JP2003171717A - Two-chamber type heat treatment furnace - Google Patents

Two-chamber type heat treatment furnace

Info

Publication number
JP2003171717A
JP2003171717A JP2001375914A JP2001375914A JP2003171717A JP 2003171717 A JP2003171717 A JP 2003171717A JP 2001375914 A JP2001375914 A JP 2001375914A JP 2001375914 A JP2001375914 A JP 2001375914A JP 2003171717 A JP2003171717 A JP 2003171717A
Authority
JP
Japan
Prior art keywords
cooling
heat treatment
furnace
chamber
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001375914A
Other languages
Japanese (ja)
Other versions
JP2003171717A5 (en
Inventor
Yuji Sakurai
裕二 桜井
Norito Fukuoka
準人 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2001375914A priority Critical patent/JP2003171717A/en
Publication of JP2003171717A publication Critical patent/JP2003171717A/en
Publication of JP2003171717A5 publication Critical patent/JP2003171717A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, two-chamber type heat treatment furnace in which the consumption of the atmospheric gas is small and the cooling speed is high. <P>SOLUTION: This two-chamber type heat treatment furnace in which a furnace body 1 having a predetermined inner surface shape is partitioned into a heating area 1A and a cooling area 1B comprises: the furnace body 1 in which the furnace wall of the heating area is formed of an insulating structure, a furnace wall of the cooling area is formed of a water-cooling structure, a first door 5 is provided on one end part of the heating area, and the other end part of the cooling area is formed of an open structure; a muffle 8 which has the outline substantially identical to the inner surface shape of the furnace body, is provided with a heating means 9 inside, and is closed by a rear side wall 11 having a second wall on one end part on the first door side and an atmospheric exhaust pipe 12 and an atmospheric gas feed pipe 13 on the other end part; and a moving mechanism 14 to move the muffle between the heating area and the cooling area in the furnace body. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、2室型熱処理炉に
関するものである。 【0002】 【従来の技術】処理材に熱処理を施す熱処理炉は、大別
すると、多室型と1室型とに分類される。 【0003】多室型の熱処理炉としては、加熱処理を行
なう加熱室と処理材の冷却および処理材の装入、抽出を
行なう冷却室とで構成した2室型や、処理材の装入室と
加熱室と処理材の冷却および抽出を行なう冷却室とで構
成した3室型等がある。 【0004】ところで、前記多室型の熱処理炉では、加
熱室および冷却室の炉温あるいは雰囲気を独立して制御
する必要があるため各室を区画する中間扉が設けてあ
り、熱処理の工程に合わせて前記中間扉を開閉して処理
材を移動させ、各室毎に熱処理を行なっている。 【0005】ここで、一例として、ガス浸硫窒化処理を
行なう2室型の熱処理について図3により説明する。 【0006】この2室型ガス浸硫窒化処理炉T’は、冷
却兼装入・抽出室20および加熱処理室30の2室を備
えており、この2室間には中間遮断部40が設けられ、
前記冷却兼装入・抽出室20の開口部には入口遮断部5
0が設けられている。 【0007】冷却兼装入・抽出室20には、冷却器2
1、冷却用循環ファン22、処理材支持ローラ23、処
理材移送装置24および中間ローラ25が設けられ、真
空排気管26および復圧用のN2ガス供給管27が接続
されている。 【0008】中間ローラ25は、前記2室間での処理材
Wの移動の際には水平に倒されて両側のローラ間で橋渡
しとなり、それ以外のときには図示するように垂直状態
になるまで回動可能に設けられている。 【0009】真空排気管26は開閉弁V1を介して真空
ポンプVPに接続されるとともに、開閉弁V2を介して
処理ガス焼却炉GIに接続されている。N2ガス供給管
27は開閉弁V3および減圧弁VRを介して図示しない
2ガス供給源に接続されている。 【0010】加熱処理室30には、雰囲気循環ファン3
1、処理材支持ローラ32および電気ヒータ33が設け
られ、処理材支持ローラ32の下方全体にわたって噴き
出し口が均一に分散配置されたプロセスガス導入ノズル
34が設けられている。 【0011】さらに加熱処理室30の上部に真空排気管
35およびパージ用のN2ガス供給管36が接続され、
プロセスガス導入ノズル34に浸硫窒化ガス供給管37
が接続されている。 【0012】加熱処理室30の炉壁は断熱材により形成
され、この断熱材表面には、耐腐食処理(例:アルマー
加工)された不銹鋼板が配置されている。なお、加熱処
理室30内の部品類についても、原則的には、耐腐食処
理された不銹鋼材が使用されている。 【0013】真空排気管35は開閉弁V4を介して真空
ポンプVPに接続される。N2ガス供給管36は開閉弁
V5を介して減圧弁VRの二次側に接続されている。 【0014】また、浸硫窒化ガス供給管37は開閉弁V
6、V7および流量計F1を介して減圧弁VRの二次側
に接続され、この開閉弁V6およびV7間の管路は流量
計F2および開閉弁V8を介して図示しないNH3ガス
供給源に接続されるとともに、マスフローコントローラ
MCおよび開閉弁V9を介して図示しないH2Sガス供
給源に接続されている。 【0015】中間遮断部40は前記冷却兼装入・抽出室
20と加熱処理室30との境界部に面した加熱処理室3
0の開口部に対して進退する中間扉41を備えており、
この中間扉41は加熱処理室30の開口部から冷却兼装
入・抽出室20に向かう方向に後退した状態で昇降手段
42により吊上げられ、処理材Wの移動空間から退避可
能となっている。中間扉41および昇降手段42を含
め、中間扉41の駆動機構全体が扉フード43内に収め
られ、外部から遮断されている。前記2室間での処理材
Wの移動時以外は前記加熱処理室30の開口部は中間扉
41により閉じられ、前記2室は互いに雰囲気的に隔離
されている。中間扉41の断熱材表面には耐腐食処理
(例:アルマー加工)された不銹鋼板が配置されてい
る。 【0016】入口遮断部50は、流体圧シリンダ51の
駆動により昇降する装入・抽出扉52を設けて形成さ
れ、この装入・抽出扉52が閉じた状態で冷却兼装入・
抽出室20内の気密性が保たれる。 【0017】つぎに、前述した2室型ガス浸硫窒化処理
炉T’での浸硫窒化処理について説明する。まず、装入
・抽出扉52を開いて複数の処理材Wを炉外から冷却兼
装入・抽出室20内の所定位置に移送した後、装入・抽
出扉52を閉じ、この状態で加熱処理室30内および冷
却兼装入・抽出室20内を真空排気管26および35を
介して所定圧力(約1Torr)まで真空排気し、それぞれ
の内部を真空パージする。 【0018】この真空パージ完了後に中間扉41を開
き、中間ローラ25を水平に倒して処理材Wを冷却兼装
入・抽出室20から加熱処理室30内に移送した後、中
間ローラ25を垂直状態になるまで回動させ、中間扉4
1を閉じて加熱処理室30内を所定圧力(約0.5Tor
r)まで真空排気する。 【0019】この加熱処理室30内の真空パージ完了
後、冷却兼装入・抽出室20内および加熱処理室30内
にN2ガス供給管27および36を介してN2ガスを供給
し、それぞれの内部を所定圧力(約650Torr)まで復
圧するとともにN2ガス雰囲気下で雰囲気循環ファン3
1を作動させ、強制対流加熱により処理材Wの加熱を開
始し、この状態で所定温度(約350℃)まで昇温して
均熱する。 【0020】この均熱状態下で加熱処理室30内を再度
真空排気管35を介して所定圧力(約0.5Torr)まで
真空排気したのち加熱処理室30内にN2ガス供給管3
6を介してN2ガスを供給するとともに、浸硫窒化ガス
供給管37を介してH2SガスおよびNH3ガスの混合ガ
スを処理材支持ローラ32の下方から均一かつ分散させ
て供給する。また、前記各ガスの供給により加熱処理室
30内を略大気圧状態にするとともに浸硫窒化処理温度
にする。そして、この状態を所定時間保持して処理材W
の表面に浸硫窒化層を形成する。 【0021】この浸硫窒化層の形成後、冷却兼装入・抽
出室20内および加熱処理室30内を真空排気管26お
よび35を介して所定圧力(約1Torr)まで真空排気
し、両室を略同一圧力にして中間扉41を開き、中間ロ
ーラ25を水平に倒したのち処理材Wを加熱処理室30
から冷却兼装入・抽出室20に移行させ、中間ローラ2
5を垂直状態になるまで回動させて中間扉41を閉じ
る。 【0022】そして、冷却兼装入・抽出室20内にN2
ガス供給管27を介してN2ガスを供給し、室内を略大
気圧まで復圧するとともに冷却用循環ファン22を作動
させつつ冷却器21を作動させ、処理材を強制対流冷却
により所定温度まで冷却する。前記冷却工程が終了した
ら、装入・抽出扉52を開いて処理材Wを炉外に搬出
し、装入・抽出扉52を閉じて一連の浸硫窒化処理を終
了する。 【0023】 【発明が解決しようとする課題】以上の説明で明らかな
ように、多室型の熱処理炉では各室を区画するため中間
扉が必須の構成要件となるため中間遮断部が必要とな
り、それだけ熱処理炉が大型化(設置スペースが大)す
るという問題があった。 【0024】しかも、中間扉は加熱室にしか設けられて
おらず、かつ、冷却兼装入・抽出室と中間遮断部とは常
時連通状態であるため、冷却兼装入・抽出室の給排気量
が多くなる。すなわち、各室の雰囲気および圧力を同一
としなければ処理材を各室間で移動できないため、処理
材の移動毎に多量の雰囲気を給排気しなければならず、
雰囲気の消費量が多くなるとともに、それだけ熱処理に
必要な時間が長くなるという問題があった。 【0025】また、省スペースを図る目的で前記2室型
熱処理炉での熱処理工程を1室型の熱処理炉で行なうと
加熱処理も冷却処理も同一処理室で行なうため、処理材
の加熱工程では処理材に加えて断熱構造の処理室も昇温
する必要があり、その後の冷却工程では処理材に加えて
熱容量の大きな処理室も降温しなければならず、所定の
昇温レートあるいは冷却レートを保持するには加熱、冷
却能力を大きくしなければならなくなる。 【0026】つまり、1室型の熱処理炉では加熱手段、
冷却手段の容量を非常に大きくしなければならないとい
う問題があった。 【0027】そこで、本発明は、マッフル自体を炉本体
の加熱域と冷却域との間で移動させて加熱処理と冷却処
理とを行なわせることにより雰囲気の給排気量および熱
容量を抑制して省エネルギーを図るとともに、中間扉を
省略して省スペースを図ることのできる2室型熱処理炉
を提供することを目的とする。 【0028】 【課題を解決するための手段】本発明は、前記目的を達
成するために、所定の内面形状を有する炉本体内を加熱
域と冷却域とに区画した2室型熱処理炉において、前記
加熱域の炉壁を断熱構造とし、冷却域の炉壁を水冷構造
とするとともに、加熱域の一端部に第1扉を備え、冷却
域の他端部を開放構造とした炉本体と、前記炉本体の内
面形状とほぼ同形の外形を有し、内部に加熱手段を備え
るとともに前記第1扉側の一端部に第2扉を、他端部に
雰囲気の排気管と雰囲気ガス供給管を備えた後面壁で閉
鎖された構成のマッフルと、前記マッフルを炉本体内で
その加熱域内と冷却域内の間を移動させる移動機構で構
成したものである。 【0029】 【発明の実施の形態】つぎに、本発明の2室型熱処理炉
の実施の形態を図1、図2にしたがって説明する。本発
明にかかる2室型熱処理炉Tは、大略、炉本体1と、マ
ッフル8と、移動機構14とからなる。 【0030】前記炉本体1は、円筒状あるいは四角形状
等の所定形状をなし、炉壁を断熱材2で形成して断熱構
造とした加熱域1Aと、炉壁を、たとえば、水冷ジャケ
ット3で形成して水冷構造とした冷却域1Bとで構成し
たもので、図示しない基台上に設置されている。 【0031】そして、前記加熱域1Aの一端開放部には
第1扉5が開閉可能に取り付けられており、冷却域1B
の一端は扉を有さず開放状態となっている。なお、4は
シール部材である。 【0032】また、前記冷却域1Bの上部には、一端が
開放された第1開口部6が設けられる一方、加熱域1A
と冷却域1Bの下部には両域にわたって第2開口部7が
設けられている。 【0033】前記マッフル8は、下記移動機構14の載
置部材18上に載置されて炉本体1内に位置するので、
前記炉本体1と略同形状をなし、内部に電熱ヒータ等の
加熱手段9を有するとともに前記第1扉5側の開口部に
は断熱材からなる第2扉10が開閉可能に取り付けら
れ、他方の開口部は、断熱材からなる後面壁11により
閉鎖されている。 【0034】なお、前記後面壁11には、マッフル8内
の雰囲気を排気する排気管12とマッフル8内に雰囲気
ガス(Nガス)や浸硫窒化ガス(HSガス、NH
ガス)を供給する複数本の雰囲気ガス供給管13とを備
え、前記排気管12は前記第1開口部6から炉本体1外
の図示しない排気装置に連通する一方、雰囲気ガス供給
管13は冷却域1Bの他端開口から各雰囲気ガス供給源
に連通している。 【0035】前記移動機構14は、前記マッフル8を載
置して炉本体1内の加熱域1Aと冷却域1B間を移動さ
せるもので、前記炉本体1の下方に設置したレール15
と、このレール15上に摺動部材16を介して設置した
支持部材17と、この支持部材17上に設けられた前記
マッフル8を支持する載置部材18とからなる。 【0036】また、前記支持部材17には、図示しない
シリンダ等の駆動装置が設けられ、マッフル8の前進、
後退を行なわせるようになっている。 【0037】つぎに、前記構成からなる2室型熱処理炉
Tの操業方法について説明する。まず、図1の状態で、
前記第1扉5と第2扉10を開き、処理材Wをマッフル
8内に装入した後、前記両扉を閉じ、図示しない排気装
置を駆動することにより排気管12を介してマッフル8
内を所定圧(たとえば、約0.5Torr)まで真空排気す
る。 【0038】その後、雰囲気ガス供給管13からマッフ
ル8内にNガスを供給するとともに浸硫窒化ガス(N
SガスおよびNHガス)を供給してマッフル8内を
略大気圧に復圧し、浸硫窒化処理温度を所定時間維持す
ることにより処理材Wの表面に浸硫窒化層を形成する。 【0039】前述のようにして、浸硫窒化層形成処理が
終了すると前記マッフル8内を所定圧力(たとえば、約
1Torr)まで真空排気した後マッフル8内にNガスを
供給してマッフル内を大気圧に復圧する。 【0040】その後、シリンダ等を駆動して前記マッフ
ル8を冷却域1Bに移動(図2の状態)させ、処理材W
を所定温度まで冷却する。 【0041】前記処理材Wの冷却が完了すると、再度、
前記マッフル8を加熱域1Aに移動させ、前記第1扉5
と第2扉10を開いて処理材Wを炉外に搬出する。 【0042】なお、前記説明では、2室型熱処理炉Tで
浸硫窒化処理をする場合について説明したが、本発明は
これに限定されることなく、炉内雰囲気を切り換えなが
ら熱処理を施すものであれば、たとえば、黒化処理等、
どのような熱処理にも対応できることは勿論である。 【0043】また、前記第1開口部6を設けることな
く、排気管12を冷却域1Bの他端開口から雰囲気ガス
供給管13と同様突出させるようにしてもよい。 【0044】さらに、移動機構14も前記第2開口部7
を設けることなく炉本体1内にレールを敷設し、マッフ
ル8を、たとえば、シリンダ、チェーン等で往復移動さ
せるようにしてもよい。 【0045】 【発明の効果】以上の説明で明らかなように、本発明に
かかる2室型熱処理炉によれば、2室型であるものの中
間遮断部を有さないので炉を小型化できる。 【0046】また、中間遮断部がなく、しかも、雰囲気
の給排気はマッフル内だけのため雰囲気ガスの消費量を
大幅に削減することができるとともに、給排気時間が短
縮され、かつ、1室型熱処理炉で加熱した後に冷却する
ものに比べて加熱域と冷却域とが別であるため加熱域の
断熱材まで冷却する必要がなく、冷却速度を速くするこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-chamber heat treatment furnace. 2. Description of the Related Art Heat treatment furnaces for subjecting a treatment material to heat treatment are roughly classified into a multi-chamber type and a single-chamber type. As a multi-chamber heat treatment furnace, a two-chamber type heat treatment furnace comprising a heating chamber for performing heat treatment and a cooling chamber for cooling and charging and extracting the processing material, and a charging chamber for the processing material are provided. And a cooling chamber for cooling and extracting the processing material. In the multi-chamber heat treatment furnace, it is necessary to independently control the furnace temperature or the atmosphere of the heating chamber and the cooling chamber. Therefore, an intermediate door is provided to partition each chamber. At the same time, the intermediate door is opened and closed to move the processing material, and heat treatment is performed for each chamber. Here, as an example, a two-chamber type heat treatment for performing a gas sulfide nitriding treatment will be described with reference to FIG. This two-chamber type gas sulphonitriding furnace T 'has two cooling / charging / extraction chambers 20 and a heating processing chamber 30. An intermediate shut-off section 40 is provided between the two chambers. And
At the opening of the cooling and charging / extracting chamber 20, an inlet blocking section 5
0 is provided. The cooling and charging / extraction chamber 20 has a cooler 2
1, a cooling circulation fan 22, a processing material support roller 23, a processing material transfer device 24, and an intermediate roller 25 are provided, and a vacuum exhaust pipe 26 and a N 2 gas supply pipe 27 for pressure recovery are connected. When the processing material W is moved between the two chambers, the intermediate roller 25 is tilted horizontally so as to bridge between the rollers on both sides, and in other cases, the intermediate roller 25 is rotated until it becomes vertical as shown in the figure. It is movably provided. The vacuum exhaust pipe 26 is connected to a vacuum pump VP via an on-off valve V1 and to a processing gas incinerator GI via an on-off valve V2. The N 2 gas supply pipe 27 is connected to an N 2 gas supply source (not shown) via an on-off valve V3 and a pressure reducing valve VR. The heat treatment chamber 30 has an atmosphere circulation fan 3
1, a processing material support roller 32 and an electric heater 33 are provided, and a process gas introduction nozzle 34 is provided in which the ejection ports are uniformly distributed over the entire lower portion of the processing material support roller 32. Further, a vacuum exhaust pipe 35 and a purge N 2 gas supply pipe 36 are connected to the upper part of the heat treatment chamber 30.
The sulfided gas supply pipe 37 is connected to the process gas introduction nozzle 34.
Is connected. The furnace wall of the heat treatment chamber 30 is formed of a heat insulating material, and a stainless steel plate which has been subjected to a corrosion-resistant treatment (eg, Almar processing) is disposed on the surface of the heat insulating material. In addition, as for the components in the heat treatment chamber 30, in principle, a stainless steel material subjected to a corrosion-resistant treatment is used. The vacuum exhaust pipe 35 is connected to a vacuum pump VP via an on-off valve V4. The N 2 gas supply pipe 36 is connected to the secondary side of the pressure reducing valve VR via the on-off valve V5. An oxynitriding gas supply pipe 37 is provided with an on-off valve V
6, V7 and a flow meter F1 connected to the secondary side of the pressure reducing valve VR, and a pipeline between the on-off valves V6 and V7 is connected to a NH 3 gas supply source (not shown) via the flow meter F2 and the on-off valve V8. It is connected to an H 2 S gas supply source (not shown) via a mass flow controller MC and an on-off valve V9. An intermediate shut-off section 40 is provided in the heat treatment chamber 3 facing the boundary between the cooling and charging / extraction chamber 20 and the heat treatment chamber 30.
0 is provided with an intermediate door 41 which moves forward and backward with respect to the opening of
The intermediate door 41 is lifted up by the lifting / lowering means 42 in a state in which the intermediate door 41 is retracted from the opening of the heat treatment chamber 30 toward the cooling / loading / extraction chamber 20, and can be retracted from the moving space of the processing material W. The entire drive mechanism of the intermediate door 41, including the intermediate door 41 and the lifting / lowering means 42, is housed in the door hood 43 and is shielded from the outside. Except during the movement of the processing material W between the two chambers, the opening of the heat treatment chamber 30 is closed by an intermediate door 41, and the two chambers are isolated from each other in atmosphere. On the surface of the heat insulating material of the intermediate door 41, a stainless steel plate which has been subjected to a corrosion-resistant treatment (eg, Almar processing) is disposed. The inlet blocking section 50 is provided with a charging / extracting door 52 which is moved up and down by driving a fluid pressure cylinder 51. The charging / extracting door 52 is closed while the charging / extracting door 52 is closed.
The airtightness in the extraction chamber 20 is maintained. Next, the nitrosulphurizing process in the two-chamber gas sulphonitriding furnace T 'will be described. First, the charging / extracting door 52 is opened to transfer a plurality of processing materials W from the outside of the furnace to a predetermined position in the cooling / charging / extracting chamber 20, then the charging / extracting door 52 is closed, and heating is performed in this state. The inside of the processing chamber 30 and the inside of the cooling / loading / extracting chamber 20 are evacuated to a predetermined pressure (about 1 Torr) through the vacuum evacuation pipes 26 and 35, and the insides thereof are vacuum-purged. After the completion of the vacuum purging, the intermediate door 41 is opened, the intermediate roller 25 is tilted horizontally, and the processing material W is transferred from the cooling / loading / extracting chamber 20 into the heating processing chamber 30. Rotate until it is in the state
1 is closed and a predetermined pressure (about 0.5 Torr)
Evacuate to r). After the completion of the vacuum purging in the heat treatment chamber 30, N 2 gas is supplied into the cooling and charging / extraction chamber 20 and the heat treatment chamber 30 through N 2 gas supply pipes 27 and 36, respectively. atmosphere circulation fan 3 under N 2 gas atmosphere with pressure recovery inside to a predetermined pressure (about 650 Torr) of
1, the heating of the processing material W is started by forced convection heating, and in this state, the temperature is increased to a predetermined temperature (about 350 ° C.) to be uniform. Under this uniform temperature condition, the inside of the heat treatment chamber 30 is evacuated again to a predetermined pressure (about 0.5 Torr) through the vacuum exhaust pipe 35, and then the N 2 gas supply pipe 3 is introduced into the heat treatment chamber 30.
Supplies N 2 gas through 6, supplied uniformly and dispersing a mixed gas of H 2 S gas and NH 3 gas from below the treatment material support roller 32 via the sulphonitrided gas supply pipe 37. In addition, the supply of each of the above-mentioned gases brings the inside of the heat treatment chamber 30 into a substantially atmospheric pressure state, and at the same time, brings the temperature to the sulphinitriding treatment temperature. Then, this state is maintained for a predetermined time and the processing material W
To form a nitrosulphurized layer on the surface. After the formation of this oxynitrided layer, the interior of the cooling / charging / extraction chamber 20 and the interior of the heat treatment chamber 30 are evacuated to a predetermined pressure (about 1 Torr) through the vacuum exhaust pipes 26 and 35, and both chambers are evacuated. Are set to substantially the same pressure, the intermediate door 41 is opened, and the intermediate roller 25 is tilted horizontally.
From the cooling and charging / extraction chamber 20 to the intermediate roller 2
The intermediate door 41 is closed by rotating the intermediate door 5 until it becomes vertical. The cooling and charging / extraction chamber 20 contains N 2
The N 2 gas is supplied through the gas supply pipe 27 to restore the pressure in the room to approximately the atmospheric pressure and to operate the cooler 21 while operating the cooling circulation fan 22 to cool the processing material to a predetermined temperature by forced convection cooling. I do. After the cooling step is completed, the charging / extraction door 52 is opened, the processing material W is carried out of the furnace, the charging / extraction door 52 is closed, and a series of sulphonitriding processes is completed. As is clear from the above description, in a multi-chamber heat treatment furnace, an intermediate door is an essential component for partitioning each chamber, so that an intermediate shut-off portion is required. However, there is a problem that the heat treatment furnace becomes larger (installation space becomes larger). Further, since the intermediate door is provided only in the heating chamber, and the cooling / loading / extracting chamber and the intermediate shut-off portion are always in communication, the supply / exhaust of the cooling / loading / extracting chamber is performed. The amount increases. That is, since the processing material cannot be moved between the chambers unless the atmosphere and pressure of each chamber are the same, a large amount of atmosphere must be supplied and exhausted every time the processing material moves.
There is a problem that the consumption of the atmosphere increases and the time required for the heat treatment increases accordingly. When the heat treatment step in the two-chamber heat treatment furnace is performed in a one-chamber heat treatment furnace for the purpose of saving space, both the heat treatment and the cooling treatment are performed in the same treatment chamber. In addition to the processing material, it is necessary to raise the temperature of the processing chamber of the heat insulation structure, and in the subsequent cooling step, in addition to the processing material, the temperature of the processing chamber having a large heat capacity also needs to be lowered. In order to maintain it, the heating and cooling capacity must be increased. That is, in a one-chamber type heat treatment furnace, heating means
There was a problem that the capacity of the cooling means had to be very large. Therefore, the present invention suppresses the supply and exhaust amount and heat capacity of the atmosphere by moving the muffle itself between the heating area and the cooling area of the furnace main body to perform the heating and cooling treatments, thereby saving energy. It is another object of the present invention to provide a two-chamber heat treatment furnace capable of saving space by omitting an intermediate door. In order to achieve the above object, the present invention provides a two-chamber heat treatment furnace in which a furnace body having a predetermined inner surface shape is divided into a heating zone and a cooling zone. A furnace body having a heat insulating structure for the furnace wall in the heating area, a water cooling structure for the furnace wall in the cooling area, a first door at one end of the heating area, and an open structure at the other end of the cooling area; It has an outer shape substantially the same as the inner surface shape of the furnace main body, is provided with a heating means inside, has a second door at one end on the first door side, and has an exhaust gas pipe and an atmosphere gas supply pipe at the other end. And a moving mechanism for moving the muffle between a heating area and a cooling area in the furnace main body. Next, an embodiment of a two-chamber heat treatment furnace according to the present invention will be described with reference to FIGS. The two-chamber heat treatment furnace T according to the present invention generally includes a furnace main body 1, a muffle 8, and a moving mechanism 14. The furnace main body 1 has a predetermined shape such as a cylindrical shape or a square shape, and a heating zone 1A having a furnace wall formed of a heat insulating material 2 and having a heat insulating structure, and a furnace wall formed of a water cooling jacket 3, for example. The cooling zone 1B is formed into a water-cooled structure, and is installed on a base (not shown). A first door 5 is attached to an open end of the heating area 1A so as to be openable and closable.
Is open without a door. Reference numeral 4 denotes a seal member. A first opening 6 having an open end is provided above the cooling zone 1B, while the heating zone 1A is open.
A second opening 7 is provided in the lower part of the cooling area 1B over both areas. Since the muffle 8 is mounted on the mounting member 18 of the moving mechanism 14 described below and located in the furnace main body 1,
It has substantially the same shape as the furnace main body 1 and has a heating means 9 such as an electric heater inside, and a second door 10 made of a heat insulating material is attached to the opening on the first door 5 side so as to be openable and closable. Is closed by a rear wall 11 made of a heat insulating material. The rear wall 11 has an exhaust pipe 12 for exhausting the atmosphere in the muffle 8 and an atmosphere gas (N 2 gas) or a oxynitriding gas (H 2 S gas, NH 3 gas) in the muffle 8.
A plurality of atmosphere gas supply pipes 13 for supplying gas), and the exhaust pipe 12 communicates with the exhaust device (not shown) outside the furnace body 1 from the first opening 6 while the atmosphere gas supply pipe 13 is cooled. The other end opening of the area 1B communicates with each atmosphere gas supply source. The moving mechanism 14 is for moving the muffle 8 between the heating zone 1A and the cooling zone 1B in the furnace main body 1 and a rail 15 mounted below the furnace main body 1.
And a support member 17 installed on the rail 15 via a sliding member 16 and a mounting member 18 provided on the support member 17 for supporting the muffle 8. The support member 17 is provided with a driving device such as a cylinder (not shown) for moving the muffle 8 forward and backward.
It is designed to retreat. Next, a method of operating the two-chamber heat treatment furnace T having the above-described configuration will be described. First, in the state of FIG.
After opening the first door 5 and the second door 10 and loading the processing material W into the muffle 8, the doors are closed and an exhaust device (not shown) is driven to drive the muffle 8 through the exhaust pipe 12.
The inside is evacuated to a predetermined pressure (for example, about 0.5 Torr). Thereafter, N 2 gas is supplied from the atmosphere gas supply pipe 13 into the muffle 8 and the oxynitriding gas (N
2 S gas and NH 3 gas) Fukuoshi to substantially atmospheric pressure inside the muffle 8 by supplying, to form a sulfonitriding layer immersed in a surface treatment material W by maintaining a sulphonitriding treatment temperature for a predetermined time. As described above, when the nitrosulphidation layer forming process is completed, the inside of the muffle 8 is evacuated to a predetermined pressure (for example, about 1 Torr), and then N 2 gas is supplied into the muffle 8 to clean the inside of the muffle 8. Return to atmospheric pressure. Thereafter, the muffle 8 is moved to the cooling area 1B by driving a cylinder or the like (the state shown in FIG. 2).
Is cooled to a predetermined temperature. When the cooling of the processing material W is completed,
The muffle 8 is moved to the heating area 1A, and the first door 5 is moved.
Then, the processing material W is carried out of the furnace by opening the second door 10. In the above description, the case of performing the nitrosulphurizing treatment in the two-chamber heat treatment furnace T has been described. However, the present invention is not limited to this, and the heat treatment is performed while switching the furnace atmosphere. If so, for example, blackening
Of course, any heat treatment can be performed. Further, the exhaust pipe 12 may be made to protrude from the other end opening of the cooling area 1B in the same manner as the atmospheric gas supply pipe 13 without providing the first opening 6. Further, the moving mechanism 14 is also provided with the second opening 7.
May be laid in the furnace main body 1 without providing the muffle 8, and the muffle 8 may be reciprocated by, for example, a cylinder, a chain, or the like. As is apparent from the above description, the two-chamber heat treatment furnace according to the present invention can be downsized because it is a two-chamber heat treatment furnace but has no intermediate shut-off portion. Further, since there is no intermediate shut-off portion and the atmosphere is supplied and exhausted only in the muffle, the consumption of the ambient gas can be greatly reduced, the supply and exhaust time is shortened, and the one-chamber type is used. Since the heating zone and the cooling zone are different from those cooled after heating in the heat treatment furnace, there is no need to cool down to the heat insulating material in the heating zone, and the cooling rate can be increased.

【図面の簡単な説明】 【図1】 本発明にかかる2室型熱処理炉の加熱状態に
おける断面図。 【図2】 本発明にかかる2室型熱処理炉の冷却状態に
おける断面図。 【図3】 従来の2室型熱処理炉の断面図。 【符号の説明】 1〜炉本体、1A〜加熱域、1B〜冷却域、2〜断熱
材、3〜水冷ジャケット、5〜第1扉、6〜第1開口
部、7〜第2開口部、8〜マッフル、9〜加熱手段、1
0〜第2扉、11〜後面壁、12〜排気管、13〜雰囲
気ガス供給管、14〜移動機構、T〜2室型熱処理炉、
W〜処理材。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a two-chamber heat treatment furnace according to the present invention in a heated state. FIG. 2 is a sectional view of the two-chamber heat treatment furnace according to the present invention in a cooled state. FIG. 3 is a cross-sectional view of a conventional two-chamber heat treatment furnace. [Description of Signs] 1 furnace body, 1A heating area, 1B cooling area, 2 heat insulating material, 3 water cooling jacket, 5 first door, 6 first opening, 7 second opening, 8-muffle, 9-heating means, 1
0 to 2nd door, 11 to rear wall, 12 to exhaust pipe, 13 to atmosphere gas supply pipe, 14 to moving mechanism, T to 2 chamber type heat treatment furnace,
W to processing material.

Claims (1)

【特許請求の範囲】 【請求項1】 所定の内面形状を有する炉本体内を加熱
域と冷却域とに区画した2室型熱処理炉において、 前記加熱域の炉壁を断熱構造とし、冷却域の炉壁を水冷
構造とするとともに、加熱域の一端部に第1扉を備え、
冷却域の他端部を開放構造とした炉本体と、 前記炉本体の内面形状とほぼ同形の外形を有し、内部に
加熱手段を備えるとともに前記第1扉側の一端部に第2
扉を、他端部に雰囲気の排気管と雰囲気ガス供給管を備
えた後面壁で閉鎖された構成のマッフルと、 前記マッフルを炉本体内でその加熱域内と冷却域内の間
を移動させる移動機構とから構成したことを特徴とする
2室型熱処理炉。
Claims: 1. A two-chamber heat treatment furnace in which a furnace body having a predetermined inner surface shape is divided into a heating region and a cooling region, wherein the furnace wall of the heating region has a heat insulating structure, and a cooling region. The furnace wall has a water-cooled structure, and a first door is provided at one end of the heating area.
A furnace body having an open structure at the other end of the cooling area; an outer shape substantially the same as the inner surface shape of the furnace body, a heating means provided inside, and a second end provided at one end on the first door side.
A muffle having a door closed by a rear wall provided with an atmosphere exhaust pipe and an atmosphere gas supply pipe at the other end; and a movement mechanism for moving the muffle between its heating area and the cooling area in the furnace body. And a two-chamber heat treatment furnace.
JP2001375914A 2001-12-10 2001-12-10 Two-chamber type heat treatment furnace Pending JP2003171717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375914A JP2003171717A (en) 2001-12-10 2001-12-10 Two-chamber type heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375914A JP2003171717A (en) 2001-12-10 2001-12-10 Two-chamber type heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2003171717A true JP2003171717A (en) 2003-06-20
JP2003171717A5 JP2003171717A5 (en) 2005-05-12

Family

ID=19184209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375914A Pending JP2003171717A (en) 2001-12-10 2001-12-10 Two-chamber type heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2003171717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451070A (en) * 2014-12-16 2015-03-25 浙江海洋学院东海科学技术学院 Charging mechanism for vacuum heat treatment furnace
KR101909672B1 (en) * 2017-04-13 2018-10-18 대흥과학(주) vacuum heating furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451070A (en) * 2014-12-16 2015-03-25 浙江海洋学院东海科学技术学院 Charging mechanism for vacuum heat treatment furnace
KR101909672B1 (en) * 2017-04-13 2018-10-18 대흥과학(주) vacuum heating furnace

Similar Documents

Publication Publication Date Title
JP3190165B2 (en) Vertical heat treatment apparatus and heat treatment method
US5722825A (en) Device for heat-treating metallic work pieces in a vacuum
JP2008170116A (en) Heat treating facility
US20170254592A1 (en) Thermal treatment device
JP2003171717A (en) Two-chamber type heat treatment furnace
JP2023040307A (en) Heat treatment furnace and method for producing inorganic material using heat treatment furnace
JPH03257119A (en) Roller hearth type vacuum furnace
JP2003183807A (en) Heat treatment furnace
JP2859704B2 (en) Vacuum heat treatment furnace
JP4876279B2 (en) Heat treatment furnace
JPH11147706A (en) Purification treatment furnace of graphite material
JP2009185349A (en) Multichamber heat treatment furnace
CN210529024U (en) Carburizing equipment
JPS58130270A (en) Continuous vacuum carburizing furnace and its operation method
JPS60190511A (en) Heat treating installation for metal
JP2003183724A (en) Heat treatment furnace
JP2001220659A (en) Intermittently driven vacuum carburizing furnace
JP2001004282A (en) Vacuum heater
JP4499886B2 (en) Two-chamber gas nitronitriding furnace
JPH0488120A (en) Atmosphere heating method for vacuum furnace
JPH0726694U (en) Continuous heat treatment furnace
JP3547700B2 (en) Continuous vacuum carburizing furnace
JP3537049B2 (en) Continuous vacuum carburizing method and apparatus
JP2004085126A (en) Vacuum heat treatment furnace
JP3310997B2 (en) Continuous processing equipment

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A02 Decision of refusal

Effective date: 20060502

Free format text: JAPANESE INTERMEDIATE CODE: A02