JPH1119625A - Vacuum evaporation separation recovering method and device therefor - Google Patents

Vacuum evaporation separation recovering method and device therefor

Info

Publication number
JPH1119625A
JPH1119625A JP19504997A JP19504997A JPH1119625A JP H1119625 A JPH1119625 A JP H1119625A JP 19504997 A JP19504997 A JP 19504997A JP 19504997 A JP19504997 A JP 19504997A JP H1119625 A JPH1119625 A JP H1119625A
Authority
JP
Japan
Prior art keywords
vacuum
chamber
vacuum evaporation
gas
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19504997A
Other languages
Japanese (ja)
Other versions
JP3763557B2 (en
Inventor
Yoshiaki Yokoyama
芳昭 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGIHARA EKOROJII KK
Original Assignee
OGIHARA EKOROJII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGIHARA EKOROJII KK filed Critical OGIHARA EKOROJII KK
Priority to JP19504997A priority Critical patent/JP3763557B2/en
Publication of JPH1119625A publication Critical patent/JPH1119625A/en
Application granted granted Critical
Publication of JP3763557B2 publication Critical patent/JP3763557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

PROBLEM TO BE SOLVED: To shorten the time required for treatment, to improve treatment capability, to reduce a running cost and to recover vaporized materials with high purity. SOLUTION: This method is to successively separate and recover the various vaporized materials by changing the degrees of vacuum within respective chambers while holding the internal temps. of vacuum evaporation chambers 15, 35 and 51 arranged in one or plural sets constant respectively. These degrees of vacuum are preferably changed by the operation of vacuum pumps and the supply of an inert gas and/or a reducing gas, and are normally changed within the range of 800 to 10<-5> Torr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、処理物の表面に施
されたメッキ品や混合物、化合物、付着物等を順次効率
よく真空中で蒸発させて回収するようにした真空蒸発分
離回収方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum evaporation separation / recovery method in which a plated product, a mixture, a compound, a deposit and the like applied to the surface of a processed material are sequentially and efficiently evaporated and recovered in a vacuum. It concerns the device.

【0002】[0002]

【従来の技術】例えば、自動車ボディの表面、家電製
品、コンピュ−タ関連機器、各種スラッジ等にメッキさ
れた亜鉛、ニッケル、鉛、油あるいはそれらの酸化物を
真空加熱して回収する場合、従来の真空昇温加熱方法で
は対流加熱がないため、低温期の0〜500℃位までの
昇温速度が非常に遅く、このため、月産6000トン位
ものスクラップの脱亜鉛をする場合は、どうしても設備
仕様が大型となり、イニシャルコストも高くなるのでコ
ストメリットがなくなり、実用性がない。また、上記問
題を解決するため、低温期に酸化加熱して蒸発期に真空
加熱することが考えられるが、その場合は金属酸化物が
できてしまうので真空蒸発温度を上げざるを得ず、完全
にメッキを除去するためには時間をかけて温度を上げな
ければならず、やはり上記の場合と同じくコストメリッ
トがないという欠点がある。
2. Description of the Related Art For example, when zinc, nickel, lead, oil or their oxides plated on the surface of an automobile body, home appliances, computer-related equipment, various sludges or the like are recovered by vacuum heating, the conventional methods are used. In the vacuum heating method described above, since there is no convection heating, the rate of temperature rise from 0 to about 500 ° C. in the low temperature period is very slow. Therefore, when dezincing as much as 6,000 tons of scrap per month, Since the equipment specifications are large and the initial cost is high, there is no cost advantage and there is no practicality. In order to solve the above problem, it is conceivable to perform oxidative heating in a low temperature period and vacuum heating in an evaporation period. In this case, however, metal oxides are formed, so the vacuum evaporation temperature has to be raised, and In order to remove the plating, the temperature must be increased over time, which is disadvantageous in that there is no cost advantage as in the above case.

【0003】このような問題を解決するために本発明者
は、真空蒸発させる処理物を加熱手段を有する炉内に投
入し、酸化雰囲気にて所定温度(0〜180℃の酸化の
起こらない温度)まで昇温させた後、その温度を維持
し、その後前記炉内を指定蒸発温度の状態に維持しつつ
減圧手段により真空にし、前記被処理物から蒸発してく
る物質を前記炉に1又は複数連設された回収装置に導
き、前記回収装置において凝縮させて回収することを特
徴とする真空蒸発分離回収方法を提唱した(特公平8−
16248号公報)。
In order to solve such a problem, the inventor of the present invention puts a material to be vacuum-evaporated into a furnace having a heating means, and in a oxidizing atmosphere a predetermined temperature (0 to 180 ° C. at which oxidation does not occur). ), The temperature is maintained, and then the inside of the furnace is maintained at the designated evaporation temperature, and a vacuum is applied by a pressure reducing means. A vacuum evaporation separation / recovery method was proposed in which a plurality of recovery devices were connected to each other and condensed and recovered in the recovery device.
No. 16248).

【0004】[0004]

【発明が解決しようとする課題】然るに、上記方法は処
理物を炉内に投入した後炉内の真空度を一定にして回収
物の各蒸発温度ごとに昇温させるものであり、やはり昇
温のために少なからぬ時間がとられ、処理能力及び及び
ランニングコストの点で問題が残る。また、真空状態で
の加熱の場合は中心部の昇温が非常に遅く、温度分布も
悪くなって回収純度も悪い。
However, in the above-mentioned method, after the processing object is charged into the furnace, the degree of vacuum in the furnace is made constant and the temperature is raised at each evaporation temperature of the recovered material. A considerable amount of time is spent, leaving problems in terms of throughput and running costs. Further, in the case of heating in a vacuum state, the temperature rise in the central portion is very slow, the temperature distribution is poor, and the recovery purity is poor.

【0005】そこで本発明は、上記従来の改良された方
法よりも更に処理に要する時間を短縮することができ、
処理能力の向上とランニングコストの低廉化を図ること
ができ、しかも、蒸発物を高純度にて回収することがで
きる真空蒸発分離回収方法及び装置を提供することを課
題とする。
Accordingly, the present invention can further reduce the time required for processing as compared with the above-mentioned conventional improved method,
It is an object of the present invention to provide a vacuum evaporation separation / recovery method and apparatus capable of improving the processing capacity and reducing the running cost, and recovering the evaporated matter with high purity.

【0006】[0006]

【課題を解決するための手段】本発明は、1又は複数配
備される真空蒸発室内の温度をそれぞれ一定に保持して
おいて、それぞれ室内の真空度を変化させていくことに
より種々の蒸発物を順次分離回収することを特徴とする
真空蒸発分離回収方法、を以て上記課題を解決した。前
記真空度の変化は、好ましくは真空ポンプの動作、並び
に、不活性ガス及び/又は還元ガスの供給により行な
い、通例800〜10-5Torrの範囲で変化させる。
SUMMARY OF THE INVENTION The present invention provides various types of evaporants by maintaining a constant temperature in one or more vacuum evaporation chambers and changing the degree of vacuum in each chamber. The above problem has been solved by a vacuum evaporation separation and recovery method characterized by sequentially separating and recovering. The degree of vacuum is preferably changed by operating a vacuum pump and supplying an inert gas and / or a reducing gas, and is usually changed in a range of 800 to 10 -5 Torr.

【0007】本発明においては、処理室内を予め昇温さ
せるが、その昇温はプラス圧又は常圧下において行なう
ことができるために、対流加熱及び輻射による伝導加熱
を利用することができるので、昇温に要する時間をかな
り短縮することができる。従来の減圧度が高くて対流現
象の起こらない状況下における加熱の場合、殊に200
〜500℃の範囲での昇温が非常に遅くて温度分布が悪
かったが、上記の通り本発明の場合は昇温に時間がかか
らず、温度分布もよい。
In the present invention, the temperature in the processing chamber is raised in advance. Since the temperature can be raised under a positive pressure or a normal pressure, convection heating and conduction heating by radiation can be used. The time required for warming can be significantly reduced. In the case of the conventional heating under a condition where the degree of decompression is high and convection does not occur, particularly 200
Although the temperature rise in the range of 500 ° C. was very slow and the temperature distribution was poor, as described above, in the case of the present invention, the temperature rise did not take much time and the temperature distribution was good.

【0008】また、従来の方法においては、目的温度ま
で昇温しても対流が起こらないため温度分布が悪く、蒸
発回収物の純度も低いものであったが、本発明の場合は
温度分布がよく、蒸発回収物の純度も高い。更に、処理
品の目標とする温度までの昇温処理時間よりも、目標と
する真空度までの減圧処理時間の方が短いため、本発明
に係る方法の場合の方が従来の方法の場合よりも処理能
力が高く、ランニングコストも安くなる。
Further, in the conventional method, convection does not occur even when the temperature is raised to the target temperature, so that the temperature distribution is poor and the purity of the evaporatively recovered substance is low. However, in the case of the present invention, the temperature distribution is low. Well, the purity of the evaporative recovery is high. Furthermore, since the decompression processing time to the target degree of vacuum is shorter than the heating processing time to the target temperature of the processed product, the method according to the present invention is more efficient than the conventional method. Processing capacity is high and running costs are low.

【0009】図3はこのことを示すグラフで、大きさが
500×810×700mm、重量が2367kgであ
って、深さ350mmを中心部の温度測定深さとした処
理物(鋼材スクラップ)の常圧(760Torr)下に
おける表面温度及び中心部温度と、真空(0.05To
rr)下における表面温度及び中心部温度の時間約推移
を示している(横軸が昇温に要する時間、縦軸が温度を
表わしている。)。そこにおける線(A)が常圧下にお
ける表面温度、線(B)が常圧下における中心部温度、
線(C)が真空下における表面温度、線(D)が真空下
における中心部温度である。
FIG. 3 is a graph showing this fact. The normal pressure of a processed material (steel scrap) having a size of 500 × 810 × 700 mm, a weight of 2367 kg and a depth of 350 mm as a temperature measurement depth at the center. (760 Torr), the surface temperature and the center temperature under vacuum (0.05 To
The transition of the surface temperature and the center temperature under rr) is shown over time (the horizontal axis represents the time required for temperature rise, and the vertical axis represents the temperature). The line (A) there is the surface temperature under normal pressure, the line (B) is the center temperature under normal pressure,
Line (C) is the surface temperature under vacuum, and line (D) is the center temperature under vacuum.

【0010】このグラフから明らかなように、常圧下に
おける場合の方が真空下における場合よりも短時間の内
に内部まで昇温し、且つ、表面温度と中心部温度との差
が少ない(温度分布がよい)。例えば、中心部温度を5
00℃にまで昇温させるのに真空下では4時間かかって
いるのに、常圧下の場合は2時間半しかかからず、ま
た、4時間経過後の表面温度と中心部温度の差は、真空
下では約300℃であるのに対し、常圧下では約100
℃である。これらのことから、真空下において昇温させ
る従来の方法よりも、常圧下又はプラス圧下で昇温させ
る本発明に係る方法の方が、有利であることは明らかで
ある。
As is clear from this graph, the temperature rises to the inside in a shorter time under normal pressure than under vacuum, and the difference between the surface temperature and the center temperature is smaller (temperature Good distribution). For example, if the center temperature is 5
Although it takes 4 hours under vacuum to raise the temperature to 00 ° C., it takes only 2 and a half hours under normal pressure, and the difference between the surface temperature and the center temperature after 4 hours is as follows. It is about 300 ° C under vacuum, while about 100 ° C under normal pressure.
° C. From these facts, it is clear that the method according to the present invention in which the temperature is raised under normal pressure or positive pressure is more advantageous than the conventional method in which the temperature is raised under vacuum.

【0011】また、下記表は従来の方法と本発明に係る
方法における回収金属の純度を比較したものである。例
えば、従来の方法において、真空度が65〜75Tor
rの範囲において300℃に昇温したときに蒸発回収さ
れるカドミウムの純度は87.6であるのに対し、本発
明に係る方法において、温度を650℃に維持しておい
て真空度を65〜75Torrの範囲に変化させたとき
に蒸発回収されるカドミウムの純度は97.6で、従来
の方法の場合よりも高い。他の温度の場合もそのような
傾向にある。
The following table compares the purity of recovered metals in the conventional method and the method according to the present invention. For example, in the conventional method, the degree of vacuum is 65 to 75 Torr.
While the purity of cadmium evaporated and recovered when the temperature is raised to 300 ° C. in the range of r is 87.6, in the method according to the present invention, the temperature is maintained at 650 ° C. and the degree of vacuum is 65 ° C. The purity of cadmium evaporated and recovered when it is changed to the range of ~ 75 Torr is 97.6, which is higher than that of the conventional method. Such a tendency is also observed at other temperatures.

【表1】 [Table 1]

【0012】本発明は、処理物を真空蒸発処理すること
により、残留ガスからダイオキシンが再成されることを
防止すると共に、ガスを無公害化処理して排出する方法
を提唱する。そのためには、少なくとも最前段に配置さ
れる前記真空蒸発室において、塩化物を含む処理品を1
-1〜10-5Torrの範囲で真空蒸発処理する。
The present invention proposes a method in which dioxin is prevented from being regenerated from the residual gas by subjecting the processed material to vacuum evaporation, and the gas is rendered non-polluting and discharged. To this end, at least the vacuum-evaporation chamber arranged at the forefront stage is used to remove one processed product containing chloride.
Vacuum evaporation is performed in the range of 0 -1 to 10 -5 Torr.

【0013】本発明においては、好ましくは真空ポンプ
による減圧作用に加え、処理後室内に不活性ガス及び/
又は還元ガスを供給する。これは、真空ポンプのみによ
る減圧コントロ−ルだと減圧値を一定にコントロ−ルし
にくいので、そのコントロ−ル補助のために不活性ガス
を供給するのである。
In the present invention, preferably, in addition to the depressurizing action by the vacuum pump, an inert gas and / or
Alternatively, a reducing gas is supplied. This is because it is difficult to control the decompression value to a constant value by using a decompression control using only a vacuum pump, and an inert gas is supplied to assist the control.

【0014】また、圧力が760〜10-5Torr位の
低減圧だと、処理物質から著しく酸化物が分解蒸発した
場合に、処理室内酸化、処理物酸化、蒸発物酸化等が起
こり、回収率の低下、回収純度の低下、残留処理品の酸
化、処理室内の部品の酸化劣化等、非常に多くの問題が
発生する。このような問題の発生を回避するため、本発
明においては減圧程度が低い場合に還元性ガスを加えて
減圧コントロ−ルするのである。
Further, if the pressure is a reduced pressure of about 760 to 10 -5 Torr, if the oxides are remarkably decomposed and evaporated from the processing substance, oxidation in the processing chamber, oxidation of the processing substance, oxidation of the evaporation substance, etc. occur, and the recovery rate A number of problems occur, such as a decrease in recovery, a reduction in recovery purity, oxidation of residual processed products, and oxidative deterioration of components in the processing chamber. In order to avoid such a problem, in the present invention, when the degree of pressure reduction is low, a reducing gas is added to control the pressure reduction.

【0015】更に、本発明においては、前記分離回収物
として粉体を還元回収する場合において、還元ガス及び
コ−クス等の粉体還元物を混入する。バグフィルタ−や
サイクロン装置等により回収される粉体物質は、非常に
微細な酸化物であることが多い。この微細な酸化物質を
還元して減圧蒸発回収する場合、還元ガスのみでは中心
部にまでガスが回らず、蒸発回収率が悪く、残渣にも重
金属が残留することになるため、一般の廃棄場所に廃棄
することができない。本発明ではこの問題を解決するた
めに、コ−クス等の粉体還元物を、粉体処理物に均一に
なるよう混合して処理することにより(処理品中心部の
ガス回りの悪い所を補助還元する。)、還元時間の短縮
を計ると共に、還元物質の蒸発回収率を上げることを可
能ならしめた。
Further, in the present invention, when the powder is reduced and recovered as the separated and recovered product, a reduced gas and a reduced powder such as coke are mixed. The powder material collected by a bag filter, a cyclone device or the like is often very fine oxide. In the case of reducing and evaporating and recovering this fine oxidized substance under reduced pressure, the gas does not reach the central part with the reducing gas alone, the evaporation recovery rate is poor, and heavy metals remain in the residue. Can not be disposed of. In the present invention, in order to solve this problem, a powder reduced product such as coke is mixed and processed into a powder processed product so as to be uniform (the location where the gas around the center of the processed product is poor around the gas). Auxiliary reduction.), Reducing the reduction time and increasing the rate of evaporation and reduction of the reduced substance.

【0016】これらの処理に当っては、粉体処理と粉体
還元剤との混合物を、減圧度を10-2〜10-5Torr
とし、温度を500℃〜1300℃として処理すること
により、良い結果が得られる。また、コ−クス等の粉体
と粉体処理物の固体同志で混合処理することにより、爆
発等の危険を回避することが可能となる。
In these treatments, the mixture of the powder treatment and the powder reducing agent is subjected to a pressure reduction of 10 −2 to 10 −5 Torr.
By treating at a temperature of 500 ° C. to 1300 ° C., good results can be obtained. Further, by mixing the powder of coke or the like with the solid of the processed powder, danger such as explosion can be avoided.

【0017】更に本発明は、真空度の異なる真空蒸発室
を複数連設して構成される装置において、前記蒸発室間
に通過室を介在させ且つ前記蒸発室と前記通過室とをL
字形に配置したことを特徴とする真空蒸発分離回収装
置、を提唱する。
Further, the present invention relates to an apparatus constituted by connecting a plurality of vacuum evaporation chambers having different degrees of vacuum, wherein a passage chamber is interposed between the evaporation chambers, and the evaporation chamber and the passage chamber are connected to each other by L.
We propose a vacuum evaporation separation and recovery device characterized by being arranged in a letter shape.

【0018】真空蒸発室を直線的に連設した場合には、
ストロ−クの関係上処理品の搬送にシリンダ−を用いた
プッシャ−機構を採用することが困難であるが、上記の
ようにL字形に配置した場合はその採用が可能となり、
構成を簡易化できる。また、真空蒸発室を直接連結する
場合は、両室間の圧力調整が難しいが、本発明では連結
される蒸発室間に圧力調整室が配備されるので、蒸発室
間の圧力調整が非常に容易となる。
When the vacuum evaporation chambers are connected linearly,
Due to the stroke, it is difficult to use a pusher mechanism using a cylinder to transport the processed product. However, when the product is arranged in an L-shape as described above, it can be used.
The configuration can be simplified. When the vacuum evaporation chambers are directly connected, it is difficult to adjust the pressure between the two evaporation chambers. However, in the present invention, since the pressure adjustment chamber is provided between the connected evaporation chambers, the pressure adjustment between the evaporation chambers is extremely difficult. It will be easier.

【0019】上記圧力調整室は更に、前段の蒸発室にお
ける蒸発物が次段の蒸発室に流入することを阻止する役
目も果たす。即ち、この圧力調整室は昇温させないの
で、蒸発物は殆ど沈殿してしまい、次室に流入して蒸発
物の回収純度を低下させることがない。また、蒸発物は
沈殿してしまうため、室間の真空シ−ル性が阻害され
ず、シ−ルの老化が防止される。
The pressure regulating chamber also serves to prevent the evaporant in the previous evaporation chamber from flowing into the next evaporation chamber. That is, since the temperature of the pressure control chamber is not raised, almost no evaporant precipitates and does not flow into the next chamber to lower the recovery purity of the evaporate. Further, since the evaporant precipitates, the vacuum sealability between the chambers is not hindered, and the aging of the seal is prevented.

【0020】また、本発明に係る装置は、各蒸発室の排
気口に気密性のドアを二重に配置した真空二重ドアを備
えている(二重シ−ル二重ドア方式)。これにより真空
シ−ル性が向上し、たとえ一方のドアのシ−ル性が不良
となっても、他方のドアによってシ−ル性が保持され
る。この真空二重ドアがあることにより、昇温中に回収
物を回収して連続運転することが可能となる(昇温中に
回収すると、回収物が燃焼したり真空炉が酸化された
り、対流熱によって真空シ−ルが損傷したりするので、
従来は必ず温度を下げてから回収していた。)。また、
この真空二重ドアがあるために、各蒸発室は真空蒸発室
としてだけでなく、一般雰囲気炉や蒸し焼室としての利
用も可能となる。
Further, the apparatus according to the present invention is provided with a vacuum double door in which an airtight door is double arranged at the exhaust port of each evaporation chamber (double seal double door system). As a result, the vacuum sealability is improved, and even if the sealability of one door is poor, the sealability is maintained by the other door. With this vacuum double door, it is possible to collect the collected material during the temperature rise and to operate continuously (when the collected material is collected during the temperature rise, the collected material may burn, the vacuum furnace may be oxidized, Since the heat may damage the vacuum seal,
In the past, it was always collected after the temperature was lowered. ). Also,
Because of this vacuum double door, each evaporation chamber can be used not only as a vacuum evaporation chamber but also as a general atmosphere furnace or a steaming chamber.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態につき、添付
図面に依拠して説明する。図1は本発明に係る方法を実
施するための本発明に係る装置の概略構成図であり、図
中1は本装置において真空蒸発処理する処理品2を本装
置内に搬入する搬入装置で、第1搬送装置3に添設され
る。第1搬送装置3の途中には、攪拌装置(通例ファ
ン)4を備えた予熱炉5が配置され、搬入装置1によっ
て第1搬送装置3上に供給されて搬送される処理品2
が、この予熱炉5を通過することによって予熱される。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an apparatus according to the present invention for carrying out a method according to the present invention. In FIG. 1, reference numeral 1 denotes a carry-in apparatus for carrying a processed product 2 to be subjected to a vacuum evaporation process in the present apparatus; It is attached to the first transport device 3. A preheating furnace 5 provided with a stirrer (usually a fan) 4 is arranged in the middle of the first transporting device 3, and is supplied to the first transporting device 3 by the loading device 1 and transported.
Is preheated by passing through the preheating furnace 5.

【0022】予熱炉5は、処理品2が酸化しない温度
(通例0〜180℃)まで処理品2を加熱する。予熱炉
5は、後述する真空蒸発室とは切り離してその前段に配
置される。そうすることにより、予熱炉5は真空炉型と
することなく、常圧炉型にすることができ、製造コスト
を約3分の1に抑えることができる。また、常圧炉型と
することにより、真空炉型では設備できないメッシュベ
ルト搬送等の設備が可能となる。
The preheating furnace 5 heats the processed product 2 to a temperature at which the processed product 2 is not oxidized (usually 0 to 180 ° C.). The preheating furnace 5 is arranged at a stage preceding the vacuum evaporating chamber separately from a vacuum evaporation chamber described later. By doing so, the preheating furnace 5 can be a normal pressure furnace type without using a vacuum furnace type, and the manufacturing cost can be reduced to about one third. Further, by using the normal pressure furnace type, it becomes possible to provide facilities such as mesh belt conveyance which cannot be provided by the vacuum furnace type.

【0023】第1搬送装置3の先端部には、これと直交
方向に延びて真空パ−ジ室7に達する第2搬送装置8が
添設される。第2搬送装置8はその後端部に第1シリン
ダ9(普通エアシリンダ)を備えており、その作用で第
2搬送装置8上の処理品2が真空パ−ジ室7内に送り込
まれる。真空パ−ジ室7は外側に真空扉10を備えると
共に、内側に炉内真空扉11を備えており、処理品2の
搬入に際しては炉内真空扉11が閉じて真空扉10が開
き、処理品2の搬入後真空扉10も閉じる。
A second transfer device 8 extending in a direction orthogonal to the first transfer device 3 and reaching the vacuum purge chamber 7 is attached to the tip of the first transfer device 3. The second transfer device 8 is provided with a first cylinder 9 (usually an air cylinder) at a rear end thereof, and the processed product 2 on the second transfer device 8 is sent into the vacuum purge chamber 7 by the action. The vacuum purge chamber 7 is provided with a vacuum door 10 on the outside and a vacuum door 11 in the furnace on the inside. When the processing product 2 is carried in, the vacuum door 11 in the furnace is closed and the vacuum door 10 is opened. After the article 2 is carried in, the vacuum door 10 is also closed.

【0024】12は真空パ−ジ室7内における蒸発物の
回収装置で、これにブ−スタ−ポンプ13とロ−タリ−
ホンプ14とが連設される。ブ−スタ−ポンプ13とロ
−タリ−ホンプ14は、回収装置12を介して真空パ−
ジ室7内を減圧するためのもので、その作用により真空
パ−ジ室7内が、一旦10-2Torr台迄減圧された
後、これに続く第1蒸発室15とほぼ同圧になるまで復
圧される。真空パ−ジ室7と第1蒸発室15との境に断
熱扉16が設置される。通例、真空パ−ジ室7と第1蒸
発室15とでL字形を呈するように配置される。
Numeral 12 denotes a device for recovering the evaporated substance in the vacuum purge chamber 7, which includes a booster pump 13 and a rotary.
The pump 14 is connected to the pump 14. The booster pump 13 and the rotary pump 14 are evacuated to a vacuum
The pressure in the vacuum chamber 7 is reduced to a level of the order of 10 -2 Torr, and then the pressure in the vacuum chamber 7 becomes substantially the same as that of the first evaporation chamber 15. Pressure is restored until A heat insulating door 16 is provided at a boundary between the vacuum purge chamber 7 and the first evaporation chamber 15. Usually, the vacuum purge chamber 7 and the first evaporation chamber 15 are arranged so as to have an L-shape.

【0025】上記作用により真空パ−ジ室7内と第1蒸
発室15内とが同圧になると、炉内真空扉11と断熱扉
16とが開かれ、処理品2が真空パ−ジ室7から第1蒸
発室15内へと送られ、その後炉内真空扉11と断熱扉
16が閉じられる。第1蒸発室15はその運転開始時に
おいて、予め設定温度並びに設定真空度にセットされ、
温度は一定のまま真空度の調整がなされる(後出の各蒸
発室においても同じ)。
When the inside of the vacuum purging chamber 7 and the inside of the first evaporating chamber 15 have the same pressure by the above operation, the in-furnace vacuum door 11 and the heat insulating door 16 are opened, and the processed article 2 is moved to the vacuum purging chamber. Then, the vacuum door 11 and the heat insulating door 16 in the furnace are closed. At the start of the operation, the first evaporating chamber 15 is set to a preset temperature and a preset vacuum degree in advance,
The degree of vacuum is adjusted while keeping the temperature constant (the same applies to each of the evaporation chambers described later).

【0026】第1蒸発室15には、真空二重ドア17を
介して金属回収装置18と粉体回収装置19とが設置さ
れる。また、粉体回収装置19に続けて、拡散ポンプ2
0、ホ−ルデングポンプ21、ブ−スタ−ポンプ22及
びロ−タリ−ポンプ23が設置される。これらの拡散ポ
ンプ20、ホ−ルデングポンプ21、ブ−スタ−ポンプ
22及びロ−タリ−ポンプ23の作用で、処理品2の送
入後第1蒸発室15内の真空度の制御が行われる。
In the first evaporating chamber 15, a metal recovery unit 18 and a powder recovery unit 19 are installed via a vacuum double door 17. Further, following the powder recovery device 19, the diffusion pump 2
0, a holding pump 21, a booster pump 22, and a rotary pump 23 are provided. The operation of the diffusion pump 20, the holding pump 21, the booster pump 22, and the rotary pump 23 controls the degree of vacuum in the first evaporation chamber 15 after the processing product 2 is fed.

【0027】図2は真空二重ドア17の構成を示すもの
で(後出の真空二重ドアも同一の構成)、蒸発室15の
排気口91と排気系配管92との間に真空ドア室93が
配備され、真空ドア室93内に真空二重ドア17が設置
される。真空二重ドア17は、真空ドア室93内上部に
設置されたシリンダ94のロッド95に固定されて一体
に上下動する2枚のドア96から成り、各ドア96の上
部及び下部に、真空ドア室93の内壁面に摺接して気密
シ−ルを達成するパッキン97を上下二段に備えてい
る。
FIG. 2 shows the configuration of the vacuum double door 17 (the same configuration is applied to the vacuum double door described later). A vacuum door chamber is provided between the exhaust port 91 of the evaporation chamber 15 and the exhaust pipe 92. A vacuum double door 17 is installed in the vacuum door chamber 93. The vacuum double door 17 is composed of two doors 96 fixed to a rod 95 of a cylinder 94 installed in the upper part of the vacuum door chamber 93 and moving up and down integrally. A packing 97 is provided in two upper and lower stages to achieve an airtight seal by slidingly contacting the inner wall surface of the chamber 93.

【0028】真空二重ドア17はこのように簡易な構成
であって、工事費、設備費等が低廉であり、たとえ2つ
のドア96の一方のシ−ル状態が蒸発室15内の対流熱
等によって不良となっても、他方のドア96のシ−ルに
よって全体のシ−ル性が確保されるという利点がある。
また、真空ドア室93は比較的狭いため、室内への析出
汚れ量の絶対量も少なく、掃除等の設備管理が容易であ
る。更に、この真空二重ドア17は排気口直近に設置さ
れるため、真空ポンプ側を閉にし、排気口側を開にする
ことにより真空蒸発室15を雰囲気炉又は蒸し焼炉兼用
とすることが可能となる。前述した通り、真空二重ドア
17があるため、これを閉じることにより第1蒸発室1
5内の昇温中に蒸発物を回収することが可能となり、従
来のように降温することによる時間的ロスがない。
The vacuum double door 17 has such a simple structure, the construction cost and the equipment cost are low, and even if the sealing state of one of the two doors 96 is the convection heat in the evaporation chamber 15, For example, even if the door 96 becomes defective, there is an advantage that the seal of the other door 96 can secure the entire sealing property.
Further, since the vacuum door chamber 93 is relatively small, the absolute amount of the stains deposited in the chamber is small, and facility management such as cleaning is easy. Further, since the vacuum double door 17 is installed in the vicinity of the exhaust port, the vacuum pump side is closed and the exhaust port side is opened so that the vacuum evaporation chamber 15 can be used also as an atmosphere furnace or a steam furnace. It becomes possible. As described above, since the vacuum double door 17 is provided, by closing the same, the first evaporation chamber 1 is closed.
The evaporant can be recovered during the temperature rise in 5, and there is no time loss due to the temperature drop as in the conventional case.

【0029】また、第1蒸発室15内には、ヒ−タ−2
4とガス攪拌装置25とが配備され、その作用で第1蒸
発室15内の温度制御が行われる。第1蒸発室15内に
おいて真空加熱されて蒸発する金属蒸発物は金属回収装
置18にて回収され、また、粉体蒸発物は粉体回収装置
19にて回収される。
The first evaporating chamber 15 contains a heater-2.
4 and a gas stirring device 25 are provided, and the temperature of the inside of the first evaporation chamber 15 is controlled by the action thereof. Metal evaporates that are heated by vacuum heating and evaporated in the first evaporating chamber 15 are collected by a metal recovery device 18, and powder evaporates are collected by a powder recovery device 19.

【0030】真空パ−ジ室7内及び第1蒸発室15内の
真空度を上記ポンプ類だけではコントロ−ルできない場
合があるが、その場合は不活性ガス(通例チッ素ガス又
はアルゴンガス)と還元性ガス(通例水素ガス、一酸化
炭素又はNH3 分解ガス)とを真空パ−ジ室15内に供
給する。26は不活性ガスボンベ、27は還元性ガスボ
ンベであり、それらから伸びるガスライン28が、真空
バルブを介して真空パ−ジ室7並びに第1蒸発室15に
接続される。29は第1蒸発室15の外端部に配備され
た第2シリンダである。
In some cases, the degree of vacuum in the vacuum purging chamber 7 and the first evaporating chamber 15 cannot be controlled by the pumps alone. In such a case, an inert gas (generally, nitrogen gas or argon gas) is used. And a reducing gas (generally hydrogen gas, carbon monoxide or NH 3 decomposition gas) are supplied into the vacuum purge chamber 15. 26 is an inert gas cylinder, 27 is a reducing gas cylinder, and a gas line 28 extending from them is connected to the vacuum purge chamber 7 and the first evaporation chamber 15 via a vacuum valve. Reference numeral 29 denotes a second cylinder provided at the outer end of the first evaporation chamber 15.

【0031】第1蒸発室15の出口側には炉内断熱扉3
0が設置され、これに対向させて第1圧力調整室31の
入口側を開閉する真空扉32が設置される。上記第2シ
リンダ29は、炉内断熱扉30と真空扉32を開けた際
に、第1蒸発室15内の処理品2を第1圧力調整室31
内に押送する役目を果たす。第1圧力調整室31にも、
室内の処理品2を送り出す第3シリンダ33が設置され
る。第1圧力調整室31内における処理品の移動はロ−
ラ−駆動による。
At the outlet side of the first evaporation chamber 15, the insulated door 3 in the furnace is provided.
0 is installed, and a vacuum door 32 that opens and closes the inlet side of the first pressure adjustment chamber 31 is installed to face this. When the in-furnace heat insulating door 30 and the vacuum door 32 are opened, the second cylinder 29 transfers the processed product 2 in the first evaporating chamber 15 to the first pressure adjusting chamber 31.
Plays the role of pushing inside. Also in the first pressure adjustment chamber 31,
A third cylinder 33 for sending out the processed product 2 in the room is provided. The movement of the processed product in the first pressure adjustment chamber 31 is low.
It depends on the raster drive.

【0032】第1圧力調整室31には、真空扉34及び
断熱扉34aを介して第2蒸発室35がL字形を呈する
ように連設される。第1蒸発室15における処理終了
後、拡散ポンプ20、ホ−ルデングポンプ21、ブ−ス
タ−ポンプ22及びロ−タリ−ポンプ23の作用で第1
蒸発室15内及び第1圧力調整室31内の真空度の調整
が行われることにより、あるいは、バイパス電磁弁を開
にすることにより両室の真空度が同じようになったとこ
ろで(後出の蒸発室、圧力調整室間においても同様)、
炉内断熱扉30及び真空扉32が開かれると、第2シリ
ンダ29の作用で第1蒸発室15内の処理品2が第1圧
力調整室31内に押送される。この処理品2の押送後、
炉内断熱扉30と真空扉32が閉じられる。
A second evaporating chamber 35 is connected to the first pressure adjusting chamber 31 via a vacuum door 34 and a heat insulating door 34a so as to have an L-shape. After the processing in the first evaporation chamber 15 is completed, the first pump is operated by the diffusion pump 20, the holding pump 21, the booster pump 22, and the rotary pump 23.
When the degree of vacuum in the evaporation chamber 15 and the first pressure regulating chamber 31 is adjusted, or when the degree of vacuum in both chambers becomes the same by opening the bypass solenoid valve (described later). The same applies between the evaporation chamber and the pressure adjustment chamber),
When the insulated door 30 and the vacuum door 32 are opened, the processing product 2 in the first evaporation chamber 15 is pushed into the first pressure adjustment chamber 31 by the action of the second cylinder 29. After pushing the processed product 2,
The furnace insulation door 30 and the vacuum door 32 are closed.

【0033】第2蒸発室35は第1蒸発室15とほぼ同
じ構成で、ヒ−タ−36、ガス攪拌装置37及び第4シ
リンダ38を備え、真空二重ドア39を介して金属回収
装置40と粉体回収装置41とが設置される。また、粉
体回収装置41に続けてホ−ルデングポンプ43を備え
た拡散ポンプ42、ブ−スタ−ポンプ44、及びロ−タ
リ−ポンプ45が設置される。そして、炉内断熱扉4
6、真空扉47を介して第2圧力調整室48が連設され
る。
The second evaporating chamber 35 has substantially the same configuration as the first evaporating chamber 15, and includes a heater 36, a gas stirring device 37 and a fourth cylinder 38, and a metal recovery device 40 through a vacuum double door 39. And a powder recovery device 41 are provided. A diffusion pump 42 having a holding pump 43, a booster pump 44, and a rotary pump 45 are provided after the powder recovery device 41. And the insulated door 4 in the furnace
6. A second pressure adjusting chamber 48 is connected via a vacuum door 47.

【0034】第2圧力調整室48は第1圧力調整室31
同様に第5シリンダ49を備えていて、これに真空扉5
0及び断熱扉50aを介して第3蒸発室51が、やはり
L字形を呈するように連設される。第3蒸発室51も上
記蒸発室とほぼ同じ構成で、ヒ−タ−52、ガス攪拌装
置53及び第6シリンダ54を備え、真空二重ドア55
を介して金属回収装置56と粉体回収装置57とが設置
され、また、ホ−ルデングポンプ58を備えた拡散ポン
プ59、ブ−スタ−ポンプ60、及びロ−タリ−ポンプ
61が設置される。そして、炉内断熱扉62、真空扉6
3を介して冷却室が連設される。
The second pressure adjusting chamber 48 is provided in the first pressure adjusting chamber 31.
Similarly, a fifth cylinder 49 is provided, to which the vacuum door 5 is attached.
The third evaporating chamber 51 is connected via the heat insulating door 50a so as to have an L-shape. The third evaporating chamber 51 has substantially the same configuration as the above-described evaporating chamber, and includes a heater 52, a gas stirring device 53, and a sixth cylinder 54, and a vacuum double door 55.
, A metal recovery device 56 and a powder recovery device 57 are installed, and a diffusion pump 59 equipped with a holding pump 58, a booster pump 60, and a rotary pump 61 are installed. The insulated door 62 in the furnace and the vacuum door 6
A cooling chamber is connected via 3.

【0035】処理品2が第1圧力調整室31内に送られ
ると、上記同様にして第2蒸発室35内の真空度と第1
圧力調整室31内の真空度の調整が行われ、両室が大体
同圧になると真空扉34と断熱扉34aが同時に開かれ
る。そして、処理品2は、第3シリンダ33の作用で第
1圧力調整室31から第2蒸発室35内へと押送され、
押送完了後断熱扉34が閉じられる。
When the processed product 2 is sent into the first pressure adjustment chamber 31, the degree of vacuum in the second evaporation chamber 35 and the first
The degree of vacuum in the pressure adjustment chamber 31 is adjusted, and when both chambers have substantially the same pressure, the vacuum door 34 and the heat insulating door 34a are simultaneously opened. Then, the processed product 2 is pushed from the first pressure adjustment chamber 31 into the second evaporation chamber 35 by the action of the third cylinder 33,
After the completion of the pushing, the heat insulating door 34 is closed.

【0036】第2蒸発室35内においても第1蒸発室1
5と同様に、ロ−タリ−ポンプ45等の作用で真空度が
制御され、また、ヒ−タ−36により温度制御が行わ
れ、更に必要に応じ、不活性ガス、還元性ガス等による
制御が行われる。そして、処理品2を真空加熱する結果
蒸発する金属蒸発物は金属回収装置40で回収され、ま
た、その際発生する粉末酸化物等は粉体回収装置41で
回収される。なお、真空度が100Torr以上の場合
は、ガス攪拌装置37によって攪拌することによって対
流加熱する等の方法により、処理品2の昇温速度を早め
る。
In the second evaporation chamber 35, the first evaporation chamber 1
Similarly to 5, the degree of vacuum is controlled by the action of the rotary pump 45 and the like, and the temperature is controlled by the heater 36. Further, if necessary, control by an inert gas, a reducing gas, or the like is performed. Is performed. Then, a metal evaporant that evaporates as a result of vacuum heating of the processed product 2 is collected by the metal recovery device 40, and powder oxide and the like generated at that time are recovered by the powder recovery device 41. When the degree of vacuum is 100 Torr or more, the rate of temperature rise of the processed product 2 is increased by a method such as convection heating by stirring with the gas stirring device 37.

【0037】第2蒸発室35における処理終了後、バイ
パスの電磁弁の開操作、あるいは、ロ−タリ−ポンプ4
5、ブ−スタ−ポンプ44、拡散ポンプ42、ホ−ルデ
ングポンプ43等の作用で第2蒸発室35と第2圧力調
整室48の真空度制御がなされる。次いで、炉内断熱扉
46及び真空扉47が開かれ、処理品2が第4シリンダ
38によって第2圧力調整室48内に押送され、その後
炉内断熱扉46と真空扉47が閉じられる。第2圧力調
整室48内における処理品2の移動はシリンダ49によ
って行われる。
After the processing in the second evaporation chamber 35 is completed, the operation of opening the bypass solenoid valve or the rotary pump 4
5. The degree of vacuum in the second evaporation chamber 35 and the second pressure adjustment chamber 48 is controlled by the operation of the booster pump 44, the diffusion pump 42, the holding pump 43 and the like. Next, the furnace heat insulating door 46 and the vacuum door 47 are opened, and the processed product 2 is pushed into the second pressure adjusting chamber 48 by the fourth cylinder 38, and then the furnace heat insulating door 46 and the vacuum door 47 are closed. The movement of the processed product 2 in the second pressure adjustment chamber 48 is performed by the cylinder 49.

【0038】このようにして処理品2が第2圧力調整室
48内に送られると、上記同様にして第3蒸発室51内
の真空度と第2圧力調整室48内の真空度の調整が行わ
れ、両室が大体同圧になると真空扉50が開かれる。そ
して、処理品2は、第5シリンダ49の作用で第2圧力
調整室48から第3蒸発室51内へと押送され、押送完
了後真空扉50及び断熱扉50aが閉じられる。
When the processed product 2 is sent into the second pressure adjustment chamber 48 in this manner, the degree of vacuum in the third evaporation chamber 51 and the degree of vacuum in the second pressure adjustment chamber 48 are adjusted in the same manner as described above. Then, when both chambers have substantially the same pressure, the vacuum door 50 is opened. Then, the processed product 2 is pushed from the second pressure adjustment chamber 48 into the third evaporation chamber 51 by the action of the fifth cylinder 49, and after the pushing is completed, the vacuum door 50 and the heat insulating door 50a are closed.

【0039】第3蒸発室51内においても上記第1及び
第2蒸発室15、35と同様に、ロ−タリ−ポンプ61
等の作用で真空度が制御され、また、ヒ−タ−52によ
り温度制御が行われ、更に必要に応じ、不活性ガス、還
元性ガス等による制御が行われる。そして、処理品2を
真空加熱する結果蒸発する金属蒸発物は金属回収装置5
6で回収され、また、その際発生する粉末酸化物等は粉
体回収装置57で回収される。
In the third evaporation chamber 51, similarly to the first and second evaporation chambers 15, 35, a rotary pump 61 is provided.
The degree of vacuum is controlled by the action of, for example, the temperature is controlled by the heater 52, and the control by an inert gas, a reducing gas or the like is performed as necessary. Then, the metal evaporant that evaporates as a result of vacuum heating the processed product 2 is collected by the metal recovery device 5.
6 and powder oxides generated at that time are collected by a powder collecting device 57.

【0040】上述したように本発明に係る装置において
は、各蒸発室15、35、51と真空パ−ジ室7及び各
圧力調整室31、48をL字形に配置するが、これによ
り、処理品搬送上のメリットが出てくる。即ち、処理品
の蒸発室間の移動にエアシリンダを用いる場合、通例シ
リンダのストロ−クは1つの蒸発室分しかないため、蒸
発室が直線的に連設される場合、当該シリンダを複数の
蒸発室に亘って作用させることができない。しかるに、
本発明に係る装置では上記のようにL字形に配置するた
め、各蒸発室15、35、51からの処理品2の搬出
を、各蒸発室15、35、51に設置したシリンダ2
9、38、54によって達成でき、また、第1、第2圧
力調整室31、48からの処理品2の搬出を、それぞれ
の室に設置したシリンダ33、49で達成することがで
き、装置全体を簡素化することができる。
As described above, in the apparatus according to the present invention, the evaporation chambers 15, 35, 51, the vacuum purge chamber 7, and the pressure adjustment chambers 31, 48 are arranged in an L-shape. There are merits in product transportation. That is, when an air cylinder is used to move the processed product between the evaporation chambers, the stroke of the cylinder is usually only one evaporation chamber. Therefore, when the evaporation chambers are linearly connected, a plurality of cylinders are connected. It cannot work over the evaporation chamber. However,
Since the apparatus according to the present invention is arranged in an L-shape as described above, unloading of the processed product 2 from each of the evaporation chambers 15, 35, 51 is performed by the cylinders 2 installed in the respective evaporation chambers 15, 35, 51.
9, 38, 54, and the removal of the processed product 2 from the first and second pressure regulation chambers 31, 48 can be achieved by the cylinders 33, 49 installed in the respective chambers. Can be simplified.

【0041】第3蒸発室51には冷却室が連設される。
この冷却室は単室であってもよいが、多量処理等の場合
には冷却処理区間が短か過ぎて十分に冷却できない事態
が起こることを考慮し、複数室を直列に設けることが好
ましい。図示した例では冷却室は、第1冷却室64、第
2冷却室65及び第3冷却室66の3室に分れていて、
各室間はそれぞれ真空扉67、68で区切られている。
A cooling chamber is connected to the third evaporation chamber 51.
This cooling chamber may be a single chamber, but it is preferable to provide a plurality of chambers in series in consideration of a situation where the cooling section is too short to sufficiently cool in the case of a large amount of processing or the like. In the illustrated example, the cooling chamber is divided into three chambers, a first cooling chamber 64, a second cooling chamber 65, and a third cooling chamber 66.
The chambers are separated by vacuum doors 67 and 68, respectively.

【0042】また、各冷却室64〜66は攪拌装置69
を備えており、第1冷却室64は第7シリンダ70を備
えている。各冷却室における71は冷却フィンチュ−ブ
を示している。更に、各冷却室64〜66には、それぞ
れ二重真空扉72を介して不活性ガスボンベ26と還元
性ガスボンベ27からのラインが接続されると共に、回
収装置73、ブ−スタ−ポンプ74及びロ−タリ−ポン
プ75が接続される。
Each of the cooling chambers 64 to 66 is provided with a stirrer 69.
The first cooling chamber 64 includes a seventh cylinder 70. Reference numeral 71 in each cooling chamber indicates a cooling fin tube. Further, to each of the cooling chambers 64 to 66, a line from the inert gas cylinder 26 and the reducing gas cylinder 27 is connected via a double vacuum door 72, respectively, and a recovery device 73, a booster pump 74, and a The tally pump 75 is connected.

【0043】第3蒸発室51における蒸発処理終了後、
ロ−タリ−ポンプ75とブ−スタ−ポンプ74の作用、
又はバイパスの電磁弁開操作によって第1冷却室64内
の圧力が第3蒸発室51内の圧力と大体同じになると、
炉内断熱扉62及び真空扉63が開く。そして、第7シ
リンダ54の作用で処理品2が第1冷却室64内に押送
されると、炉内断熱扉62と真空扉63が閉じる。
After the completion of the evaporation process in the third evaporation chamber 51,
Operation of the rotary pump 75 and the booster pump 74;
Or, when the pressure in the first cooling chamber 64 becomes substantially the same as the pressure in the third evaporation chamber 51 by opening the solenoid valve of the bypass,
The furnace heat insulating door 62 and the vacuum door 63 open. Then, when the processing product 2 is pushed into the first cooling chamber 64 by the operation of the seventh cylinder 54, the in-furnace heat insulating door 62 and the vacuum door 63 are closed.

【0044】次いで、第1冷却室64内に不活性ガスボ
ンベ26から不活性ガスを、室内が常圧前後になるまで
供給し、攪拌装置69で攪拌して処理物2を急冷する。
その際室内に伸びる冷却フィンチュ−ブ71内に冷却水
を通流させ、冷却速度を加速する。かくして設定温度ま
で冷却した後、第2冷却室65内に第1冷却室64と同
圧に不活性ガスを供給し、あるいは、ロ−タリ−ポンプ
75及びブ−スタ−ポンプ74等の作用、又はバイパス
の電磁弁開操作によって第2冷却室65内の圧力をコン
トロ−ルした後、真空扉67が開かれ、ロ−ラ−駆動に
よって処理品2が第2冷却室65内に搬送される。
Next, an inert gas is supplied from the inert gas cylinder 26 into the first cooling chamber 64 until the pressure in the chamber becomes about normal pressure, and the processed material 2 is rapidly cooled by stirring with the stirring device 69.
At that time, cooling water is passed through a cooling fin tube 71 extending into the room to accelerate the cooling speed. After cooling to the set temperature in this way, an inert gas is supplied into the second cooling chamber 65 at the same pressure as the first cooling chamber 64, or the operation of the rotary pump 75 and the booster pump 74, Alternatively, after controlling the pressure in the second cooling chamber 65 by opening the solenoid valve of the bypass, the vacuum door 67 is opened, and the processed product 2 is conveyed into the second cooling chamber 65 by roller driving. .

【0045】第2冷却室65内においても、上記第1冷
却室64内におけると同様の動作がなされ、処理品2が
急冷される。その際の不活性ガスの熱交換は、冷却フィ
ンチュ−ブ71、二重真空扉72及び二重冷却室中の水
との間で行われる。ここにおいて設定温度まで冷却され
た処理品2は、上記同様にして第3冷却室66に搬送さ
れ、上記同様にして更に急冷される。
In the second cooling chamber 65, the same operation as in the first cooling chamber 64 is performed, and the processed product 2 is rapidly cooled. The heat exchange of the inert gas is performed between the cooling fin tube 71, the double vacuum door 72, and the water in the double cooling chamber. Here, the processed product 2 cooled to the set temperature is transported to the third cooling chamber 66 in the same manner as described above, and is further rapidly cooled in the same manner as described above.

【0046】設定温度まで処理品2が冷却されると、炉
外真空扉76が開き、処理品2は冷却室外へロ−ラ−駆
動により搬出される。その後、炉外真空扉76が閉じ、
冷却室66はロ−タリ−ポンプ75及びブ−スタ−ポン
プ74により空気が吸引されて10-2Torr台にされ
た後、不活性ガスが投入される。処理が終了した処理品
2は、炉外搬送装置77のロ−ラ−駆動により処理反転
装置78に送られ、そこから炉外に搬出される。
When the processed product 2 is cooled to the set temperature, the vacuum door 76 outside the furnace is opened, and the processed product 2 is carried out of the cooling chamber by a roller drive. Thereafter, the out-of-furnace vacuum door 76 closes,
After the air is sucked into the cooling chamber 66 by a rotary pump 75 and a booster pump 74 to make the cooling chamber 66 a pressure of the order of 10 -2 Torr, an inert gas is introduced. The processed product 2 after the processing is sent to the processing reversing device 78 by the roller drive of the out-of-furnace transfer device 77, and is carried out of the furnace from there.

【0047】なお、金属を含有する又は含有しないプラ
スチック、木材を含む金属処理品の処理に当っては、二
重真空扉17、39、55を閉じて二重真空扉80、8
8を開き(真空蒸発分離回収処理中は閉じている)、第
1蒸発室15、第2蒸発室35及び第3蒸発室51は雰
囲気炉又は蒸し焼室となし、金属を含むプラスチック及
び木材を蒸し焼状態にする。
In the processing of metal-treated products including plastics and woods containing or not containing metals, the double vacuum doors 17, 39 and 55 are closed and the double vacuum doors 80 and 8 are closed.
8 (closed during the vacuum evaporation separation and recovery process), the first evaporating chamber 15, the second evaporating chamber 35 and the third evaporating chamber 51 are made into an atmosphere furnace or a steaming chamber, and plastic and wood containing metals are used. Put it in a steamed state.

【0048】処理品2がダイオキシンを含んでいるよう
な場合は、その再成を防止すると共に無公害ガス化する
処理がなされる。即ち、第1蒸発室15及び第2蒸発室
35に、二重真空扉80を介してガス加熱装置81が設
置され、そこにおいて第1蒸発室15及び第2蒸発室3
5から送られてくる蒸発ガスが1100℃程度に加熱さ
れる。
In the case where the processed product 2 contains dioxin, a treatment for preventing its regeneration and converting it into a non-polluting gas is performed. That is, a gas heating device 81 is installed in the first evaporation chamber 15 and the second evaporation chamber 35 via the double vacuum door 80, where the first evaporation chamber 15 and the second evaporation chamber 3 are located.
5 is heated to about 1100 ° C.

【0049】ガス加熱装置81に続いて、中和剤層82
を備えたガス中和層83及びガス燃焼室84が配備され
る。ガス中和層83は水蒸気冷却されていて、上記11
00℃に加熱されたガスがここを通過することにより約
10秒程で常温にまで冷却され、以てダイオキシンの再
成が防止されると共に、中和剤層82による中和処理が
なされる。次いでガスはガス燃焼室84に送られ、そこ
で燃焼処理された後、サイクロン85及びバグフィルタ
−86を経て、送風機87により無公害ガスとして放出
される。
Following the gas heating device 81, the neutralizing agent layer 82
Is provided with a gas neutralization layer 83 and a gas combustion chamber 84. The gas neutralization layer 83 is steam-cooled,
By passing the gas heated to 00 ° C. through it, it is cooled to room temperature in about 10 seconds, thereby preventing regeneration of dioxin and neutralizing treatment by the neutralizing agent layer 82. Next, the gas is sent to a gas combustion chamber 84, where it is burned, and then discharged through a cyclone 85 and a bag filter 86 as a pollution-free gas by a blower 87.

【0050】各蒸発室15、35、51には二重真空扉
80、88を介して、液体回収槽89を備えたガス冷却
室90が設置されていて、ダイオキシンが含まれていな
い場合ガスはガス冷却室90に送られ、そこを通過する
際、その一部が冷却温度によって油化して液体回収槽8
9に回収される。油化しなかったガスは、ガス中和層8
3に送られて中和処理された後、上記と同じ工程にて放
出される。
In each of the evaporation chambers 15, 35 and 51, a gas cooling chamber 90 having a liquid recovery tank 89 is installed via double vacuum doors 80 and 88, and when no dioxin is contained, the gas is cooled. When it is sent to the gas cooling chamber 90 and passes through it, a part of it is turned into oil by the cooling temperature and becomes liquid recovery tank 8.
Collected in 9 The gas that has not been turned into oil is gas neutralized layer 8
After being sent to 3 and neutralized, it is released in the same process as above.

【0051】表2及び表3は、本発明に係る方法及び装
置において、ダイオキシン処理が有効になされることを
示すためになされた試験、即ち、常圧下における蒸焼き
方法と本発明に係る真空加熱方法とにより、廃車を60
0℃と800℃にて処理した場合(表2)と、シュレッ
ダ−ダストを800℃で処理した場合(表3)における
残渣組成分析値を示すものである。
Tables 2 and 3 show tests conducted to show that dioxin treatment can be effectively performed in the method and apparatus according to the present invention, that is, the steaming method under normal pressure and the vacuum heating according to the present invention. Depending on the method, 60
It shows the residue composition analysis values when treated at 0 ° C. and 800 ° C. (Table 2) and when the shredder dust is treated at 800 ° C. (Table 3).

【表2】 [Table 2]

【表3】 [Table 3]

【0052】この分析値によると、廃車を600℃にて
蒸焼きした場合におけるダイオキシン総量が0.404
769ng/nであるのに対し、真空加熱の場合のそれ
は0.00017ng/nに過ぎず、また、廃車を80
0℃にて蒸焼きした場合におけるダイオキシン総量が
0.3727ng/nであるのに対し、真空加熱の場合
のそれは0.001521ng/nに過ぎず(表2最下
欄)、更にシュレッダ−ダストを800℃にて蒸焼きし
た場合におけるダイオキシン総量が23.405ng/
nであるのに対し、真空加熱の場合は0となっている
(表3最下欄)。このことから、本発明におけるダイオ
キシン処理は十分満足のいくものであるということがで
きる。
According to the analysis values, the total amount of dioxin when the end-of-life vehicle was steamed at 600 ° C. was 0.404.
76.9 ng / n, whereas that in the case of vacuum heating is only 0.00017 ng / n.
The total amount of dioxin in the case of steaming at 0 ° C. is 0.3727 ng / n, whereas that in the case of vacuum heating is only 0.001521 ng / n (lower column in Table 2). Dioxin total amount when steamed at 800 ° C. is 23.405 ng /
n is 0 in the case of vacuum heating (lower column in Table 3). From this, it can be said that the dioxin treatment in the present invention is sufficiently satisfactory.

【0053】また、次の表4及び表5は、毒性等価濃度
(TEQ)、即ち、廃ガス中のダイオキシン含有量を示
すもので、表5中右端の連続後残渣が本発明に係る方法
において真空処理した場合の値で、最下欄に示されてい
るダイオキシンガス総量が他の場合に比較して少ないこ
とが分かる。このように本発明に係る方法の場合にダイ
オキシンの再成が有効に防止されるのは、真空蒸発処理
の場合は、ダイオキシン生成のための分子間距離が広く
なり過ぎ、反応する機会が非常に少なくなるためと推測
される。
The following Tables 4 and 5 show the toxic equivalent concentration (TEQ), that is, the dioxin content in the waste gas. It can be seen that the total amount of dioxin gas shown in the lowermost column is smaller than that of the other cases in the case of vacuum processing. Thus, in the case of the method according to the present invention, the regeneration of dioxin is effectively prevented because, in the case of vacuum evaporation, the intermolecular distance for dioxin generation becomes too wide, and the opportunity for reaction is very large. It is presumed to be less.

【表4】 [Table 4]

【表5】 [Table 5]

【0054】なお、図1に示した装置は蒸発室15、3
5、51を3つ連設したものであるが、蒸発室35又は
蒸発室35及び51を省略した構成も可能である。
The apparatus shown in FIG.
Although five and 51 are connected in series, a configuration in which the evaporation chamber 35 or the evaporation chambers 35 and 51 are omitted is also possible.

【0055】[0055]

【発明の効果】本発明は上述した通りであって、温度を
一定に保持した状態で処理室内の真空度の制御を行うた
めに処理に要する時間が短くて済み、処理能力の向上と
ランニングコストの低廉化が可能となるもので、更に蒸
発物を高純度にて回収することが可能となる非常に有益
なものである。
The present invention is as described above, and the time required for processing is short to control the degree of vacuum in the processing chamber while keeping the temperature constant, so that the processing time is improved and the running cost is improved. This is very useful because it enables the cost to be reduced, and further enables the evaporant to be recovered with high purity.

【0056】請求項3及び請求項8に記載の発明におい
ては、減圧値のコントロ−ルが容易となると共に、処理
室内、処理物及び蒸発物の酸化を抑制し得る効果があ
る。
According to the third and eighth aspects of the present invention, it is possible to easily control the reduced pressure value and to suppress the oxidation of the processed material and the evaporant in the processing chamber.

【0057】請求項4に記載の発明においては、コ−ク
ス等の粉体還元物を粉体処理物に均一に混合して処理す
ることにより、還元ガスと還元個体とが共存することと
なり、以て還元時間を短縮化し得ると共に、還元物質の
蒸発回収率を上げることができる効果がある。
According to the fourth aspect of the present invention, the reduced gas and the reduced solid coexist by uniformly mixing and treating the reduced powder such as coke with the processed powder. Thus, there is an effect that the reduction time can be shortened and the rate of evaporation and recovery of the reduced substance can be increased.

【0058】請求項5及び請求項9に記載の発明におい
ては、処理品がダイオキシンを含んでいるような場合
に、真空処理することによりその再成を防止し得ると共
に無公害化して排出し得る効果がある。
According to the fifth and ninth aspects of the present invention, in the case where the processed product contains dioxin, it can be prevented from being regenerated by vacuum treatment, and can be discharged without pollution. effective.

【0059】請求項7に記載の発明においては、処理物
の移送に一般的なシリンダ−を用いることが可能となる
ため、装置全体を簡素化し且つ低廉化し得る効果があ
る。
According to the seventh aspect of the present invention, since a general cylinder can be used for transferring the processed material, there is an effect that the entire apparatus can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る装置の全体構成図である。FIG. 1 is an overall configuration diagram of an apparatus according to the present invention.

【図2】 本発明に係る装置における真空二重ドアの構
成を示す図である。
FIG. 2 is a diagram showing a configuration of a vacuum double door in the device according to the present invention.

【図3】 本発明に係る方法と従来の方法における処理
物の表面と中心部の昇温に要する時間を示すグラフであ
る。
FIG. 3 is a graph showing the time required for raising the temperature of the surface and the central portion of the processed material in the method according to the present invention and the conventional method.

【符号の説明】[Explanation of symbols]

5 予熱炉 7 真空パ−ジ室 15 第1蒸発室 17 真空二重ドア 18 金属回収装置 19 粉体回収装置 20 拡散ポンプ 21 ホ−ルデングポンプ 22 ブ−スタ−ポンプ 23 ロ−タリ−ポンプ 24 ヒ−タ− 26 不活性ガスボンベ 27 還元性ガスボンベ 35 第2蒸発室 51 第3蒸発室 81 ガス加熱装置 83 ガス中和層 84 ガス燃焼室 5 Preheating furnace 7 Vacuum purge chamber 15 First evaporating chamber 17 Vacuum double door 18 Metal recovery unit 19 Powder recovery unit 20 Diffusion pump 21 Holden pump 22 Booster pump 23 Rotary pump 24 Heater Tar 26 Inert gas cylinder 27 Reducing gas cylinder 35 Second evaporation chamber 51 Third evaporation chamber 81 Gas heating device 83 Gas neutralization layer 84 Gas combustion chamber

【手続補正書】[Procedure amendment]

【提出日】平成9年11月13日[Submission date] November 13, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】表4[Correction target item name] Table 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【表4】 [Table 4]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】表5[Correction target item name] Table 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【表5】 [Table 5]

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 1又は複数配備される真空蒸発室内の温
度をそれぞれ一定に保持しておいて、それぞれ室内の真
空度を変化させていくことにより種々の蒸発物を順次分
離回収することを特徴とする真空蒸発分離回収方法。
1. A method in which one or a plurality of provided vacuum evaporation chambers are kept at a constant temperature, and various evaporates are sequentially separated and recovered by changing the degree of vacuum in each of the chambers. Vacuum evaporation separation and recovery method.
【請求項2】 温度を一定に保持したまま前記真空度を
800〜10-5Torrの範囲で変化させる請求項1に
記載の真空蒸発分離回収方法。
2. The vacuum evaporation separation and recovery method according to claim 1, wherein the degree of vacuum is changed within a range of 800 to 10 -5 Torr while keeping the temperature constant.
【請求項3】 前記真空度の変化を真空ポンプの動作、
並びに、不活性ガス及び/又は還元ガスの供給により行
なう請求項1又は2に記載の真空蒸発分離回収方法。
3. The operation of a vacuum pump, wherein the change in the degree of vacuum is
3. The vacuum evaporation separation and recovery method according to claim 1, wherein the method is performed by supplying an inert gas and / or a reducing gas.
【請求項4】 前記分離回収物として粉体を回収する場
合において、還元ガス及びコ−クス等の粉体還元物を混
入する請求項1に記載の真空蒸発分離回収方法。
4. The vacuum evaporation separation and recovery method according to claim 1, wherein, when the powder is recovered as the separated and recovered material, a reduced gas and a reduced powder such as coke are mixed.
【請求項5】 少なくとも最前段に配置される前記真空
蒸発室において、塩化物を含む処理品を10-1〜10-5
Torrの範囲で真空蒸発処理することによりダイオキ
シンその他の毒性塩化物の発生を抑制することを可能に
した請求項1乃至4のいずれかに記載の真空蒸発分離回
収方法。
5. At least in the vacuum evaporation chamber disposed at the forefront stage, a treated product containing a chloride is treated at 10 -1 to 10 -5.
The vacuum evaporation separation and recovery method according to any one of claims 1 to 4, wherein the generation of dioxin and other toxic chlorides can be suppressed by performing a vacuum evaporation treatment in the range of Torr.
【請求項6】 常圧下又はプラス圧下において室内を昇
温させる手段と、設定温度を維持した状態において室内
の真空度を制御する手段とを有する1又は複数の真空蒸
発室を備えていることを特徴とする真空蒸発分離回収装
置。
6. One or a plurality of vacuum evaporation chambers having means for raising the temperature of a room under normal pressure or positive pressure, and means for controlling the degree of vacuum in the room while maintaining a set temperature. Characteristic vacuum evaporation separation and recovery equipment.
【請求項7】 真空度の異なる真空蒸発室を複数連設し
て構成される請求項6に記載の装置において、前記蒸発
室間に圧力調整室を介在させ且つ前記蒸発室と前記圧力
調整室とをL字形に配置したことを特徴とする真空蒸発
分離回収装置。
7. The apparatus according to claim 6, wherein a plurality of vacuum evaporation chambers having different degrees of vacuum are connected in series, and a pressure adjustment chamber is interposed between the evaporation chambers, and the evaporation chamber and the pressure adjustment chamber. And a vacuum evaporation separation / recovery device, wherein the devices are arranged in an L-shape.
【請求項8】前記真空度制御手段が、真空ポンプ並びに
不活性ガス及び/又は還元ガスの供給手段である請求項
6又は7に記載の真空蒸発分離回収装置。
8. The vacuum evaporation separation and recovery apparatus according to claim 6, wherein said vacuum degree control means is a vacuum pump and a supply means of an inert gas and / or a reducing gas.
【請求項9】 少なくとも最前段に配置される前記真空
蒸発室に、その室内において発生する蒸発ガスを加熱す
る手段と、前記加熱手段によって加熱された蒸発ガスを
中和しつつ冷却するガス中和手段と、前記ガス中和手段
によって中和処理されたガスを燃焼する手段とを備えて
いることを特徴とする請求項6乃至8のいずれかに記載
の真空蒸発分離回収装置。
9. A means for heating an evaporative gas generated in at least the vacuum evaporation chamber disposed at the forefront stage, and a gas neutralizer for cooling while neutralizing the evaporative gas heated by the heating means. The vacuum evaporative separation / recovery apparatus according to any one of claims 6 to 8, further comprising: means for burning the gas neutralized by the gas neutralizing means.
【請求項10】 前記蒸発室の排気口に、気密性のドアを
二重に配置した真空二重ドアを設置した請求項6乃至9
のいずれかに記載の真空蒸発分離回収装置。
10. A vacuum double door in which an airtight door is double arranged at an exhaust port of the evaporation chamber.
The vacuum evaporation separation and recovery device according to any one of the above.
【請求項11】 前記最前段の蒸発室の前段に、前記蒸発
室とは直結することなく距離を置いて、処理品を酸化し
ない程度に予熱する予熱炉を置いた請求項6乃至10の
いずれかに記載の真空蒸発分離回収装置。
11. A preheating furnace for preheating a treated product so as not to oxidize a treated product is provided in front of the foremost evaporating chamber at a distance from the evaporating chamber without being directly connected to the evaporating chamber. A vacuum evaporation separation and recovery apparatus according to any one of the above.
【請求項12】 真空蒸発分離回収処理された処理物を時
間をかけて冷却するための複数の冷却室を備えた請求項
6乃至11のいずれかに記載の真空蒸発分離回収装置。
12. The vacuum evaporation separation and recovery apparatus according to claim 6, further comprising a plurality of cooling chambers for cooling the processed material subjected to the vacuum evaporation separation and recovery processing over time.
【請求項13】 前記真空蒸発室に金属回収装置と共に粉
体回収装置を設置した請求項6乃至12のいずれかに記
載の真空蒸発分離回収装置。
13. The vacuum evaporation separation / recovery device according to claim 6, wherein a powder recovery device is installed in the vacuum evaporation chamber together with a metal recovery device.
JP19504997A 1997-07-04 1997-07-04 Vacuum evaporation separation recovery method and apparatus Expired - Fee Related JP3763557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19504997A JP3763557B2 (en) 1997-07-04 1997-07-04 Vacuum evaporation separation recovery method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19504997A JP3763557B2 (en) 1997-07-04 1997-07-04 Vacuum evaporation separation recovery method and apparatus

Publications (2)

Publication Number Publication Date
JPH1119625A true JPH1119625A (en) 1999-01-26
JP3763557B2 JP3763557B2 (en) 2006-04-05

Family

ID=16334705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19504997A Expired - Fee Related JP3763557B2 (en) 1997-07-04 1997-07-04 Vacuum evaporation separation recovery method and apparatus

Country Status (1)

Country Link
JP (1) JP3763557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058260A1 (en) * 1998-05-13 1999-11-18 Houei Syoukai Co., Ltd. Treating apparatus, treating method and method of treating soil
EP1008395A3 (en) * 1998-12-11 2003-05-02 Matsushita Electric Industrial Co., Ltd. Method for separating metallic material from waste printed circuit boards, and dry distilation apparatus used for waste treatment
US7156027B1 (en) 1998-03-31 2007-01-02 Houei Syoukai Co., Ltd. Method for producing soil, soil-processing unit, method for processing and unit for processing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156027B1 (en) 1998-03-31 2007-01-02 Houei Syoukai Co., Ltd. Method for producing soil, soil-processing unit, method for processing and unit for processing
WO1999058260A1 (en) * 1998-05-13 1999-11-18 Houei Syoukai Co., Ltd. Treating apparatus, treating method and method of treating soil
US7381383B1 (en) 1998-05-13 2008-06-03 Hoei Shokai Co., Ltd. Treating apparatus, treating method and method of treating soil
EP1008395A3 (en) * 1998-12-11 2003-05-02 Matsushita Electric Industrial Co., Ltd. Method for separating metallic material from waste printed circuit boards, and dry distilation apparatus used for waste treatment

Also Published As

Publication number Publication date
JP3763557B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
EP0168788B1 (en) Continuous type atmosphere heat treating furnace
US20060293551A1 (en) Method for producing soil, soil-processing unit, method for processing and unit for processing
EP0724008A2 (en) Method and plant for the pyrolytic treatment of waste containing organic material, particularly for treating municipal solid waste
JPH1119625A (en) Vacuum evaporation separation recovering method and device therefor
US6132488A (en) Process of treating waste containing zinc oxide
US5205857A (en) Method and apparatus for recovering substance adhered to object to be processed
KR940004102B1 (en) Cleaning method and apparatus for removing liquid substance to the surface of an object
US20190048166A1 (en) Hybrid processing of waste material
JPS58130270A (en) Continuous vacuum carburizing furnace and its operation method
JPH0816248B2 (en) Vacuum evaporation recovery method
JPS60190511A (en) Heat treating installation for metal
JP2528388B2 (en) Method and apparatus for continuously cleaning solid surface
JP3818936B2 (en) Processing equipment
JPH10238728A (en) Heat treatment facility for waste and method therefor
JPH0841554A (en) Treatment of used battery
JP2003183724A (en) Heat treatment furnace
JP3951587B2 (en) Pyrolysis treatment facility and operation method
ZA200102128B (en) Method for producing directly reduced metal in a multi-tiered furnace.
JP3310245B2 (en) Processing device and processing method
JP3412218B2 (en) Atmosphere heat treatment method
JP2003190924A (en) Organic compound decomposing and treating device
JPH11267401A (en) Treatment and treating device
JP2003001234A (en) Treating method
JP2002053945A (en) Two-chamber-type gas sulfonitriding furnace
JP2003171717A (en) Two-chamber type heat treatment furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees