JP2003107475A - Liquid crystal device - Google Patents

Liquid crystal device

Info

Publication number
JP2003107475A
JP2003107475A JP2001296605A JP2001296605A JP2003107475A JP 2003107475 A JP2003107475 A JP 2003107475A JP 2001296605 A JP2001296605 A JP 2001296605A JP 2001296605 A JP2001296605 A JP 2001296605A JP 2003107475 A JP2003107475 A JP 2003107475A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase plate
crystal layer
phase
retardation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001296605A
Other languages
Japanese (ja)
Inventor
Yoshiharu Oi
好晴 大井
Shinko Murakawa
真弘 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001296605A priority Critical patent/JP2003107475A/en
Priority to EP02760728A priority patent/EP1420275B1/en
Priority to PCT/JP2002/008517 priority patent/WO2003019247A1/en
Publication of JP2003107475A publication Critical patent/JP2003107475A/en
Priority to US10/784,714 priority patent/US7079202B2/en
Priority to US11/313,694 priority patent/US7764354B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a device which can stably hold high linear polarizability and rotates the polarization direction by voltage impression. SOLUTION: This liquid crystal device 100 has a liquid crystal cell 110 which is a liquid crystal cell 110 in which a liquid crystal layer 1 is held between translucent substrates 5 and 6 with transparent electrodes 3 and 4 attached thereto and changes a retardation value of the incident linearly polarized light of a wavelength λ according to the magnitude of the voltage impressed between the transparent electrodes 3 and 4 and a phase plate which is a phase plate 120 having a thin organic matter film to generate a phase difference to make the retardation value of he incident linearly polarized light into λ/4 and has the orientation direction of the molecules constituting the thin organic matter film parallel with the surface of the phase plate, in which the phase advance axial direction of the liquid crystal cell 110 and the phase advance axial direction of the phase plate 120 forms an angle of nearly 45 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は直線偏光である入射
光の直線性を保ったまま、印加電圧の大きさに応じて、
出射する入射光の偏光方向を回転する液晶素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the magnitude of an applied voltage while maintaining the linearity of incident light that is linearly polarized light.
The present invention relates to a liquid crystal element that rotates the polarization direction of outgoing incident light.

【0002】[0002]

【従来の技術】印加電圧の大きさに応じて、直線偏光で
ある入射光の偏光方向を回転する従来の液晶素子の一例
を図4に示す。液晶素子は透明電極3、4が形成された
透光性基板5と6との間で液晶分子の配向方向が基板面
に平行で、X軸と45度の角度をなす方向に揃ったネマ
ティック液晶からなる液晶層1が狭持され、シール材8
で封止された液晶セル110と、その光出射面側に進相
軸または遅相軸がX軸方向に揃った複屈折結晶からなる
位相板140とを配置した構成となっている。ここで、
透明電極3と4とに矩形波発生用の交流電源9を繋げ、
電圧非印加時には、波長λでY軸方向の直線偏光入射光
に対する液晶セル110のリタデーション値Rがほぼλ
/2となるよう液晶層1の厚さが設定され、また位相板
140のリタデーション値はλ/4である。
2. Description of the Related Art FIG. 4 shows an example of a conventional liquid crystal element that rotates the polarization direction of incident light that is linearly polarized light according to the magnitude of an applied voltage. The liquid crystal element is a nematic liquid crystal in which the alignment direction of liquid crystal molecules is parallel to the substrate surface between the transparent substrates 5 and 6 on which the transparent electrodes 3 and 4 are formed, and is aligned in a direction forming an angle of 45 degrees with the X axis. The liquid crystal layer 1 composed of the
A liquid crystal cell 110 sealed by and a phase plate 140 made of a birefringent crystal having a fast axis or a slow axis aligned in the X-axis direction are arranged on the light emitting surface side thereof. here,
An AC power supply 9 for generating a rectangular wave is connected to the transparent electrodes 3 and 4,
When no voltage is applied, the retardation value R of the liquid crystal cell 110 with respect to the linearly polarized incident light in the Y-axis direction at the wavelength λ is approximately λ.
The thickness of the liquid crystal layer 1 is set to be / 2, and the retardation value of the phase plate 140 is λ / 4.

【0003】この液晶素子において、透明電極3、4間
への電圧非印加時には、液晶層を透過した光はX軸方向
の直線偏光となり、位相板140の遅相軸または進相軸
と一致するためX軸方向の直線偏光状態を保ったまま位
相板を透過する。印加電圧の増加に伴い液晶層の厚さ方
向に液晶分子の配向方向が傾くため液晶層のリタデーシ
ョン値Rが減少し、液晶セル110を透過した光は楕円
偏光となるが、位相板140を透過することにより直線
偏光状態を保ったまま液晶層のリタデーション値Rに応
じた偏光方向の回転が生じる。
In this liquid crystal element, when no voltage is applied between the transparent electrodes 3 and 4, the light transmitted through the liquid crystal layer becomes linearly polarized light in the X-axis direction and coincides with the slow axis or the fast axis of the phase plate 140. Therefore, the light is transmitted through the phase plate while maintaining the linearly polarized state in the X-axis direction. As the applied voltage increases, the alignment direction of the liquid crystal molecules tilts in the thickness direction of the liquid crystal layer, so that the retardation value R of the liquid crystal layer decreases, and the light transmitted through the liquid crystal cell 110 becomes elliptically polarized light, but transmits through the phase plate 140. By doing so, rotation of the polarization direction according to the retardation value R of the liquid crystal layer occurs while maintaining the linearly polarized state.

【0004】[0004]

【発明が解決しようとする課題】このような液晶素子に
用いられる位相板140は水晶などの複屈折結晶を0.
3mm以上の板厚に加工したものが一般的であるが、複
屈折結晶の場合リタデーション値が入射光の進行方向と
位相板の法線とのなす角度である入射角に強く依存する
ため、集束光や発散光において素子面内でリタデーショ
ン値に分布が生じ、出射光の偏光状態が一定しない問題
があった。また、リタデーション値に波長依存性がある
ため、入射光の波長に幅がある場合、直線偏光の入射光
が出射するとき直線性が劣化する問題があった。
The phase plate 140 used in such a liquid crystal device is made of a birefringent crystal such as quartz.
It is generally processed into a plate thickness of 3 mm or more, but in the case of a birefringent crystal, the retardation value strongly depends on the incident angle which is the angle between the traveling direction of the incident light and the normal line of the phase plate. There is a problem in that the retardation value of light or divergent light is distributed in the plane of the element, and the polarization state of the emitted light is not constant. Further, since the retardation value has wavelength dependence, there is a problem that linearity is deteriorated when incident light of linearly polarized light is emitted when the wavelength of incident light has a width.

【0005】本発明は、上述の実情に鑑み直線偏光の入
射光が出射するときに高い直線性を保ったまま、偏光方
向を回転させる液晶素子を提供することを目的とする。
In view of the above situation, it is an object of the present invention to provide a liquid crystal element that rotates the polarization direction while maintaining high linearity when incident light of linearly polarized light is emitted.

【0006】[0006]

【課題を解決するための手段】本発明は、電極付き基板
間に液晶層が狭持された液晶セルであって、電極間に印
加された電圧の大きさに応じて、波長λの入射直線偏光
のリタデーション値を変化させる液晶セルと、入射直線
偏光のリタデーション値が実質的にλ/4となる位相差
を発生する有機物薄膜を有する位相板であって、有機物
薄膜を構成する分子の配向方向が位相板面と平行となっ
ている位相板と、を備え、かつ液晶セルの進相軸方向と
位相板の進相軸方向とがほぼ45度の角度をなすことを
特徴とする液晶素子を提供する。
SUMMARY OF THE INVENTION The present invention is a liquid crystal cell in which a liquid crystal layer is sandwiched between substrates with electrodes, and an incident straight line of wavelength λ is generated according to the magnitude of the voltage applied between the electrodes. A phase plate having a liquid crystal cell that changes the retardation value of polarized light and an organic thin film that generates a phase difference that makes the retardation value of incident linearly polarized light substantially λ / 4. And a phase plate parallel to the surface of the phase plate, and the fast axis direction of the liquid crystal cell and the fast axis direction of the phase plate form an angle of about 45 degrees. provide.

【0007】[0007]

【発明の実施の形態】本発明は、電極付き基板間に液晶
層が狭持された液晶セルからなる液晶素子である。そし
て、液晶素子は電極間に印加された電圧の大きさに応じ
て、波長λの入射直線偏光のリタデーション値を変化さ
せる液晶セルと、入射直線偏光のリタデーション値が実
質的にλ/4となる位相差を発生する有機物薄膜を有す
る位相板とを備えている。そして、位相板においては有
機物薄膜を構成する分子の配向方向が位相板面と平行と
なっている。また、液晶素子は液晶セルの進相軸方向と
位相板の進相軸方向とがほぼ45度の角度をなしてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a liquid crystal element comprising a liquid crystal cell in which a liquid crystal layer is sandwiched between substrates with electrodes. The liquid crystal element has a liquid crystal cell that changes the retardation value of the incident linearly polarized light of wavelength λ in accordance with the magnitude of the voltage applied between the electrodes, and the retardation value of the incident linearly polarized light is substantially λ / 4. And a phase plate having an organic thin film that generates a phase difference. Then, in the phase plate, the orientation direction of the molecules forming the organic thin film is parallel to the phase plate surface. Further, in the liquid crystal element, the fast axis direction of the liquid crystal cell and the fast axis direction of the phase plate form an angle of about 45 degrees.

【0008】このように構成することによって、入射光
の入射角が変動した場合や入射角が分布した集束光や発
散光に対しても、位相板のリタデーション値の変化が小
さいので出射直線偏光の直線性が劣化することなく、透
明電極間への印加電圧の大きさに応じて出射光の偏光方
向を回転ができるという効果を有する。
With this structure, the retardation value of the phase plate changes little even when the incident angle of the incident light changes or when the incident light has a distributed incident angle. This has the effect that the polarization direction of the emitted light can be rotated according to the magnitude of the voltage applied between the transparent electrodes without deteriorating the linearity.

【0009】図1は本発明の液晶素子の構成の一例を示
す側面図である。また、図2は本発明の液晶素子を構成
する、液晶と位相板との進相軸/遅相軸、および偏光方
向の関係を示す座標系を示す図である。透光性基板5と
6の片面に透明電極3と4とがそれぞれ形成され、その
上に配向膜用の膜を塗布した後、各膜に同一方向の配向
処理を施して配向膜(図示せず)とし、シ−ル材8を用
いてセル化する。さらに、セル内に常光屈折率n(l
c)と異常光屈折率n(lc)(n(lc)<n
(lc))のネマティック液晶を注入して液晶層1とし
セル内で基板面と平行に液晶分子の配向方向が揃った液
晶セル110を得る。
FIG. 1 is a side view showing an example of the structure of the liquid crystal element of the present invention. FIG. 2 is a diagram showing a coordinate system that constitutes the liquid crystal element of the present invention and shows the relationship between the fast axis / slow axis of the liquid crystal and the phase plate and the polarization direction. Transparent electrodes 3 and 4 are formed on one surface of the translucent substrates 5 and 6, respectively, and a film for an alignment film is applied thereon, and then each film is subjected to an alignment treatment in the same direction to form an alignment film (not shown). No.) and the seal material 8 is used to form cells. Furthermore, the ordinary refractive index n o (l
c) and the extraordinary light refractive index n e (lc) (n o (lc) <n e
A nematic liquid crystal of (lc)) is injected to form a liquid crystal layer 1 to obtain a liquid crystal cell 110 in which the alignment direction of liquid crystal molecules is aligned parallel to the substrate surface in the cell.

【0010】また、透光性基板6と7の対向するそれぞ
れの片面に配向膜用の膜を塗布した後、各膜に同一方向
の配向処理を施して配向膜(図示せず)とし、シ−ル材
を用いてセル化する。さらに、セル内に液晶モノマーの
溶液を注入してセル内で基板面と平行に液晶分子の配向
方向が揃った液晶モノマー層を形成し、紫外線を照射し
て重合固化することにより液晶分子の配向方向が固定さ
れた高分子液晶層2からなる位相板120が得られる。
Further, after coating a film for an alignment film on one surface of each of the transparent substrates 6 and 7 facing each other, each film is subjected to an alignment treatment in the same direction to form an alignment film (not shown). -Make into cells by using ruthenium material. Furthermore, by injecting a liquid crystal monomer solution into the cell to form a liquid crystal monomer layer in which the alignment direction of the liquid crystal molecules is aligned parallel to the substrate surface in the cell, the alignment of the liquid crystal molecules is performed by irradiating with ultraviolet light to solidify and solidify. The phase plate 120 including the polymer liquid crystal layer 2 whose direction is fixed is obtained.

【0011】このとき、液晶層1からなる液晶セルの進
相軸方向(常光屈折率n(lc)方向)は、常光屈折
率n(plc)と異常光屈折率n(plc)(n
(plc)<n(plc))の高分子液晶層2からな
る位相板の進相軸方向(常光屈折率n(plc)方
向)とが例えば45度の角度をなすように形成されてい
る。図1において、液晶層1の進相軸方向を入射光の偏
光方向であるX軸に対して135度方向とし、液晶セル
110側から光が入射するように配置されている。位相
板の進相軸方向と位相板の進相軸方向とのなす角度は、
本発明の効果を有する角度であれば45度からずれてい
てもよく、40度〜50度であればよい。
[0011] In this case, the fast axis direction of the liquid crystal cell comprising a liquid crystal layer 1 (ordinary refractive index n o (lc) direction), the ordinary refractive index n o (plc) and extraordinary refractive index n e (plc) ( n o
(Plc) <n e (plc) fast axis of the phase plate made of a polymer liquid crystal layer 2) (ordinary refractive index n o (plc) direction) are formed at an angle of, but for example, 45 degrees There is. In FIG. 1, the fast axis direction of the liquid crystal layer 1 is set at 135 degrees with respect to the X axis which is the polarization direction of the incident light, and the liquid crystal cell 1 is arranged so that the light enters from the liquid crystal cell 110 side. The angle between the fast axis direction of the phase plate and the fast axis direction of the phase plate is
It may deviate from 45 degrees as long as it has the effect of the present invention, and may be from 40 degrees to 50 degrees.

【0012】ここで、波長λのX軸方向の入射直線偏光
に対して電圧非印加時に液晶セル110のリタデーショ
ン値が例えばλ/2となるように液晶層1の厚さd(l
c)を0.5λ/(n(lc)−n(lc))と
し、位相板120のリタデーション値は実質的にλ/4
としている。ここで、位相板120のリタデーション値
は、液晶素子の出射直線偏光の直線性を維持する効果を
有する範囲であれば、λ/4からずれていてもよい。ま
た、λ/4の奇数倍であってもよい。
Here, the thickness d (l) of the liquid crystal layer 1 is set so that the retardation value of the liquid crystal cell 110 becomes, for example, λ / 2 when no voltage is applied to the incident linearly polarized light of the wavelength λ in the X-axis direction.
The c) and 0.5λ / (n e (lc) -n o (lc)), the retardation value of the phase plate 120 is substantially lambda / 4
I am trying. Here, the retardation value of the phase plate 120 may deviate from λ / 4 as long as it has an effect of maintaining the linearity of the outgoing linearly polarized light of the liquid crystal element. Further, it may be an odd multiple of λ / 4.

【0013】このようにして得られた液晶セル110の
透明電極3と4に交流電源9から矩形波交流電圧を印加
したとき、液晶セル110のリタデーション値Rは電圧
非印加時のλ/2からゼロへと変化する。
When a rectangular wave AC voltage is applied from the AC power supply 9 to the transparent electrodes 3 and 4 of the liquid crystal cell 110 thus obtained, the retardation value R of the liquid crystal cell 110 is λ / 2 when no voltage is applied. Change to zero.

【0014】高分子液晶は基板面と平行に液晶分子の配
向方向が揃っているため、入射光の進行方向と位相板の
法線とのなす角度である入射角が0度から20度程度ま
で傾斜してもリタデーション値の変動は少なく、波長λ
の入射光に対して安定したλ/4位相板として機能す
る。
In the polymer liquid crystal, since the alignment directions of liquid crystal molecules are aligned parallel to the substrate surface, the incident angle, which is the angle between the traveling direction of the incident light and the normal line of the phase plate, is from 0 degree to 20 degrees. Even if tilted, the variation in retardation value is small and the wavelength λ
It functions as a stable λ / 4 phase plate against the incident light.

【0015】図1に示す液晶素子において、入射光に対
する出射光の偏光方向の回転角θは液晶セル110のリ
タデーション値Rに対して、θ=180×R/λで表さ
れるため、液晶セル110への印加電圧の増加にともな
ってθが90度から0度まで小さくなっていく。
In the liquid crystal element shown in FIG. 1, since the rotation angle θ of the polarization direction of the outgoing light with respect to the incident light is expressed by θ = 180 × R / λ with respect to the retardation value R of the liquid crystal cell 110, the liquid crystal cell As the voltage applied to 110 increases, θ decreases from 90 degrees to 0 degrees.

【0016】上記のように液晶素子に用いられる液晶は
ネマティック液晶であり、電圧非印加時の液晶分子の配
向方向が電極付き基板間で一定方向に揃って平行であ
り、位相板は高分子液晶を備え、かつ前記液晶セルと前
記位相板とが一体化されていることが好ましい。その理
由は液晶素子の小型化および液晶セルの進相軸方向と位
相板の進相軸方向とのなす角度が固定されるため光学性
能の安定性が向上するからである。
As described above, the liquid crystal used in the liquid crystal element is a nematic liquid crystal, the alignment directions of the liquid crystal molecules when no voltage is applied are aligned in parallel between the substrates with electrodes, and the phase plate is a polymer liquid crystal. It is preferable that the liquid crystal cell and the phase plate are integrated. The reason is that the liquid crystal element is downsized and the angle formed between the fast axis direction of the liquid crystal cell and the fast axis direction of the phase plate is fixed, so that the stability of optical performance is improved.

【0017】また、中心波長λで波長に幅を有する光が
入射する場合、リタデーション値と進相軸方向とがそれ
ぞれ異なる2層の高分子液晶層を積層した位相板を用い
ることが好ましい。積層することによりリタデーション
値の波長依存性を低減し、出射直線偏光の直線性の劣化
を改善することができる。
When light having a wavelength at the central wavelength λ is incident, it is preferable to use a phase plate in which two polymer liquid crystal layers having different retardation values and fast axis directions are laminated. By stacking the layers, the wavelength dependence of the retardation value can be reduced, and the deterioration of the linearity of outgoing linearly polarized light can be improved.

【0018】このような位相板130を用いた本発明の
液晶素子の構成の他の例について図3に側面図を示す。
液晶セル110は図1と同じ構成とし、位相板130と
して透光性基板6と7のそれぞれの片面にリタデーショ
ン値が例えばλ/2の高分子液晶層11とリタデーショ
ン値が例えばλ/4の高分子液晶層12を形成したの
ち、透光性接着剤13を用いて高分子液晶層を挟み込む
ように接合する。なお、図3中のその他の符号で図1と
同じ符号は、同じ要素を示す。
FIG. 3 is a side view showing another example of the structure of the liquid crystal element of the present invention using such a phase plate 130.
The liquid crystal cell 110 has the same structure as that of FIG. 1, and the phase plate 130 has a polymer liquid crystal layer 11 having a retardation value of, for example, λ / 2 and a high retardation value of, for example, λ / 4 on one surface of each of the transparent substrates 6 and 7. After forming the molecular liquid crystal layer 12, the polymer liquid crystal layer is sandwiched and bonded using a translucent adhesive 13. The other reference numerals in FIG. 3 that are the same as those in FIG. 1 indicate the same elements.

【0019】ここで、図2に示す座標系において、X軸
にそった入射光の偏光方向に対して、高分子液晶層11
の進相軸のなす角度が例えば30度で、かつ高分子液晶
層12の進相軸のなす角度が例えば−30度となるよう
に、高分子液晶の液晶分子の配向方向が揃っていること
が好ましい。なお、正負の角度の向きは+X軸方向から
+Y軸方向への回転角度を正符号とする。ここで、λ/
2およびλ/4の値は液晶素子の出射直線偏光が直線性
を維持する効果を有する範囲であれば、これらの値から
ずれていてもよく、30度および−30度は±5度程度
の幅があってもよい。
Here, in the coordinate system shown in FIG. 2, the polymer liquid crystal layer 11 is oriented with respect to the polarization direction of incident light along the X axis.
The alignment direction of the liquid crystal molecules of the polymer liquid crystal is aligned such that the fast axis of the polymer liquid crystal layer 12 has an angle of 30 degrees and the fast axis of the polymer liquid crystal layer 12 has an angle of, for example, -30 degrees. Is preferred. It should be noted that the positive and negative angles have positive signs of the rotation angle from the + X axis direction to the + Y axis direction. Where λ /
The values of 2 and λ / 4 may deviate from these values as long as the output linearly polarized light of the liquid crystal element has an effect of maintaining the linearity, and 30 ° and −30 ° are about ± 5 °. There may be width.

【0020】また、X軸にそった入射光の偏光方向に対
して、高分子液晶層11の遅相軸がなす角度がほぼ30
度で、かつ高分子液晶層12の遅相軸がなす角度がほぼ
−30度となるように、高分子液晶の液晶分子の配向方
向が揃っていてもよい。このような位相板130を液晶
セル110と一体化した液晶素子200とすることによ
り、波長に幅を有する光が入射した場合でも出射直線偏
光の高い直線性が保持できる。
Further, the angle formed by the slow axis of the polymer liquid crystal layer 11 with respect to the polarization direction of the incident light along the X axis is approximately 30.
The alignment direction of the liquid crystal molecules of the polymer liquid crystal may be aligned such that the angle formed by the slow axis of the polymer liquid crystal layer 12 is approximately −30 degrees. By forming the liquid crystal element 200 in which the phase plate 130 is integrated with the liquid crystal cell 110, high linearity of outgoing linearly polarized light can be maintained even when light having a wavelength width is incident.

【0021】上述した例では、位相差発生機能を有す
る、位相板の有機物薄膜として高分子液晶を用いた例を
示したが、他に有機物薄膜としてポリカーボネートなど
の有機物フィルムを一軸延伸することにより複屈折性を
付与したものを用いてもよい。なお、本発明は、上述の
実施の形態にのみ限定されず、本発明の要旨を逸脱しな
い範囲内において種々変更を加えうる。
In the above-mentioned example, an example in which a polymer liquid crystal is used as an organic thin film of a phase plate having a phase difference generating function, but another organic thin film such as polycarbonate is uniaxially stretched to form a composite film. You may use what gave the refractive property. The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

【0022】[0022]

【実施例】本発明の液晶素子について、図3を用いて説
明する。常光屈折率n(lc)=1.50および異常
光屈折率n(lc)=1.66のネマティック液晶を
用い、液晶層1の厚さd(lc)を4.5μmとした。
液晶素子を構成する液晶セルの進相軸方向が図3のX軸
に対して135度となるように基板に形成された配向膜
の配向処理を施した。
EXAMPLE A liquid crystal device of the present invention will be described with reference to FIG. A nematic liquid crystal having an ordinary light refractive index n o (lc) = 1.50 and an extraordinary light refractive index n e (lc) = 1.66 was used, and the thickness d (lc) of the liquid crystal layer 1 was set to 4.5 μm.
The alignment treatment was performed on the alignment film formed on the substrate so that the fast axis direction of the liquid crystal cell forming the liquid crystal element was 135 degrees with respect to the X axis in FIG.

【0023】さらに、位相板である高分子液晶層11と
12とはいずれも常光屈折率n=1.55および異常
光屈折率n=1.65で、各高分子液晶層の厚さをそ
れぞれ7.7μmおよび3.85μmとし、1.4μm
から1.7μmまでの波長帯域の入射光の中心波長1.
55μmに対するリタデーション値がそれぞれλ/2お
よびλ/4となるようにした。ここで、高分子液晶層1
1と12の進相軸方向を入射偏光方向であるX軸に対し
て30度および−30度、すなわち方向が互いに60度
の角度をなすように透光性接着剤13を用いて接合し
た。
Further, the polymer liquid crystal layers 11 and 12 which are phase plates each have an ordinary light refractive index n o = 1.55 and an extraordinary light refractive index n e = 1.65, and each polymer liquid crystal layer has a thickness. To be 7.7 μm and 3.85 μm respectively, and 1.4 μm
To the center wavelength of incident light in the wavelength band from 1.
The retardation values for 55 μm were set to λ / 2 and λ / 4, respectively. Here, the polymer liquid crystal layer 1
The fast axis directions of 1 and 12 were bonded with the translucent adhesive 13 so that the directions of the fast axes were 30 ° and −30 ° with respect to the X-axis which was the incident polarization direction, that is, the directions were at an angle of 60 °.

【0024】このようにして得られた高分子液晶層11
と12とを積層した位相板130は、そのリタデーショ
ン値が入射光に対して実質的にほぼλ/4の位相板とな
り、また、その進相軸方向と液晶セルの進相軸方向とが
45度の角度をなしている。
The polymer liquid crystal layer 11 thus obtained
The phase plate 130 in which 12 and 12 are laminated is a phase plate whose retardation value is substantially λ / 4 with respect to the incident light, and the fast axis direction and the fast axis direction of the liquid crystal cell are 45. Forming an angle of degrees.

【0025】液晶素子には、波長が1.4μmから1.
7μmまでのX軸方向に偏光方向を有するの直線偏光が
入射する。電圧非印加の状態では、液晶セル110のリ
タデーション値Rは0.72μmで、液晶素子200の
出射光の偏光方向は入射光の偏光方向に対して約150
度(両方向のなす角度は30度)回転した直線偏光とな
った。また、電圧振幅10V以上の矩形波交流電圧を印
加したときの液晶セル110のリタデーション値は0.
05μm以下で、液晶素子200の出射光の偏光方向は
入射光の偏光方向に対して約60度回転した直線偏光と
なった。
The liquid crystal element has a wavelength of 1.4 μm to 1.
Linearly polarized light having a polarization direction in the X-axis direction up to 7 μm is incident. When no voltage is applied, the retardation value R of the liquid crystal cell 110 is 0.72 μm, and the polarization direction of the emitted light of the liquid crystal element 200 is about 150 with respect to the polarization direction of the incident light.
The light became linearly polarized light rotated by 30 degrees (the angle formed by both directions is 30 degrees). Further, the retardation value of the liquid crystal cell 110 when a rectangular wave AC voltage having a voltage amplitude of 10 V or more is applied is 0.
When the thickness is 05 μm or less, the polarization direction of the emitted light of the liquid crystal element 200 becomes a linearly polarized light which is rotated by about 60 degrees with respect to the polarization direction of the incident light.

【0026】このとき、出射する直線偏光の直線性を表
す楕円率(出射する楕円偏光の長軸振幅bに対する短軸
振幅aの比率a/b)は、1.4μmから1.7μmま
での波長帯域において0.01以下となり、高い直線性
を示した。
At this time, the ellipticity (the ratio a / b of the short axis amplitude a to the long axis amplitude b of the outgoing elliptical polarized light) representing the linearity of the outgoing linearly polarized light has a wavelength from 1.4 μm to 1.7 μm. It was 0.01 or less in the band, and showed high linearity.

【0027】[0027]

【発明の効果】以上説明したように、本発明の液晶素子
を用いることにより、液晶素子に入射する直線偏光の入
射角および波長の違いによらず直線偏光の状態が保持さ
れて、液晶素子を構成する液晶セルへ印加する電圧の大
きさに応じて偏光方向が回転する液晶素子が実現する。
As described above, by using the liquid crystal element of the present invention, the state of linearly polarized light is maintained regardless of the incident angle and the wavelength of the linearly polarized light incident on the liquid crystal element, and the liquid crystal element is maintained. A liquid crystal element in which the polarization direction rotates according to the magnitude of the voltage applied to the constituent liquid crystal cells is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶素子の構成の一例を示す側面図。FIG. 1 is a side view showing an example of the configuration of a liquid crystal element of the present invention.

【図2】本発明の液晶素子を構成する、液晶と位相板と
の進相軸/遅相軸、および偏光方向の関係を示す座標系
を示す図。
FIG. 2 is a diagram showing a coordinate system showing a relationship between a fast axis / slow axis of a liquid crystal and a phase plate, and a polarization direction, which constitutes a liquid crystal element of the present invention.

【図3】本発明の液晶素子の構成の他の例を示す側面
図。
FIG. 3 is a side view showing another example of the configuration of the liquid crystal element of the present invention.

【図4】従来の液晶素子の構成例を示す側面図。FIG. 4 is a side view showing a configuration example of a conventional liquid crystal element.

【符号の説明】[Explanation of symbols]

1:液晶層 2、11、12:高分子液晶層 3、4:透明電極 5、6、7:透光性基板 8:シール材 9:交流電源 13:透光性接着材 100、200:液晶素子 110:液晶セル 120、130、140:位相板 1: Liquid crystal layer 2, 11, 12: Polymer liquid crystal layer 3,4: Transparent electrode 5, 6, 7: Translucent substrate 8: Seal material 9: AC power supply 13: Translucent adhesive 100, 200: Liquid crystal element 110: Liquid crystal cell 120, 130, 140: Phase plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電極付き基板間に液晶層が狭持された液晶
セルであって、電極間に印加された電圧の大きさに応じ
て、波長λの入射直線偏光のリタデーション値を変化さ
せる液晶セルと、 入射直線偏光のリタデーション値が実質的にλ/4とな
る位相差を発生する有機物薄膜を有する位相板であっ
て、有機物薄膜を構成する分子の配向方向が位相板面と
平行となっている位相板と、 を備え、かつ液晶セルの進相軸方向と位相板の進相軸方
向とがほぼ45度の角度をなすことを特徴とする液晶素
子。
1. A liquid crystal cell in which a liquid crystal layer is sandwiched between electrodes-attached substrates, wherein the retardation value of incident linearly polarized light of wavelength λ is changed according to the magnitude of voltage applied between the electrodes. A phase plate having a cell and an organic thin film that generates a phase difference such that the retardation value of incident linearly polarized light is substantially λ / 4, and the orientation direction of the molecules constituting the organic thin film is parallel to the phase plate surface. A liquid crystal element, wherein the phase axis of the liquid crystal cell and the phase axis of the phase plate make an angle of about 45 degrees.
【請求項2】前記液晶素子に用いられる液晶はネマティ
ック液晶であり、電圧非印加時の液晶分子の配向方向が
前記電極付き基板間で一定方向に揃って平行であり、前
記位相板は有機物薄膜として高分子液晶を備え、かつ前
記液晶セルと前記位相板とが一体化されている請求項1
に記載の液晶素子。
2. The liquid crystal used in the liquid crystal device is a nematic liquid crystal, the alignment directions of liquid crystal molecules when no voltage is applied are aligned in parallel between the electrodes-attached substrates, and the phase plate is an organic thin film. 2. The liquid crystal cell and the phase plate are integrated as a polymer liquid crystal as a component.
The liquid crystal device according to item 1.
【請求項3】前記位相板は少なくとも2層の高分子液晶
層からなり、2層の高分子液晶層のリタデーション値が
それぞれ異なり、かつ2層の高分子液晶層の進相軸方向
または遅相軸方向がそれぞれ異なる請求項2に記載の液
晶素子。
3. The phase plate comprises at least two polymer liquid crystal layers, wherein the two polymer liquid crystal layers have different retardation values, and the two polymer liquid crystal layers have a fast axis direction or a slow phase direction. The liquid crystal element according to claim 2, wherein the liquid crystal elements have different axial directions.
【請求項4】液晶素子が入射光側から前記液晶セル、第
1の高分子液晶層、第2の高分子液晶層の順に配置され
ている液晶素子であって、入射光の中心波長λに対し
て、第1の高分子液晶層はリタデーション値が実質的に
λ/2であり、第2の高分子液晶層はリタデーション値
が実質的にλ/4であって、入射光の偏光方向に対し
て、第1の高分子液晶層の進相軸方向および第2の高分
子液晶層の進相軸方向がそれぞれほぼ30度およびほぼ
−30度であるか、または第1の高分子液晶層の遅相軸
方向および第2の高分子液晶層の遅相軸方向がそれぞれ
ほぼ30度およびほぼ−30度である請求項3に記載の
液晶素子。
4. A liquid crystal element in which the liquid crystal cell, the first polymer liquid crystal layer and the second polymer liquid crystal layer are arranged in this order from the incident light side, and the liquid crystal element has a center wavelength λ of incident light. On the other hand, the first polymer liquid crystal layer has a retardation value of substantially λ / 2, and the second polymer liquid crystal layer has a retardation value of substantially λ / 4, which corresponds to the polarization direction of incident light. On the other hand, the fast axis direction of the first polymer liquid crystal layer and the fast axis direction of the second polymer liquid crystal layer are approximately 30 degrees and approximately -30 degrees, respectively, or the first polymer liquid crystal layer 4. The liquid crystal device according to claim 3, wherein the slow axis direction and the slow axis direction of the second polymer liquid crystal layer are approximately 30 degrees and approximately -30 degrees, respectively.
JP2001296605A 2001-08-24 2001-09-27 Liquid crystal device Pending JP2003107475A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001296605A JP2003107475A (en) 2001-09-27 2001-09-27 Liquid crystal device
EP02760728A EP1420275B1 (en) 2001-08-24 2002-08-23 Isolator and optical attenuator
PCT/JP2002/008517 WO2003019247A1 (en) 2001-08-24 2002-08-23 Multi-layer diffraction type polarizer and liquid crystal element
US10/784,714 US7079202B2 (en) 2001-08-24 2004-02-24 Multi-layer diffraction type polarizer and liquid crystal element
US11/313,694 US7764354B2 (en) 2001-08-24 2005-12-22 Multi-layer diffraction type polarizer and liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296605A JP2003107475A (en) 2001-09-27 2001-09-27 Liquid crystal device

Publications (1)

Publication Number Publication Date
JP2003107475A true JP2003107475A (en) 2003-04-09

Family

ID=19117808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296605A Pending JP2003107475A (en) 2001-08-24 2001-09-27 Liquid crystal device

Country Status (1)

Country Link
JP (1) JP2003107475A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333945A (en) * 2006-06-14 2007-12-27 Asahi Glass Co Ltd Liquid crystal element, light source device and optical head device
CN100371784C (en) * 2005-08-12 2008-02-27 友达光电股份有限公司 Liquid crystal display element capable of increasing opening rate and visible angle
JP2009192825A (en) * 2008-02-14 2009-08-27 Enplas Corp Polarization state conversion method, polarization state conversion device, and liquid crystal display
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device
JP2017076044A (en) * 2015-10-14 2017-04-20 ホシデン株式会社 Projection type display device using laser beam and on-vehicle head-up display using the projection type display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158099A (en) * 1991-12-10 1993-06-25 Matsushita Electric Ind Co Ltd Optical information processor
JPH07152025A (en) * 1993-11-29 1995-06-16 Sanyo Electric Co Ltd Display device
JPH07218889A (en) * 1994-01-03 1995-08-18 At & T Corp Optical rotation device
JPH1068816A (en) * 1996-08-29 1998-03-10 Sharp Corp Phase difference plate and circularly polarizing plate
JP2000131684A (en) * 1998-10-22 2000-05-12 Toshiba Corp Liquid crystal display element
JP2001091741A (en) * 1999-09-22 2001-04-06 Fuji Photo Film Co Ltd Phase difference plate and circularly polarizing plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158099A (en) * 1991-12-10 1993-06-25 Matsushita Electric Ind Co Ltd Optical information processor
JPH07152025A (en) * 1993-11-29 1995-06-16 Sanyo Electric Co Ltd Display device
JPH07218889A (en) * 1994-01-03 1995-08-18 At & T Corp Optical rotation device
JPH1068816A (en) * 1996-08-29 1998-03-10 Sharp Corp Phase difference plate and circularly polarizing plate
JP2000131684A (en) * 1998-10-22 2000-05-12 Toshiba Corp Liquid crystal display element
JP2001091741A (en) * 1999-09-22 2001-04-06 Fuji Photo Film Co Ltd Phase difference plate and circularly polarizing plate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371784C (en) * 2005-08-12 2008-02-27 友达光电股份有限公司 Liquid crystal display element capable of increasing opening rate and visible angle
JP2007333945A (en) * 2006-06-14 2007-12-27 Asahi Glass Co Ltd Liquid crystal element, light source device and optical head device
JP2009192825A (en) * 2008-02-14 2009-08-27 Enplas Corp Polarization state conversion method, polarization state conversion device, and liquid crystal display
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device
CN103635857A (en) * 2011-07-25 2014-03-12 西铁城控股株式会社 Optical device, projector, production method, and production support device
US20140132849A1 (en) * 2011-07-25 2014-05-15 Citizen Holdings Co., Ltd. Optical device, projector, manufacturing method, and manufacturing support apparatus
EP2738602A1 (en) * 2011-07-25 2014-06-04 Citizen Holdings Co., Ltd. Optical device, projector, production method, and production support device
JPWO2013015066A1 (en) * 2011-07-25 2015-02-23 シチズンホールディングス株式会社 Optical device, projector, manufacturing method, and manufacturing support apparatus
EP2738602A4 (en) * 2011-07-25 2015-03-25 Citizen Holdings Co Ltd Optical device, projector, production method, and production support device
US9285601B2 (en) 2011-07-25 2016-03-15 Citizen Holdings Co., Ltd. Optical device, projector, manufacturing method, and manufacturing support apparatus
JP2017076044A (en) * 2015-10-14 2017-04-20 ホシデン株式会社 Projection type display device using laser beam and on-vehicle head-up display using the projection type display device

Similar Documents

Publication Publication Date Title
KR920009824B1 (en) Liquid crystal display device
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
JP2004157523A5 (en)
JP2002303723A (en) Optical film, polarizing plate and display device
JPH05113561A (en) Perpendicular orientation type liquid crystal display device
JP2003107475A (en) Liquid crystal device
JP2003295152A (en) Liquid crystal optical switch
JP2003015134A (en) Liquid crystal display device
JP2007279323A (en) Liquid crystal display device
TW200604600A (en) Elliptical polarizing plate and image display
JP2002277633A (en) Optical film, polarizing plate and liquid crystal display
JP2008139769A (en) Viewing-angle-controllable liquid crystal panel
JPH10239518A (en) Phase difference plate, and polarizing element using it
JPH10239519A (en) Phase difference plate, and polarizing element using it
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP3006289B2 (en) Antiferroelectric liquid crystal display device
JPH05289052A (en) Liquid crystal display device
JP2003121645A (en) Phase plate
JPH01304422A (en) Liquid crystal device
JP2003270610A (en) Liquid crystal optical switch and driving method therefor
JPS5834429A (en) Polarizing element
JPS61179418A (en) Liquid-crystal display device
JP2004062212A (en) Reflection type liquid crystal display
JPH0287122A (en) Polarization element
JPH02216124A (en) Nematic liquid crystal cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712