JPH11202321A - Sheet-like polarizing element and liquid crystal display element using the same - Google Patents

Sheet-like polarizing element and liquid crystal display element using the same

Info

Publication number
JPH11202321A
JPH11202321A JP10003840A JP384098A JPH11202321A JP H11202321 A JPH11202321 A JP H11202321A JP 10003840 A JP10003840 A JP 10003840A JP 384098 A JP384098 A JP 384098A JP H11202321 A JPH11202321 A JP H11202321A
Authority
JP
Japan
Prior art keywords
sheet
liquid crystal
polarizing element
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10003840A
Other languages
Japanese (ja)
Inventor
Hisashi Ito
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP10003840A priority Critical patent/JPH11202321A/en
Publication of JPH11202321A publication Critical patent/JPH11202321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sheet-like polarizing element which converts natural light to linearly polarized light with high efficiency and has excellent workability and to provide a liquid crystal display device which has high luminance or saves electric power consumption. SOLUTION: The sheet-like polarizing element arrayed with triangular prisms of a right-angled triangular shape in an array form comprises polarized light sepn. films 2 which consist of thin films of low and high refractive indices on the slopes of the triangular prisms, polarized light modulation parts 4 which are formed on the perpendicular faces of the prisms and consist of the thins films of liquid crystals in a molecule aligned state having a 1/4 spiral structure and alignment layers which align and fix the liquid crystal molecules in the molecule aligned state having the 1/4 spiral structure. The alignment layers 3 are deposited by diagonal vapor deposition of inorg. dielectric at a vapor deposition angle of 45 to 80 deg. with the normal of the vapor deposition surfaces, by which the sheet-like polarizing element having the excellent micromachinability of the polarized light modulation parts 4 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非偏光光から一方
向の偏光成分のみを生成する機能を備えた微細加工性に
優れたシート状偏光素子に関する。本発明のシート状偏
光素子は偏光光束を必要とする任意の用途に使用され得
るが、特に、液晶表示素子のバックライト側に配置され
る偏光板に用いて有利なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-shaped polarizing element having a function of generating only a polarized light component in one direction from non-polarized light and having excellent fine workability. The sheet-like polarizing element of the present invention can be used for any application requiring a polarized light beam, and is particularly advantageous for use in a polarizing plate arranged on the backlight side of a liquid crystal display element.

【0002】[0002]

【従来の技術】従来、液晶パネルディスプレイに用いら
れる偏光板は、ヨウ素会合体または二色性色素が基材の
高分子フィルム中に吸着され、1軸方向に延伸処理され
ている。偏光板に入射した光のうち吸収軸方向の偏光成
分を有する光は吸収遮断され、それと直交する偏光成分
は透過する。したがって、原理的には入射光の透過率は
50%となる。実際広く市販されている偏光板の透過率は
40〜45%である。すなわち、バックライトの光量の
約半分が偏光板により損失されるのが現状である。この
ため表示画面の輝度を上げるにはバックライト光源の出
力を増加させる必要があり、省電力化に逆行するもので
ある。
2. Description of the Related Art Hitherto, a polarizing plate used for a liquid crystal panel display has an iodine association or a dichroic dye adsorbed in a polymer film as a base material and is stretched in a uniaxial direction. Of the light incident on the polarizing plate, light having a polarization component in the absorption axis direction is absorbed and blocked, and a polarization component orthogonal to the light is transmitted. Therefore, in principle, the transmittance of incident light is
50%. Actually, the transmittance of a commercially available polarizing plate is 40 to 45%. That is, at present, about half of the light amount of the backlight is lost by the polarizing plate. Therefore, in order to increase the brightness of the display screen, it is necessary to increase the output of the backlight light source, which goes against power saving.

【0003】光の利用効率を促進するための1つの技術
が、特開平8−248224号公報に示されており、こ
こでは2つの偏光成分を有する光を屈折率の異なる物質
境界で透過光と反射光にし、1つの偏光成分を位相変化
を行う位相子やファラデー素子等により偏波面を回転さ
せた後に、2つの偏光成分を同方向に進行するように方
向を変化させることにより、光源の光利用効率を高めて
いる。
One technique for promoting light use efficiency is disclosed in Japanese Patent Application Laid-Open No. Hei 8-248224, in which light having two polarization components is separated from transmitted light by a material boundary having a different refractive index. By turning the plane of polarization with a phase shifter or Faraday element that changes the phase of one polarization component into reflected light, and then changing the direction so that the two polarization components travel in the same direction, the light of the light source Improves usage efficiency.

【0004】しかしながら、この技術は偏波面を変換す
る位相子またはファラデー素子の波長依存性により、光
源波長により偏波面回転の分散が生じ、広帯域の波長に
対する光利用効率の向上が望めない。
However, in this technique, the rotation of the polarization plane is dispersed depending on the wavelength of the light source due to the wavelength dependence of the phase shifter or the Faraday element that converts the polarization plane, and it is not expected to improve the light use efficiency with respect to a wide band wavelength.

【0005】また、液晶の光学特性を活用するためには
液晶配列を制御する必要がある。液晶配列方法としては
ラビング法(例えば、液晶ディスプレイの最先端、シグ
マ出版、83〜84頁の記事参照)があるが、配向膜を構成
する薄膜材料を布などで機械的に擦ることで配向機能を
付与させるため微細加工した表面への適用は不可能であ
った。
Further, in order to utilize the optical characteristics of the liquid crystal, it is necessary to control the liquid crystal arrangement. As a liquid crystal alignment method, there is a rubbing method (for example, see the leading edge of liquid crystal displays, Sigma Publishing, pages 83 to 84), but the alignment function is mechanically rubbed with a cloth or the like to form an alignment film. Therefore, application to a micromachined surface was impossible.

【0006】[0006]

【発明が解決しようとする課題】本発明は、この種の偏
光板の透過率が低く、該偏光板を用いた液晶表示装置の
輝度向上にはバックライトの電力を高める必要がある、
などの問題点を解決するためになされたものであり、そ
の目的とするところは広帯域で偏光板の透明性を大幅に
増加させることにより、輝度向上 もしくはバックライ
トの電力の低減化を図った液晶表示素子を提供すること
にある。
In the present invention, the transmittance of this type of polarizing plate is low, and it is necessary to increase the power of the backlight in order to improve the brightness of a liquid crystal display device using the polarizing plate.
The purpose of the liquid crystal is to improve the brightness or reduce the power of the backlight by greatly increasing the transparency of the polarizing plate over a wide band. It is to provide a display element.

【0007】[0007]

【課題を解決するための手段】本発明のシート状偏光素
子は、直角三角形状の三角柱がアレイ状に配列されてお
り、前記三角柱の斜面に低屈折率、高屈折率材料が積層
された偏光分離膜が形成され、さらに直角を挟むひとつ
の面上に1/4らせん構造を有した分子配向状態にある
液晶分子を配向固定した薄膜からなる偏光変調部が形成
されたプリズムアレイシートであるシート状偏光素子に
おいて、1/4らせん構造を有した分子配向状態にある
液晶分子を配向固定するための配向膜として無機誘電体
を斜方蒸着することにより形成した配向膜を有すること
を特徴とする。
According to the present invention, there is provided a sheet-like polarizing element in which triangular prisms having a right-angled triangular shape are arranged in an array, and a low-refractive-index and high-refractive-index material is laminated on the slope of the triangular prism. A sheet which is a prism array sheet on which a separation film is formed and further a polarization modulation section formed of a thin film in which liquid crystal molecules in a molecular alignment state having a 4 helical structure are fixed on one surface sandwiching a right angle. The polarizer has an alignment film formed by obliquely depositing an inorganic dielectric as an alignment film for fixing liquid crystal molecules in a molecular alignment state having a ら helical structure. .

【0008】また、シート状偏光素子を構成する無機誘
電体を斜方蒸着することにより形成した配向膜において
斜方蒸着角度が蒸着物被着面の法線に対し45〜80°
に傾斜した角度で斜方蒸着されることを特徴とする。
Further, in the alignment film formed by obliquely vapor-depositing the inorganic dielectric constituting the sheet-like polarizing element, the oblique vaporization angle is 45 to 80 ° with respect to the normal to the surface on which the vapor-deposit is adhered.
It is characterized by being obliquely deposited at an inclined angle.

【0009】また、シート状偏光素子の直角三角形の一
つの頂角が40〜50°であるとよい。
Further, it is preferable that one apex angle of the right triangle of the sheet-shaped polarizing element is 40 to 50 °.

【0010】また、シート状偏光素子の1/4らせん構
造を有した分子配向状態にある液晶分子を配向固定する
ための配向膜を構成する無機誘電体が無機酸化物または
無機フッ化物または無機酸化物及び無機フッ化物の複合
物のうちの少なくとも一つから構成されることを特徴と
する。
In addition, the inorganic dielectric constituting the alignment film for fixing the liquid crystal molecules in a molecular alignment state having a ら helical structure of the sheet-like polarizing element is made of an inorganic oxide, an inorganic fluoride, or an inorganic oxide. And at least one of a compound of a compound and an inorganic fluoride.

【0011】また、シート状偏光素子において偏光面が
一致した透過光と反射光が出射する面に、出射光の偏光
面と偏光板の偏光軸が一致するように偏光板を設けると
よい。
Further, it is preferable that a polarizing plate is provided on the surface of the sheet-like polarizing element from which the transmitted light and the reflected light whose polarization planes coincide are emitted, so that the polarization plane of the emitted light coincides with the polarization axis of the polarizing plate.

【0012】また、液晶表示素子においてシート状偏光
素子を液晶セルを挟む偏光板において光源側の偏光素子
として用いるとよい。
In the liquid crystal display device, a sheet-like polarizing element is preferably used as a polarizing element on a light source side in a polarizing plate sandwiching a liquid crystal cell.

【0013】[0013]

【発明の実施の形態】図1は本発明のシート状偏光素子
の構造図であり、1は頂角が40〜50゜の直角三角形
状の三角柱がアレイ状に配置されたプリズムシートであ
る。このプリズムシートはプラスチック成形加工技術を
もって作製することができる。あるいは ガラスから成
る長尺のプリズムをアレイ状に配列することにより容易
に製作することができる。シート状プリズムアレイ1に
は、三角柱の斜面に低屈折率、高屈折率の薄膜から成る
偏光分離膜2および 直角プリズムの入射光と平行な面
に形成された1/4らせん構造を有した分子配向状態に
ある液晶分子を配向固定した薄膜からなる偏光変調部4
及び液晶分子を配列固定化するための無機誘電体を斜方
蒸着法により形成した配向膜3が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a structural view of a sheet-like polarizing element according to the present invention, and 1 is a prism sheet in which triangular prisms having a right angle of 40 to 50 ° are arranged in an array. This prism sheet can be manufactured by plastic molding technology. Alternatively, it can be easily manufactured by arranging long prisms made of glass in an array. The sheet-shaped prism array 1 includes a polarization separation film 2 formed of a thin film having a low refractive index and a high refractive index on a slope of a triangular prism, and a molecule having a 4 spiral structure formed on a plane parallel to incident light of a right-angle prism. Polarization modulator 4 composed of a thin film in which liquid crystal molecules in an aligned state are fixed.
In addition, the alignment film 3 is formed by forming an inorganic dielectric for fixing the alignment of the liquid crystal molecules by oblique deposition.

【0014】低屈折率、高屈折率の薄膜から成る偏光分
離膜2には、低屈折率である材料としては硫化亜鉛、酸
化セリウム、酸化チタンなど、低屈折率である材料とし
てはフッ化マグネシウム、フッ化ネオジュウムなどが使
われる。成膜方法としては真空蒸着、もしくはスパッタ
リングが用いられる。交互に積層する高、低屈折率薄膜
の各々の膜厚、層数は偏光分離膜の性能を設計する上で
重要である。
The polarizing beam splitting film 2 composed of a thin film having a low refractive index and a high refractive index includes a material having a low refractive index such as zinc sulfide, cerium oxide and titanium oxide, and a material having a low refractive index such as magnesium fluoride. , Neodymium fluoride and the like are used. Vacuum evaporation or sputtering is used as a film formation method. The thickness and the number of layers of the high and low refractive index thin films alternately laminated are important in designing the performance of the polarization splitting film.

【0015】1/4らせん構造を有した分子配向状態に
ある液晶分子を配向固定した薄膜からなる偏光変調部4
は入射偏光面を 90度回転する機能をもつ光学変調部で
あり、構成する液晶分子の液晶相の分子配向状態を配向
固定化するために重合官能基を有することが望ましく、
重合官能基としてアクリレート基、メタクリレート基、
ビニルエーテル基またはエポキシ基のうち少なくとも一
つ以上有していることが好ましい。また、液晶分子は1
/4らせん構造を発現するためにコレステリック液晶が
好ましく、カイラルネマティック液晶、カイラルスメク
ティック液晶、ネマチック液晶とカイラル剤の混合物、
スメクティック液晶とカイラル剤の混合物がより好まし
い。
A polarization modulator 4 comprising a thin film in which liquid crystal molecules in a molecular alignment state having a 1 / helical structure are fixed in alignment.
Is an optical modulator having a function of rotating the incident polarization plane by 90 degrees, and desirably has a polymerizable functional group in order to fix the molecular alignment state of the liquid crystal phase of the constituting liquid crystal molecules,
Acrylate group, methacrylate group,
It preferably has at least one of a vinyl ether group and an epoxy group. The liquid crystal molecules are 1
Cholesteric liquid crystals are preferred for expressing a / 4 helical structure, and chiral nematic liquid crystals, chiral smectic liquid crystals, mixtures of nematic liquid crystals and chiral agents,
Mixtures of smectic liquid crystals and chiral agents are more preferred.

【0016】1/4らせん構造を有した分子配向状態に
ある液晶分子を配向固定した薄膜からなる変調部4を得
るための配向膜3の作製方法は斜方蒸着法が好ましい。
蒸着方法としては蒸着粒子の基板に対する付着成長方位
に指向性がある成膜方法が好ましく、抵抗加熱蒸着法ま
たは電子線蒸着法が特に好ましい。
The oblique vapor deposition method is preferred as a method for forming the alignment film 3 for obtaining the modulation section 4 composed of a thin film in which liquid crystal molecules in a molecular alignment state having a 1/4 helical structure are fixed in alignment.
As the vapor deposition method, a film formation method having directivity in the direction of attachment and growth of the vapor deposition particles to the substrate is preferable, and a resistance heating vapor deposition method or an electron beam vapor deposition method is particularly preferable.

【0017】また、液晶分子の分子配向状態を制御する
配向膜3として用いられる無機誘電体による斜方蒸着膜
は、配向層近傍の液晶分子の一軸配向性を発現させる機
能を有するものが好ましく、酸化タンタル、酸化タング
ステン、酸化珪素、酸化チタンなどの無機酸化物を斜方
蒸着したもの、フッ化マグネシウム、フッ化ネオジュウ
ムなど無機フッ化物を斜方蒸着したものが特に好まし
い。
The obliquely deposited film made of an inorganic dielectric used as the alignment film 3 for controlling the molecular alignment state of the liquid crystal molecules preferably has a function of expressing uniaxial alignment of the liquid crystal molecules near the alignment layer. Particularly preferred are those obtained by obliquely depositing an inorganic oxide such as tantalum oxide, tungsten oxide, silicon oxide, and titanium oxide, and those obtained by obliquely depositing an inorganic fluoride such as magnesium fluoride and neodymium fluoride.

【0018】また、液晶分子の分子配向状態を制御する
配向膜3として用いられる無機誘電体による斜方蒸着膜
の蒸着角度は、蒸着物被着面の法線に対し45〜80°
に傾斜した角度で斜方蒸着されることが好ましく、用い
られる無機誘電体にも依存するが55〜70°が更に好
ましい。斜方蒸着角度が45°以下の場合は、液晶分子
の配向不良が発生し配向膜としての機能が発現しない。
また、斜方蒸着角度が80°以下の場合は基板に対する
液晶の傾斜角が大きくなり均一な配向はするものの偏光
変調部としての機能が低下してしまい好ましくない。
The angle of deposition of the obliquely deposited film made of an inorganic dielectric used as the alignment film 3 for controlling the molecular alignment state of the liquid crystal molecules is 45 to 80 ° with respect to the normal to the surface on which the deposited material is adhered.
It is preferable that the film is obliquely vapor-deposited at an inclined angle, and it is more preferably 55 to 70 ° depending on the inorganic dielectric used. When the oblique deposition angle is 45 ° or less, poor alignment of liquid crystal molecules occurs and the function as an alignment film is not exhibited.
On the other hand, when the oblique deposition angle is less than 80 °, the tilt angle of the liquid crystal with respect to the substrate becomes large and uniform alignment is obtained, but the function as a polarization modulation unit is deteriorated, which is not preferable.

【0019】本発明の偏光素子の構造断面図である図2
により、本発明の機能を説明する。
FIG. 2 is a structural sectional view of the polarizing element of the present invention.
The function of the present invention will be described below.

【0020】偏光していない光(自然光)6が第一のプ
リズム11の斜面に入射すると偏光分離膜2が形成され
ているプリズム斜面で反射および屈折し、反射光7およ
び屈折光8に分離される。反射光7および屈折光8の偏
光状態および光強度は、偏光分離膜2の構成、すなわち
高、低屈折率の値、膜厚および層数により決定される。
ここで偏光分離膜2を、反射光7のs偏光成分が多くな
るよう、また、屈折光8のp偏光成分は多くなるように
設計する。反射光7は1/4らせん構造を有した分子配
向状態にある液晶分子を配向固定した薄膜からなる偏光
変調部4の作用によりs、p偏光成分が逆転し、その結
果p偏光成分は多くなり、透過光9として隣接した第二
のプリズム12に入射し、その斜面で全反射され、偏光
光9’となる。この際、偏光状態は変化しない。
When unpolarized light (natural light) 6 enters the inclined surface of the first prism 11, it is reflected and refracted by the prism inclined surface on which the polarization separation film 2 is formed, and is separated into reflected light 7 and refracted light 8. You. The polarization state and light intensity of the reflected light 7 and the refracted light 8 are determined by the configuration of the polarization separation film 2, that is, the values of the high and low refractive indexes, the film thickness, and the number of layers.
Here, the polarization separation film 2 is designed so that the s-polarized light component of the reflected light 7 increases and the p-polarized light component of the refracted light 8 increases. In the reflected light 7, the s and p polarization components are reversed by the action of the polarization modulator 4 composed of a thin film in which liquid crystal molecules in a molecular alignment state having a ら helical structure are aligned and fixed. As a result, the p polarization component increases. , As transmitted light 9, is incident on the adjacent second prism 12, and is totally reflected by the inclined surface to become polarized light 9 ′. At this time, the polarization state does not change.

【0021】更に、p偏光が通過するように配置され
た、偏光板5を通り、射出光10となる。この射出光1
0はp偏光のみを偏光成分としてもつ直線偏光光であ
る。一方、屈折光8はp偏光成分とs偏光成分からなる
楕円偏光であるが、偏光分離膜2の作用によりそのs偏
光強度は反射光7のs偏光強度に比し十分に低い。屈折
光8は反射光の場合と同様偏光板5を経て、p偏光成分
のみを有する直線偏光光13として射出する。反射光7
が偏光変換された直線偏光光10と屈折光8による直線
偏光光13を加え合わせ、直線偏光光源として利用でき
る。すなわち入射自然光5は偏光分離膜2を有した斜面
で偏光分離され、更に反射光の偏光面変調により直線偏
光光に変換される。その変換効率は50%以上、典型的に
は80%程度の値が得られる。
Further, the light passes through the polarizing plate 5 arranged so that the p-polarized light passes therethrough, and becomes the emission light 10. This emitted light 1
0 is linearly polarized light having only p-polarized light as a polarization component. On the other hand, the refracted light 8 is elliptically polarized light composed of a p-polarized light component and an s-polarized light component, and the s-polarized light intensity is sufficiently lower than the s-polarized light intensity of the reflected light 7 due to the action of the polarization separation film 2. The refracted light 8 passes through the polarizing plate 5 as in the case of the reflected light, and is emitted as linearly polarized light 13 having only a p-polarized component. Reflected light 7
Can be used as a linearly polarized light source by combining the linearly polarized light 10 whose polarization has been converted and the linearly polarized light 13 due to the refracted light 8. That is, the incident natural light 5 is polarized and separated by the slope having the polarization splitting film 2 and further converted into linearly polarized light by polarization plane modulation of the reflected light. Its conversion efficiency is at least 50%, typically about 80%.

【0022】つまり、本発明のシート状偏光素子によ
り、非偏光光からp偏光成分の多い透過光で出射させs
偏光成分の多い反射光をp偏光に変換した後に出射させ
ることにより光エネルギーを損失させることなしに非偏
光光を一方向偏光に光利用効率を高く変換させることが
できる。また、1/4らせん構造の分子配向状態にある
液晶分子を配向固定した薄膜により偏光変調部が構成さ
れているため、広波長帯域で偏波面回転の分散の小さい
偏光面変換が可能になり、広帯域で光利用効率の向上を
得ることができる。
That is, by the sheet-like polarizing element of the present invention, non-polarized light is emitted as transmitted light having a large amount of p-polarized light components.
By converting reflected light having a large amount of polarized light into p-polarized light and then emitting the light, non-polarized light can be converted into unidirectional polarized light with high light utilization efficiency without loss of light energy. In addition, since the polarization modulator is composed of a thin film in which liquid crystal molecules in a 1/4 helical structure are aligned, the polarization plane conversion with a small dispersion of polarization plane rotation in a wide wavelength band becomes possible. Improvement of light use efficiency can be obtained in a wide band.

【0023】[0023]

【実施例】次に、実施例に基づき本発明を詳細に説明す
る。但し、本発明は以下の実施例に限定されるものでは
ない。
Next, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples.

【0024】[実施例1]直角の2辺が4mmである直
角2等辺三角形を断面とし長さ5cmのガラス製の長尺
プリズムを用意し、斜面に高屈折率薄膜材料である硫化
亜鉛(Hと略記する)0.05μmおよび低屈折率薄膜
材料であるフッ化マグネシウム(Lと略記する)を0.
09μmをHLHLHLHLHの順に9層積層した。成
膜は2つの蒸発源を有する真空蒸着法によりおこなっ
た。次に、直角を挟む一辺にのみ5酸化タンタル薄膜を
蒸着面法線に対し60°の角度で斜め蒸着することによ
り、配向膜を作製した。成膜法は電子ビーム蒸着により
行った。次に、カイラル剤(CNL611L:旭電化社製)と
モノアクリレート液晶(UCL-001:ロディック社製)を
d/p=1/4に調整し、光硬化開始剤(IRG651:チバ
ガイギー社製)を用いてプリズムアレイ垂直面に1/4
らせん構造を有した分子配向状態にある液晶分子を配向
薄膜上に作製した。その後、UV光を照射することによ
り液晶分子の配向状態を固定した。このように用意した
長尺プリズム5本をガラス板上のアレイ状に配置した。
ガラス板の下面にはプリズムアレイから出射するp偏光
面と偏光軸が一致するように偏光板を張り付け、本発明
のシート状偏光素子を作製し自然光を照射した。本発明
のシート状偏光素子から射出した直線偏光の光パワーは
入射自然光の 83% であった。
[Example 1] A long prism made of glass having a cross section of a right-angled isosceles triangle having two right-angled sides of 4 mm and having a length of 5 cm was prepared, and zinc sulfide (H 0.05 μm and magnesium fluoride (abbreviated as L) which is a low-refractive-index thin-film material.
Nine layers of 09 μm were laminated in the order of HLHLHLHLH. The film was formed by a vacuum evaporation method having two evaporation sources. Next, a tantalum pentoxide thin film was obliquely vapor-deposited on only one side of the right angle at an angle of 60 ° with respect to the normal line of the vapor-deposited surface to form an alignment film. The film was formed by electron beam evaporation. Next, the chiral agent (CNL611L: manufactured by Asahi Denka Co., Ltd.) and the monoacrylate liquid crystal (UCL-001: manufactured by Roddick) were adjusted to d / p = 1/4, and the photocuring initiator (IRG651: manufactured by Ciba Geigy) was added. 1/4 on the vertical plane of the prism array
Liquid crystal molecules in a molecular alignment state having a helical structure were prepared on an alignment thin film. Thereafter, the alignment state of the liquid crystal molecules was fixed by irradiation with UV light. The five long prisms thus prepared were arranged in an array on a glass plate.
A polarizing plate was attached to the lower surface of the glass plate so that the p-polarization plane emitted from the prism array coincided with the polarization axis, and a sheet-like polarizing element of the present invention was prepared and irradiated with natural light. The light power of linearly polarized light emitted from the sheet-shaped polarizing element of the present invention was 83% of the incident natural light.

【0025】[実施例2]直角の2辺が2mmである直
角2等辺三角形を断面とし、面積10cmx10cmに
プリズムがアレイ状に配列したシートを金型成形法によ
り成形した。成形樹脂にはポリメチルメタクリレート
(PMMA)を用いた。次にプリズムアレイ垂直面のみ
に配向膜が製膜できるように、マスクを配置し5酸化タ
ンタル膜をプリズムアレイ垂直面の法線に対し60°の
角度で斜めに蒸着することにより配向膜を作製した。次
に、カイラル剤(CNL611L:旭電化社製)とモノアクリ
レート液晶(UCL-002:ロディック社製)をd/p=1
/4に調整し、光硬化開始剤(IRG651:チバガイギー社
製)を用いてプリズムアレイ垂直面に1/4らせん構造
を有した分子配向状態にある液晶分子を配向薄膜上に作
製した。その後、UV光を照射することにより液晶分子
の配向状態を固定した。1/4らせん構造を有した分子
配向状態にある液晶分子のプリズムアレイ斜面上のみの
硬化薄膜をレジスト法及びドライエッチング法により除
去して変調部を作製した。さらにこの変調部を作製した
プリズムシートに垂直方向から蒸着することにより、斜
面のみに多層膜を成膜することができた。この時の薄膜
材料 および 膜厚は、第一の実施例の場合と同様であ
り、層構成はHLHLHLHの7層とした。以上のプロセスで
完成したプリズムアレイシートに自然光を照射し、偏光
分離・変換の効率を測定した結果、その効率は81%であ
った。さらに本発明のシート状偏光素子を液晶パネルの
バックライト側の偏光板と差し替え、その効果を比較し
た。その結果、本発明のシート状偏光素子を挿入した場
合の画像輝度が明かに高いことが確認できた。
Example 2 A sheet having a right-angled isosceles triangle having two right-angled sides of 2 mm and having prisms arranged in an area of 10 cm × 10 cm in an array was formed by a die molding method. Polymethyl methacrylate (PMMA) was used as the molding resin. Next, a mask is arranged, and a tantalum pentoxide film is deposited obliquely at an angle of 60 ° with respect to the normal to the prism array vertical surface so that an alignment film can be formed only on the vertical surface of the prism array. did. Next, a chiral agent (CNL611L: manufactured by Asahi Denka Co., Ltd.) and a monoacrylate liquid crystal (UCL-002: manufactured by Roddick) were d / p = 1.
/ 4, and liquid crystal molecules in a molecular alignment state having a 1/4 helix structure on the prism array vertical surface were prepared on the alignment thin film using a photocuring initiator (IRG651: manufactured by Ciba Geigy). Thereafter, the alignment state of the liquid crystal molecules was fixed by irradiation with UV light. A modulated portion was formed by removing the cured thin film of the liquid crystal molecules in a molecular alignment state having a ら helical structure only on the slope of the prism array by a resist method and a dry etching method. Furthermore, a multilayer film could be formed only on the slope by vapor deposition from the vertical direction on the prism sheet on which the modulation portion was manufactured. At this time, the thin film material and the film thickness were the same as in the first embodiment, and the layer configuration was seven layers of HLHLHLH. The prism array sheet completed by the above process was irradiated with natural light, and the efficiency of polarization separation / conversion was measured. As a result, the efficiency was 81%. Furthermore, the sheet-like polarizing element of the present invention was replaced with a polarizing plate on the backlight side of the liquid crystal panel, and the effects were compared. As a result, it was confirmed that the image brightness when the sheet-like polarizing element of the present invention was inserted was clearly high.

【0026】[0026]

【発明の効果】本発明によると、自然光を非常に高い効
率で直線偏光光に変換できる。本発明のシート状偏光素
子を用いることにより、従来の偏光板を用いた場合に比
べ、液晶表示画面の輝度は30% 程度向上した。つま
り、本発明のシート状偏光素子を用いることにより液晶
表示装置用バックライトの省電力化及び液晶表示画面の
高輝度化が得られる。
According to the present invention, natural light can be converted into linearly polarized light with very high efficiency. By using the sheet-like polarizing element of the present invention, the brightness of the liquid crystal display screen was improved by about 30% as compared with the case where a conventional polarizing plate was used. That is, by using the sheet-shaped polarizing element of the present invention, power saving of a backlight for a liquid crystal display device and high luminance of a liquid crystal display screen can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のシート状偏光素子の構造説明図FIG. 1 is a structural explanatory view of a sheet-like polarizing element of the present invention.

【図2】 本発明のシート状偏光素子の構造断面図FIG. 2 is a structural sectional view of a sheet-shaped polarizing element of the present invention.

【符号の説明】[Explanation of symbols]

1 : プリズムシート 2 : 偏光分離膜 3 : 配向膜 4 : 偏光変調部 5 : 偏光板 6 : 自然光 7 : 反射光 8 : 屈折光 9 : 透過光 9': 偏光光 10 : 射出光 11 : 第一のプリズム 12 : 第二のプリズム 13 : 射出光 1: Prism sheet 2: Polarization separating film 3: Alignment film 4: Polarization modulator 5: Polarizer 6: Natural light 7: Reflected light 8: Refracted light 9: Transmitted light 9 ': Polarized light 10: Emitted light 11: First Prism 12: second prism 13: outgoing light

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 直角三角形状の三角柱がアレイ状に配列
されており、前記三角柱の斜面に低屈折率、高屈折率材
料が積層された偏光分離膜が形成され、さらに直角を挟
むひとつの面上に1/4らせん構造を有した分子配向状
態にある液晶分子を配向固定した薄膜からなる偏光変調
部が形成されたプリズムアレイシートであるシート状偏
光素子において、1/4らせん構造を有した分子配向状
態にある液晶分子を配向固定するための配向膜として無
機誘電体を斜方蒸着することにより形成した配向膜を有
することを特徴とするシート状偏光素子。
1. A right-angled triangular triangular prism is arranged in an array, a polarization separating film in which a low-refractive-index and a high-refractive-index material is laminated on a slope of the triangular prism, and one surface sandwiching the right angle. A sheet-shaped polarizing element, which is a prism array sheet on which a polarization modulating portion formed of a thin film in which liquid crystal molecules in a molecular alignment state having a ら helical structure are fixed and aligned, has a 1 / helical structure. A sheet-shaped polarizing element comprising an alignment film formed by obliquely depositing an inorganic dielectric as an alignment film for fixing liquid crystal molecules in a molecular alignment state.
【請求項2】 無機誘電体を斜方蒸着することにより形
成した配向膜において斜方蒸着角度が蒸着物被着面の法
線に対し45〜80°に傾斜した角度で斜方蒸着される
ことを特徴とする請求項1記載のシート状偏光素子。
2. An oblique evaporation of an orientation film formed by obliquely depositing an inorganic dielectric with an oblique deposition angle of 45 to 80 ° with respect to a normal to a surface on which a deposit is deposited. The sheet-like polarizing element according to claim 1, wherein:
【請求項3】 直角三角形の一つの頂角が40〜50°
であることを特徴とする請求項1記載のシート状偏光素
子。
3. An apex angle of one of the right triangles is 40 to 50 °.
The sheet-like polarizing element according to claim 1, wherein
【請求項4】 1/4らせん構造を有した分子配向状態
にある液晶分子を配向固定するための配向膜を構成する
無機誘電体が無機酸化物または無機フッ化物または無機
酸化物及び無機フッ化物の複合物のうちの少なくとも一
つから構成されることを特徴とする請求項1記載のシー
ト状偏光素子。
4. An inorganic dielectric constituting an alignment film for aligning and fixing liquid crystal molecules in a molecular alignment state having a 1/4 helix structure is an inorganic oxide or an inorganic fluoride or an inorganic oxide and an inorganic fluoride. The sheet-like polarizing element according to claim 1, wherein the sheet-like polarizing element is constituted by at least one of the composites.
【請求項5】 偏光面が一致した透過光と反射光が出射
する面に、出射光の偏光面と偏光板の偏光軸が一致する
ように偏光板を設けた請求項1記載のシート状偏光素
子。
5. The sheet-like polarized light according to claim 1, wherein a polarizing plate is provided on a surface from which the transmitted light and the reflected light whose polarization planes coincide with each other are emitted such that the polarization plane of the emitted light coincides with the polarization axis of the polarizing plate. element.
【請求項6】 液晶セルを挟む偏光板において、請求項
1記載のシート状偏光素子を光源側の偏光素子として用
いた液晶表示素子。
6. A liquid crystal display device using the sheet-like polarizing element according to claim 1 as a polarizing element on a light source side in a polarizing plate sandwiching a liquid crystal cell.
JP10003840A 1998-01-12 1998-01-12 Sheet-like polarizing element and liquid crystal display element using the same Pending JPH11202321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003840A JPH11202321A (en) 1998-01-12 1998-01-12 Sheet-like polarizing element and liquid crystal display element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10003840A JPH11202321A (en) 1998-01-12 1998-01-12 Sheet-like polarizing element and liquid crystal display element using the same

Publications (1)

Publication Number Publication Date
JPH11202321A true JPH11202321A (en) 1999-07-30

Family

ID=11568392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003840A Pending JPH11202321A (en) 1998-01-12 1998-01-12 Sheet-like polarizing element and liquid crystal display element using the same

Country Status (1)

Country Link
JP (1) JPH11202321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893831B1 (en) 2007-05-23 2009-04-17 미래나노텍(주) Reflective polarizing element and the fabrication apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893831B1 (en) 2007-05-23 2009-04-17 미래나노텍(주) Reflective polarizing element and the fabrication apparatus thereof

Similar Documents

Publication Publication Date Title
KR100344880B1 (en) Polarization light splitting film, backlight system and liquid crystal display
JP4427837B2 (en) Wire grid type polarization optical element
TWI362531B (en) Compensated electro-optical light modulation element
WO2004063779A1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP2006503325A (en) Polarization arrangement
JP3402122B2 (en) Filter that polarizes light in a specific wavelength range
JP2007525580A (en) Liquid crystal composite
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
JPWO2019004295A1 (en) High speed optical switching engine
WO2001090808A1 (en) Contrast ratio improving method for liquid crystal projector
JPH11202321A (en) Sheet-like polarizing element and liquid crystal display element using the same
JP2005003758A (en) Reflective optical modulator and variable optical attenuator
JP2007225744A (en) Polarization converting element
JPH11337728A (en) Sheet-like polarizing element and liquid crystal display element using the same
JPH1184129A (en) Sheet-like polarizing element and liquid crystal display element using the same
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP3971035B2 (en) Polarization conversion element and display device using the polarization conversion element
JPH11167024A (en) Polarizing element
JP2000162549A (en) Polarized light conversion element and display device and projection type display device using it
JP2004109403A (en) Liquid crystal display element
KR101701403B1 (en) Liquid crsytal display
JPH10282337A (en) Sheet-like polarization separation and transformation polarizing element, and liquid crystal display device using same
JPH11202108A (en) Production of prism array sheet and sheet-shaped polarizing element using the same
JP2004020943A (en) Polarization selective film, method for generating polarized light, apparatus for generating polarized light, polarizing plate and liquid crystal display apparatus
JP2003107475A (en) Liquid crystal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819