【0007】[0007]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る発光ダイオード10を示
し、図1(a) は縦断面図、図1(b) は電極側から見た平
面図である。図1(a) において、発光ダイオード10
は、サファイヤ基板1を有しており、そのサファイヤ基
板1に 500ÅのAlN のバッファ層2が形成されてい
る。そのバッファ層2の下には、順に、膜厚 2.2μm の
GaN から成る高キャリヤ濃度n + 層3と膜厚 1.5μm
のGaN から成る低キャリヤ濃度n層4が形成されてお
り、更に、低キャリヤ濃度n層4の下に膜厚 0.1μm の
GaN から成るi層5が形成されている。そして、i層
5に接続するアルミニウムで形成された電極7と高キャ
リヤ濃度n+ 層3に接続するアルミニウムで形成された
電極8とが形成されている。更に、電極7の一部分及び
i層5の全面にはSiO2から成る絶縁層9が形成されて
いる。この絶縁層9が形成された後においては、図1
(b) に示すように、正の電極7及び負の電極8はほぼ同
じ面積が露出されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on specific embodiments.
I will tell. FIG. 1 shows a light emitting diode 10 according to the present invention.
1 (a) is a longitudinal sectional view, and FIG. 1 (b) is a flat view from the electrode side.
FIG. In FIG. 1A, a light emitting diode 10 is shown.
Has a sapphire substrate 1 and a sapphire substrate
A buffer layer 2 of 500 .ANG. AlN is formed on a plate 1.
You. Below the buffer layer 2, a 2.2 μm-thick
High carrier concentration n of GaN +Layer 3 and thickness 1.5μm
Is formed with a low carrier concentration n layer 4 of GaN.
Further, a 0.1 μm-thick
An i layer 5 made of GaN is formed. And i-layer
The electrode 7 made of aluminum connected to the
Rear density n+Formed of aluminum connecting to layer 3
An electrode 8 is formed. Further, a part of the electrode 7 and
The entire surface of the i-layer 5 is made of SiO.TwoThe insulating layer 9 made of
I have. After the formation of the insulating layer 9, FIG.
As shown in (b), the positive electrode 7 and the negative electrode 8 are almost the same.
The same area is exposed.

【0008】次に、この構造の発光ダイオード10の製
造工程について、図2、図3及び図4を参照して説明す
る。上記発光ダイオード10は、有機金属化合物気相成
長法( 以下、MOVPEと記す)による気相成長により
製造された。用いられたガスは、NH3 とキャリヤガス
2 とトリメチルガリウム(Ga(CH3)3)(以下、TM
Gと記す)とトリメチルアルミニウム(Al(CH3)3)
(以下、TMAと記す)とシラン(SiH4)とジエチル
亜鉛(以下、DEZと記す)である。先ず、有機洗浄及
び熱処理により洗浄したa面を主面とする単結晶のサフ
ァイヤ基板1をMOVPE装置の反応室に載置されたサ
セプタに装着する。次に、常圧でH2 を流速2 l/分で
反応室に流しながら温度1100℃でサファイヤ基板1を気
相エッチングした。次に、温度を 400℃まで低下させ
て、H2 を20 l/分、NH3 を10 l/分、TMAを 1.8
×10-5モル/分で供給して 500Åの厚さのAlN から成
るバッファ層2を形成した。次に、サファイヤ基板1の
温度を1150℃に保持し、H2 を20 l/分、NH3 を10 l
/分、TMGを 1.7×10-4モル/分、H2 で0.86ppm ま
で希釈したシラン(SiH4)を 200ml/分の割合で30分
間供給し、膜厚 2.2μm 、キャリヤ濃度 1.5×1018/cm
3 のGaN から成る高キャリヤ濃度n+ 層3を形成し
た。続いて、サファイヤ基板1の温度を1150℃に保持
し、H2 を20 l/分、NH3を10 l/分、TMGを1.7
×10-4モル/分の割合で20分間供給し、膜厚 1.5μm、
キャリヤ濃度 1×1015/cm3 のGaN から成る低キャリ
ヤ濃度n層4を形成した。次に、サファイヤ基板1を 9
00℃にして、H2 を20 l/分、NH3 を10 l/分、TM
Gを 1.7×10-4モル/分、DEZを 1.5×10-4モル/分
の割合で1分間供給して、膜厚 0.1μm のGaN から成
るi層5を形成した。このようにして、図2(a) に示す
ような多層構造が得られた。次に、図2(b) に示すよう
に、i層5の上に、スパッタリングによりSiO2層11
を2000Åの厚さに形成した。次に、そのSiO2層11上
にフォトレジスト12を塗布して、フォトリソグラフィ
により、そのフォトレジスト12を高キャリヤ濃度n+
層3に対する電極形成部位のフォトレジストを除去した
パターンに形成した。次に、図2(c) に示すように、フ
ォトレジスト12によって覆われていないSiO2層11
をフッ酸系エッチング液で除去した。
Next, a manufacturing process of the light emitting diode 10 having this structure will be described with reference to FIGS. 2, 3 and 4. FIG. The light emitting diode 10 was manufactured by vapor phase growth using a metal organic compound vapor phase epitaxy method (hereinafter referred to as MOVPE). The gases used were NH 3 , carrier gas H 2 and trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as TM
G) and trimethylaluminum (Al (CH 3 ) 3 )
(Hereinafter referred to as TMA), silane (SiH 4 ), and diethylzinc (hereinafter referred to as DEZ). First, a single-crystal sapphire substrate 1 having an a-plane as a main surface cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, the sapphire substrate 1 was subjected to gas phase etching at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at a flow rate of 2 l / min at normal pressure. Next, the temperature was lowered to 400 ° C., H 2 was 20 l / min, NH 3 was 10 l / min, and TMA was 1.8 l / min.
A buffer layer 2 made of AlN having a thickness of 500 ° was formed by supplying at a rate of × 10 -5 mol / min. Next, the temperature of the sapphire substrate 1 was maintained at 1150 ° C., H 2 was 20 l / min, and NH 3 was 10 l / min.
/ Min, 1.7 × 10 -4 mol / min of TMG and silane (SiH 4 ) diluted to 0.86 ppm with H 2 at a rate of 200 ml / min for 30 minutes to give a film thickness of 2.2 μm and a carrier concentration of 1.5 × 10 18 /cm
A high carrier concentration n.sup. + Layer 3 of 3 GaN was formed. Subsequently, the temperature of the sapphire substrate 1 was maintained at 1150 ° C., H 2 was 20 l / min, NH 3 was 10 l / min, and TMG was 1.7 l / min.
X 10 -4 mol / min at a rate of 20 minutes to give
A low carrier concentration n layer 4 made of GaN having a carrier concentration of 1 × 10 15 / cm 3 was formed. Next, sapphire substrate 1
H 2 O, 20 l / min, NH 3 10 l / min, TM
G was supplied at a rate of 1.7 × 10 -4 mol / min and DEZ was supplied at a rate of 1.5 × 10 -4 mol / min for 1 minute to form a 0.1 μm-thick GaN layer i. Thus, a multilayer structure as shown in FIG. 2A was obtained. Next, as shown in FIG. 2B, the SiO 2 layer 11 is formed on the i-layer 5 by sputtering.
Was formed to a thickness of 2000 mm. Next, a photoresist 12 is applied on the SiO 2 layer 11, and the photoresist 12 is subjected to high carrier concentration n + by photolithography.
The pattern was formed by removing the photoresist at the electrode formation site for layer 3. Next, as shown in FIG. 2C, the SiO 2 layer 11 not covered with the photoresist 12 is formed.
Was removed with a hydrofluoric acid-based etchant.

【0009】次に、図3(d) に示すように、フォトレジ
スト12及びSiO2層11によって覆われていない部位
のi層5とその下の低キャリヤ濃度n層4と高キャリヤ
濃度n+ 層3の上面一部を、真空度0.04Torr、高周波電
力0.44W/cm2、BCl3ガスを10ml/分の割合で供給しド
ライエッチングした後、Ar でドライエッチングした。
次に、図3(e) に示すように、i層5上に残っているS
iO2層11をフッ酸で除去した。次に、図3(f) に示す
ように、試料の上全面に、蒸着によりAl 層13を 0.3
μm の厚さに形成した。そして、そのAl 層13の上に
フォトレジスト14を塗布して、フォトリソグラフィに
より、そのフォトレジスト14が高キャリヤ濃度n+
3及びi層5に対する電極部が残るように、所定形状に
パターン形成した。
Next, as shown in FIG. 3 (d), the i-layer 5 at a portion not covered by the photoresist 12 and the SiO 2 layer 11, the low carrier concentration n-layer 4 thereunder and the high carrier concentration n + A part of the upper surface of the layer 3 was dry-etched by supplying a BCl 3 gas at a rate of 10 ml / min with a vacuum degree of 0.04 Torr, high-frequency power of 0.44 W / cm 2 , and then dry etching with Ar.
Next, as shown in FIG.
The SiO 2 layer 11 was removed with hydrofluoric acid. Next, as shown in FIG. 3 (f), an Al layer 13 was deposited on the entire surface of the sample by evaporation to a thickness of 0.3 mm.
It was formed to a thickness of μm. Then, a photoresist 14 is applied on the Al layer 13, and the photoresist 14 is patterned into a predetermined shape by photolithography such that the electrode portions for the high carrier concentration n + layer 3 and the i layer 5 remain. did.

【0010】次に、図4(g) に示すように、フォトレジ
スト14をマスクとして下層のAl層13の露出部を硝
酸系エッチング液でエッチングし、フォトレジスト14
をアセトンで除去し、高キャリヤ濃度n+ 層3の電極
8、i層5の電極7を形成した。次に、図4(h) に示す
ように、試料の上全面に、スパッタリングによりSiO2
層15を 200Åの厚さに形成した。次に、図4(i) に示
すように、SiO2層15上にフォトレジスト16を塗布
して、フォトリソグラフィにより、そのフォトレジスト
16を高キャリヤ濃度n+層3の電極8、i層5の電極
7の一部分に対する電極形成部位のフォトレジストを除
去したパターンに形成した。尚、図4(g) 〜(i) におけ
る高キャリヤ濃度n+ 層3の電極8、i層5の電極7の
それぞれの電極面積の大きさは逆転して描かれている。
Next, as shown in FIG. 4 (g), the exposed portion of the lower Al layer 13 is etched with a nitric acid-based etchant using the photoresist 14 as a mask.
Was removed with acetone to form an electrode 8 of the high carrier concentration n + layer 3 and an electrode 7 of the i layer 5. Next, as shown in FIG. 4 (h), on the entire surface of the sample, SiO 2 by a sputtering
Layer 15 was formed to a thickness of 200 °. Next, as shown in FIG. 4 (i), a photoresist 16 is applied on the SiO 2 layer 15 and the photoresist 16 is applied by photolithography to the electrode 8 of the high carrier concentration n + layer 3 and the i layer 5. The electrode 7 was formed in a pattern in which the photoresist at the electrode formation site for a part of the electrode 7 was removed. It should be noted that the electrode areas of the electrode 8 of the high carrier concentration n + layer 3 and the electrode 7 of the i layer 5 in FIGS.

【0011】上述の製造工程の後、フォトレジスト16
によって覆われていないSiO2層15をフッ酸系エッチ
ング液で除去し、電極7の一部分及びi層5上にSiO2
から成る絶縁層9を形成した。このようにして、図1に
示すMIS(Metal Insulator Semiconductor)構
造の窒化ガリウム系発光素子を製造することができる。
尚、上記絶縁層9を形成するための絶縁材料としては、
SiO2の他、Al23、Si34 又はTiN などから成
る絶縁物質を選択しても良い。
After the above manufacturing steps, the photoresist 16
The SiO 2 layer 15 that is not covered with the SiO 2 layer is removed with a hydrofluoric acid-based etchant, and a portion of the electrode 7 and the SiO 2 layer
The insulating layer 9 made of was formed. Thus, the gallium nitride-based light emitting device having the MIS (Metal Insulator Semiconductor) structure shown in FIG. 1 can be manufactured.
In addition, as an insulating material for forming the insulating layer 9,
In addition to SiO 2, an insulating material made of Al 2 O 3 , Si 3 N 4 or TiN may be selected.

【0012】このようにして製造された発光ダイオード
10の電極7,8にはんだバンプ17,18を形成す
る。すると、電極7,8の露出面積がほぼ同じであるこ
とからはんだバンプ17,18のはんだバンプ高さが略
等しいことになる。従って、発光ダイオード10の電極
7,8は、図5に示すように、はんだバンプ17,18
を介してリードフレーム20のリード部材21,22に
同じ条件で接合されることになる。即ち、発光ダイオー
ド10の電極7,8の何れか一方がはんだバンプ高さが
異なってリードフレーム20のリード部材21,22に
接合されないというような接合不良をなくすことができ
る。又、上述のように、発光ダイオード10のi層5の
電極7側の電極面積を極力大きくしても、図5に示すよ
うに、電極7の電極8に近い部分を絶縁層9にて覆うこ
とにより、電極7と電極8との露出面を離すことができ
る。即ち、電極7,8のはんだバンプ17,18の間隔
を極力離して形成できることになる。このため、発光ダ
イオード10のi層5の電極7と高キャリヤ濃度n+
3の電極8とのショート不良をなくすことができる。更
に、発光ダイオード10のi層5の電極7と高キャリヤ
濃度n+ 層3の電極8とは絶縁層9にて絶縁されてお
り、i層5の電極7側の電極面積を極力大きくすること
ができるので、発光ダイオード10の発光強度を向上す
ることができる。以上説明したように、本発明の発光ダ
イオードにあっては、不良率の低減と性能アップが計ら
れることとなり生産性は飛躍的に向上する。
The solder bumps 17 and 18 are formed on the electrodes 7 and 8 of the light emitting diode 10 manufactured as described above. Then, since the exposed areas of the electrodes 7 and 8 are substantially the same, the solder bumps 17 and 18 have substantially the same solder bump height. Therefore, the electrodes 7 and 8 of the light emitting diode 10 are connected to the solder bumps 17 and 18 as shown in FIG.
To the lead members 21 and 22 of the lead frame 20 via the same conditions. That is, it is possible to eliminate a bonding defect such that one of the electrodes 7 and 8 of the light emitting diode 10 is not bonded to the lead members 21 and 22 of the lead frame 20 due to a difference in solder bump height. Further, as described above, even if the electrode area of the i-layer 5 of the light emitting diode 10 on the electrode 7 side is made as large as possible, the portion of the electrode 7 close to the electrode 8 is covered with the insulating layer 9 as shown in FIG. Thus, the exposed surfaces of the electrode 7 and the electrode 8 can be separated. That is, the solder bumps 17 and 18 of the electrodes 7 and 8 can be formed as far apart as possible. Therefore, a short circuit between the electrode 7 of the i layer 5 of the light emitting diode 10 and the electrode 8 of the high carrier concentration n + layer 3 can be eliminated. Furthermore, the electrode 7 of the i layer 5 of the light emitting diode 10 and the electrode 8 of the high carrier concentration n + layer 3 are insulated by the insulating layer 9, and the electrode area on the electrode 7 side of the i layer 5 should be as large as possible. Therefore, the light emission intensity of the light emitting diode 10 can be improved. As described above, in the light emitting diode of the present invention, a reduction in the defective rate and an increase in performance are achieved, and the productivity is dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的な一実施例により製造される発
光ダイオードを示した構成図である。
FIG. 1 is a schematic view illustrating a light emitting diode manufactured according to one embodiment of the present invention.

【図2】同実施例に係る発光ダイオードの製造工程を示
した縦断面図である。
FIG. 2 is a longitudinal sectional view showing a manufacturing process of the light emitting diode according to the embodiment.

【図3】同実施例に係る発光ダイオードの製造工程を示
した図2に続く縦断面図である。
FIG. 3 is a vertical sectional view showing a manufacturing step of the light emitting diode according to the embodiment, following FIG. 2;

【図4】同実施例に係る発光ダイオードの製造工程を示
した図3に続く縦断面図である。
FIG. 4 is a longitudinal sectional view showing a manufacturing process of the light emitting diode according to the embodiment, following FIG. 3;

【図5】同実施例に係る発光ダイオードとリードフレー
ムとの接合状態を示した部分縦断面図である。
FIG. 5 is a partial longitudinal sectional view showing a joint state between the light emitting diode and the lead frame according to the embodiment.

【図6】従来の発光ダイオードとリードフレームとの接
合状態を示した部分縦断面図である。
FIG. 6 is a partial vertical cross-sectional view showing a state of joining a conventional light emitting diode and a lead frame.

【符号の説明】 1−サファイヤ基板 2−バッファ層 3−高キャリヤ濃度n+ 層 4−低キャリヤ濃度n層 5−i層 7,8−電極 10−発光ダイオード[Description of Signs] 1-Sapphire substrate 2-Buffer layer 3-High carrier concentration n + layer 4-Low carrier concentration n-layer 5-i layer 7,8-electrode 10-Light emitting diode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一面側に正負一対の電極が形成された
半導体発光素子の製造方法において、 前記正負一対の電極の露出面積がほぼ同じとなるように
それらの部分を除いて前記電極側を覆う絶縁層を形成す
ることを特徴とする半導体発光素子の製造方法。
1. A method of manufacturing a semiconductor light emitting device in which a pair of positive and negative electrodes are formed on the same surface side, wherein the pair of positive and negative electrodes has an exposed area except for those portions so that the exposed areas thereof are substantially the same. A method for manufacturing a semiconductor light emitting device, comprising forming an insulating layer to cover.
JP31245398A 1991-06-28 1998-11-02 Method for manufacturing semiconductor light emitting device Expired - Lifetime JP3262087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31245398A JP3262087B2 (en) 1991-06-28 1998-11-02 Method for manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31245398A JP3262087B2 (en) 1991-06-28 1998-11-02 Method for manufacturing semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18534091A Division JP2932769B2 (en) 1991-06-28 1991-06-28 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11204830A true JPH11204830A (en) 1999-07-30
JP3262087B2 JP3262087B2 (en) 2002-03-04

Family

ID=18029386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31245398A Expired - Lifetime JP3262087B2 (en) 1991-06-28 1998-11-02 Method for manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3262087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554126B2 (en) 2004-09-27 2009-06-30 Panasonic Corporation Semiconductor light-emitting element, manufacturing method and mounting method of the same and light-emitting device
JP2010027919A (en) * 2008-07-22 2010-02-04 Toyoda Gosei Co Ltd Light emitting element and method of making light emitting element
US8129739B2 (en) 2005-07-15 2012-03-06 Panasonic Corporation Semiconductor light emitting device and semiconductor light emitting device mounted board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554126B2 (en) 2004-09-27 2009-06-30 Panasonic Corporation Semiconductor light-emitting element, manufacturing method and mounting method of the same and light-emitting device
US8129739B2 (en) 2005-07-15 2012-03-06 Panasonic Corporation Semiconductor light emitting device and semiconductor light emitting device mounted board
JP2010027919A (en) * 2008-07-22 2010-02-04 Toyoda Gosei Co Ltd Light emitting element and method of making light emitting element

Also Published As

Publication number Publication date
JP3262087B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
JP2698796B2 (en) Group III nitride semiconductor light emitting device
JP2666228B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3164016B2 (en) Light emitting device and method for manufacturing wafer for light emitting device
US6033927A (en) Method for separating a substrate of a group III nitride semiconductor light-emitting device
JP3712770B2 (en) Method for manufacturing group 3 nitride semiconductor and semiconductor device
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3506874B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JPH06151965A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JP2932769B2 (en) Semiconductor light emitting device
JP3136672B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3727106B2 (en) Method of manufacturing group III nitride semiconductor laser diode
JP2658009B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2661420B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JPH10173236A (en) Manufacture of gallium nitride-based compound semiconductor light emitting element
JP3262087B2 (en) Method for manufacturing semiconductor light emitting device
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JP2000031540A (en) Manufacture of gallium nitride based compound semiconductor light emitting element
JP3712789B2 (en) Group 3 nitride semiconductor substrate and device manufacturing method
JPH0992880A (en) Group iii nitride semiconductor light emitting device
JP3620923B2 (en) Group 3 nitride semiconductor light emitting device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3727091B2 (en) Group 3 nitride semiconductor device
JPH06151962A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10