JP3951587B2 - Pyrolysis treatment facility and operation method - Google Patents

Pyrolysis treatment facility and operation method Download PDF

Info

Publication number
JP3951587B2
JP3951587B2 JP2000318934A JP2000318934A JP3951587B2 JP 3951587 B2 JP3951587 B2 JP 3951587B2 JP 2000318934 A JP2000318934 A JP 2000318934A JP 2000318934 A JP2000318934 A JP 2000318934A JP 3951587 B2 JP3951587 B2 JP 3951587B2
Authority
JP
Japan
Prior art keywords
cracked gas
gas
thermal decomposition
cracked
gas conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000318934A
Other languages
Japanese (ja)
Other versions
JP2002130638A (en
Inventor
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2000318934A priority Critical patent/JP3951587B2/en
Publication of JP2002130638A publication Critical patent/JP2002130638A/en
Application granted granted Critical
Publication of JP3951587B2 publication Critical patent/JP3951587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【0001】
【発明の属する技術分野】
本発明は廃棄物等の被処理物を間接加熱処理して熱分解し、減容化(乾燥、炭化、灰化等により)する熱分解処理施設とその運転方法に関し、特に、ガス導管内壁に付着している付着物(粉塵、分解物など)を除去し、内部を清掃する技術に関する。
【0002】
【従来の技術】
可燃性成分を含有する各種被処理物(例えば、廃棄物、各種乾燥処理物、灰化物など)は種々な方法で加熱処理されている。例えば、加熱容器に被処理物を投入し、外部からの加熱による乾留(蒸し焼き)処理で熱分解し、分解ガスと炭化物に分離して炭化物を得てこれを資源として利用することは一般に行われている。
【0003】
この場合の処理物としては、含有する可燃性成分の量は大小さまざまであるが、各種廃棄物(一般廃棄物、産業廃棄物など)、汚泥、焼却灰、飛灰、汚染土壌、建築廃材、各種シュレッダーダスト、金属スクラップ、有機性物質など各種のものがある。
【0004】
また、回転キルン内に被処理物を投入し、回転キルン内の被処理物を間接加熱により所定の温度条件で処理するものも知られている(例えば特開平11−344213号)。また、バッチ式のものも知られている(特開平6−269760)。
【0005】
一方、発明者らは、有機性物質(塩素などのハロゲン物質)である有機塩素化合物(塩化水素)が従来の「排出の抑制」でなく、「発生の抑制」を行うことで、塩化水素などの有害物質の発生を抑制し、排ガスの無害化、残渣の無害化、塩素による処理装置の損傷の低減化を行うことを提案している。(例えば、特開平9−155326号、特開平10−43713号、特開平10−235186号、特開平10−235187号など)。
【0006】
このように被処理物を燃焼処理するのではなく、乾留処理する場合には、加熱処理することによってタール分等の可燃成分を含んだ分解ガスが発生し、その処理も必要となる。
【0007】
即ち、廃棄物等の被処理物を間接加熱処理して減容化(乾燥、炭化、灰化等)する熱分解処理施設にあっては、分解発生した分解ガス中の昇華物質が冷却により針状結晶として付着固化し、更には未燃タール分、灰分、微細固形分等がガス導管の内壁などに付着固化してガス導管内を閉塞、局部燃焼するなどの問題を引き起こす恐れがある。
【0008】
従来、これらの問題を解決するために、ガス導管に清掃装置を設けて、付着・堆積するダストを除去したり(特開2000−136387)、または、ガス導管を所定の温度で保温することで付着しないようにすること(特開平10−205726)が提案されている。
【0009】
【発明が解決しようとする課題】
上記のガス導管に清掃装置を設けて機械的手段によって除去することは、付着物除去の効果は期待できるものの、流路の障害物となり、ガス流路の抵抗となるばかりか、その手段自体に付着することになる。
【0010】
また、ガス導管を所定の温度で保温する方法は、保温により付着防止効果は期待できるものの、問題は運転停止時における冷却過程で付着・固化する恐れがあり、この点で課題が残る。
【0011】
本発明は、このような課題に鑑みなされたもので、既設の排気ブロワを利用して簡単に清掃できる技術を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の課題を解決すべく種々検討した結果、排気ブロワを利用し、運転開始時に高速空気を導入して通風することで付着物を除去できることを見出した。
【0013】
また、付着しても成長固化しないように、特に、分解ガス導管を被処理物から発生した分解ガス温度以上の温度で保温することを併用すれば、付着物の除去に更に効果があることが判った。
【0014】
本発明はこれらの知見に基づいてなされたものである。即ち、前記課題を解決する本発明の加熱処理施設は、被処理物を搬送する搬送手段と、被処理物を外部間接加熱により減容化する熱分解処理手段と、発生した残渣を回収する残渣処理手段と、発生した分解ガスを燃焼する分解ガス燃焼手段と、熱分解処理手段で発生した分解ガスを分解ガス燃焼手段に導く分解ガス導管手段と、分解ガス燃焼手段で燃焼した排ガスを排気する排気ブロワ手段と、前記熱分解処理手段における被処理物の流路および/又は分解ガス導管手段に開閉扉を有する付着物除去手段を備え、前記排気ブロワ手段を起動して前記熱分解処理手段と前記排気ブロワ手段との間におけるガスの流路内を一定時間吸引減圧し、所定減圧後、前記付着物除去手段の開閉扉を開いて少なくとも分解ガス導管手段内に空気を急激に導入することで、少なくとも分解ガス導管内の付着物を除去することを特徴とする。
【0015】
上記の付着物除去手段は、熱分解処理手段における加熱処理炉の被処理物の投入側および/又は排出側に設けることが望ましい。
【0016】
また、上記の分解ガス導管手段は、分解ガス導管と該分解ガス導管を囲繞する保温管とから成り、保温管内に熱分解処理手段で発生した分解ガスの温度以上の熱ガスを導入するようにする。
【0017】
被処理物から発生した分解ガスの温度は、被処理物の資質によって異なるが、例えば、350℃〜400℃の場合、それ以上の温度とすることが望ましい。
【0018】
更に、保温管内に導入する熱ガスは、分解ガス燃焼手段から排出される排ガスは850℃程度の高温であることから、その一部を分岐し、下温して使用すれば、排ガスの有効利用が図れる。
【0019】
上記の熱分解処理施設の運転方法は、前記の排気ブロワ手段を起動して熱分解処理手段と排気ブロワ手段との間におけるガスの流路内を一定時間吸引減圧し、所定減圧後、付着物除去手段の開閉扉を開いて少なくとも分解ガス導管手段内に空気を急激に導入することで、少なくとも分解ガス導管内の付着物を除去するようにする。
【0020】
この付着物除去手段の開閉扉の開く時期は、加熱処理の運転開始時(運転開始毎)に行うことが望ましい。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面によって説明する。
【0022】
図1は本発明の熱分解処理施設の概念図を示す。同図において1は被処理物を破砕する破砕手段、2は破砕した被処理物から釘などの鉄系金属を取り除く金属除去手段で、例えば、磁選機からなる。
【0023】
3は除去された金属を収容する容器、4は第1の閉鎖搬送手段で、該閉鎖搬送手段4はパイプコンベアとも称され、図2に示すように、閉鎖された無端管路5と、該無端管路5内に設けられ、無端管路5内を循環移動する可撓性搬送手段6とによって構成されている。
【0024】
無端管路5は、往管路Gを形成する下部水平管部5a、起立(垂直又は傾斜)管部5b、上部水平管部5c及び復管路Rを形成する上部水平管部5d、起立管部5e、下部水平管部5fからなり、往管路Gと復管路Rは曲線管5g,5hとによってエンドレスに連結されている。
【0025】
可撓性搬送手段6は、図2に示すように、無端管路5内に無端の可撓性搬送手段として設けられ、被処理物受け体(以下、ブレードと称す)6aと、多間接体、チェーン又はロープ等のような可撓性の牽引体(以下、チェーンと略称する)6bと、該チェーン6bを牽引駆動する駆動源7によって構成され、牽引体を一方向に循環移動させる。この駆動源7は、モータ7a、牽引体と係合して駆動するスプロケット7bからなり、スプロケット7bは、曲線管5h内で可撓性搬送手段6のチェーン6bと噛合し、可撓性搬送手段6を駆動する。この噛合部はカバー7cで密閉されている。
【0026】
8は往管路の下部水平管5aに設けられた被処理物の投入口、9は復路管Rの上部水平管部5dに設けられた被処理物の排出口を示している。
【0027】
10はホッパで、第1の閉鎖搬送手段4からの被処理物を貯留し、第2の閉鎖搬送手段11を介して第1の定量供給手段12に供給する。第2の閉鎖搬送手段11は第1の閉鎖搬送手段4と構成は同じである。この第2の閉鎖搬送手段11の適宜の箇所、例えば、下部水平管5aに脱塩素剤としての処理剤14を注入する。なお、閉鎖搬送手段4及び11の供給口と排出口に接続される機器(金属除去手段2、ホッパ10、定量供給手段12)との接続は密閉接続とする。
【0028】
また定量供給手段12も、上下に開閉バルブを有し、両方の開閉バルブが同時に開くことのないように操作し、外気の流通を防止している。
【0029】
15は被処理物を乾燥・脱塩素処理を行う加熱処理炉(以下、脱塩炉と略称する)で、該脱塩炉15は、被処理物と処理剤とを外部加熱手段で加熱し、加熱により被処理物から分解析出する分解ガスと処理剤とを反応させて脱塩素処理をするもので、回転キルン形に例をとれば、回転円筒体15aの外周にガスダクト15bを形成して熱ガスを導入して回転円筒体15a内の被処理物を加熱する。この回転円筒体15aは、図示を省略してあるが、支持ローラで回転自在に支持されるとともに、回転駆動手段で回転駆動され、且つ内部に送り羽根を有し、回転円筒体15aの回転によって被処理物が供給口側から排出口側に撹拌しながら移送するようになっている。
【0030】
16は供給側ダクトで、定量供給手段12で定量化された被処理物と処理剤の混合物を回転円筒体15a内に供給する。17は誘導加熱手段で、加熱コイルを有し、該加熱コイルは、加熱ジャケット15bの両端側の回転円筒体15aの外周に、該回転円筒体15aとは非接触に設けられ、回転円筒体15aの両端側の温度の低下を補充的に加熱する。
【0031】
18は脱塩炉15で脱塩素処理した被処理物を炭化処理する加熱処理炉(以下、炭化炉と称す)で、前記の脱塩炉15の加熱処理炉と同じ構成をなしている。即ち、回転円筒体18aと、該回転円筒体18aの外周に設けられた外部加熱手段としてのガスダクト18bから成る。19は、回転円筒体18aの外周でガスダクト18bの両側に設けられた誘導加熱手段を示す。
【0032】
20は被処理物の導出入ダクトで、脱塩炉15で加熱処理した被処理物を炭化炉18に導入する。21は排出側ダクトで、炭化炉18で炭化処理した炭化物を定量供給手段22に導入する。
【0033】
なお、回転円筒体15a及び18aとガスダクト15b及び18bとの各回転接触部にはメカニカルシールCが施され、熱ガスの漏れを防止している。同様に回転円筒体15aと供給側ダクト16、導出入ダクト20との回転接触部、回転円筒体18aと導出入ダクト20、排出側ダクト21との回転接触部にもメカニカルシールCが施され、回転円筒体内からのガス漏れを防止している。
【0034】
23は熱風炉で、LNG,LPG又は石油等の燃料をバーナ等で燃焼して熱ガスを発生させ、炭化炉18のガスダクト18b内に供給し、炭化炉18を加熱した後、連絡管24を介して脱塩炉15のガスダクト15b内に導入し、脱塩炉15を加熱した後、ガス管L1を介して熱交換器26に、またその一部を熱風炉23に導入する。27は上記の熱ガスを循環させる循環ブロワを示す。
【0035】
28は第1の閉鎖搬送手段4と同じ構成の第3の閉鎖搬送手段で、第2の定量供給手段22で定量化された炭化物を第3の定量化供給手段29を介して分解ガス燃焼炉30内に導入する。この分解ガス燃焼炉30は、LNG,LPG又は石油等の燃料を燃焼させ、炭化処理された炭化物の他、脱塩炉15及び炭化炉18で加熱処理中に発生する分解ガス(乾留ガス)も分解ガス導管L2,L3を介して導入して燃焼させる。燃焼後の排ガスはガス管L4を介してサイクロン31で集塵した後、熱交換器26に導入して熱を回収し、バグフィルタ32で清浄化して、サイレンサ33を通して排出する。34はこれらのガスを吸引して排出する排気ブロワである。
【0036】
熱交換器26は、2つのガス室に分け、一方は熱風炉23からの熱ガスと各加熱処理炉を加熱した後の熱ガスをガス管L1を介して導入しそのまま排出し、又、乾留ガス燃焼炉30から発生する燃焼ガスは、種々の物質が混入しているので他方のガス室を通してバグフィルタ32で清浄化した後排出する。
【0037】
35は温水利用設備で、ポンプ36で水を熱交換器26内を循環させて温水を得る。
【0038】
なお、金属除去手段2から分解ガス燃焼炉30に至る被処理物の通路を形成する各機器の接続は密閉接続とし、通路全体としても気密性が保持され、低酸素域を保持するとともに、悪臭は外部に漏れることがないように形成してある。
【0039】
被処理物は必ずしも炭化する必要がない場合は、導出入ダクト20から定量供給手段(図示省略)を介して第3の閉鎖搬送手段28に接続してもよい。
【0040】
37は灰化物回収手段で、分解ガス燃焼炉30で燃焼して生じた灰が所定量になったとき、扉イを開けて取り出す。
【0041】
分解ガス導管L2及びL3は夫々二重管で構成されている。即ち、X−X断面矢視図の図1(B)に示すように、分解ガス(乾留ガス)を導通する分解ガス導管L2およびL3と、その外周に所定のギャップgをもって同心円的に配設した保温管P2およびよりP3となり、ギャップgには熱ガスを送通させ分解ガス導管を加熱保温する。
【0042】
導入する熱ガスは、本例では分解ガス燃焼炉30からの排ガスをサイクロン31に送出するガス管L4からブロワ38によって保温管P2,P3の一端側(分解ガス燃焼炉30側)からギャップg内に送り込み、他端側(導出入ダクト20側)からガス管L5を介して導出し、サイクロン31に送出する。
【0043】
このとき新鮮空気39を導入して温度をタール分が固化しない温度、即ち、被処理物から発生した分解ガスの温度以上の温度で保温するようにする。
【0044】
40,50,60および70は付着物除去手段で、これら付着物除去手段は、脱塩炉15の供給側ダクト16,炭化炉18の排出側ダクト21,導出入ダクト20の上部および下部に夫々設けられている。なお、導出入ダクト20に設けた付着物除去手段60,70は、分解ガス導管L2,L3内に空気を導入するためのものであるから、分解ガス導管自体に設けてもよい。
【0045】
図3はこれらの付着物除去手段の一実施例で、皆同じ構成をしているので、付着物除去手段40について説明すると、41は供給側ダクト16に設けられた開閉口、42は開閉口41を囲み供給側ダクト16の外側に突設された円筒体座、43は円筒体座42の外端部に設けられたパッキン、44はパッキン43に当接して開閉口41を閉塞、開口する開閉扉で、下部は支軸45に回動自在に軸支されいる。
【0046】
46は開閉扉44を開閉操作する扉操作部で、シリンダ46a,操作桿46cを取り付けたピストン46b,操作桿46cに弾装した蓄勢ばね46d,シリンダ46a内の圧力制御用の切換弁46e,迂回管46fとからなり、シリンダ46aの一端は、固定部材46gに回動自在に取り付けられ、また操作桿46cの先端部は、開閉扉44に回動自在に取り付けられている。
【0047】
47は開閉扉44のロック部で、電磁石47aと、該電磁石47aによって操作されるロックピン47bとからなり、ロックピン47bは電磁石47aの付勢により上昇し、消勢により下降する。下降したとき開閉扉44の上部に設けた係合部44aの嵌入孔44bおよび円筒体座42に設けた係合部42aの嵌入孔42bに嵌入して開閉扉44をロックする。
【0048】
従って、開閉扉44を閉じる場合は、切換弁46eをコンプレッサ側に切り換えて図示省略したコンプレッサより空気をシリンダ46a内に送り込みピストン46bを介して操作桿46cによって開閉扉44を図の反時計方向に回動操作して閉じる。閉じた状態で電磁石47aを消勢してロックピン47bを下降させて開閉扉をロックする。
【0049】
このとき、蓄勢ばね46dは、ピストン46bの移動により蓄勢されるので蓄勢状態を保持している。開閉扉44をロックした後には切換弁46eを排気側に切り換え、シリンダ46a内を大気圧にしておく。
【0050】
開閉扉44の開操作は、電磁石47aを付勢してロックピン47bを上昇させ、係合部44aとの係合を外す。ロックが解かれると蓄勢ばね46dの放勢により、開閉扉44は急速に時計方向に回動して開く。このとき、迂回管46fによってピストン46b内の空気はシリンダ46aの反対側にも放圧され、シリンダ46aの動きを助ける。
【0051】
次に、被処理物の一連の加熱処理方法について説明する。
【0052】
運転開始より、各機器・装置は駆動されるが、排気ガス系はガスの流路の下流側から順次起動される。まず、排気ブロワ34を起動して各炉から排気ブロワに至るガスの流路における圧力、特に、各炉内圧力、分解ガス燃焼炉内の圧力などを監視し、所定の減圧状態(例えば、−4000〜13300Pa)に到達したとき、付着物除去手段60および/又は70の開閉扉44を開ける。この開閉扉の開放により大量の空気が高速で導入され、分解ガス導管L2およびL3−分解ガス燃焼炉30−ガス管L4−サイクロン31−熱交換器26−バグフィルタ32−排気ブロワ34−サイレンサ33を通して排気される。この空気流によって分解ガス導管L2,L3内に付着している付着物は除去され、導入空気とともに通風してサイクロン31又はバグフィルタ32で回収される。この動作を3〜5回繰り返す。
【0053】
また、付着物除去手段40および50の開閉扉を開ければ、加熱処理炉15および18の炉壁に付着している付着物を除去することができる。
【0054】
付着物除去手段の開閉扉44を所定時間(例えば、5分程度)開いた後、開閉扉44を閉じて開閉口41を閉鎖し、運転を継続する。この作業は、運転開始毎に行うことが望ましい。勿論、被処理物の資質により運転頻度は適宜選定する。
【0055】
次に、熱風炉23でLNG等の燃料を燃焼して熱ガスを発生させるとともに循環ブロワ27を運転し、熱ガスを炭化炉18のガスダクト18b及び脱塩炉15のガスダクト15bに導入し、各回転円筒体18a及び15aを加熱する。
【0056】
脱塩素処理のための加熱温度は、250℃〜350℃、炭化するための加熱温度は450℃〜650℃とすると、まず、炭化炉18を450℃〜650℃に加熱し、加熱後の熱ガスを連絡管24から脱塩炉15に導入する。このとき、連絡管24に温度調節用空気25を導入して脱塩炉15の温度を250℃〜350℃に調節する。
【0057】
次に、破砕手段1に被処理物を投入し、所定の大きさ(30mm以下)に破砕する。そして、金属除去手段2で釘などの鉄系金属を除外し、第1の閉鎖搬送手段4でホッパ10に搬送し一時貯留する。
【0058】
次に、ホッパ10の下部から第2の閉鎖搬送手段11を介して第1の定量供給手段12に導入し、ここで計量して所定の量(投入量の一定量化)を脱塩炉15に供給する。このとき、第2の閉鎖搬送手段11内に脱塩素用の処理剤14を注入する。この第2の閉鎖搬送手段11で被処理物、被処理物と処理剤は、搬送過程において撹拌と混合が行われる。
【0059】
この脱塩炉15での加熱処理は、被処理物の含有する有害物質(塩化水素など)が析出する温度と時間によって行う。この温度と時間は、事前に調査して、被処理物の性質を把握し、この調査結果を十分にカバーできる温度(200℃〜350℃、約30分)と時間で処理する。
【0060】
また、この脱塩炉15および炭化炉18での加熱処理は、燃焼、焼却ではなく、低酸素雰囲気中での蒸し焼き、熱分解での処理とし、熱分解により析出したハロゲン系の物質(HClガス等)の有害物質と処理剤とを接触反応させる。
【0061】
被処理物と混合又は添加する処理剤は、少なくともHCl(塩化水素)と接触反応して無害な塩化物を生成するアルカリ物質を使用する。例えば、本願の出願人が先に出願した特開平9−155326号、特開平10−43713号、特開平10−235186号、特開平10−235187号、特開平11−9937号、特開平11−101417号に示すように、アルカリ土類金属、アルカリ土類金属化合物、アルカリ金属、アルカリ金属化合物で、具体的には、カルシウム、石灰、消石灰、炭酸カルシウム、ドロマイト、珪酸塩(珪酸カルシウムなど)、炭酸水素ナトリウム、炭酸ナトリウム、セスキ炭酸ナトリウム、天然ソーダ、水酸化ナトリウム、水酸化カリウム、炭酸水素カリウム、炭酸カリウムの中から1種類選択するか、数種類混合して使用する。使用量としては、被処理物に対して5〜30重量%を混合又は添加する。
【0062】
または、本願の出顧人が先に出願した特願平10−193844号に示す多孔質化したアルカリ物質(多孔質脱塩素剤)を使用する。多孔質化は、気化成分(O,H,CO,CO2等)を含有するアルカリ物質を加熱して含有する気化成分をH2O,CO2として蒸発分離し、この分離飛散によりアルカリ物質体に貫通孔、凹部(穴)を形成することで多孔質化したものである。この多孔質化による表面積が増加し、発生ガスとの接触面積が増大する。この多孔質脱塩素剤を被処理物に対して5〜30重量%を混合又は添加して使用する。
【0063】
上記の例えば炭酸水素ナトリウム(NaHCO3)を使用した場合、無害化処理炉5内においてHCl成分の分解ガスが発生するが、直ちに炭酸水素ナトリウムと反応して(NaHCO3)+(HCl)→(NaCl)+(H2O)+(CO2)となり、無害な塩化ナトリウム(NaCl)を生成し、分解ガスから有害なHClがなくなる。このことによって、分解ガス中のHCl成分の無害化と加熱処理後の被処理物の無害化が同時に行われる。
【0064】
この無害化された被処理物は、導出入ダクト20を介して炭化炉18の回転円筒体18aに送り込まれ、ここで被処理物が炭化する温度(紙類は350℃程度で炭化が始まる。)350℃〜700℃、好ましくは600℃で炭化処理される。
【0065】
炭化した被処理物(炭化物)は、第2の定量供給手段22、第3の閉鎖搬送手段28及び第3の定量供給手段29を介して分解ガス燃焼炉30に導入され燃焼される。一方、脱塩炉15及び炭化炉18内で発生した分解ガス(乾留ガス)もこの分解ガス燃焼炉30内に導入され、共に燃焼処理(800℃、2秒以上)され炭化物は灰化される。この燃焼処理によって発生した排ガスは、サイクロン31、熱交換器26、バグフィルタ32、サイレンサ33を介して大気中に排出される。
【0066】
また、分解ガス導管L2,L3は、保温管P2,P3で夫々囲繞され、保温管の内部に少なくともタール分が固化しない温度を維持するための熱ガスが送風されているので、タール分等が分解ガス導管内に付着固化する現象は解消される。
【0067】
【発明の効果】
本発明は次の効果を奏する。
(1)運転開始初期の減圧環境を利用して、密閉路内の一部を開口することで大量の空気を高速で通風できるので、管路、炉壁に付着している各種付着物は除去回収できる。
(2)よって、付着物の成長に起因する閉塞、燃焼といった問題は解消され、安定した熱分解処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の熱分解処理施設の概念図。
【図2】閉鎖搬送手段の説明図。
【図3】付着物除去手段の説明図。
【符号の説明】
1…破砕手段
2…金属除去手段
3…容器
4,11,28…閉鎖搬送手段
5…無端管路
6…可撓性搬送手段
7…駆動源
8…投入口
9…排出口
10…ホッパ
12,22,29…定量供給手段
14…処理剤
15…脱塩炉
16…供給側ダクト
17,19…誘導加熱手段
18…炭化炉
20…導出入ダクト
21…排出側ダクト
23…熱風炉
24…連絡管
25…温度調節用空気
26…熱交換器
27…循環ブロワ
30…分解ガス燃焼炉
31…サイクロン
32…バグフィルタ
33…サイレンサ
34…排気ブロワ
35…温水利用設備
36…ポンプ
37…灰化物回収手段
38…ブロワ
40,50,60,70…付着物除去手段
2,L3…分解ガス導管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal decomposition treatment facility and a method for operating the same, in which waste to be treated is thermally decomposed by indirect heat treatment and reduced in volume (by drying, carbonization, ashing, etc.). The present invention relates to a technique for removing attached matter (dust, decomposed product, etc.) and cleaning the inside.
[0002]
[Prior art]
Various objects to be treated (for example, waste, various kinds of dried products, ashed materials, etc.) containing a combustible component are heat-treated by various methods. For example, it is a common practice to put an object to be processed into a heating vessel, pyrolyze it by dry distillation (steaming) by heating from outside, separate it into cracked gas and carbide, obtain a carbide and use it as a resource. ing.
[0003]
In this case, the amount of combustible components contained in the treated products varies widely, but various types of waste (general waste, industrial waste, etc.), sludge, incineration ash, fly ash, contaminated soil, construction waste, There are various types such as various shredder dust, metal scrap, and organic substances.
[0004]
There is also known a method in which an object to be processed is put into a rotary kiln and the object to be processed in the rotary kiln is processed under a predetermined temperature condition by indirect heating (for example, Japanese Patent Application Laid-Open No. 11-344213). A batch type is also known (JP-A-6-269760).
[0005]
On the other hand, the inventors of the present invention have made it possible for organic chlorine compounds (hydrogen chloride), which are organic substances (halogen substances such as chlorine), to perform “suppression of generation” instead of the conventional “suppression of emissions”, thereby producing hydrogen chloride, etc. It has been proposed to suppress the generation of harmful substances, detoxify exhaust gas, detoxify residues, and reduce damage to treatment equipment by chlorine. (For example, JP-A-9-155326, JP-A-10-43713, JP-A-10-235186, JP-A-10-235187, etc.).
[0006]
In this way, when the object to be treated is not subjected to combustion treatment, but is subjected to dry distillation treatment, the heat treatment generates cracked gas containing a combustible component such as tar, and this treatment is also required.
[0007]
In other words, in a thermal decomposition facility that reduces the volume (drying, carbonization, ashing, etc.) of an object such as waste by indirect heat treatment, the sublimated substance in the decomposed decomposition gas is cooled by the needle. There is a risk of causing solidification as solid crystals and further causing problems such as unburned tar, ash, fine solids, etc. adhering and solidifying on the inner wall of the gas conduit to block the gas conduit and cause local combustion.
[0008]
Conventionally, in order to solve these problems, a cleaning device has been provided in the gas conduit to remove dust that adheres and accumulates (Japanese Patent Laid-Open No. 2000-136387), or the gas conduit is kept at a predetermined temperature. It has been proposed to prevent adhesion (Japanese Patent Laid-Open No. 10-205726).
[0009]
[Problems to be solved by the invention]
Although it is possible to expect the effect of removing deposits by installing a cleaning device on the above gas conduit and removing it by mechanical means, it becomes an obstacle to the flow path and becomes a resistance of the gas flow path. Will adhere.
[0010]
In addition, although the method of keeping the gas conduit at a predetermined temperature can be expected to prevent adhesion by keeping warm, the problem is that it may be attached and solidified during the cooling process when the operation is stopped.
[0011]
This invention is made | formed in view of such a subject, and it aims at providing the technique which can be easily cleaned using the existing exhaust blower.
[0012]
[Means for Solving the Problems]
As a result of various studies to solve the above problems, it has been found that deposits can be removed by using an exhaust blower and introducing high-speed air at the start of operation to ventilate.
[0013]
In addition, in order not to grow and solidify even if it adheres, it is possible to further improve the removal of the adhering matter, particularly if the cracking gas conduit is kept warm at a temperature equal to or higher than the cracking gas temperature generated from the object to be processed. understood.
[0014]
The present invention has been made based on these findings. That is, the heat treatment facility of the present invention that solves the above problems includes a transport means for transporting the object to be processed, a thermal decomposition means for reducing the volume of the object to be processed by external indirect heating, and a residue for recovering the generated residue. Treatment means, cracked gas combustion means for burning the generated cracked gas, cracked gas conduit means for guiding the cracked gas generated by the thermal cracking means to the cracked gas combustion means, and exhausting the exhaust gas burned by the cracked gas combustion means An exhaust blower means, and a deposit removal means having an open / close door in the flow path of the object to be processed and / or the cracking gas conduit means in the thermal decomposition processing means, and the exhaust blower means is activated to The inside of the gas flow path with the exhaust blower means is sucked and depressurized for a certain period of time, and after a predetermined pressure reduction, the door of the deposit removing means is opened and air is rapidly introduced into at least the cracked gas conduit means. In Rukoto, and removing deposits of at least the decomposition gas in the conduit.
[0015]
The deposit removing means is preferably provided on the input side and / or the discharge side of the object to be processed of the heat treatment furnace in the thermal decomposition processing means.
[0016]
The cracked gas conduit means comprises a cracked gas conduit and a heat insulating tube surrounding the cracked gas conduit, and a hot gas having a temperature equal to or higher than the temperature of the cracked gas generated by the thermal decomposition processing means is introduced into the heat insulating tube. To do.
[0017]
Although the temperature of the decomposition gas generated from the object to be processed varies depending on the nature of the object to be processed, for example, in the case of 350 ° C. to 400 ° C., it is desirable that the temperature be higher.
[0018]
Furthermore, since the exhaust gas discharged from the cracked gas combustion means is a high temperature of about 850 ° C., if the hot gas introduced into the heat insulation pipe is branched and used at a low temperature, the exhaust gas can be effectively used. Can be planned.
[0019]
The operation method of the above thermal decomposition treatment facility is that the exhaust blower means is activated to suck and depressurize the gas flow path between the thermal decomposition treatment means and the exhaust blower means for a certain period of time, At least the deposits in the cracked gas conduit are removed by opening the open / close door of the removing means and rapidly introducing air into at least the cracked gas conduit means.
[0020]
It is desirable that the opening / closing door of the deposit removing means is opened at the start of heat treatment operation (every operation start).
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
FIG. 1 shows a conceptual diagram of the thermal decomposition treatment facility of the present invention. In the figure, reference numeral 1 denotes a crushing means for crushing an object to be processed, and 2 denotes a metal removing means for removing iron-based metal such as a nail from the crushed object to be processed, which comprises, for example, a magnetic separator.
[0023]
3 is a container for storing the removed metal, 4 is a first closed conveying means, and the closed conveying means 4 is also called a pipe conveyor, as shown in FIG. The flexible conveying means 6 is provided in the endless pipeline 5 and circulates and moves in the endless pipeline 5.
[0024]
The endless pipe line 5 includes a lower horizontal pipe part 5a that forms an outgoing pipe G, a standing (vertical or inclined) pipe part 5b, an upper horizontal pipe part 5c, and an upper horizontal pipe part 5d that forms a return pipe R, and a standing pipe. The forward pipe G and the return pipe R are connected endlessly by curved pipes 5g and 5h.
[0025]
As shown in FIG. 2, the flexible conveying means 6 is provided as an endless flexible conveying means in the endless pipe 5, and a workpiece receiving body (hereinafter referred to as a blade) 6 a and a multi-indirect body. And a flexible traction body (hereinafter abbreviated as a chain) 6b such as a chain or a rope, and a drive source 7 that pulls and drives the chain 6b, and circulates the traction body in one direction. The drive source 7 includes a motor 7a and a sprocket 7b that is driven by engaging with a pulling body. The sprocket 7b meshes with the chain 6b of the flexible conveying means 6 in the curved tube 5h, and the flexible conveying means. 6 is driven. This meshing portion is sealed with a cover 7c.
[0026]
Reference numeral 8 denotes an input port for the object to be processed provided in the lower horizontal pipe 5a of the outgoing line, and reference numeral 9 denotes an outlet for the object to be processed provided in the upper horizontal pipe part 5d of the return pipe R.
[0027]
Reference numeral 10 denotes a hopper, which stores an object to be processed from the first closed conveying means 4 and supplies it to the first fixed supply means 12 via the second closed conveying means 11. The second closing and conveying means 11 has the same configuration as the first closing and conveying means 4. A treatment agent 14 as a dechlorinating agent is injected into an appropriate portion of the second closed conveying means 11, for example, the lower horizontal pipe 5a. In addition, let the connection with the apparatus (metal removal means 2, hopper 10, fixed quantity supply means 12) connected to the supply port and discharge port of the closed conveyance means 4 and 11 be a sealed connection.
[0028]
The quantitative supply means 12 also has open / close valves on the top and bottom, and is operated so that both open / close valves do not open at the same time, thereby preventing the circulation of outside air.
[0029]
15 is a heat treatment furnace (hereinafter abbreviated as “demineralization furnace”) for drying and dechlorinating the object to be treated. The demineralization furnace 15 heats the object to be treated and the treatment agent by an external heating means, A dechlorination process is performed by reacting a decomposition gas that decomposes and precipitates from the object to be processed with heating and a treatment agent. If the rotary kiln type is taken as an example, a gas duct 15b is formed on the outer periphery of the rotary cylinder 15a. Hot gas is introduced to heat the object in the rotating cylinder 15a. Although not shown, the rotating cylinder 15a is rotatably supported by a support roller, is rotated by a rotation driving means, has a feed blade inside, and is rotated by the rotation of the rotating cylinder 15a. The object to be processed is transferred from the supply port side to the discharge port side with stirring.
[0030]
Reference numeral 16 denotes a supply-side duct that supplies a mixture of an object to be processed and a processing agent quantified by the quantitative supply means 12 into the rotating cylindrical body 15a. Reference numeral 17 denotes induction heating means, which has a heating coil, which is provided on the outer periphery of the rotating cylindrical body 15a on both ends of the heating jacket 15b, in a non-contact manner with the rotating cylindrical body 15a. The temperature decrease at both ends is supplementarily heated.
[0031]
Reference numeral 18 denotes a heat treatment furnace (hereinafter referred to as a carbonization furnace) for carbonizing an object to be dechlorinated in the desalination furnace 15, which has the same configuration as the heat treatment furnace of the desalination furnace 15. That is, it comprises a rotating cylinder 18a and a gas duct 18b as an external heating means provided on the outer periphery of the rotating cylinder 18a. Reference numeral 19 denotes induction heating means provided on both sides of the gas duct 18b on the outer periphery of the rotating cylindrical body 18a.
[0032]
Reference numeral 20 denotes a lead-in / out duct for an object to be processed, which introduces the object to be processed that has been heat-treated in the desalination furnace 15 into the carbonization furnace 18. Reference numeral 21 denotes a discharge duct, which introduces the carbide carbonized in the carbonization furnace 18 into the quantitative supply means 22.
[0033]
In addition, the mechanical seal C is given to each rotation contact part of the rotating cylindrical bodies 15a and 18a and the gas ducts 15b and 18b, and the leakage of a hot gas is prevented. Similarly, the mechanical seal C is applied to the rotating contact portion between the rotating cylindrical body 15a and the supply side duct 16 and the outlet / inlet duct 20, and the rotating contact portion between the rotating cylinder 18a and the outlet / inlet duct 20 and the discharge side duct 21, respectively. Gas leakage from the inside of the rotating cylinder is prevented.
[0034]
Reference numeral 23 denotes a hot air furnace, in which a fuel such as LNG, LPG, or petroleum is burned with a burner or the like to generate hot gas, which is supplied into the gas duct 18b of the carbonization furnace 18 and heated. and introduced into gas duct 15b desalting furnace 15 through, after heating the desalted furnace 15, the heat exchanger 26 via the gas pipe L 1, also introduces a part of the hot air furnace 23. Reference numeral 27 denotes a circulation blower for circulating the hot gas.
[0035]
Reference numeral 28 denotes a third closed conveying means having the same configuration as the first closed conveying means 4. The carbide quantified by the second quantitative supply means 22 is decomposed into the cracked gas combustion furnace via the third quantitative supply means 29. 30. The cracked gas combustion furnace 30 combusts fuel such as LNG, LPG or petroleum, and also decomposes gas (dry distillation gas) generated during the heat treatment in the desalination furnace 15 and the carbonization furnace 18 in addition to the carbonized carbide. It is introduced through the cracked gas conduits L 2 and L 3 and burned. The exhaust gas after combustion is collected by the cyclone 31 via the gas pipe L 4 , then introduced into the heat exchanger 26 to recover heat, cleaned by the bag filter 32, and discharged through the silencer 33. An exhaust blower 34 sucks and discharges these gases.
[0036]
The heat exchanger 26 is divided into two gas chambers, one of which introduces the hot gas from the hot stove 23 and the hot gas after heating each heat treatment furnace through the gas pipe L 1 and discharges it as it is, Since the combustion gas generated from the dry distillation gas combustion furnace 30 is mixed with various substances, the combustion gas is exhausted after being cleaned by the bag filter 32 through the other gas chamber.
[0037]
Reference numeral 35 denotes hot water utilization equipment, and water is circulated in the heat exchanger 26 by a pump 36 to obtain hot water.
[0038]
In addition, the connection of each apparatus which forms the channel | path of the to-be-processed object from the metal removal means 2 to the cracked gas combustion furnace 30 is made into a sealed connection, airtightness is maintained also as the whole channel | path, while maintaining a low oxygen region, and a bad odor Is formed so as not to leak to the outside.
[0039]
If the workpiece is not necessarily carbonized, it may be connected from the lead-in / out duct 20 to the third closed conveying means 28 via a fixed supply means (not shown).
[0040]
Reference numeral 37 denotes an ash recovery means. When the amount of ash generated by combustion in the cracked gas combustion furnace 30 reaches a predetermined amount, the door a is opened and taken out.
[0041]
The cracked gas conduits L 2 and L 3 are each composed of a double pipe. That is, as shown in FIG. 1 (B) in the cross-sectional view taken along the line XX, concentrically with cracked gas conduits L 2 and L 3 for conducting cracked gas (dry distillation gas) and a predetermined gap g on the outer periphery thereof. The insulated pipes P 2 and P 3 are arranged, and a hot gas is sent to the gap g to heat and maintain the cracked gas conduit.
[0042]
In this example, the hot gas to be introduced is from one end side (the cracked gas combustion furnace 30 side) of the heat retaining pipes P 2 and P 3 by the blower 38 from the gas pipe L 4 that sends the exhaust gas from the cracked gas combustion furnace 30 to the cyclone 31. The gas is fed into the gap g, led out from the other end side (the lead-in / in duct 20 side) through the gas pipe L 5 , and sent to the cyclone 31.
[0043]
At this time, fresh air 39 is introduced to keep the temperature at a temperature at which the tar content does not solidify, that is, a temperature equal to or higher than the temperature of the cracked gas generated from the object to be processed.
[0044]
Reference numerals 40, 50, 60 and 70 denote adhering substance removing means, which are respectively provided at the upper part and the lower part of the supply side duct 16 of the desalination furnace 15, the discharge side duct 21 of the carbonization furnace 18, and the lead-in / out duct 20. Is provided. The deposit removing means 60 and 70 provided in the lead-in / out duct 20 are for introducing air into the cracked gas conduits L 2 and L 3 , and may be provided in the cracked gas conduit itself.
[0045]
FIG. 3 shows one embodiment of these deposit removing means, and they all have the same configuration. The deposit removing means 40 will be explained. 41 is an opening / closing port provided in the supply side duct 16, and 42 is an opening / closing port. 41 is a cylindrical seat projecting outside the supply duct 16, 43 is a packing provided at the outer end of the cylindrical seat 42, 44 is in contact with the packing 43 to close and open the opening / closing port 41. The lower part of the opening / closing door is pivotally supported by the support shaft 45.
[0046]
46 is a door operation part for opening and closing the open / close door 44, a piston 46b to which a cylinder 46a, an operation rod 46c are attached, an accumulator spring 46d elastically mounted on the operation rod 46c, a pressure control switching valve 46e in the cylinder 46a, It consists of a bypass pipe 46f, and one end of the cylinder 46a is rotatably attached to the fixing member 46g, and the tip of the operation rod 46c is rotatably attached to the open / close door 44.
[0047]
Reference numeral 47 denotes a lock portion of the open / close door 44, which includes an electromagnet 47a and a lock pin 47b operated by the electromagnet 47a. The lock pin 47b rises when the electromagnet 47a is energized and descends when the electromagnet 47a is deenergized. When lowered, the door 44 is inserted into the fitting hole 44b of the engaging portion 44a provided in the upper portion of the opening / closing door 44 and the fitting hole 42b of the engaging portion 42a provided in the cylindrical body seat 42 to lock the door 44.
[0048]
Therefore, when closing the opening / closing door 44, the switching valve 46e is switched to the compressor side, air is sent into the cylinder 46a from the compressor (not shown), and the opening / closing door 44 is turned counterclockwise by the operating rod 46c via the piston 46b. Rotate to close. In the closed state, the electromagnet 47a is de-energized and the lock pin 47b is lowered to lock the door.
[0049]
At this time, the energy storage spring 46d is stored by the movement of the piston 46b, and therefore maintains the stored state. After locking the opening / closing door 44, the switching valve 46e is switched to the exhaust side, and the inside of the cylinder 46a is kept at atmospheric pressure.
[0050]
The opening operation of the open / close door 44 energizes the electromagnet 47a to raise the lock pin 47b and disengage the engagement portion 44a. When the lock is released, the open / close door 44 is rapidly rotated clockwise by the release of the energy storage spring 46d. At this time, the air in the piston 46b is released to the opposite side of the cylinder 46a by the bypass pipe 46f, and assists the movement of the cylinder 46a.
[0051]
Next, a series of heat treatment methods for an object to be processed will be described.
[0052]
Each device / device is driven from the start of operation, but the exhaust gas system is sequentially activated from the downstream side of the gas flow path. First, the exhaust blower 34 is activated and the pressure in the gas flow path from each furnace to the exhaust blower, in particular, the pressure in each furnace, the pressure in the cracked gas combustion furnace, and the like are monitored, and a predetermined reduced pressure state (for example, − When reaching 4000 to 13300 Pa), the door 44 of the deposit removing means 60 and / or 70 is opened. A large amount of air is introduced at a high speed by opening the door, and the cracked gas conduits L 2 and L 3 -the cracked gas combustion furnace 30 -the gas pipe L 4 -the cyclone 31 -the heat exchanger 26 -the bag filter 32 -the exhaust blower 34 -Exhausted through the silencer 33; Deposits adhered in the cracked gas conduits L 2 and L 3 are removed by this air flow, and are passed through the introduced air and collected by the cyclone 31 or the bag filter 32. This operation is repeated 3 to 5 times.
[0053]
Further, if the doors of the deposit removing means 40 and 50 are opened, the deposits attached to the furnace walls of the heat treatment furnaces 15 and 18 can be removed.
[0054]
After the opening / closing door 44 of the deposit removing means is opened for a predetermined time (for example, about 5 minutes), the opening / closing door 44 is closed, the opening / closing port 41 is closed, and the operation is continued. It is desirable to perform this operation every time operation is started. Of course, the operation frequency is appropriately selected depending on the quality of the object to be processed.
[0055]
Next, a fuel such as LNG is burned in the hot air furnace 23 to generate a hot gas, and the circulating blower 27 is operated to introduce the hot gas into the gas duct 18b of the carbonization furnace 18 and the gas duct 15b of the desalination furnace 15, The rotating cylinders 18a and 15a are heated.
[0056]
Assuming that the heating temperature for dechlorination is 250 ° C. to 350 ° C. and the heating temperature for carbonization is 450 ° C. to 650 ° C., first, the carbonization furnace 18 is heated to 450 ° C. to 650 ° C. Gas is introduced into the desalination furnace 15 from the communication pipe 24. At this time, the temperature adjusting air 25 is introduced into the communication pipe 24 to adjust the temperature of the desalting furnace 15 to 250 ° C. to 350 ° C.
[0057]
Next, the object to be processed is put into the crushing means 1 and crushed into a predetermined size (30 mm or less). Then, the metal removing means 2 excludes ferrous metals such as nails, and the first closed conveying means 4 conveys the hopper 10 to temporarily store it.
[0058]
Next, it is introduced from the lower part of the hopper 10 into the first fixed supply means 12 through the second closed conveying means 11 and weighed here, and a predetermined amount (quantification of the input amount) is supplied to the desalination furnace 15. Supply. At this time, a treatment agent 14 for dechlorination is injected into the second closed conveying means 11. The object to be processed, the object to be processed, and the processing agent are agitated and mixed in the transport process by the second closed conveying means 11.
[0059]
The heat treatment in the desalination furnace 15 is performed according to the temperature and time at which a harmful substance (hydrogen chloride or the like) contained in the workpiece is deposited. This temperature and time are investigated in advance to grasp the properties of the object to be processed, and processed at a temperature (200 ° C. to 350 ° C., about 30 minutes) and time that can sufficiently cover the result of the investigation.
[0060]
The heat treatment in the desalination furnace 15 and the carbonization furnace 18 is not combustion or incineration but steaming and pyrolysis in a low-oxygen atmosphere, and halogen-based substances (HCl gas deposited by thermal decomposition). Etc.) and contact treatment with harmful substances.
[0061]
As the treating agent to be mixed or added with the object to be treated, an alkaline substance that generates a harmless chloride by reacting at least with HCl (hydrogen chloride) is used. For example, JP-A-9-155326, JP-A-10-43713, JP-A-10-235186, JP-A-10-235187, JP-A-11-9937, and JP-A-11-11 filed earlier by the applicant of the present application. As shown in 101417, alkaline earth metal, alkaline earth metal compound, alkali metal, alkali metal compound, specifically, calcium, lime, slaked lime, calcium carbonate, dolomite, silicate (calcium silicate, etc.), One type is selected from sodium hydrogen carbonate, sodium carbonate, sodium sesquicarbonate, natural soda, sodium hydroxide, potassium hydroxide, potassium hydrogen carbonate, potassium carbonate, or a mixture of several types is used. As a usage-amount, 5 to 30 weight% is mixed or added with respect to a to-be-processed object.
[0062]
Alternatively, a porous alkali substance (porous dechlorinating agent) shown in Japanese Patent Application No. 10-193844 filed earlier by the client of the present application is used. Porous, the vaporized component (O, H, CO, CO 2 , etc.) vaporized component containing by heating an alkaline substance containing H 2 O, flashed off as CO 2, an alkaline substance member by the separating splashing It is made porous by forming through holes and recesses (holes). The surface area due to the porous structure increases, and the contact area with the generated gas increases. This porous dechlorinating agent is used by mixing or adding 5 to 30% by weight to the object to be treated.
[0063]
For example, when sodium hydrogen carbonate (NaHCO 3 ) is used, the decomposition gas of the HCl component is generated in the detoxification treatment furnace 5, but it immediately reacts with sodium hydrogen carbonate (NaHCO 3 ) + (HCl) → ( NaCI) + (H 2 O) + (CO 2 ), producing harmless sodium chloride (NaCl) and eliminating harmful HCl from the cracked gas. Thereby, detoxification of the HCl component in the cracked gas and detoxification of the object to be treated after the heat treatment are simultaneously performed.
[0064]
The detoxified workpiece is sent to the rotating cylindrical body 18a of the carbonization furnace 18 through the lead-in / in duct 20, where the carbonization of the workpiece (carbonization starts at about 350 ° C.). ) Carbonized at 350 ° C. to 700 ° C., preferably 600 ° C.
[0065]
The carbonized workpiece (carbide) is introduced into the cracked gas combustion furnace 30 through the second fixed supply means 22, the third closed conveying means 28, and the third fixed supply means 29 and burned. On the other hand, the cracked gas (dry distillation gas) generated in the desalination furnace 15 and the carbonization furnace 18 is also introduced into the cracked gas combustion furnace 30 and is combusted together (800 ° C., 2 seconds or more), and the carbide is ashed. . The exhaust gas generated by this combustion process is discharged into the atmosphere via the cyclone 31, the heat exchanger 26, the bag filter 32, and the silencer 33.
[0066]
In addition, the cracked gas conduits L 2 and L 3 are surrounded by the heat insulation pipes P 2 and P 3 , respectively, and hot gas for maintaining at least a temperature at which tar content does not solidify is blown into the heat insulation pipes. The phenomenon that tar and the like adhere and solidify in the cracked gas conduit is eliminated.
[0067]
【The invention's effect】
The present invention has the following effects.
(1) Since a large amount of air can be ventilated at high speed by opening a part of the sealed path using the reduced pressure environment at the beginning of operation, various deposits adhering to the pipe line and furnace wall are removed. Can be recovered.
(2) Therefore, problems such as blockage and combustion due to the growth of deposits are solved, and stable thermal decomposition treatment can be performed.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a thermal decomposition treatment facility of the present invention.
FIG. 2 is an explanatory diagram of a closing conveyance unit.
FIG. 3 is an explanatory diagram of a deposit removing means.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Crushing means 2 ... Metal removal means 3 ... Container 4, 11, 28 ... Closed conveyance means 5 ... Endless pipe 6 ... Flexible conveyance means 7 ... Drive source 8 ... Input port 9 ... Discharge port 10 ... Hopper 12, 22, 29 ... fixed quantity supply means 14 ... treatment agent 15 ... desalination furnace 16 ... supply side ducts 17 and 19 ... induction heating means 18 ... carbonization furnace 20 ... lead-in / out duct 21 ... discharge side duct 23 ... hot air furnace 24 ... communication pipe 25 ... Temperature control air 26 ... Heat exchanger 27 ... Circulating blower 30 ... Decomposed gas combustion furnace 31 ... Cyclone 32 ... Bag filter 33 ... Silencer 34 ... Exhaust blower 35 ... Hot water utilization equipment 36 ... Pump 37 ... Ashing substance recovery means 38 ... Blowers 40, 50, 60, 70 ... Deposit removal means L 2 , L 3 ... cracked gas conduit

Claims (6)

被処理物を搬送する搬送手段と、被処理物を外部間接加熱により減容化する熱分解処理手段と、発生した残渣を回収する残渣処理手段と、発生した分解ガスを燃焼する分解ガス燃焼手段と、熱分解処理手段で発生した分解ガスを分解ガス燃焼手段に導く分解ガス導管手段と、分解ガス燃焼手段で燃焼した排ガスを排気する排気ブロワ手段と、前記熱分解処理手段における被処理物の流路および/又は分解ガス導管手段に開閉扉を有する付着物除去手段を備え、
前記排気ブロワ手段を起動して前記熱分解処理手段と前記排気ブロワ手段との間におけるガスの流路内を一定時間吸引減圧し、所定減圧後、前記付着物除去手段の開閉扉を開いて少なくとも分解ガス導管手段内に空気を急激に導入することで、少なくとも分解ガス導管内の付着物を除去すること
を特徴とする熱分解処理施設。
Conveying means for conveying the object to be processed, thermal decomposition processing means for reducing the volume of the object to be processed by external indirect heating, residue processing means for recovering the generated residue, and cracked gas combustion means for burning the generated decomposition gas A cracked gas conduit means for guiding the cracked gas generated in the pyrolysis treatment means to the cracked gas combustion means, an exhaust blower means for exhausting the exhaust gas burned in the cracked gas combustion means, and an object to be treated in the pyrolysis treatment means A deposit removing means having an open / close door in the flow path and / or the cracked gas conduit means;
The exhaust blower means is activated to suck and depressurize the gas flow path between the thermal decomposition treatment means and the exhaust blower means for a certain period of time, and after a predetermined pressure reduction, open and close the opening / closing door of the deposit removing means. A thermal decomposition treatment facility characterized in that at least deposits in the cracked gas conduit are removed by rapidly introducing air into the cracked gas conduit means .
付着物除去手段は、熱分解処理手段における加熱処理炉の被処理物の投入側および/又は排出側に設けたことを特徴とする請求項1記載の熱分解処理施設。  The thermal decomposition treatment facility according to claim 1, wherein the deposit removing means is provided on the input side and / or the discharge side of the workpiece of the heat treatment furnace in the thermal decomposition processing means. 分解ガス導管手段は、分解ガス導管と該分解ガス導管を囲繞する保温管とから成り、保温管内に熱分解処理手段で発生した分解ガスの温度以上の熱ガスを導入するようにしたことを特徴とする請求項1又は2記載の熱分解処理施設。  The cracked gas conduit means comprises a cracked gas conduit and a heat insulating pipe surrounding the cracked gas conduit, and a hot gas having a temperature equal to or higher than the temperature of the cracked gas generated by the thermal decomposition treatment means is introduced into the heat insulating pipe. The thermal decomposition treatment facility according to claim 1 or 2. 保温管内に導入する熱ガスは、分解ガス燃焼手段で得た熱ガスを導入することを特徴とする請求項3記載の熱分解処理施設。  4. The thermal decomposition treatment facility according to claim 3, wherein the hot gas introduced into the heat insulation pipe is the hot gas obtained by the decomposition gas combustion means. 被処理物を搬送する搬送手段と、被処理物を外部間接加熱により減容化する熱分解処理手段と、発生した残渣を回収する残渣処理手段と、発生した分解ガスを燃焼する分解ガス燃焼手段と、熱分解処理手段で発生した分解ガスを分解ガス燃焼手段に導く分解ガス導管手段と、分解ガス燃焼手段で燃焼した排ガスを排気する排気ブロワ手段と、前記熱分解処理手段における被処理物の流路および/又は分解ガス導管手段に開閉扉を有する付着物除去手段を備え、前記排気ブロワ手段を起動して熱分解処理手段と排気ブロワ手段との間におけるガスの流路内を一定時間吸引減圧し、所定減圧後、付着物除去手段の開閉扉を開いて少なくとも分解ガス導管手段内に空気を急激に導入することで、少なくとも分解ガス導管内の付着物を除去するようにしたことを特徴とする熱分解処理施設の運転方法。  Conveying means for conveying the object to be processed, thermal decomposition processing means for reducing the volume of the object to be processed by external indirect heating, residue processing means for recovering the generated residue, and cracked gas combustion means for burning the generated decomposition gas A cracked gas conduit means for guiding the cracked gas generated in the pyrolysis treatment means to the cracked gas combustion means, an exhaust blower means for exhausting the exhaust gas burned in the cracked gas combustion means, and an object to be treated in the pyrolysis treatment means The flow path and / or the cracked gas conduit means is provided with a deposit removing means having an open / close door, and the exhaust blower means is activated to suck the gas flow path between the thermal decomposition treatment means and the exhaust blower means for a certain period of time. The pressure is reduced, and after a predetermined pressure reduction, the door of the deposit removing means is opened and air is rapidly introduced into at least the cracked gas conduit means so that at least deposits in the cracked gas conduit are removed. The method of operating the thermal decomposition treatment plant, characterized in that the. 付着物除去手段の開閉扉の開きは運転開始時に行うことを特徴とする請求項5記載の熱分解処理施設の運転方法。  6. The method for operating a thermal decomposition treatment facility according to claim 5, wherein the opening / closing door of the deposit removing means is opened at the start of operation.
JP2000318934A 2000-10-19 2000-10-19 Pyrolysis treatment facility and operation method Expired - Fee Related JP3951587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318934A JP3951587B2 (en) 2000-10-19 2000-10-19 Pyrolysis treatment facility and operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318934A JP3951587B2 (en) 2000-10-19 2000-10-19 Pyrolysis treatment facility and operation method

Publications (2)

Publication Number Publication Date
JP2002130638A JP2002130638A (en) 2002-05-09
JP3951587B2 true JP3951587B2 (en) 2007-08-01

Family

ID=18797479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318934A Expired - Fee Related JP3951587B2 (en) 2000-10-19 2000-10-19 Pyrolysis treatment facility and operation method

Country Status (1)

Country Link
JP (1) JP3951587B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521361B2 (en) * 2009-03-13 2014-06-11 Jfeスチール株式会社 Molded coke manufacturing method
CN106916598B (en) * 2017-03-23 2020-06-26 肖国雄 Dry distillation type tunnel type intermittent pyrolysis furnace

Also Published As

Publication number Publication date
JP2002130638A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP3951587B2 (en) Pyrolysis treatment facility and operation method
JP2002205049A (en) Cleaning method of contaminated soils and purifying equipment thereof
JP3952702B2 (en) Pyrolysis treatment facility using gas engine power generation facility using digestion gas
JP2003226511A (en) Activated carbon manufacturing method and apparatus therefor
JP2001179203A (en) Method for conveying material to be treated, hating treatment device and heating treatment installation
JP2001239248A (en) Method of heat-treating substance to be treated and treating device
JP3758513B2 (en) Pyrolysis treatment facility and pyrolysis treatment method by gas engine power generation facility using digestion gas
JP2002130627A (en) Thermal decomposition processing equipment and operation method
JP4015181B1 (en) Method and apparatus for thermal decomposition of waste containing organic matter
JP2002001395A (en) Process and facility for treating organic sludge
JP3888001B2 (en) Heat treatment method and processing apparatus for workpiece
JP3921886B2 (en) Heat processing equipment for workpieces
JP2002173685A (en) Method for thermal decomposition treatment of treating object and treating facility
JP3852204B2 (en) Processing method and processing apparatus for substances containing harmful components
JP2000233171A (en) Method and apparatus for treating material to be treated by using vertical axis rotary heat treatment furnace
JP2000241079A (en) Method and system for heating material to be treated
JP2001065833A (en) Decomposition gas combustion equipment for treatment objective matter in heat-treating facility
JP2001065831A (en) Method for heat treating matter to be treated
JP2001059607A (en) Method and system for heating matter to be treated
JP2002001094A (en) Method for conveying material to be treated by using pipe conveyor and treating facility
JP2001246400A (en) Treatment method and treatment facility for hydrous material to be treated
JPH11263978A (en) Apparatus for heat treatment with hot gas
JP2001164260A (en) Method for heat-treating material to be treated, treating apparatus and heat-treating facility therefor
JP2000334417A (en) Treatiing device for reducing volume of material to be treated
JPH11248117A (en) Treatment of material containing harmful component and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees