JP2007225744A - Polarization converting element - Google Patents

Polarization converting element Download PDF

Info

Publication number
JP2007225744A
JP2007225744A JP2006044792A JP2006044792A JP2007225744A JP 2007225744 A JP2007225744 A JP 2007225744A JP 2006044792 A JP2006044792 A JP 2006044792A JP 2006044792 A JP2006044792 A JP 2006044792A JP 2007225744 A JP2007225744 A JP 2007225744A
Authority
JP
Japan
Prior art keywords
polarization
polarized light
linearly polarized
conversion element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006044792A
Other languages
Japanese (ja)
Inventor
Hungu Chiongu Ra
フング チオング ラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2006044792A priority Critical patent/JP2007225744A/en
Publication of JP2007225744A publication Critical patent/JP2007225744A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization converting element that can efficiently convert non-polarized light into linearly polarized light and that is excellent in productivity, and to provide a liquid crystal projector or a liquid crystal display using the element. <P>SOLUTION: The polarization converting element is obtained by laminating a polarization separating layer which separates non-polarized light at 0° incident angle into linearly polarized light T<SB>1</SB>exiting in an almost normal direction and linearly polarized light T<SB>2</SB>exiting in an oblique direction with respect to the normal line, and a polarization controlling layer which almost completely converts the polarization state of the linearly polarized light T<SB>1</SB>into the polarization state of the linearly polarized light T<SB>2</SB>and which does not convert the polarization state of the linearly polarized light T<SB>2</SB>for 50% or more but transmits the light. The obtained polarization converting element is disposed in front of a light source to obtain a liquid crystal projector or a liquid crystal display device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は偏光変換素子及びそれを用いた液晶表示装置に関する。さらに詳細には、無偏光の光を効率よく直線偏光に変換できる低コストで生産性に優れた偏光変換素子及びそれを用いた液晶プロジェクター又は液晶ディスプレイに関する。   The present invention relates to a polarization conversion element and a liquid crystal display device using the same. More specifically, the present invention relates to a polarization conversion element that can efficiently convert non-polarized light into linearly polarized light and is excellent in productivity, and a liquid crystal projector or liquid crystal display using the polarization conversion element.

液晶表示装置に用いられる偏光子としてヨウ素系や染料系の二色性偏光素子が多く使われている。こうした二色性偏光素子は、直交する2つの偏光成分のうち、一方のみを吸収して透過させず、もう一方の偏光成分を透過させることによって直線偏光を生成させる。二色性偏光素子は光吸収を利用することによって直線偏光を生成するので、原理的には光透過率の上限は50%である。
従って、二色性偏光素子を用いた液晶表示装置では、光源が発する光の半分以下の光しか利用できない。
As a polarizer used in a liquid crystal display device, iodine-based or dye-based dichroic polarizing elements are often used. Such a dichroic polarizing element generates linearly polarized light by absorbing only one of the two orthogonally polarized light components and not transmitting it, and transmitting the other polarized light component. Since the dichroic polarizing element generates linearly polarized light by utilizing light absorption, in principle, the upper limit of the light transmittance is 50%.
Therefore, in a liquid crystal display device using a dichroic polarizing element, only half or less of the light emitted from the light source can be used.

光源が発する光の利用効率を上げるために、光源からの光を偏光変換する方法が提案されている。
例えば、特許文献1には、偏光していないビームを、互いに直交する2成分の直線偏光成分に分離する層と、垂直に入射する偏光成分がその偏光方向を維持し、垂直でない角度で入射する偏光成分の偏光方向を回転させる偏光回転層とを含んでなる、偏光素子が開示され、このような機能を有する偏光回転層は、その単軸配向した分子の軸が、この層の法線に対して角度θをなす面内に位置させることにより達成されると述べられている。
また、特許文献2及び3には、偏光していない入射光を直交する二つの直線偏光に分離する偏光分離層と、直線偏光の偏光状態を変換する偏光変換層とからなる偏光変換フィルムを開示されており、偏光変換層として、フィルム面に対して傾斜配向した複屈折性化合物を用いることが開示されている。この偏光変換層は、垂直入射した直線偏光の偏光状態を変換せず、傾斜して入射する直線偏光の偏光状態を変換する機能を有するものである。
In order to increase the utilization efficiency of light emitted from the light source, a method of converting the polarization of light from the light source has been proposed.
For example, in Patent Document 1, a layer that separates an unpolarized beam into two linearly polarized components that are orthogonal to each other and a vertically incident polarized component maintain its polarization direction and are incident at a non-perpendicular angle. A polarization element comprising a polarization rotation layer that rotates the polarization direction of the polarization component is disclosed, and the polarization rotation layer having such a function is such that the axis of the uniaxially oriented molecule is normal to the layer. It is stated that this is achieved by being positioned in a plane that forms an angle θ with respect to the surface.
Patent Documents 2 and 3 disclose a polarization conversion film comprising a polarization separation layer that separates unpolarized incident light into two orthogonally polarized light beams and a polarization conversion layer that converts the polarization state of linearly polarized light. It has been disclosed that a birefringent compound tilted with respect to the film surface is used as the polarization conversion layer. This polarization conversion layer has a function of converting the polarization state of linearly polarized light incident at an angle without converting the polarization state of linearly polarized linearly incident light.

特表平10−505435号公報Japanese National Patent Publication No. 10-505435 特開2004−77899号公報Japanese Patent Laid-Open No. 2004-77899 特開2004−77900号公報JP 2004-77900 A

ところが、本発明者らの検討によると、特許文献1〜3に記載の発明は、偏光回転層若しくは偏光変換層に対して斜めに入射してきた直線偏光の偏光状態を90°回転することが非常に困難であることが分かった。また、複屈折性化合物や液晶化合物を層表面に対して傾斜して配向させることは工業的生産では困難であり、さらに厚さ、屈折率、分子の傾斜配向角度の関係を調整することも工業的生産においては困難である。そのために、従来の偏光変換素子は、偏光変換効率が低く、また生産性も低いので生産コストが割高であった。
本発明の目的は、無偏光の光を効率よく直線偏光に変換できる低コストで生産性に優れた偏光変換素子及びそれを用いた液晶プロジェクター又は液晶ディスプレイを提供することにある。
However, according to the study by the present inventors, the inventions described in Patent Documents 1 to 3 are extremely capable of rotating the polarization state of linearly polarized light that is obliquely incident on the polarization rotation layer or the polarization conversion layer by 90 °. It turned out to be difficult. In addition, it is difficult for industrial production to align a birefringent compound or a liquid crystal compound in an inclined manner with respect to the layer surface, and it is also possible to adjust the relationship between thickness, refractive index, and molecular tilt orientation angle. It is difficult in production. Therefore, the conventional polarization conversion element has low polarization conversion efficiency and low productivity, so the production cost is high.
An object of the present invention is to provide a low-cost and highly productive polarization conversion element capable of efficiently converting non-polarized light into linearly polarized light, and a liquid crystal projector or liquid crystal display using the same.

本発明者は、上記目的を達成するために検討した結果、入射角0度の偏光の無い光を略法線方向に出射する直線偏光Tと法線に対し斜め方向に出射する直線偏光Tに分離する偏光分離層と、略法線方向に出射する直線偏光Tの偏光状態をほぼ完全に直線偏光Tの偏光状態に変換して、且つ法線に対し斜め方向に出射する直線偏光Tの偏光状態を50%以上変換せずに、透過させる偏光制御層とを組み合わせることによって、無偏光の光を効率よく直線偏光に変換できる偏光変換素子を低コストで効率的に生産できることを見出し、この知見に基づいて本発明を完成するに至ったものである。 As a result of studies conducted by the present inventor to achieve the above-described object, linearly polarized light T 1 that emits light having no incident angle of 0 degrees of polarization in a substantially normal direction and linearly polarized light T that emits in an oblique direction with respect to the normal line. A polarization separating layer that divides into two and a linearly polarized light T 1 that is emitted in a substantially normal direction is converted into a polarization state of a linearly polarized light T 2 almost completely and is emitted obliquely with respect to the normal. A polarization conversion element capable of efficiently converting non-polarized light into linearly polarized light can be efficiently produced at low cost by combining with a polarization control layer that transmits light without converting the polarization state of the polarized light T 2 by 50% or more. And the present invention has been completed based on this finding.

かくして本発明によれば、
(1) 入射角0度の偏光の無い光を略法線方向に出射する直線偏光Tと法線に対し斜め方向に出射する直線偏光Tに分離する偏光分離層、及び
略法線方向に出射する直線偏光Tの偏光状態をほぼ完全に直線偏光Tの偏光状態に変換して、且つ法線に対し斜め方向に出射する直線偏光Tの偏光状態を50%以上変換せずに、透過する偏光制御層
を含んでなる偏光変換素子。
(2) 偏光分離層が、複数のV溝を表面に備えた光学的等方性のプリズムアレイと、一軸性の複屈折層とからなり、
プリズムアレイの全ての溝が、略平行になっており、
プリズムアレイを形成する材料の屈折率nと、複屈折層を形成する材料の常光に対する屈折率nとが略等しい、前記(1)に記載の偏光変換素子。
(3) プリズムアレイのV溝方向と、複屈折層の光軸方向とが略平行である、前記(2)に記載の偏光変換素子。
(4) 偏光制御層は、面内レターデーションが入射光の波長の略1/2である、前記(1)〜(3)のいずれかに記載の偏光変換素子。
(5) 偏光制御層は、その面内遅相軸が直線偏光Tの偏光方向から40〜50度傾いて配置されている、前記(1)〜(4)のいずれかに記載の偏光変換素子。
Thus, according to the present invention,
(1) polarized light separation layer to linearly polarized light T 1 and the normal to emit a substantially normal direction without light polarization of the incident angle of 0 degrees to separate linearly polarized T 2 emitted in an oblique direction, and a direction substantially normal It is converted almost completely polarization state of the linearly polarized light T 2 the polarization state of the linearly polarized light T 1 emitted to, without conversion and normal to the polarization state of the linearly polarized light T 2 emitted in an oblique direction of 50% or more A polarization conversion element comprising a polarization control layer that transmits the light.
(2) The polarization separation layer is composed of an optically isotropic prism array having a plurality of V grooves on the surface, and a uniaxial birefringent layer,
All the grooves of the prism array are almost parallel,
Refractive index and n i of the material forming the prism array, is substantially equal to the refractive index n o for ordinary light of the material forming the birefringent layer, the polarization conversion element according to (1).
(3) The polarization conversion element according to (2), wherein the V-groove direction of the prism array and the optical axis direction of the birefringent layer are substantially parallel.
(4) The polarization conversion element according to any one of (1) to (3), wherein the polarization control layer has an in-plane retardation of approximately ½ of the wavelength of incident light.
(5) the polarization control layer, the in-plane slow axis is tilted 40 to 50 degrees from the polarization direction of linearly polarized light T 1, wherein (1) to the polarization conversion according to any one of (4) element.

(6) 偏光制御層は、面内遅相軸方向の屈折率をn、それに直交する方向の屈折率をn、厚さ方向の屈折率をnとした時に、(n +n )/2とn との差の絶対値が0.004以上である、前記(1)〜(5)のいずれかに記載の偏光変換素子。
(7) 直線偏光Tの偏光分離層からの出射角を、偏光制御層によって直線偏光Tを50%以上変換せずにそのまま透過する入射角θのうちの最小角度以上にした、前記(1)〜(6)のいずれかに記載の偏光変換素子。
(8) さらにプリズム又はレンズを含んでなる前記(1)〜(7)のいずれかに記載の偏光変換素子。
(9) ビームを発生する光源と、該ビームの光路中に前記(1)〜(8)のいずれかに記載の偏光変換素子と、液晶セルと、検光子と、投射レンズ系と、を順に配置させてなる、液晶プロジェクター。
(10) 偏光変換素子と液晶セルとの間に偏光子をさらに配置させてなる、前記(9)に記載の液晶プロジェクター。
(11) バックライトと、前記(1)〜(8)のいずれかに記載の偏光変換素子と、偏光子と、液晶セルと、検光子と、を順に配置させてなる、液晶ディスプレイ。
が提供される。
(6) the polarization control layer, the refractive index in the in-plane slow axis direction n x, when the direction of the refractive index perpendicular thereto and n y, the refractive index in the thickness direction and n z, (n x 2 + n The polarization conversion element according to any one of (1) to (5), wherein an absolute value of a difference between y 2 ) / 2 and nz 2 is 0.004 or more.
(7) The exit angle of the linearly polarized light T 2 from the polarization separation layer is set to be equal to or greater than the minimum angle of the incident angle θ i that is transmitted as it is without converting the linearly polarized light T 2 by 50% or more by the polarization control layer. The polarization conversion element according to any one of (1) to (6).
(8) The polarization conversion element according to any one of (1) to (7), further including a prism or a lens.
(9) A light source that generates a beam, a polarization conversion element according to any one of (1) to (8), a liquid crystal cell, an analyzer, and a projection lens system in order in the optical path of the beam A liquid crystal projector.
(10) The liquid crystal projector according to (9), wherein a polarizer is further disposed between the polarization conversion element and the liquid crystal cell.
(11) A liquid crystal display in which a backlight, the polarization conversion element according to any one of (1) to (8), a polarizer, a liquid crystal cell, and an analyzer are arranged in this order.
Is provided.

本発明の偏光変換素子に、偏光の無い光を略垂直方向から入射させると、一方の直線偏光の強度と他方の直線偏光の強度とが大きく異なる(つまり、偏光度の高い)光が透過して出てくる。さらに、入射光の利用率が高く、容易に様々な大きさ及び形状のものを製造することができるので、本発明の偏光変換素子を液晶プロジェクター又は液晶ディスプレイに用いることによって、高輝度な画像を得ることができる。   When non-polarized light is incident on the polarization conversion element of the present invention from a substantially vertical direction, the intensity of one linearly polarized light and the intensity of the other linearly polarized light are significantly different (that is, having a high degree of polarization). Come out. Furthermore, since the utilization factor of incident light is high and various sizes and shapes can be easily manufactured, a high brightness image can be obtained by using the polarization conversion element of the present invention for a liquid crystal projector or a liquid crystal display. Obtainable.

本発明の偏光変換素子は、入射角0度の偏光の無い光を略法線方向に出射する直線偏光Tと法線に対し斜め方向に出射する直線偏光Tに分離する偏光分離層、及び
略法線方向に出射する直線偏光Tの偏光状態をほぼ完全に直線偏光Tの偏光状態に変換して、且つ法線に対し斜め方向に出射する直線偏光Tの偏光状態を50%以上変換せずに、透過する偏光制御層
を含んでなるものである。
The polarization conversion element of the present invention includes a polarization separation layer that separates linearly polarized light T 1 that emits non-polarized light with an incident angle of 0 degrees in a substantially normal direction and linearly polarized light T 2 that emits in an oblique direction with respect to the normal, The polarization state of the linearly polarized light T 1 emitted in the substantially normal direction is converted into the polarization state of the linearly polarized light T 2 almost completely, and the polarization state of the linearly polarized light T 2 emitted in the oblique direction with respect to the normal is 50 It comprises a polarization control layer that transmits without being converted by more than%.

〔偏光分離層〕
本発明を構成する偏光分離層は、入射角0度の偏光の無い光を略法線方向に出射する直線偏光Tと法線に対し斜め方向に出射する直線偏光Tに分離する機能を有するものである(なお、略法線方向とは、法線方向からの誤差角度が10°以内の方向のことを意味するものである)。直線偏光Tと直線偏光Tとは、その偏光方向が直交している。
偏光分離層の一つの例として、プリズムアレイと複屈折層とからなるものが挙げられる。例えば図1に示すような構造を有することができる。プリズムアレイは、細長い三角柱を横倒しに置いた形状の複数のV溝を一方の表面に備え、その全ての溝が略平行になっている。後述するプリズム又はレンズによる集光効率が高まる観点から、プリズムアレイの溝によって形成される複数の凸部の頂角は、その全ての頂角が略同一の角度であることが好ましい。なお、本発明において、略平行とは、平行からの誤差角度が5°以内にあることを意味するものである。
図1において、偏光分離層は、屈折率nの等方性材料から作られたプリズムアレイ11と、そのプリズムアレイの溝に屈折率異方性Δn=n−n(n≠n)の一軸性材料を埋め込んでなる、一軸性の複屈折層12とで作られるものである。ここで、nとnは、一軸性材料12の異常光と常光に対する屈折率である。
また、nとnとは大きさが略等しい(この場合、後述するように、直線偏光Tが偏光分離層に垂直に入射されるときに、その偏光がそのまま直進するように、nとnの大きさを等しくすればよい)。このとき、複屈折層12の光軸がプリズムアレイの溝方向に平行になるように一軸性材料を埋め込めば、偏光分離層の溝方向に直交する方向に対する屈折率が一定(=n)となり、溝方向に平行な方向に対する屈折率がプリズムアレイ11と複屈折層12の接触面で変化がおきる。
よって、図5に示すように溝方向に直交する偏光方向を有する直線偏光Tが偏光分離層に垂直に入射されるとその偏光はそのまま直進する(なお、この「直進」とは、完全な直進からの誤差角度が10°以内にあることを意味するものである)。溝方向に平行な偏光方向を有する直線偏光Tが偏光分離層に入射されると、プリズムアレイ11と複屈折層12の接触面で屈折(または反射)して、その偏光は斜め方向に進む。
(Polarized light separation layer)
The polarized light separating layer constituting the present invention has a function of separating light having no incident angle of 0 degrees into linearly polarized light T 1 that emits light in a substantially normal direction and linearly polarized light T 2 that emits in an oblique direction with respect to the normal. (The substantially normal direction means that the error angle from the normal direction is within 10 °). The polarization directions of the linearly polarized light T 1 and the linearly polarized light T 2 are orthogonal to each other.
As an example of the polarization separation layer, a layer composed of a prism array and a birefringent layer can be given. For example, it can have a structure as shown in FIG. The prism array has a plurality of V-grooves in a shape in which elongated triangular prisms are laid down on one surface, and all the grooves are substantially parallel. From the viewpoint of increasing the light collection efficiency by the prism or lens described later, it is preferable that the apex angles of the plurality of convex portions formed by the grooves of the prism array are substantially the same. In the present invention, “substantially parallel” means that the error angle from parallel is within 5 °.
In Figure 1, the polarization separating layer has a refractive index n i isotropic prism array 11 made of a material, the refractive index anisotropy in the groove of the prism array Δn = n e -n o (n e ≠ n of o ) It is made of a uniaxial birefringent layer 12 embedded with a uniaxial material. Here, n e and n o are the extraordinary light and the refractive index for ordinary light of the uniaxial material 12.
Further, n o and is substantially equal in magnitude (in this case, the n i, as described later, when the linearly polarized light T 1 is is perpendicularly incident on the polarized light separation layer, so that the polarization is straight ahead, n the size of the o and n i may be equal). At this time, if a uniaxial material is embedded so that the optical axis of the birefringent layer 12 is parallel to the groove direction of the prism array, the refractive index in the direction perpendicular to the groove direction of the polarization separation layer becomes constant (= ni ). The refractive index with respect to the direction parallel to the groove direction changes at the contact surface between the prism array 11 and the birefringent layer 12.
Therefore, as shown in FIG. 5, when linearly polarized light T 1 having a polarization direction orthogonal to the groove direction is perpendicularly incident on the polarization separation layer, the polarization goes straight as it is (this “straight forward” This means that the error angle from the straight line is within 10 °). When linearly polarized light T 2 having a polarization direction parallel to the groove direction is incident on the polarization separating layer, refraction at the interface of the prism array 11 and the birefringent layer 12 (or reflected) to its polarization proceeds in an oblique direction .

偏光のない光は、溝方向に直交する偏光方向を有する直線偏光成分Tと、溝方向に平行な偏光方向を有する直線偏光成分Tを合成したものと考えることができる。偏光のない光が偏光分離層に入射角0度で入射すると、上記原理によって、溝方向に直交する偏光方向を有する直線偏光成分Tはそのまま直進し、略法線方向に出射する。
一方、溝方向に平行な偏光方向を有する直線偏光成分Tはプリズムアレイ11と複屈折層12の接触面で屈折(または反射)し、法線に対し斜め方向に出射する。このようにして偏光のない光を、二つの直線偏光成分に分離することができ、しかも、その直線偏光の進行方向を偏光の状態に応じて変えることができる。
Light no polarization it can be considered as linearly polarized light component T 1 having a polarization direction orthogonal to the groove direction, and a composite of linearly polarized light component T 2 having a polarization direction parallel to the groove direction. When unpolarized light enters the polarization separation layer at an incident angle of 0 degree, the linearly polarized light component T 1 having a polarization direction orthogonal to the groove direction travels straight as it is and is emitted in a substantially normal direction according to the above principle.
On the other hand, the linearly polarized light component T 2 having a polarization direction parallel to the groove direction is refracted (or reflected) at the contact surface between the prism array 11 and the birefringent layer 12 and is emitted obliquely with respect to the normal line. In this way, unpolarized light can be separated into two linearly polarized light components, and the traveling direction of the linearly polarized light can be changed according to the state of polarization.

直線偏光Tが出射する角度は、一軸性材料12の屈折率nと等方性材料の屈折率nの差、及びプリズムアレイの頂角の角度によって決まる。この偏光分離層では屈折(または反射)を利用して偏光分離を行っているので、後述するプリズム又はレンズによって効率的に集光を行うことができ、好ましく用い得る。また、この偏光分離層で回折による偏光分離が起こると、集光効率が低下するおそれがあるため、できるだけ回折が生じないように、プリズムアレイのピッチ(プリズムアレイの隣り合う頂角の頂点間距離)を入射光の波長に対して十分に大きくすることが好ましい。 Angle linearly polarized light T 2 is emitted, the difference in refractive index n i of the refractive index n e and isotropic material uniaxial material 12, and on the apex angle of the prism array. In this polarization separation layer, since polarization separation is performed using refraction (or reflection), light can be efficiently condensed by a prism or a lens, which will be described later, and can be preferably used. In addition, if polarization separation due to diffraction occurs in this polarization separation layer, the light collection efficiency may be reduced. Therefore, the pitch of the prism array (the distance between the apexes of adjacent apex angles of the prism array) should be reduced so as not to cause diffraction as much as possible. ) Is preferably sufficiently large with respect to the wavelength of the incident light.

プリズムアレイ11を構成する材料としては、透明で光学的等方性を有する材料であれば特に制限されない。このような材料として、例えば、ガラスやポリマーなどが挙げられる。大面積の偏光変換素子を得ると言う観点から、透明な光学的等方性ポリマーが好ましく用いられる。   The material constituting the prism array 11 is not particularly limited as long as it is a transparent and optically isotropic material. Examples of such a material include glass and polymer. From the viewpoint of obtaining a polarization conversion element having a large area, a transparent optically isotropic polymer is preferably used.

一軸性材料12を構成する材料としては、透明で光学的に一軸性を有する硬化物であれば特に制限されない。このような材料としてネマチック液晶を硬化させたものが挙げられる。ネマチック液晶をプリズムアレイの溝に塗布し、溝方向に平行になるように分子軸を配向させ、次いで硬化させることによって、複屈折層を形成することができる。   The material constituting the uniaxial material 12 is not particularly limited as long as it is a cured product that is transparent and optically uniaxial. Examples of such a material include a material obtained by curing nematic liquid crystal. A birefringent layer can be formed by applying nematic liquid crystal to the grooves of the prism array, orienting the molecular axes so as to be parallel to the groove direction, and then curing.

本発明を構成する偏光分離層の別の例として、複屈折回折格子を挙げることができる。複屈折回折格子は、図2に示すように、等方性材料からなる矩形凹凸形状の格子11とその凹部に埋め込まれた異方性材料からなる複屈折層12とから構成されるものである。
異方性材料が複屈折性を示すので、常光(例えば、図2において、x軸方向に振動する偏光成分)と、異常光(例えば、図2において、y軸方向に振動する偏光成分)とで屈折率が異なる。したがって、周期的な格子の作用により、発生する回折光の回折効率も常光と異常光とで異なることになり、屈折率や格子形状を調整することにより、偏光分離が可能となる。なお、異方性材料は、異常光の屈折率nと常光の屈折率nに対して、通常n>nであり、この場合には異常光の偏光方向が異方性材料からなる複屈折層12の遅相軸、常光の偏光方向が進相軸となる(n<nの場合には遅相軸と進相軸はそれぞれ入れ替わる。)。
Another example of the polarization separation layer constituting the present invention is a birefringent diffraction grating. As shown in FIG. 2, the birefringent diffraction grating is composed of a rectangular uneven grating 11 made of an isotropic material and a birefringent layer 12 made of an anisotropic material embedded in the recess. .
Since the anisotropic material exhibits birefringence, ordinary light (for example, a polarization component that vibrates in the x-axis direction in FIG. 2) and extraordinary light (for example, a polarization component that vibrates in the y-axis direction in FIG. 2) and The refractive index is different. Accordingly, due to the action of the periodic grating, the diffraction efficiency of the generated diffracted light also differs between ordinary light and extraordinary light, and polarization separation can be achieved by adjusting the refractive index and the grating shape. Incidentally, anisotropic material, to the extraordinary refractive index of the light n e and ordinary index of refraction n o, usually n e> n o, the polarization direction anisotropic material of the extraordinary light in this case the slow axis of the made birefringent layer 12, the polarization direction is the fast axis of the ordinary light (the slow axis and the fast axis in the case of n e <n o is replaced, respectively.).

さらに別の偏光分離層の例として、ニオブ酸リチウム結晶板の主面に周期を有するHイオン交換領域の光学的回折格子を形成したもの(特開平5−249308号、特開平6−18817号、特開平6−27320号の各公報);光学的異方性を持つ結晶基板の主面に設けた周期的な溝の底面上に誘電体層を有するもの(特開平2−156205号公報);コレステリック液晶の螺旋軸をセル板に対して平行に配置したもの(Appl. Phys. Lett. 1997, 71, 1350−1352);特開2004−77899号に開示されている偏光分離層などが挙げられる。 As another example of the polarization separation layer, an H + ion exchange region optical diffraction grating having a period is formed on the main surface of a lithium niobate crystal plate (JP-A-5-249308, JP-A-6-18817). JP-A-6-27320); having a dielectric layer on the bottom surface of a periodic groove provided on the main surface of a crystal substrate having optical anisotropy (JP-A-2-156205) A cholesteric liquid crystal spiral axis arranged parallel to the cell plate (Appl. Phys. Lett. 1997, 71, 1350-1352); a polarization separation layer disclosed in JP-A-2004-77899, etc. It is done.

〔偏光制御層〕
偏光制御層は、略法線方向に出射する直線偏光Tの偏光状態をほぼ完全に直線偏光Tの偏光状態に変換して、且つ法線に対し斜め方向に出射する直線偏光Tの偏光状態を50%以上、好ましくは80%以上、より好ましくは90%以上変換せずに、透過する機能を有するものである。
このような機能を有する偏光制御層は、以下に説明するような光学的異方性を有するものであればよい。
先ず、略法線方向に出射する直線偏光Tの偏光状態をほぼ完全に直線偏光Tの偏光状態に変換して透過するために、偏光制御層は、その面内レターデーションが、入射光の波長の略1/2であることが好ましい(なお、略1/2とは、0.4〜0.6、好ましくは0.45〜0.55、より好ましくは0.49〜0.51の範囲であることを意味する)。面内レターデーションは、面内遅相軸方向の屈折率nと遅相軸に直交する方向の屈折率nとの差に、平均厚さdを乗したものである。さらに、偏光制御層の面内遅相軸が直線偏光Tの偏光方向に40〜50度傾いていることが好ましく、45度傾いていることがより好ましい。
このような構成を持つ偏光制御層に、略法線方向から直線偏光Tが入射すると、偏光方向が90度回転される。直線偏光Tの直線偏光Tへの変換は、ほぼ完全に行われ、具体的には入射した直線偏光Tの98%以上が直線偏光Tへ変換されることが好ましい。
(Polarization control layer)
The polarization control layer converts the polarization state of the linearly polarized light T 1 emitted in a direction approximately normal to the almost complete polarization state of the linearly polarized light T 2, and with respect to the normal of the linearly polarized light T 2 emitted in an oblique direction It has a function of transmitting without changing the polarization state by 50% or more, preferably 80% or more, more preferably 90% or more.
The polarization control layer having such a function may have any optical anisotropy as described below.
First, in order to almost completely transparent to convert the polarization state of the linearly polarized light T 2 the polarization state of the linearly polarized light T 1 emitted in a direction approximately normal, the polarization control layer, whose plane retardation, the incident light Is preferably approximately ½ of the wavelength (note that approximately ½ is 0.4 to 0.6, preferably 0.45 to 0.55, and more preferably 0.49 to 0.51. Means the range.) Plane retardation is the difference between the direction of the refractive index n y perpendicular to the refractive indices n x and slow axis in the in-plane slow axis direction is obtained by multiplication of the average thickness d. Further, it is preferable that the in-plane slow axis of the polarization control layer is inclined 40 degrees to 50 degrees to the polarization direction of the linearly polarized light T 1, and more preferably are inclined 45 degrees.
The polarization control layer having such a configuration, the linearly polarized light T 1 is incident from a direction approximately normal, the polarization direction is rotated 90 degrees. Conversion of the linearly polarized light T 1 to the linearly polarized light T 2 is almost completely performed. Specifically, it is preferable that 98% or more of the incident linearly polarized light T 1 is converted to the linearly polarized light T 2 .

一方、法線に対し斜め方向に出射する直線偏光Tの偏光状態を50%以上、好ましくは80%以上、より好ましくは90%以上変換せずに透過させるために、偏光制御層は、厚み方向の屈折率nが、面内の屈折率n及びnと、以下のような関係を満たすことが好ましい。
先ず、本発明を構成する偏光制御層は、面内遅相軸方向の屈折率n、それに直交する方向の屈折率n、厚さ方向の屈折率nが、n>n>n、又はn>n>nであることが好ましい。また、(n +n )/2とn との差の絶対値が0.004以上であることが好ましく、0.007以上であることがより好ましい。
On the other hand, normal to the diagonal direction in the polarization state of the linearly polarized light T 2 emitted 50% or more, preferably 80% or more, in order to transmit without converting more preferably 90% or more, the polarization control layer has a thickness direction of the refractive index n z is the refractive indices n x and n y in the plane, it is preferable to satisfy the following relationship.
First, the polarization control layer of the present invention, the in-plane slow axis direction of the refractive index n x, the direction of the refractive index n y perpendicular thereto, the refractive index n z in the thickness direction, n x> n y> n z, or it is preferably n z> n x> n y . Moreover, the absolute value of the difference between ( nx 2 + ny 2 ) / 2 and nz 2 is preferably 0.004 or more, and more preferably 0.007 or more.

この関係について図3を用いてさらに詳細に説明する。偏光制御層の法線に対し斜め方向に入射する直線偏光Tが偏光制御層を透過すると、直線偏光Tと同じ偏光状態のままで出てくるものと、直線偏光Tの偏光状態に変換されて出てくるものとがある。直線偏光Tと同じ状態のままで出てくる成分の強度Iは数1で表すことができる。数1中のA、B、及びδは数2で表される。 This relationship will be described in more detail with reference to FIG. When linearly polarized light T 2 that with respect to the normal of the polarization control layer is incident obliquely passes through the polarization control layer, and those coming out remains the same polarization state as linearly polarized light T 2, the polarization state of the linearly polarized light T 1 Some of them come out after being converted. The intensity of the component exiting remain in the same state as linearly polarized T 2 I may be represented by the number 1. A, B, and δ in Equation 1 are expressed by Equation 2.

Figure 2007225744
Figure 2007225744

Figure 2007225744
Figure 2007225744

ここで、n、n、nは、偏光制御層の面内遅相軸方向(x方向)、それに面内で直交する方向(y方向)、厚さ方向(z方向)の屈折率であり、dは層厚である。ζ=nsinθであり、θは直線偏光Tの偏光制御層への入射角であり、nは入射側の屈折率である。入射角θは、直線偏光Tが偏光分離層から出射する角度と同じであるから、偏光分離層の複屈折層を構成する、一軸性材料12の屈折率nと等方性材料11の屈折率nの差、及びプリズムアレイ又は格子の形状によって決まる。なお、入射側の屈折率nは、本発明の偏光変換素子において偏光分離層と偏光制御層とを空気層を介さずに密着して積層した場合、nは偏光分離層のプリズムアレイ又は格子を形成する等方性材料の屈折率になる。 Here, n x, n y, n z is a refractive index in the in-plane slow axis direction of the polarization control layer (x-direction) to which the direction orthogonal in the plane (y-direction), the thickness direction (z-direction) And d is the layer thickness. a ζ = n i sinθ i, θ i is the incident angle of the polarization control layer of the linearly polarized light T 2, n i is the refractive index of the incident side. The incident angle theta i, since linearly polarized light T 2 is the same as the angle at which emitted from the polarization separating layer, constituting the birefringent layer of the polarization separation layer, the refractive index n e and isotropic material 11 uniaxial material 12 Depending on the difference in the refractive index n i and the shape of the prism array or grating. The refractive index n i of the incident side, when a polarized light separation layer and the polarization control layer are laminated in close contact without the intervention of an air layer in the polarization conversion device of the present invention, n i is the prism array of the polarization separating layer or This is the refractive index of the isotropic material forming the grating.

直線偏光Tが偏光制御層に入射すると、偏光制御層内では速度、伝搬方向の異なった2つの固有光波に分けられる。kz1、kz2はその2つの固有光波の波数ベクトルのz成分であり、数3で表される。ここで、λは入射光の波長である。 When linearly polarized light T 2 is incident on the polarization control layer, the polarization control layer speed, is divided into two unique light waves having different propagation directions. k z1 and k z2 are z components of the wave number vectors of the two eigenwaves, and are expressed by Equation 3. Here, λ is the wavelength of incident light.

Figure 2007225744
数1によると、cosδが1の時に、強度Iは最大値の1となる。すなわち、直線偏光T2が偏光状態を維持したまま透過したことになる。
Figure 2007225744
According to Equation 1, when cos δ is 1, the intensity I has a maximum value of 1. That is, the linearly polarized light T2 is transmitted while maintaining the polarization state.

cosδが1になるδの値は数2及び数3から求められる。なお、数2及び数3から求められる解δは複数あり、いずれの解であっても、直線偏光Tの強度Iを1にすることができるので、偏光制御層の設計自由度が非常に高い。
液晶プロジェクターや液晶ディスプレイにおいて光源の光利用効率を高め実用的に利用するためには、cosδ=1、すなわちI=1までは要求されず、できるだけ強度Iを大きくすれば良い。cosδがー1の時、IはA/(A+B)になる。Aが大きい値となるためには数2から(n +n )/2とn との差が大きいことが条件になることが導かれる。
The value of δ at which cos δ becomes 1 is obtained from Equation 2 and Equation 3. Note that there are a plurality of solutions δ obtained from Equations 2 and 3, and in any solution, the intensity I of the linearly polarized light T 2 can be set to 1, so the degree of freedom in designing the polarization control layer is very high. high.
In order to increase the light utilization efficiency of the light source in a liquid crystal projector or a liquid crystal display and use it practically, cos δ = 1, that is, I = 1 is not required, and the intensity I may be increased as much as possible. When cos δ is −1, I becomes A / (A + B). In order for A to become a large value, it is derived from Equation 2 that the condition is that the difference between ( nx 2 + ny 2 ) / 2 and nz 2 is large.

図4は、前記計算式に基づいてθと、直線偏光Tの強度Iとの関係を示した図である。入射角を示す軸の右側に行くほど入射角度が大きくなることを示している。実線は(n +n )/2とn との差の絶対値が大きい場合、破線は(n +n )/2とn との差の絶対値が小さい場合である。
実線では、入射角θの直線偏光Tは、偏光制御層で変換されずにそのまま透過して出てくることがわかる。破線では、入射角θの直線偏光Tは、偏光制御層で変換されずにそのまま透過して出てくることがわかる。このことから、偏光分離層によって分離された直線偏光Tの出射角を、偏光制御層の直線偏光Tを変換せずにそのまま透過する入射角θのうちの最小角度以上にすることによって、変換効率の高い好ましい偏光変換素子が構成できることがわかる。該最小角度は、例えば、図4の実線ではθとθとの中間の角度、図4の破線ではθ付近の角度である。なお、少なくとも、偏光制御層の直線偏光Tを50%以上変換せずにそのまま透過する入射角θ(この入射角θは、複数存在することがある)のうちの最小角度以上にすると、変換効率の高い好ましい偏光変換素子を構成することができる。
FIG. 4 is a diagram showing the relationship between θ i and the intensity I of the linearly polarized light T 2 based on the calculation formula. It shows that the incident angle increases toward the right side of the axis indicating the incident angle. When the absolute value of the difference between (n x 2 + ny 2 ) / 2 and nz 2 is large in the solid line, the absolute value of the difference between ( nx 2 + ny 2 ) / 2 and nz 2 is small in the solid line Is the case.
In the solid line, it can be seen that the linearly polarized light T 2 having the incident angle θ 2 is transmitted as it is without being converted by the polarization control layer. As can be seen from the broken line, the linearly polarized light T 2 having the incident angle θ 4 is transmitted as it is without being converted by the polarization control layer. From this, by making the exit angle of the linearly polarized light T 2 separated by the polarization separation layer equal to or greater than the minimum angle of the incident angle θ i that transmits the linearly polarized light T 2 of the polarization control layer as it is without being converted. It can be seen that a preferable polarization conversion element with high conversion efficiency can be constructed. The minimum angle is, for example, an intermediate angle between θ 1 and θ 2 in the solid line in FIG. 4 and an angle near θ 3 in the broken line in FIG. At least, the incident angle theta i which is transmitted through the linear polarization T 2 of the polarization control layer without converting 50% or more (the incident angle theta i, it is possible to more present) when the minimum angle or more of the A preferable polarization conversion element with high conversion efficiency can be configured.

以上のように、n、n及びnの関係を調整することによって、上記数式の条件にすることができるので、偏光制御層は、例えば、透明樹脂フィルムを延伸処理するなどの簡単な製造方法で容易に得ることができる。本発明を構成する偏光制御層は、従来の偏光回転層や偏光変換層のような屈折率、膜厚、分子の配向方向などを高精度で調整しなければ得ることができなかったものに比べ、容易に製造できる。 As described above, by adjusting the relationship of n x, n y and n z, it is possible to the conditions of the above equation, the polarization control layer, for example, simple, such as stretching a transparent resin film It can be easily obtained by a manufacturing method. The polarization control layer constituting the present invention is compared with the conventional polarization rotation layer and polarization conversion layer that cannot be obtained unless the refractive index, film thickness, molecular orientation direction, etc. are adjusted with high accuracy. Easy to manufacture.

本発明の偏光変換素子において、前記偏光分離層と偏光制御層とは、単に重ね置いただけでもよいし、枠等によって挟みとめてもよい、また両層間に空気層が介在しないように接着又は融着によって積層させてもよい。   In the polarization conversion element of the present invention, the polarization separation layer and the polarization control layer may be simply stacked, or may be sandwiched by a frame or the like, or bonded or melted so that no air layer is interposed between both layers. It may be laminated by wearing.

本発明の偏光変換素子は、さらにプリズム又はレンズを含んでいてもよい。偏光分離層で光の進行方向は二つに分けられているので、プリズム又はレンズを含めることによって、偏光制御層から斜め方向に出射する偏光成分を集光して、ほとんどの偏光を略法線方向に向けることができる。   The polarization conversion element of the present invention may further include a prism or a lens. Since the light traveling direction is divided into two in the polarization separation layer, by including a prism or lens, the polarized light component emitted in an oblique direction from the polarization control layer is condensed, and most of the polarized light is substantially normal. Can be directed.

本発明の偏光変換素子は、液晶プロジェクターや液晶ディスプレイに用いることができる。液晶プロジェクターは、ビームを発生する光源と、該ビームの光路中に配置される偏光子、液晶セル、検光子、及び投射レンズ系とから構成される。本発明の偏光変換素子は、液晶プロジェクターの偏光子として用いることができ、また光源と偏光子との間に設置することもできる。偏光子や検光子は、例えば、ポリビニルアルコールフィルムやエチレン酢酸ビニル部分ケン化フィルム等の親水性高分子フィルムにヨウ素や二色性染料などの二色性物質を吸着させて一軸延伸させたものなどを用いることもできる。   The polarization conversion element of the present invention can be used for a liquid crystal projector or a liquid crystal display. The liquid crystal projector includes a light source that generates a beam, a polarizer, a liquid crystal cell, an analyzer, and a projection lens system that are arranged in the optical path of the beam. The polarization conversion element of the present invention can be used as a polarizer of a liquid crystal projector, and can also be installed between a light source and a polarizer. Polarizers and analyzers are, for example, uniaxially stretched by adsorbing dichroic substances such as iodine and dichroic dyes on hydrophilic polymer films such as polyvinyl alcohol films and ethylene vinyl acetate partially saponified films. Can also be used.

また、液晶ディスプレイは、バックライトと、偏光子と、液晶セルと、検光子と、を順に配置させてなるものである。本発明の偏光変換素子は、液晶ディスプレイの偏光子として用いることができ、また、バックライトとバックライトに近い側の偏光子との間に設置することもできる。   In addition, the liquid crystal display has a backlight, a polarizer, a liquid crystal cell, and an analyzer arranged in order. The polarization conversion element of the present invention can be used as a polarizer of a liquid crystal display, and can also be installed between a backlight and a polarizer closer to the backlight.

実施例1〜5
透明樹脂(日本ゼオン社製、ZEONOR1420:屈折率n=1.53)を100℃で5時間乾燥し、射出成形機に供給して、ピッチ50μm、頂角45度のプリズムアレイシートを得た。プリズムアレイシートの溝に、ネマチック液晶(常光に対する屈折率n=1.532、異常光に対する屈折率n=1.751)を塗布し、溝方向にネマチック液晶の分子を配向させて、熱を掛けて硬化させ、偏光分離膜(偏光分離層)を得た。この偏光分離膜の液晶層側に入射角0度で波長550nmの偏光の無いビーム光を照射したところ、プリズムアレイシート側から、常光が略法線方向に出射し、異常光が法線から39.1度傾いた方向に出射した。
Examples 1-5
A transparent resin (ZEONOR1420 manufactured by Nippon Zeon Co., Ltd., refractive index n i = 1.53) was dried at 100 ° C. for 5 hours and supplied to an injection molding machine to obtain a prism array sheet having a pitch of 50 μm and an apex angle of 45 degrees. . Nematic liquid crystal (refractive index n o = 1.532 for ordinary light, refractive index n e = 1.751 for extraordinary light) is applied to the grooves of the prism array sheet, and the molecules of the nematic liquid crystal are aligned in the groove direction. To obtain a polarized light separation film (polarized light separation layer). When the non-polarized light beam having an incident angle of 0 degree and a wavelength of 550 nm is irradiated on the liquid crystal layer side of the polarization separation film, the ordinary light is emitted from the prism array sheet side in a substantially normal direction, and the abnormal light is emitted from the normal line. The light was emitted in a direction inclined by 1 degree.

透明樹脂(日本ゼオン社製、ZEONOR1420:屈折率n=1.53)を100℃で5時間乾燥し、押出機に導入し、Tダイを用いてフィルムを得た。このフィルムを延伸して、表1に示す屈折率n、n及びnを有する異方性フィルム(偏光制御層)1〜5を得た。なお、屈折率はエリプソメータ(M−2000、ジェー・エー・ウーラム社製)で測定した値である。 A transparent resin (manufactured by Zeon Corporation, ZEONOR1420: refractive index n i = 1.53) was dried at 100 ° C. for 5 hours, introduced into an extruder, and a film was obtained using a T-die. This film was stretched to obtain anisotropic films (polarization control layers) 1 to 5 having refractive indexes nx , ny and nz shown in Table 1. The refractive index is a value measured with an ellipsometer (M-2000, manufactured by JA Woollam).

Figure 2007225744
Figure 2007225744

前述の偏光分離膜のプリズムアレイシート側に、前述の異方性フィルム1〜5を面内遅相軸(x方向)が偏光分離膜のプリズムアレイの溝方向と45度傾斜するように配置して、それぞれ積層して、偏光変換素子1〜5をそれぞれ得た。   On the prism array sheet side of the polarization separation film, the anisotropic films 1 to 5 are arranged so that the in-plane slow axis (x direction) is inclined 45 degrees with the groove direction of the polarization separation film prism array. Then, the respective layers were laminated to obtain polarization conversion elements 1 to 5, respectively.

これら偏光変換素子1〜5の偏光分離膜側に入射角0度で波長550nmの偏光の無いビーム光を照射した。検光子を用いて、プリズムの溝方向に水平な方向の偏光成分Tの出射量に対するプリズムの溝方向に垂直な方向の偏光成分Tの出射量の割合F1を求めた。その結果を表2に示した。本発明の偏光変換素子によって、偏光のないビーム光のほとんどがプリズムの溝方向に水平な方向の偏光成分Tに変換されたことがわかる。 Unpolarized light beams having an incident angle of 0 degree and a wavelength of 550 nm were irradiated to the polarization separation film side of these polarization conversion elements 1 to 5. Using an analyzer to determine the percentage F1 of the emission amount of the polarization component T 1 of the direction perpendicular to the groove direction of the prism with respect to the emission amount of the polarization component T 2 of the horizontal direction to the groove direction of the prism. The results are shown in Table 2. It can be seen that by the polarization conversion element of the present invention, most of the unpolarized light beam is converted into the polarization component T 2 in the direction horizontal to the groove direction of the prism.

Figure 2007225744
Figure 2007225744

比較例1〜5
二枚のガラス基板の間に、ネマチック液晶を封止した、アンチパラレル配向ネマチック液晶セル(プレチルト角がa:約15度、b:約30度、c:約45度、d:約60度及びe:約75度のもの5種)を用意した。封止したネマチック液晶は常光に対する屈折率が1.4816、異常光に対する屈折率が1.5805であった。
前述の偏光分離膜のプリズムアレイシート側に、アンチパラレル配向ネマチック液晶セルa〜eを液晶配向面が偏光分離膜のプリズムアレイの溝方向と平行になるように配置して、それぞれ積層して、偏光変換素子a〜eをそれぞれ得た。
これら偏光変換素子a〜eの偏光分離膜側に入射角0度で波長550nmの偏光の無いビーム光を照射した。検光子を用いて、プリズムの溝方向に垂直な方向の偏光成分Tの出射量に対するプリズムの溝方向に水平な方向の偏光成分Tの出射量の割合F2を求めた。その結果を表3に示した。この偏光変換素子では完全に偏光成分Tに変換されていないことがわかる。
Comparative Examples 1-5
An anti-parallel alignment nematic liquid crystal cell in which nematic liquid crystal is sealed between two glass substrates (pretilt angles are a: about 15 degrees, b: about 30 degrees, c: about 45 degrees, d: about 60 degrees, and e: 5 types of about 75 degrees). The sealed nematic liquid crystal had a refractive index of 1.4816 for ordinary light and a refractive index of 1.5805 for extraordinary light.
On the prism array sheet side of the polarization separation film, the antiparallel alignment nematic liquid crystal cells a to e are arranged so that the liquid crystal alignment surface is parallel to the groove direction of the prism array of the polarization separation film, and laminated respectively. Polarization conversion elements a to e were obtained, respectively.
Unpolarized light beams having an incident angle of 0 degree and a wavelength of 550 nm were irradiated on the polarization separation film side of these polarization conversion elements a to e. Using an analyzer to determine the percentage F2 of the emission amount of the polarization component T 2 of the horizontal direction to the groove direction of the prism with respect to extraction intensity of the polarization components T 1 of the direction perpendicular to the groove direction of the prism. The results are shown in Table 3. In the polarization conversion element it is understood that they are not completely converted into the polarization component T 1.

Figure 2007225744
Figure 2007225744

本発明を構成する偏光分離層の一例を示す図。The figure which shows an example of the polarization separation layer which comprises this invention. 本発明を構成する偏光分離層の別の例を示す図。The figure which shows another example of the polarization separation layer which comprises this invention. 本発明を構成する偏光制御層の原理を示す図。The figure which shows the principle of the polarization control layer which comprises this invention. 偏光制御層の入射角度と偏光透過強度との関係を示す図。The figure which shows the relationship between the incident angle of a polarization control layer, and polarization | polarized-light transmission intensity. 本発明の偏光変換素子の原理を示す図。The figure which shows the principle of the polarization conversion element of this invention.

符号の説明Explanation of symbols

11:等方性材料からなる層
12:異方性(一軸性)材料からなる層
:溝に垂直な直線偏光成分(常光)
:溝に平行な直線偏光成分(異常光)
3:異方性フィルム
4:ビーム光
A:偏光分離層
B:偏光制御層
11: Layer made of isotropic material 12: Layer made of anisotropic (uniaxial) material T 1 : Linearly polarized light component perpendicular to the groove (normal light)
T 2 : Linearly polarized light component parallel to the groove (abnormal light)
3: Anisotropic film 4: Beam light A: Polarization separation layer B: Polarization control layer

Claims (11)

入射角0度の偏光の無い光を略法線方向に出射する直線偏光Tと法線に対し斜め方向に出射する直線偏光Tに分離する偏光分離層、及び
直線偏光Tの偏光状態をほぼ完全に直線偏光Tの偏光状態に変換して、且つ直線偏光Tの偏光状態を50%以上変換せずに、透過する偏光制御層
を含んでなる偏光変換素子。
A polarization separation layer that separates linearly polarized light T 1 that emits non-polarized light with an incident angle of 0 degrees in a substantially normal direction and linearly polarized light T 2 that is emitted obliquely with respect to the normal, and a polarization state of the linearly polarized light T 1 the converted almost completely polarization state of the linearly polarized light T 2, and the polarization state of the linearly polarized light T 2 without converting 50% or more, the polarization conversion element comprising a polarization control layer which transmits.
偏光分離層が、複数のV溝を表面に備えた光学的等方性のプリズムアレイと、一軸性の複屈折層とからなり、
プリズムアレイの全ての溝が、略平行になっており、
プリズムアレイを形成する材料の常光に対する屈折率nと、複屈折層を形成する材料の常光に対する屈折率nとが略等しい、請求項1に記載の偏光変換素子。
The polarization separation layer is composed of an optically isotropic prism array having a plurality of V grooves on the surface, and a uniaxial birefringent layer,
All the grooves of the prism array are almost parallel,
The refractive index n i for ordinary light of the material forming the prism array, is substantially equal to the refractive index n o for ordinary light of the material forming the birefringent layer, the polarization conversion element according to claim 1.
プリズムアレイのV溝方向と、複屈折層の光軸方向とが略平行である、請求項2に記載の偏光変換素子。   The polarization conversion element according to claim 2, wherein the V-groove direction of the prism array and the optical axis direction of the birefringent layer are substantially parallel. 偏光制御層は、面内レターデーションが入射光の波長の略1/2である、請求項1〜3のいずれかに記載の偏光変換素子。   The polarization conversion element according to any one of claims 1 to 3, wherein the polarization control layer has an in-plane retardation of approximately ½ of the wavelength of incident light. 偏光制御層は、その面内遅相軸が直線偏光Tの偏光方向から40〜50度傾いて配置されている、請求項1〜4のいずれかに記載の偏光変換素子。 The polarization control layer, the in-plane slow axis is tilted 40 to 50 degrees from the polarization direction of linearly polarized light T 1, the polarization conversion element according to any one of claims 1 to 4. 偏光制御層は、面内遅相軸方向の屈折率をn、それに面内で直交する方向の屈折率をn、厚さ方向の屈折率をnとした時に、(n +n )/2とn との差の絶対値が0.004以上である、請求項1〜5のいずれかに記載の偏光変換素子。 The polarization control layer, when the refractive index in the in-plane slow axis direction n x, it the refractive index n y in the direction perpendicular in the plane, the refractive index in the thickness direction is n z, (n x 2 + n y 2) / 2 and the absolute value of the difference between n z 2 is equal to or greater than 0.004, the polarization conversion element according to any one of claims 1 to 5. 直線偏光Tの偏光分離層からの出射角を、偏光制御層によって直線偏光Tを50%以上変換せずにそのまま透過する入射角θのうちの最小角度以上にした、請求項1〜6のいずれかに記載の偏光変換素子。 The exit angle from the polarization separating layer of the linearly polarized light T 2, and the linearly polarized light T 2 by the polarization control layer to less than the minimum angle of the incident angle theta i which is transmitted through without conversion 50% or more, claim 1 The polarization conversion element according to any one of 6. さらにプリズム又はレンズを含んでなる請求項1〜7のいずれかに記載の偏光変換素子。   The polarization conversion element according to claim 1, further comprising a prism or a lens. ビームを発生する光源と、該ビームの光路中に請求項1〜8のいずれかに記載の偏光変換素子、液晶セル、検光子、及び投射レンズ系を順に配置させてなる、液晶プロジェクター。   A liquid crystal projector comprising: a light source that generates a beam; and the polarization conversion element according to claim 1, a liquid crystal cell, an analyzer, and a projection lens system arranged in that order in the optical path of the beam. 偏光変換素子と液晶セルとの間に偏光子をさらに配置させてなる、請求項9に記載の液晶プロジェクター。   The liquid crystal projector according to claim 9, wherein a polarizer is further arranged between the polarization conversion element and the liquid crystal cell. バックライトと、請求項1〜8のいずれかに記載の偏光変換素子と、偏光子と、液晶セルと、検光子と、を順に配置させてなる、液晶ディスプレイ。
A liquid crystal display in which a backlight, the polarization conversion element according to claim 1, a polarizer, a liquid crystal cell, and an analyzer are arranged in order.
JP2006044792A 2006-02-22 2006-02-22 Polarization converting element Pending JP2007225744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044792A JP2007225744A (en) 2006-02-22 2006-02-22 Polarization converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044792A JP2007225744A (en) 2006-02-22 2006-02-22 Polarization converting element

Publications (1)

Publication Number Publication Date
JP2007225744A true JP2007225744A (en) 2007-09-06

Family

ID=38547652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044792A Pending JP2007225744A (en) 2006-02-22 2006-02-22 Polarization converting element

Country Status (1)

Country Link
JP (1) JP2007225744A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139713A (en) * 2007-12-07 2009-06-25 Dainippon Printing Co Ltd Polarization separation and/or synthesis element
JP2009294417A (en) * 2008-06-05 2009-12-17 Nikon Corp Polarized beam splitter, polarization conversion element and image display device
JP2010139884A (en) * 2008-12-12 2010-06-24 Jsr Corp Method of manufacturing polarizing diffraction element and polarizing diffraction element
JP2012003278A (en) * 2011-08-11 2012-01-05 Topcon Corp Diffraction grating integrated polarization conversion element
CN110998384A (en) * 2018-07-19 2020-04-10 迪睿合株式会社 Polarizing plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139713A (en) * 2007-12-07 2009-06-25 Dainippon Printing Co Ltd Polarization separation and/or synthesis element
JP2009294417A (en) * 2008-06-05 2009-12-17 Nikon Corp Polarized beam splitter, polarization conversion element and image display device
JP2010139884A (en) * 2008-12-12 2010-06-24 Jsr Corp Method of manufacturing polarizing diffraction element and polarizing diffraction element
JP2012003278A (en) * 2011-08-11 2012-01-05 Topcon Corp Diffraction grating integrated polarization conversion element
CN110998384A (en) * 2018-07-19 2020-04-10 迪睿合株式会社 Polarizing plate

Similar Documents

Publication Publication Date Title
JP4187616B2 (en) Laminated retardation optical element, manufacturing method thereof, and liquid crystal display device
JP5000717B2 (en) Liquid crystal display device and polarizing plate
JP6373625B2 (en) Inverse wavelength dispersion phase retardation film and display device including the same
TWI522661B (en) Optical film
JP5051475B2 (en) 1/4 wavelength plate, optical pickup device and reflection type liquid crystal display device
CN110573927B (en) Variable transmittance device
JP2011033762A5 (en)
JP2001201635A (en) Porlarized light element
WO2018151295A1 (en) Liquid crystal display device
JP3719374B2 (en) Manufacturing method of polarizing element
JP2007225744A (en) Polarization converting element
JP4792679B2 (en) Isolator and variable voltage attenuator
CN113661419B (en) Retardation film, polarizing plate, and image display device
JP2007232935A (en) Optical film, elliptically polarizing plate using the same and method for producing elliptically polarizing plate
KR20220145347A (en) Achromatic optical device based on birefringent materials with positive and negative birefringent dispersions
WO2023048086A1 (en) Wavelength plate, optical system, and display device
US11287685B2 (en) Optical element and image display device
JPH01265206A (en) Polarizing element
JP2007280460A (en) Optical head device
US20160370597A1 (en) Optical element
JP2010054895A (en) Liquid crystal device
JP5152366B2 (en) Isolator and variable voltage attenuator
JP6756112B2 (en) Optical film and image display device
TWI408416B (en) Polarization beam splitter and optical system
JP2004145268A (en) Phase difference optical element, its manufacturing method, and polarizing element and liquid crystal display equipped with the phase difference optical element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070611