JPH11204591A - Thermocompression bonding apparatus - Google Patents

Thermocompression bonding apparatus

Info

Publication number
JPH11204591A
JPH11204591A JP10007075A JP707598A JPH11204591A JP H11204591 A JPH11204591 A JP H11204591A JP 10007075 A JP10007075 A JP 10007075A JP 707598 A JP707598 A JP 707598A JP H11204591 A JPH11204591 A JP H11204591A
Authority
JP
Japan
Prior art keywords
thermocompression bonding
stage
thermocompression
temperature
adhesive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10007075A
Other languages
Japanese (ja)
Other versions
JP3317226B2 (en
Inventor
Yukio Yamada
幸男 山田
Motohide Takechi
元秀 武市
Masao Saito
雅男 斉藤
Junji Shinozaki
潤二 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11655973&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11204591(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP00707598A priority Critical patent/JP3317226B2/en
Publication of JPH11204591A publication Critical patent/JPH11204591A/en
Application granted granted Critical
Publication of JP3317226B2 publication Critical patent/JP3317226B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermocompression bonding apparatus which is able to maintain flatness of a state at the thermocompression bonding, possibly minimize the temp. difference between the stage and a pressing head, and execute a thermocompression bonding with high-connection reliability. SOLUTION: A thermocompressin bonding apparatus for mutually thermocomprssion-bonding at least two works to be thermocompression-bonded (e.g. semiconductor chip 2 and circuit board 3) via an adhesive film such as anisotropically conductive adhesive film 1 has a stage A for mounting the works and a pressing head B for pressing the works mounted on the stage A. A surface of the stage A contacting the works is constituted of a ceramic heater 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、接着膜、特に熱硬
化性の異方性導電接着フィルムを介して少なくとも二つ
の被熱圧着物を熱圧着するための熱圧着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermocompression bonding apparatus for thermocompression bonding at least two objects to be thermocompression-bonded via an adhesive film, particularly a thermosetting anisotropic conductive adhesive film.

【0002】[0002]

【従来の技術】液晶パネルのITO電極とFPCの電極
とを接合する場合、あるいは半導体チップをマルチチッ
プモジュール基板にフリップチップ実装する場合などに
おいては、それら(被熱圧着物)の間に熱硬化性の異方
性導電接着フィルムを挟持させて熱圧着することが行わ
れている。このような熱圧着の際に用いられる従来の熱
圧着装置(図4〜5)を、回路基板上に半導体チップを
フリップチップ接合する場合を例として説明する。
2. Description of the Related Art In a case where an ITO electrode of a liquid crystal panel is bonded to an electrode of an FPC, or a case where a semiconductor chip is flip-chip mounted on a multi-chip module substrate, thermosetting is performed between them (the object to be thermally compressed). Thermocompression bonding is carried out by sandwiching a conductive anisotropic conductive adhesive film. A conventional thermocompression bonding apparatus (FIGS. 4 and 5) used for such thermocompression bonding will be described by way of an example in which a semiconductor chip is flip-chip bonded on a circuit board.

【0003】図4(a)の装置は、異方性導電接着フィ
ルム41を介して半導体チップ42が仮接着された回路
基板43を載せるためのステージAと、異方性導電接着
フィルム41を挟持する半導体チップ42と回路基板4
3とを加熱し且つ加圧するための加圧ヘッドBとから構
成されている。この場合、ステージAは、熱に対し寸法
安定性の良好なアルミナ等のセラミックからなるステー
ジプレート44が保持台45に保持された構造となって
いる。また、加圧ヘッドBは、抵抗加熱式のヒータロッ
ド46を内蔵したステンレスブロック47から構成され
ている。このステンレスブロック47としては、単位時
間当たりの熱圧着ショット数の増減による温度変化を小
さくすると共に表面の平坦性を維持するために比較的大
きなステンレスブロックが使用されている。
The apparatus shown in FIG. 4A holds a stage A for mounting a circuit board 43 to which a semiconductor chip 42 is temporarily bonded via an anisotropic conductive adhesive film 41, and an anisotropic conductive adhesive film 41. Semiconductor chip 42 and circuit board 4
3 and a pressure head B for heating and pressing. In this case, the stage A has a structure in which a stage plate 44 made of ceramic such as alumina having good dimensional stability against heat is held on a holding table 45. The pressure head B is composed of a stainless steel block 47 having a resistance heating type heater rod 46 built therein. As the stainless block 47, a relatively large stainless block is used in order to reduce the temperature change due to the increase and decrease in the number of thermocompression shots per unit time and to maintain the flatness of the surface.

【0004】図4(b)の装置は、ステージプレート4
4としてガラスプレート48を使用し、加圧ヘッドBの
先端がパルスヒータ49となっている装置である。
[0004] The apparatus shown in FIG.
4 is a device in which a glass plate 48 is used and the tip of the pressure head B is a pulse heater 49.

【0005】以上のような図4(a)及び(b)の装置
の場合、加熱が被熱圧着物の上方のヒータヘッドBから
のみ行われるために、単位時間当たりの熱圧着ショット
数の増加に伴いステージAの温度が上昇し、ステージ表
面がそり、その結果、接続信頼性が低下するという問題
がある。また、回路基板43として、セラミック基板等
の熱伝導性の比較的良好なものを使用した場合、加圧ヘ
ッドBの温度よりも200℃以上も低いステージAに、
加圧ヘッドBからの熱が回路基板43を通じて拡散し、
結果的に十分な熱圧着ができず、接続信頼性が低下する
ことが懸念される。このため、加圧ヘッドBの温度を異
方性導電接着フィルムの硬化温度よりかなり高く設定
し、且つ熱圧着時間を長く設定する必要があり、熱圧着
コストの増大が避けられない。
In the apparatus shown in FIGS. 4A and 4B, since heating is performed only from the heater head B above the object to be heated and compressed, the number of thermal compression shots per unit time increases. Accordingly, there is a problem that the temperature of the stage A rises and the stage surface warps, and as a result, connection reliability decreases. When a circuit board 43 having relatively good thermal conductivity such as a ceramic board is used, the stage A is 200 ° C. or more lower than the temperature of the pressure head B.
The heat from the pressure head B diffuses through the circuit board 43,
As a result, sufficient thermocompression bonding cannot be performed, and there is a concern that connection reliability is reduced. For this reason, it is necessary to set the temperature of the pressure head B to be considerably higher than the curing temperature of the anisotropic conductive adhesive film and to set the thermocompression bonding time long, so that the thermocompression bonding cost cannot be avoided.

【0006】また、半導体チップ42の周囲にはみ出た
異方性導電接着フィルム部分(フィレット部)41aに
対する熱供給は、加圧ヘッドBからの輻射と半導体チッ
プ42からの熱伝導により行われるだけなので、フィレ
ット部41aが十分に硬化せず、回路基板43に対し十
分に接着しないという問題がある。この部分の硬化を十
分に行うために、加圧ヘッドBで従来以上に高い温度で
半導体チップ42を加熱することも考えられるが、半導
体チップ42に過度の熱ショックを与えることは、半導
体チップ自体の信頼性が低下することが懸念される。
Heat supply to the anisotropic conductive adhesive film portion (fillet portion) 41a protruding from the periphery of the semiconductor chip 42 is performed only by radiation from the pressure head B and heat conduction from the semiconductor chip 42. There is a problem that the fillet portion 41a is not sufficiently cured and does not sufficiently adhere to the circuit board 43. In order to sufficiently cure this portion, it is conceivable to heat the semiconductor chip 42 at a higher temperature than before using the pressure head B. However, applying excessive heat shock to the semiconductor chip 42 is not sufficient. There is a concern that the reliability of this will decrease.

【0007】そこで、最近では、単位時間当たりの熱圧
着ショット数の増減によってステージAの温度変化を小
さくし且つステージAと加圧ヘッドBとの間の温度差を
小さくするために、図5に示すように、保持台45にも
抵抗加熱方式のヒータロッド50を内蔵させることが行
われている。
Therefore, recently, in order to reduce the temperature change of the stage A and the temperature difference between the stage A and the pressure head B by increasing or decreasing the number of thermocompression shots per unit time, FIG. As shown in the drawing, a resistance heating type heater rod 50 is also built in the holding table 45.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図5に
示すように、ステージAの保持台45にヒータロッド5
0を内蔵させた場合、ステージプレート44の平坦性を
維持し、且つ熱圧着作業時の安全性を確保するために
は、保持台45の実用上の加熱最高温度を約60℃に設
定する必要があった。このため、図5に示すように保持
台45を加熱したとしても、加圧ヘッドBとステージA
のステージプレート44との間の温度差が200℃を超
えてしまい、結果的に接続信頼性の低下が避けられない
というのが現状である。
[0005] However, as shown in FIG.
In the case where 0 is incorporated, in order to maintain the flatness of the stage plate 44 and ensure the safety during the thermocompression bonding operation, it is necessary to set the practical maximum heating temperature of the holding table 45 to about 60 ° C. was there. For this reason, even if the holding table 45 is heated as shown in FIG.
At present, the temperature difference between the stage plate 44 and the stage plate 44 exceeds 200 ° C., and as a result, a decrease in connection reliability cannot be avoided.

【0009】本発明は、以上の従来の技術の課題を解決
しようとするものであり、熱圧着の際におけるステージ
の平坦性を維持し、且つステージと加圧ヘッドとの間の
温度差を極力小さくし、接続信頼性の高い熱圧着が可能
な熱圧着装置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to maintain the flatness of the stage during thermocompression bonding and minimize the temperature difference between the stage and the pressure head. It is an object of the present invention to provide a thermocompression bonding device that can be thermocompression-bonded with reduced size and high connection reliability.

【0010】[0010]

【課題を解決するための手段】本発明者は、被熱圧着物
に接触するステージの表面をセラミックヒータから構成
することにより上述の目的を達成できることを見出し、
本発明を完成させるに至った。
The present inventor has found that the above-mentioned object can be achieved by forming the surface of the stage in contact with the object to be thermally press-bonded from a ceramic heater.
The present invention has been completed.

【0011】即ち、本発明は、接着膜を介して少なくと
も二つの被熱圧着物を互いに熱圧着するための熱圧着装
置であって、被熱圧着物を載せるためのステージと、ス
テージに載せられた被熱圧着物を加圧するための加圧ヘ
ッドとを有する熱圧着装置において、被熱圧着物に接触
するステージの表面がセラミックヒータから構成されて
いることを特徴とする熱圧着装置を提供する。
That is, the present invention relates to a thermocompression bonding apparatus for thermocompression bonding at least two thermocompression bonding objects to each other via an adhesive film, wherein a stage for mounting the thermocompression bonding object and a stage mounted on the stage. And a pressing head for pressurizing the object to be thermally compressed, wherein the surface of the stage in contact with the object to be thermally compressed is formed of a ceramic heater. .

【0012】[0012]

【発明の実施の形態】以下、本発明を図面に従って詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings.

【0013】本発明の熱圧着装置は、図1に示すよう
に、熱硬化性の異方性導電接着フィルム1等の接着膜を
介して少なくとも二つの被熱圧着物、例えば半導体チッ
プ2と回路基板3とを互いに熱圧着するための熱圧着装
置であって、被熱圧着物(半導体チップ2及び回路基板
3)を載せるためのステージAと、ステージAに載せら
れた被熱圧着物を加圧するための加圧ヘッドBとを有す
る。本発明においては、被熱圧着物に接触するステージ
Aの表面をセラミックヒータ4から構成する。
As shown in FIG. 1, the thermocompression bonding apparatus of the present invention includes at least two thermocompression bonding objects, for example, a semiconductor chip 2 and a circuit through an adhesive film such as a thermosetting anisotropic conductive adhesive film 1. A thermocompression bonding apparatus for thermocompression-bonding a substrate 3 to each other, comprising a stage A for mounting a thermocompression bonding object (semiconductor chip 2 and circuit board 3) and a thermocompression bonding object mounted on the stage A. And a pressure head B for pressing. In the present invention, the surface of the stage A that comes into contact with the object to be thermally pressed is constituted by the ceramic heater 4.

【0014】セラミックヒータ4は、一般に熱に対して
寸法安定性が良好であるので、その表面の平坦性を維持
しながらその表面温度を比較的高温度に加熱することが
できる。従って、ステージAの表面をセラミックヒータ
4から構成することにより、ステージAと加圧ヘッドB
との間の温度差を小さくすることができ、結果的に、半
導体チップ2の周囲にはみ出た異方性導電接着フィルム
部分(フィレット部)1aも含めて異方性導電接着フィ
ルム1を十分に加圧熱硬化させて、接続信頼性の高い熱
圧着を行うことができる。
Since the ceramic heater 4 generally has good dimensional stability against heat, it can heat its surface to a relatively high temperature while maintaining its surface flatness. Therefore, by forming the surface of the stage A from the ceramic heater 4, the stage A and the pressure head B
As a result, the anisotropic conductive adhesive film 1 including the anisotropic conductive adhesive film portion (fillet portion) 1a protruding around the semiconductor chip 2 can be sufficiently reduced. By thermosetting under pressure, thermocompression bonding with high connection reliability can be performed.

【0015】また、セラミックヒータ4は、パルスヒー
タとしても使用することができるので、タクトタイムが
短くなるという利点もある。
Further, since the ceramic heater 4 can be used also as a pulse heater, there is an advantage that the tact time is shortened.

【0016】更に、セラミックヒータ4は温度制御性が
良好なので、その表面の温度プロファイルを意図的に設
計することができる。従って、被熱圧着物である半導体
チップ2及び回路基板3の基板の種類に応じた熱圧着条
件を選択することができ、接続信頼性を向上させること
ができる。
Further, since the ceramic heater 4 has good temperature controllability, the surface temperature profile can be intentionally designed. Therefore, thermocompression bonding conditions can be selected according to the types of the semiconductor chip 2 and the circuit board 3 which are the objects to be thermocompression bonded, and the connection reliability can be improved.

【0017】セラミックヒータ4としては、京セラ社、
アダマンド工業等の公知のセラミックヒータを使用する
ことができる。
As the ceramic heater 4, Kyocera Corporation,
A known ceramic heater such as Adamant Kogyo can be used.

【0018】図1の態様において、セラミックヒータ4
は保持台5に保持されているが、保持台5を省略し、セ
ラミックヒータ4全体でステージAを構成してもよい。
In the embodiment shown in FIG.
Is held by the holding table 5, but the holding table 5 may be omitted, and the stage A may be constituted by the entire ceramic heater 4.

【0019】また、加圧ヘッドBは、従来と同様に抵抗
加熱式のヒータロッド6を内蔵したステンレスブロック
7から構成してもよいが、図2に示すように、被熱圧着
物である半導体チップ2に接触する表面を、熱に対し良
好な寸法安定性を有し且つ良好な温度制御性を有するセ
ラミックヒータ8から構成し、それを保持具9で保持し
てもよい。これにより、熱容量の大きなステンレスブロ
ックを使用する必要がないので、加圧ヘッドBの大きさ
を小さくして、熱圧着装置の小型化を実現することがで
きる。また、加圧ヘッドBで、被熱圧着物をパルスヒー
トすることができる。しかも、その表面の温度プロファ
イルを意図的に設計することができるので、ステージA
及び加圧ヘッドBの温度プロファイルを互いに合致させ
ることができる。これにより、より良好な接続信頼性を
実現することができる。
The pressure head B may be constituted by a stainless steel block 7 having a built-in resistance heating type heater rod 6 as in the prior art. However, as shown in FIG. The surface in contact with the chip 2 may be composed of a ceramic heater 8 having good dimensional stability against heat and good temperature controllability, and may be held by the holder 9. This eliminates the need to use a stainless block having a large heat capacity, so that the size of the pressure head B can be reduced, and the thermocompression bonding apparatus can be downsized. Further, the pressurized head B can perform pulse heating of the thermocompression-bonded object. Moreover, since the temperature profile of the surface can be intentionally designed, the stage A
And the temperature profile of the pressure head B can be matched with each other. As a result, better connection reliability can be realized.

【0020】なお、加圧ヘッドBには、ステージAから
の加熱が可能なので、ヒータロッド6などの加熱手段を
備えなくてもよい。
Since the pressure head B can be heated from the stage A, it is not necessary to provide a heating means such as the heater rod 6.

【0021】本発明の熱圧着装置においては、ステージ
Aと加圧ヘッドBとの間の温度差ができるだけ小さくな
るように熱圧着できるようにすることが望まれる。通
常、温度差が100℃以内、好ましくは50℃以内とな
るようにする。この場合、図3に示すように、温度調整
装置10を設けることが好ましい。このような温度調整
装置10としては、公知の装置を使用することができ、
ステージA及び加圧ヘッドBの温度をそれぞれ検出し、
それらの検出結果に基づき、セラミックヒータ4又はセ
ラミックヒータ8による加熱をオンオフできるような装
置であればよい。
In the thermocompression bonding apparatus of the present invention, it is desired that the thermocompression bonding can be performed so that the temperature difference between the stage A and the pressure head B is as small as possible. Usually, the temperature difference is set within 100 ° C., preferably within 50 ° C. In this case, it is preferable to provide a temperature adjusting device 10 as shown in FIG. As such a temperature control device 10, a known device can be used.
The temperatures of the stage A and the pressure head B are detected, respectively,
Any device can be used as long as it can turn on and off the heating by the ceramic heater 4 or the ceramic heater 8 based on the detection results.

【0022】また、そのような温度調整装置10を、ス
テージA及び加圧ヘッドBのそれぞれの温度プロファイ
ルが略同一になるようにするための温度プロファイル制
御装置(例えば、HEC−103、(株)ジコー製)と
して使用してもよい。
Further, a temperature profile control device (for example, HEC-103, Inc.) for adjusting the temperature profile of the stage A and the pressure head B to substantially the same, by using such a temperature control device 10. Jiko).

【0023】本発明の熱圧着装置は、接着膜を介して2
以上の被熱圧着物を熱圧着する場合に適用するが、特
に、精度の高い熱圧着を必要とする場合に好ましく適用
することができる。例えば、異方性導電接着フィルムを
用いて、半導体チップや液晶パネルなどの電子素子を種
々の基板に熱圧着する場合に好ましく使用することがで
きる。
The thermocompression bonding apparatus according to the present invention is capable of
The present invention is applied to the case where the above-mentioned thermocompression-bonded object is thermocompression-bonded, and can be preferably applied particularly when high-precision thermocompression bonding is required. For example, it can be preferably used when an electronic element such as a semiconductor chip or a liquid crystal panel is thermocompression-bonded to various substrates using an anisotropic conductive adhesive film.

【0024】[0024]

【実施例】以下、本発明を実験により具体的に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below by experiments.

【0025】なお、以下の実験例においては、20μm
径のAuバンプが150μmピッチに配された6.3m
m角の半導体チップと、1.1mm厚のガラスエポキシ
回路基板(A)(18μm厚Cuパターン/Niメッキ
/Auメッキ;150μmピッチ(ライン幅100μ
m,スペース幅50μm)、日立化成工業社製)又は
1.1mm厚のアルミナベースセラミック回路基板
(B)(15μm厚Auペーストパターン;150μm
ピッチ(ライン幅100μm,スペース幅50μm))
との間に、50μm厚の異方性導電接着フィルム(FP
10425、ソニーケミカル社製)を挟み込み、熱圧着
条件を変えながら図2に示す熱圧着装置で熱圧着した。
In the following experimental examples, 20 μm
6.3 m with Au bumps of 150 μm pitch arranged
m square semiconductor chip and 1.1 mm thick glass epoxy circuit board (A) (18 μm thick Cu pattern / Ni plating / Au plating; 150 μm pitch (line width 100 μm)
m, space width 50 μm), manufactured by Hitachi Chemical Co., Ltd.) or 1.1 mm thick alumina-based ceramic circuit board (B) (15 μm thick Au paste pattern; 150 μm
Pitch (line width 100 μm, space width 50 μm)
And a 50 μm thick anisotropic conductive adhesive film (FP
10425, manufactured by Sony Chemical Co., Ltd.), and thermocompression-bonded using the thermocompression bonding apparatus shown in FIG. 2 while changing the thermocompression bonding conditions.

【0026】また、比較のために、図4(a)に示す熱
圧着装置を使用して、同様に熱圧着した。
For comparison, thermocompression bonding was performed using a thermocompression bonding apparatus shown in FIG.

【0027】実験例1 本実験例においては、異方性導電接着フィルム中の熱硬
化性バインダーの反応率と、PCT(プレッシャークッ
カーテスト;121℃/2.1atm/100%Rh)
における100mΩ以上の抵抗上昇に要する時間との関
係を調べた。この関係は、所望の接続信頼性を実現する
ために必要な熱圧着条件を選定する際の一つの指標とな
る。
Experimental Example 1 In this experimental example, the reaction rate of the thermosetting binder in the anisotropic conductive adhesive film and the PCT (pressure cooker test; 121 ° C./2.1 atm / 100% Rh) were used.
Was examined for the time required for the resistance to increase by 100 mΩ or more. This relationship serves as one index when selecting the thermocompression bonding conditions required to achieve the desired connection reliability.

【0028】即ち、図2に示す熱圧着装置で、回路基板
(A)と半導体チップとを異方性導電接着フィルムを介
して熱圧着した。ここで、ステージ側のセラミックヒー
タの温度を180℃に設定し、加圧ヘッド側のセラミッ
クヒータの温度を220℃に設定し、熱圧着時間を調節
することで、異方性導電接着フィルム中の熱硬化性バイ
ンダーの反応率を調節した。
That is, the circuit board (A) and the semiconductor chip were thermocompressed with the thermocompression bonding apparatus shown in FIG. 2 via the anisotropic conductive adhesive film. Here, the temperature of the stage-side ceramic heater was set to 180 ° C., the temperature of the pressure-head-side ceramic heater was set to 220 ° C., and the thermocompression bonding time was adjusted. The reaction rate of the thermosetting binder was adjusted.

【0029】得られた結果を図6に示した。この結果か
ら、反応率が高い程、異方性導電接着フィルムの抵抗上
昇(100mΩ以上)に要する時間が長くなること、並
びに実用的には反応率を90%以上にする必要があるこ
とがわかる。
FIG. 6 shows the obtained results. From these results, it can be seen that the higher the reaction rate, the longer the time required for the resistance increase (100 mΩ or more) of the anisotropic conductive adhesive film, and practically the reaction rate needs to be 90% or more. .

【0030】実験例2 本実験例においては、ステージ側の加熱温度を40℃又
は100℃に設定した場合に、熱圧着時間と異方性導電
接着フィルムの加熱温度との関係を調べた。この関係を
調べることにより、熱圧着時間の短縮又は加圧ヘッド側
のセラミックヒータの加熱温度の降下が可能であるか否
か推定できる。
Experimental Example 2 In this experimental example, when the heating temperature on the stage side was set to 40 ° C. or 100 ° C., the relationship between the thermocompression bonding time and the heating temperature of the anisotropic conductive adhesive film was examined. By examining this relationship, it can be estimated whether it is possible to shorten the thermocompression bonding time or to lower the heating temperature of the ceramic heater on the pressure head side.

【0031】即ち、図4(a)の熱圧着装置を使用し、
ステージ温度40℃、加圧ヘッド温度230℃、熱圧着
時間20秒という条件で、回路基板(A)と半導体チッ
プとを異方性導電接着フィルムを介して熱圧着した。得
られた結果を、図7に実線で示した。
That is, using the thermocompression bonding apparatus shown in FIG.
The circuit board (A) and the semiconductor chip were thermocompression bonded via an anisotropic conductive adhesive film under the conditions of a stage temperature of 40 ° C., a pressure head temperature of 230 ° C., and a thermocompression bonding time of 20 seconds. The obtained result is shown by a solid line in FIG.

【0032】また、図2の熱圧着装置を使用し、ステー
ジのセラミックヒータ温度100℃、加圧ヘッド温度2
10℃、熱圧着時間20秒という条件で、回路基板
(A)と半導体チップとを異方性導電接着フィルムを介
して熱圧着した。得られた結果を、図7に点線で示し
た。
Further, using the thermocompression bonding apparatus shown in FIG. 2, a stage ceramic heater temperature of 100.degree.
The circuit board (A) and the semiconductor chip were thermocompression bonded via an anisotropic conductive adhesive film under the conditions of 10 ° C. and a thermocompression bonding time of 20 seconds. The obtained result is shown by a dotted line in FIG.

【0033】図7から、ステージ側の温度を高くする
と、異方性導電接着フィルムを迅速に所定の温度(約1
80℃)に加熱できることがわかる。このことから、ス
テージ側の温度を高くすると、加熱時間が短縮できるこ
とがわかる。実際に、図4(a)の装置の場合には、熱
圧着時間20秒の異方性導電接着フィルム中の熱硬化性
バインダーの反応率は92%であり、15秒では85%
であるのに対し、図2の装置の場合には、熱圧着時間2
0秒の異方性導電接着フィルム中の熱硬化性バインダー
の反応率は96%であり、15秒では92%であった。
従って、図2の装置の場合の方が熱圧着時間を少なくと
も5秒短縮することができる。
As shown in FIG. 7, when the temperature on the stage side is increased, the anisotropic conductive adhesive film is quickly heated to a predetermined temperature (about 1 ° C.).
80 ° C.). This indicates that the heating time can be shortened by increasing the temperature on the stage side. Actually, in the case of the apparatus shown in FIG. 4A, the reaction rate of the thermosetting binder in the anisotropic conductive adhesive film in which the thermocompression bonding time is 20 seconds is 92%, and that in the case of 15 seconds is 85%.
On the other hand, in the case of the apparatus shown in FIG.
The reaction rate of the thermosetting binder in the anisotropic conductive adhesive film at 0 seconds was 96%, and at 15 seconds was 92%.
Therefore, the thermocompression bonding time can be reduced by at least 5 seconds in the case of the apparatus shown in FIG.

【0034】更に、本実験例からは、ステージ側の温度
を高くすると、加圧ヘッド側の温度を低く設定すること
が可能になることがわかる(図4(a)の装置の場合2
30℃に設定、図2の装置の場合210℃に設定)。
Further, from this experimental example, it is understood that if the temperature on the stage side is increased, the temperature on the pressure head side can be set lower (in the case of the apparatus shown in FIG.
Set to 30 ° C., set to 210 ° C. for the apparatus of FIG. 2).

【0035】実験例3 本実験例においては、ステージのセラミックヒータの温
度と、回路基板上下面の間の温度差との関係を調べた。
回路基板上下面の間の温度差は、熱圧着条件の選定の一
つの指標となる。
Experimental Example 3 In this experimental example, the relationship between the temperature of the ceramic heater of the stage and the temperature difference between the upper and lower surfaces of the circuit board was examined.
The temperature difference between the upper and lower surfaces of the circuit board is one index for selecting thermocompression bonding conditions.

【0036】即ち、図2の熱圧着装置を使用し、加圧ヘ
ッドの温度を異方性導電接着フィルムの温度が20秒後
に180℃となるように設定し、熱圧着時間20秒とい
う条件で、回路基板(A)及び回路基板(B)と半導体
チップとをそれぞれ異方性導電接着フィルムを介して熱
圧着した。得られた結果を図8に示した。
That is, using the thermocompression bonding apparatus shown in FIG. 2, the temperature of the pressure head is set so that the temperature of the anisotropic conductive adhesive film becomes 180 ° C. after 20 seconds, and the thermocompression time is 20 seconds. Then, the circuit board (A), the circuit board (B), and the semiconductor chip were each thermocompression-bonded via an anisotropic conductive adhesive film. The results obtained are shown in FIG.

【0037】図8から、ステージのセラミックヒータの
温度が高い程、回路基板の上下面の温度差を小さくでき
ることがわかる。
FIG. 8 shows that the higher the temperature of the ceramic heater of the stage, the smaller the temperature difference between the upper and lower surfaces of the circuit board.

【0038】実験例4 本実験例においては、回路基板の上下面の温度差とPC
T(プレッシャークッカーテスト;121℃/2.1a
tm/100%Rh)における100mΩ以上の抵抗上
昇に要する時間との関係を調べた。この関係は、所望の
接続信頼性を実現するために必要な熱圧着条件を選定す
る際の一つの指標となる。
Experimental Example 4 In this experimental example, the temperature difference between the upper and lower surfaces of the circuit board and the PC
T (pressure cooker test; 121 ° C / 2.1a)
(tm / 100% Rh) and the time required for a resistance increase of 100 mΩ or more was examined. This relationship serves as one index when selecting the thermocompression bonding conditions required to achieve the desired connection reliability.

【0039】即ち、回路基板(A)に対する実験例3の
結果と、実験例3で作製した熱圧着物のPCTの結果と
を対応させ、その結果を図9に示した。
That is, the results of Experimental Example 3 for the circuit board (A) were made to correspond to the results of PCT of the thermocompression-bonded article manufactured in Experimental Example 3, and the results are shown in FIG.

【0040】図9から、回路基板上下面の温度差が小さ
くなるほど、接続信頼性が高まることがわかる。実用的
には温度差を100℃以内、好ましくは50℃以内にす
ることが望まれる。
FIG. 9 shows that the smaller the temperature difference between the upper and lower surfaces of the circuit board, the higher the connection reliability. Practically, it is desired that the temperature difference be within 100 ° C, preferably within 50 ° C.

【0041】実験例5 本実験例においては、半導体チップの周囲(1.5mm
外側)にはみ出した異方性導電接着フィルム部分(フィ
レット部)中の熱硬化性バインダーの反応率と、ステー
ジのセラミックヒータの温度との関係を調べた。フィレ
ット部の反応率が高いほど、接続信頼性も高まることが
予想できる。
Experimental Example 5 In this experimental example, the periphery of the semiconductor chip (1.5 mm
The relationship between the reaction rate of the thermosetting binder in the anisotropic conductive adhesive film portion (fillet portion) protruding outside and the temperature of the ceramic heater of the stage was examined. It can be expected that the higher the reaction rate of the fillet portion, the higher the connection reliability.

【0042】即ち、図2の熱圧着装置を使用し、加圧ヘ
ッドのセラミックヒータ温度を210℃に設定し、熱圧
着時間10秒という熱圧着条件で、回路基板(A)と半
導体チップとを異方性導電接着フィルムを介して熱圧着
した。得られた結果を図10に示した。
That is, using the thermocompression bonding apparatus shown in FIG. 2, the temperature of the ceramic heater of the pressure head was set to 210 ° C., and the circuit board (A) and the semiconductor chip were bonded under the thermocompression bonding time of 10 seconds. Thermocompression bonding was performed via an anisotropic conductive adhesive film. The results obtained are shown in FIG.

【0043】図10から、ステージ側の温度を高くする
程、フィレット部の反応率が高まることがわかる。実際
に、フィレット部の反応率が30%の場合のPCT(プ
レッシャークッカーテスト;121℃/2.1atm/
100%Rh)における100mΩ以上の抵抗上昇に要
する時間は約100時間であったが、反応率60%では
168時間であり、反応率80%では192時間であっ
た。
FIG. 10 shows that the higher the stage-side temperature, the higher the fillet reaction rate. Actually, PCT (pressure cooker test; 121 ° C./2.1 atm /
At 100% Rh), the time required for a resistance increase of 100 mΩ or more was about 100 hours, but it was 168 hours at a conversion of 60% and 192 hours at a conversion of 80%.

【0044】実験例6本実験例においては、ステージ側
と加圧ヘッド側との温度プロファイルを略同一とした場
合の、PCT(プレッシャークッカーテスト;121℃
/2.1atm/100%Rh)における抵抗上昇(1
00mΩ以上)に要する時間を調べた。
Experimental Example 6 In this experimental example, PCT (pressure cooker test; 121 ° C.) when the temperature profiles of the stage side and the pressure head side were substantially the same.
/2.1atm/100%Rh) (1
(At least 00 mΩ).

【0045】即ち、図3の熱圧着装置で、回路基板
(A)と半導体チップとを異方性導電接着フィルムを介
して熱圧着した。ここで、ステージ側と加圧ヘッド側の
温度プロファイルを図11のように設定した。その結
果、選られた熱圧着物のPCTの結果は、240時間以
上であり、非常に接続信頼性の高い熱圧着ができた。
That is, the circuit board (A) and the semiconductor chip were thermocompression-bonded via the anisotropic conductive adhesive film by the thermocompression bonding apparatus shown in FIG. Here, the temperature profiles of the stage side and the pressure head side were set as shown in FIG. As a result, the result of PCT of the selected thermocompression bonding product was 240 hours or more, and thermocompression bonding with extremely high connection reliability was achieved.

【0046】[0046]

【発明の効果】本発明の熱圧着装置によれば、熱圧着時
におけるステージの平坦性を維持し、且つステージと加
圧ヘッドとの間の温度差を極力小さくすることができ
る。従って、接続信頼性の高い熱圧着が可能となる。ま
た、熱圧着時間の短縮、加圧ヘッドの熱圧着温度の降下
が可能となる。
According to the thermocompression bonding apparatus of the present invention, the flatness of the stage during thermocompression can be maintained, and the temperature difference between the stage and the pressure head can be minimized. Therefore, thermocompression bonding with high connection reliability is possible. In addition, it is possible to shorten the thermocompression bonding time and to lower the thermocompression bonding temperature of the pressure head.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱圧着装置の説明図である。FIG. 1 is an explanatory view of a thermocompression bonding apparatus according to the present invention.

【図2】本発明の熱圧着装置の説明図である。FIG. 2 is an explanatory view of the thermocompression bonding apparatus of the present invention.

【図3】本発明の熱圧着装置の説明図である。FIG. 3 is an explanatory view of a thermocompression bonding apparatus of the present invention.

【図4】従来の熱圧着装置の説明図(同図(a)、
(b))である。
FIG. 4 is an explanatory view of a conventional thermocompression bonding apparatus (FIG. 4 (a),
(B)).

【図5】従来の熱圧着装置の説明図である。FIG. 5 is an explanatory view of a conventional thermocompression bonding apparatus.

【図6】熱圧着の際の異方性導電接着フィルム中の熱硬
化性バインダーの反応率と、PCT(プレッシャークッ
カーテスト)における100mΩ以上の抵抗上昇に要す
る時間との関係図である。
FIG. 6 is a graph showing the relationship between the reaction rate of a thermosetting binder in an anisotropic conductive adhesive film during thermocompression bonding and the time required for a resistance increase of 100 mΩ or more in a PCT (pressure cooker test).

【図7】熱圧着時間と異方性導電接着フィルムの加熱温
度との関係図である。
FIG. 7 is a relationship diagram between a thermocompression bonding time and a heating temperature of an anisotropic conductive adhesive film.

【図8】ステージのセラミックヒータの温度と、回路基
板の上下面の間の温度差との関係図である。
FIG. 8 is a diagram showing the relationship between the temperature of the ceramic heater of the stage and the temperature difference between the upper and lower surfaces of the circuit board.

【図9】回路基板の上下面の温度差とPCT(プレッシ
ャークッカーテスト)における100mΩ以上の抵抗上
昇に要する時間との関係図である。
FIG. 9 is a graph showing the relationship between the temperature difference between the upper and lower surfaces of a circuit board and the time required for a resistance rise of 100 mΩ or more in a PCT (pressure cooker test).

【図10】半導体チップの周囲にはみ出した異方性導電
接着フィルム部分中の熱硬化性バインダーの反応率と、
ステージのセラミックヒータの温度との関係図である。
FIG. 10 shows a reaction rate of a thermosetting binder in an anisotropic conductive adhesive film portion protruding around a semiconductor chip;
It is a relation diagram with the temperature of the ceramic heater of a stage.

【図11】ステージ側及び加圧ヘッド側の温度プロファ
イルである。
FIG. 11 is a temperature profile on the stage side and the pressure head side.

【符号の説明】[Explanation of symbols]

1 異方性導電接着フィルム、 2 半導体チップ、
3 回路基板、 4,8 セラミックヒータ、 5 保
持台、 6 ヒータロッド、 7 ステンレスブロッ
ク、 9 保持具、 10 温度調整装置
1 anisotropic conductive adhesive film, 2 semiconductor chip,
3 circuit board, 4,8 ceramic heater, 5 holder, 6 heater rod, 7 stainless block, 9 holder, 10 temperature controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠崎 潤二 栃木県鹿沼市さつき町12−3 ソニーケミ カル株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Junji Shinozaki 12-3 Satsuki-cho, Kanuma-shi, Tochigi Sony Chemical Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 接着膜を介して少なくとも二つの被熱圧
着物を互いに熱圧着するための熱圧着装置であって、被
熱圧着物を載せるためのステージと、ステージに載せら
れた被熱圧着物を加圧するための加圧ヘッドとを有する
熱圧着装置において、被熱圧着物に接触するステージの
表面がセラミックヒータから構成されていることを特徴
とする熱圧着装置。
1. A thermocompression bonding apparatus for thermocompression-bonding at least two thermocompression bonding objects to each other via an adhesive film, comprising: a stage for mounting the thermocompression bonding object; and a thermocompression bonding device mounted on the stage. What is claimed is: 1. A thermocompression bonding apparatus having a pressure head for pressing an object, wherein a surface of a stage in contact with the object to be thermocompression-bonded is formed of a ceramic heater.
【請求項2】 接着膜が異方性導電接着フィルムである
請求項1記載の熱圧着装置。
2. The thermocompression bonding apparatus according to claim 1, wherein the adhesive film is an anisotropic conductive adhesive film.
【請求項3】 被熱圧着物に接触する加圧ヘッドの表面
がセラミックヒータから構成されている請求項1又は2
記載の熱圧着装置。
3. The pressurizing head in contact with the object to be thermally press-bonded is made of a ceramic heater.
The thermocompression bonding apparatus as described in the above.
【請求項4】 セラミックヒータがパルスヒータである
請求項1〜3のいずれかに記載の熱圧着装置。
4. The thermocompression bonding apparatus according to claim 1, wherein the ceramic heater is a pulse heater.
【請求項5】 ステージと加圧ヘッドとの間の温度差が
熱圧着の際に50℃以内となるようにするための温度調
整装置を有する請求項1〜4のいずれかに記載の熱圧着
装置。
5. The thermocompression bonding device according to claim 1, further comprising a temperature adjustment device for controlling a temperature difference between the stage and the pressure head to be within 50 ° C. during thermocompression bonding. apparatus.
【請求項6】 熱圧着の際に、ステージ及び加圧ヘッド
のそれぞれの温度プロファイルが略同一になるようにす
るための温度プロファイル制御装置を有する請求項1〜
4のいずれかに記載の熱圧着装置。
6. The apparatus according to claim 1, further comprising a temperature profile control device for making the temperature profiles of the stage and the pressure head substantially the same during thermocompression bonding.
5. The thermocompression bonding apparatus according to any one of 4.
JP00707598A 1998-01-16 1998-01-16 Thermocompression bonding equipment Ceased JP3317226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00707598A JP3317226B2 (en) 1998-01-16 1998-01-16 Thermocompression bonding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00707598A JP3317226B2 (en) 1998-01-16 1998-01-16 Thermocompression bonding equipment

Publications (2)

Publication Number Publication Date
JPH11204591A true JPH11204591A (en) 1999-07-30
JP3317226B2 JP3317226B2 (en) 2002-08-26

Family

ID=11655973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00707598A Ceased JP3317226B2 (en) 1998-01-16 1998-01-16 Thermocompression bonding equipment

Country Status (1)

Country Link
JP (1) JP3317226B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769469B2 (en) * 1999-08-09 2004-08-03 Sony Chemicals Corp. Process for mounting semiconductor device and mounting apparatus
KR100551515B1 (en) * 1999-04-26 2006-02-13 소니 케미카루 가부시키가이샤 Packaging method
CN100426480C (en) * 2006-03-06 2008-10-15 宇富半导体材料科技股份有限公司 Chip pressing base and its application device
JP2008273155A (en) * 2007-05-07 2008-11-13 Sony Chemical & Information Device Corp Sample for evaluating physical property and its manufacturing method and manufacturing apparatus
JP2009186707A (en) * 2008-02-06 2009-08-20 Seiko Epson Corp Method of manufacturing electro-optical device and electro-optical device
JP2010135503A (en) * 2008-12-03 2010-06-17 Panasonic Electric Works Co Ltd Production process of led unit
JP2012114382A (en) * 2010-11-29 2012-06-14 Alpha- Design Kk Bonding apparatus
JP5667277B1 (en) * 2013-11-22 2015-02-12 株式会社カイジョー Bonding equipment
US20150185526A1 (en) * 2013-12-27 2015-07-02 Wistron Corporation Lamination carrier and lamination method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551515B1 (en) * 1999-04-26 2006-02-13 소니 케미카루 가부시키가이샤 Packaging method
US6769469B2 (en) * 1999-08-09 2004-08-03 Sony Chemicals Corp. Process for mounting semiconductor device and mounting apparatus
CN100426480C (en) * 2006-03-06 2008-10-15 宇富半导体材料科技股份有限公司 Chip pressing base and its application device
JP2008273155A (en) * 2007-05-07 2008-11-13 Sony Chemical & Information Device Corp Sample for evaluating physical property and its manufacturing method and manufacturing apparatus
JP2009186707A (en) * 2008-02-06 2009-08-20 Seiko Epson Corp Method of manufacturing electro-optical device and electro-optical device
JP2010135503A (en) * 2008-12-03 2010-06-17 Panasonic Electric Works Co Ltd Production process of led unit
JP2012114382A (en) * 2010-11-29 2012-06-14 Alpha- Design Kk Bonding apparatus
JP5667277B1 (en) * 2013-11-22 2015-02-12 株式会社カイジョー Bonding equipment
US20150185526A1 (en) * 2013-12-27 2015-07-02 Wistron Corporation Lamination carrier and lamination method using the same

Also Published As

Publication number Publication date
JP3317226B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
US7703657B2 (en) Device for mounting electric component
KR101398307B1 (en) Method and apparatus for mounting electric component
JP3317226B2 (en) Thermocompression bonding equipment
JP2001093938A (en) Semiconductor device and its manufacturing method
KR20160127807A (en) Crimp head, and mounting device and mounting method using same
JPH1187429A (en) Mounting method for semiconductor chip
JP2007258483A (en) Thermocompression bonding tool
JP2000294721A (en) Semiconductor chip mounting structure
JP2006066566A (en) Bonding device
JP5164499B2 (en) Electronic component mounting method and electronic component mounting substrate
JP2003140179A (en) Device for connecting circuit parts to liquid crystal display panel
JP2004119594A (en) Batch bonding device
JP4767518B2 (en) Implementation method
JPH03225842A (en) Bonding tool
KR100861952B1 (en) Bonding device
JPH0671026B2 (en) Semiconductor mounting method
JP3478072B2 (en) Circuit component mounting heating device and circuit component mounting method
JP2004200230A6 (en) Implementation method
JP2004079926A (en) Heating and pressurizing device and method for adjusting flatness of pressure contact surface
JPH09219417A (en) Method and device for manufacturing semiconductor device
JP2004031865A (en) Method for connecting liquid crystal display panel and driving circuit
JP2000156560A (en) Mounting equipment of electronic component and its mounting method
JP2000021930A (en) Thermocompression bonding device
JP2003246089A (en) Thermal head
JP3729813B2 (en) Outer lead bonding equipment

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition