JP2009185349A - Multichamber heat treatment furnace - Google Patents

Multichamber heat treatment furnace Download PDF

Info

Publication number
JP2009185349A
JP2009185349A JP2008027653A JP2008027653A JP2009185349A JP 2009185349 A JP2009185349 A JP 2009185349A JP 2008027653 A JP2008027653 A JP 2008027653A JP 2008027653 A JP2008027653 A JP 2008027653A JP 2009185349 A JP2009185349 A JP 2009185349A
Authority
JP
Japan
Prior art keywords
chamber
cooling
article
heat treatment
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008027653A
Other languages
Japanese (ja)
Inventor
Kazuhiko Katsumata
和彦 勝俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008027653A priority Critical patent/JP2009185349A/en
Publication of JP2009185349A publication Critical patent/JP2009185349A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multichamber heat treatment furnace which can miniaturize its cooling chamber, thereby reduces an amount of a cooling gas to be used, also makes the cooling gas uniformly flow, and imparts a desired material quality to an article to be treated. <P>SOLUTION: This heat treatment furnace includes: a heating chamber 10 that can heat the article W to be treated which has been carried into the inner space that can be sealed up, under a reduced pressure; the cooling chamber 20 that can cool the article W to be treated which has been carried into the inner space that has one opening 31b for moving the article W to be treated and can be sealed up and depressurized, with the cooling gas under a reduced pressure; and a transfer chamber 30 that has a transportation path 45 which is formed toward the inside of the heating chamber 10 and the inside of the cooling chamber 20 and a transportation device 46 for moving the article W to be treated along the transportation path 45 installed in the inner space that can be sealed up and depressurized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、減圧下において加熱処理及び冷却処理を行って被処理品の材質を改質する多室型熱処理炉に関するものである。   The present invention relates to a multi-chamber heat treatment furnace that performs heat treatment and cooling treatment under reduced pressure to modify the material of an object to be treated.

従来、被処理品である金属材を加熱し、冷却することによって焼き入れ等の処理を行う熱処理装置として、多室型熱処理炉が知られている。例えば、下記特許文献1には、ヒータが設けられた加熱室と、この加熱室に隣接して冷却装置が設けられた冷却室と、これら加熱室と冷却室とを連通させるように開口する第一開口部と、この第一開口部を密閉する中間扉と、被処理品を搬送する搬送装置とを備える多室型熱処理炉が開示されている。この多室型熱処理炉は、密閉して減圧された加熱室で被処理品を加熱した後に、中間扉を開放して加熱室から減圧された冷却室まで被処理品を搬送し、その後に中間扉を閉じて冷却室に高圧の冷却ガスを循環させて被処理品を高速冷却するものである。   2. Description of the Related Art Conventionally, a multi-chamber heat treatment furnace is known as a heat treatment apparatus for performing a treatment such as quenching by heating and cooling a metal material that is an object to be treated. For example, in Patent Document 1 below, a heating chamber provided with a heater, a cooling chamber provided with a cooling device adjacent to the heating chamber, and a heating chamber and a cooling chamber are opened so as to communicate with each other. A multi-chamber heat treatment furnace including one opening, an intermediate door that seals the first opening, and a transfer device that transfers an article to be processed is disclosed. This multi-chamber heat treatment furnace heats the product in a sealed and decompressed heating chamber, then opens the intermediate door and conveys the product to be cooled from the heating chamber to the decompressed cooling chamber. The door is closed and high-pressure cooling gas is circulated in the cooling chamber to cool the article to be processed at high speed.

ところで、下記特許文献1に記載される第一の多室型熱処理炉は、冷却室に外部と連通する第二開口部を形成すると共にこれを密封可能な密封扉を設けて、この密封扉を開放させて外部から被処理品を装入抽出している。また、下記特許文献1に記載される第二の多室型熱処理炉は、冷却室が、熱処理炉本体に固定された円筒型の容器胴部と、容器動部の端部に密着可能かつ容器胴部に対して前進・後退可能なガス循環部と、容器胴部及びガス循環部の密着部を気密に開閉可能なクラッチリングとを備え、クラッチリングを開放した状態でガス循環部を後退させて容器胴部を開口させることにより、被処理品を熱処理炉(冷却室)内部に装入抽出している。
なお、同様の構成の多室型熱処理炉として下記特許文献2がある。
国際公開2005/1360号パンフレット 国際公開2005/90616号パンフレット
By the way, the first multi-chamber heat treatment furnace described in the following Patent Document 1 is provided with a sealing door that forms a second opening communicating with the outside in the cooling chamber and can seal the second opening. The product to be processed is charged and extracted from the outside. The second multi-chamber heat treatment furnace described in the following Patent Document 1 is a container in which the cooling chamber can be in close contact with the cylindrical container body fixed to the heat treatment furnace body and the end of the container moving part. It has a gas circulation part that can move forward and backward with respect to the body part, and a clutch ring that can open and close the tight contact part of the container body part and the gas circulation part, and the gas circulation part is retracted with the clutch ring opened. By opening the container body, the product to be processed is charged and extracted into the heat treatment furnace (cooling chamber).
In addition, there exists the following patent document 2 as a multi-chamber heat treatment furnace of the same structure.
International Publication No. 2005/1360 Pamphlet International Publication No. 2005/90616 Pamphlet

しかしながら、上述したように、冷却室には高圧の冷却ガスが充填されるので、冷却室に第二開口部を設けると耐圧性能の高い大型・大重量の密封扉を設ける必要があり、また、冷却室を分離可能に構成するとシール性能の高い大重量のクラッチリングを設ける必要がある。すなわち、これらを設けることで冷却室が大型化してしまうという問題がある。   However, as described above, since the cooling chamber is filled with high-pressure cooling gas, it is necessary to provide a large and heavy sealed door with high pressure resistance when the second opening is provided in the cooling chamber. If the cooling chamber is configured to be separable, it is necessary to provide a heavy clutch ring with high sealing performance. That is, there exists a problem that a cooling chamber will enlarge by providing these.

一方、冷却室と加熱室とを隣接させずに離間配置して冷却室に開口部を一つだけ形成すると、被処理品を加熱室から冷却室に移動させる際に加熱後の被処理品が放熱してしまう。また、被処理品が冷却室に搬入された後に冷却室を減圧しなければならず、被処理品の冷却が遅延してしまう。すなわち、被処理品が放熱し、また、冷却が遅延することにより、被処理品が所望する材質と異なるものに改質されてしまうという問題がある。   On the other hand, if the cooling chamber and the heating chamber are arranged adjacent to each other without being adjacent to each other and only one opening is formed in the cooling chamber, the article to be processed after heating is moved when the article to be processed is moved from the heating chamber to the cooling chamber. Dissipate heat. In addition, the cooling chamber must be depressurized after the article to be processed is carried into the cooling chamber, and cooling of the article to be processed is delayed. That is, there is a problem that the product to be processed is modified to a material different from the desired material due to heat dissipation of the product to be processed and delay of cooling.

本発明は、上述した事情に鑑みてなされたものであり、冷却室の小型化を図ることができ、以って冷却ガスの使用量を低減させると共に冷却ガスの均一な流れを得て、被処理品について所望の材質が得られる多室型熱処理炉を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and can reduce the size of the cooling chamber, thereby reducing the amount of cooling gas used and obtaining a uniform flow of cooling gas. An object of the present invention is to provide a multi-chamber heat treatment furnace capable of obtaining a desired material for a processed product.

本発明は、上記課題を解決するために以下の手段を採用する。
すなわち、本発明は、第1の解決手段として、密閉可能な内部空間に搬入された被処理品を減圧下において加熱可能な加熱室と、前記被処理品の移動用の開口部を一つだけ有し密閉かつ減圧可能な内部空間に搬入された前記被処理品を冷却ガスにより冷却可能な冷却室と、前記加熱室内部と前記冷却室内部とに向かって形成された搬送路と前記被処理品を前記搬送路に沿って移動させる搬送装置とが密閉かつ減圧可能な内部空間に設けられた搬送室と、を備える、という手段を採用する。
The present invention employs the following means in order to solve the above problems.
That is, the present invention provides, as a first solving means, a heating chamber capable of heating an object to be processed carried in a sealable internal space under reduced pressure, and only one opening for moving the object to be processed. A cooling chamber capable of cooling the article to be treated, which is carried into a sealed and decompressable internal space, with cooling gas, a conveyance path formed toward the heating chamber and the cooling chamber, and the treatment A means is adopted in which a transfer device that moves an article along the transfer path includes a transfer chamber provided in an internal space that can be sealed and decompressed.

また、多室型熱処理炉に係る第2の解決手段として、上記第1の解決手段における前記冷却室が、0.3MPa以上の圧力に耐えうる円筒形の耐圧容器からなる、という手段を採用する。   Further, as a second solving means related to the multi-chamber heat treatment furnace, a means is adopted in which the cooling chamber in the first solving means is composed of a cylindrical pressure vessel capable of withstanding a pressure of 0.3 MPa or more. .

また、多室型熱処理炉に係る第3の解決手段として、上記第1又は2の解決手段における前記搬送路が、前記被処理品の下部の両端部のみを搬送方向に移動可能に支持する複数のフリーローラが設けられると共に、前記搬送装置は、前記被処理品に係合しながら移動して前記被処理品を押し引きするプッシュプル部材と前記プッシュプル部材を移動させる駆動装置とが設けられる、という手段を採用する。   Further, as a third solving means related to the multi-chamber heat treatment furnace, the conveying path in the first or second solving means supports a plurality of lower end portions of the article to be processed so as to be movable in the conveying direction. Free rollers are provided, and the transport device is provided with a push-pull member that moves while engaging with the product to be processed and pushes and pulls the product to be processed, and a drive device that moves the push-pull member. , Is adopted.

また、多室型熱処理炉に係る第4の解決手段として、上記第1から第3のうちいずれかの解決手段における前記搬送路が、前記加熱室内部に向かって形成される第一搬送路に対して前記冷却室内部に向かって形成される第二搬送路が直交方向に設けられる、という手段を採用する。   Further, as a fourth solving means related to the multi-chamber heat treatment furnace, the conveying path in any one of the first to third solving means is a first conveying path formed toward the inside of the heating chamber. On the other hand, the means that the 2nd conveyance path formed toward the said cooling chamber inside is provided in an orthogonal direction is employ | adopted.

また、多室型熱処理炉に係る第5の解決手段として、上記第1から第4のうちいずれかの解決手段において、前記加熱室に前記被処理品を搬入させる前に、前記被処理品に予熱処理を施す予熱室を備える、という手段を採用する。   Further, as a fifth solving means relating to the multi-chamber heat treatment furnace, in any one of the first to fourth solving means, before the article to be processed is carried into the heating chamber, the article to be processed is A means of providing a preheating chamber for preheating is adopted.

また、多室型熱処理炉に係る第6の解決手段として、上記第1から第5のうちいずれかの解決手段において、前記加熱室に前記被処理品を搬入させる前に、前記被処理品に減圧処理を施す置換室を備える、という手段を採用する。   Further, as a sixth solving means relating to the multi-chamber heat treatment furnace, in any one of the first to fifth solving means, before the article to be processed is carried into the heating chamber, the article to be processed is A means of providing a replacement chamber for performing a decompression process is employed.

また、多室型熱処理炉に係る第7の解決手段として、上記第1から第6のうちいずれかの解決手段において、前記加熱室から前記被処理品を搬出させた後に、前記被処理品に減圧処理を施すと共に均熱処理を施す予熱置換室を備える、という手段を採用する。   Further, as a seventh solving means relating to the multi-chamber heat treatment furnace, in any one of the first to sixth solving means, after the article to be processed is carried out from the heating chamber, the article to be processed is A means of providing a preheating substitution chamber for performing a pressure reduction treatment and a soaking treatment is adopted.

本発明によれば、冷却室と加熱室とを離間配置して冷却室における被処理品の移動用の開口部を一つだけ形成するので、冷却室に装入抽出用の開口部を形成したり、冷却室を分離可能な構成にしたりせず、大型・大重量の密封扉や大重量のクラッチリングを設ける必要がない。これにより、冷却室を小型化することができる。   According to the present invention, since the cooling chamber and the heating chamber are spaced apart to form only one opening for moving the workpiece in the cooling chamber, an opening for charging and extraction is formed in the cooling chamber. And the cooling chamber is not separable, and there is no need to provide a large / heavy sealed door or a heavy clutch ring. Thereby, a cooling chamber can be reduced in size.

また、加熱室と冷却室との間に密閉かつ減圧可能な搬送室を設けているので、被処理品の装入抽出状況と多室型熱処理炉内の搬送状況に応じて、適宜搬送室の雰囲気が調整される。これにより、冷却室と加熱室とを離間配置して冷却室における被処理品の移動用の開口部を一つだけ形成しても、搬送室と冷却室との雰囲気を同様のものとすることができる。すなわち、減圧下で被処理品を搬送することにより放熱や冷却遅延を防止して、処理品が所望する材質と異なるものに改質されることを防ぐことができる。
さらに、冷却室の小型化に伴って冷却ガスの使用量を低減させると共に冷却ガスの流れを均一にすることが容易となる。
In addition, since a transfer chamber that is hermetically sealed and depressurized is provided between the heating chamber and the cooling chamber, the transfer chamber can be appropriately set according to the charging / extraction status of the article to be processed and the transfer status in the multi-chamber heat treatment furnace. The atmosphere is adjusted. Thereby, even if the cooling chamber and the heating chamber are spaced apart to form only one opening for moving the workpiece in the cooling chamber, the atmosphere in the transfer chamber and the cooling chamber should be the same. Can do. In other words, by conveying the product to be processed under reduced pressure, heat dissipation and cooling delay can be prevented, and the processed product can be prevented from being modified to a material different from the desired material.
Furthermore, it becomes easy to reduce the amount of cooling gas used as the cooling chamber becomes smaller and to make the flow of the cooling gas uniform.

以下、本発明の実施形態について、図面を参照して説明する。
〔第一実施形態〕
図1は、本実施形態の多室型熱処理炉1を示す概略構成図であり、図2は、図1におけるII−II断面図であり、図3は、図2におけるIII−III断面図である。なお、多室型熱処理炉1は、立方体形状の被処理品Wの熱処理を行うものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First embodiment]
1 is a schematic configuration diagram showing a multi-chamber heat treatment furnace 1 of the present embodiment, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 is a cross-sectional view taken along line III-III in FIG. is there. In addition, the multi-chamber heat treatment furnace 1 performs heat treatment of the product W having a cubic shape.

多室型熱処理炉1は、被処理品Wを加熱する加熱室10と、加熱された被処理品Wを冷却する冷却室20と、外部から被処理品Wが装入及び抽出されて加熱室10及び冷却室20に隣接する搬送室30とから概略構成される。   The multi-chamber heat treatment furnace 1 includes a heating chamber 10 that heats the workpiece W, a cooling chamber 20 that cools the heated workpiece W, and a heating chamber in which the workpiece W is charged and extracted from the outside. 10 and a transfer chamber 30 adjacent to the cooling chamber 20.

加熱室10は、図2に示すように、搬送室30と連通する搬入搬出口11aが設けられた真空容器11と、搬入搬出口11aに設けられて加熱室10の内部空間を密閉可能な加熱室扉12と、箱型形状であり搬入搬出口13aが設けられた断熱加熱室13と、搬入搬出口13aに設けられて断熱加熱室13の内部空間を熱遮蔽可能な断熱扉14と、断熱扉14を上下方向に移動させて開閉を行う開閉機構15と(図3参照)、断熱加熱室13内に設けられて被処理品Wを加熱するヒータ16とを備えている。   As shown in FIG. 2, the heating chamber 10 includes a vacuum vessel 11 provided with a carry-in / out port 11 a communicating with the transfer chamber 30, and heating that can be provided in the carry-in / out port 11 a to seal the internal space of the heating chamber 10. A chamber door 12, a heat insulating heating chamber 13 having a box shape and provided with a carry-in / out port 13 a, a heat insulating door 14 provided at the carry-in / out port 13 a and capable of thermally shielding the internal space of the heat insulating heating chamber 13, and heat insulation An opening / closing mechanism 15 that opens and closes by moving the door 14 in the vertical direction (see FIG. 3), and a heater 16 that is provided in the adiabatic heating chamber 13 and heats the workpiece W are provided.

図3に示すように、真空容器11は、炉外の減圧装置(不図示)に接続された空気排出孔11bが設けられ、加熱室扉12が閉じられた状態においてその内部が真空排気されるようになっている。すなわち、断熱扉14を開放し真空容器11内を真空排気した後に断熱扉14を閉じることにより、断熱加熱室13が真空状態かつ断熱状態となる。このような構成により、断熱加熱室13内部に搬入された被処理品Wが、真空状態かつ断熱状態で、所定の温度で加熱されるようになっている。
なお、空気排出孔11bに代えて、または、この空気排出孔11bと併せて、加熱室10の真空容器11と搬送室30の真空容器31とを連通可能な開閉バルブを備えた連通菅を設けてもよい。すなわち、加熱室10の空気排出孔11bから真空排気してもよいし、開閉バルブを開いて、連通管を介して搬送室30の空気排出孔31cから真空排気してもよい。
As shown in FIG. 3, the vacuum vessel 11 is provided with an air discharge hole 11b connected to a decompression device (not shown) outside the furnace, and the inside of the vacuum chamber 11 is evacuated while the heating chamber door 12 is closed. It is like that. That is, by opening the heat insulation door 14 and evacuating the inside of the vacuum vessel 11, the heat insulation chamber 13 is brought into a vacuum state and a heat insulation state by closing the heat insulation door 14. With such a configuration, the workpiece W carried into the heat insulating heating chamber 13 is heated at a predetermined temperature in a vacuum state and in a heat insulating state.
Instead of the air discharge hole 11b or in combination with the air discharge hole 11b, a communication rod provided with an open / close valve capable of communicating the vacuum container 11 of the heating chamber 10 and the vacuum container 31 of the transfer chamber 30 is provided. May be. That is, vacuum exhaust may be performed from the air discharge hole 11b of the heating chamber 10, or an open / close valve may be opened and vacuum exhaust may be performed from the air discharge hole 31c of the transfer chamber 30 via the communication pipe.

この真空容器11の内部及び断熱加熱室13には、複数のフリーローラFが設けられている。このフリーローラFは、軸心を中心に自由に回転可能な円筒形の短いローラであり、二つのフリーローラFが対向するように、取付フレーム17に連続的に設けられている。これら複数のフリーローラFは、被処理品Wの下面の両端部のみを支持するようになっており、被処理品Wが搬入搬出口11aと断熱加熱室13の内部間とを移動可能としている。
なお、このフリーローラFは、上記のように被処理品Wを支持するだけであり、断熱加熱室13内で加熱されても機能が損なわれないように簡単な軸受(例えば、隙間の大きいジャーナル軸受)で構成され、熱対策がほとんど不要なシンプルな構成となっている。
A plurality of free rollers F are provided in the vacuum container 11 and in the heat insulating heating chamber 13. The free roller F is a short cylindrical roller that can freely rotate about its axis, and is continuously provided on the mounting frame 17 so that the two free rollers F face each other. The plurality of free rollers F support only both end portions of the lower surface of the workpiece W, and the workpiece W can move between the carry-in / out port 11a and the inside of the heat insulating heating chamber 13. .
The free roller F only supports the workpiece W as described above, and a simple bearing (for example, a journal with a large gap) so that the function is not impaired even when heated in the adiabatic heating chamber 13. Bearing), and has a simple structure that requires almost no heat countermeasures.

冷却室20は、図1及び図2に示すように、冷却ガスGを循環させて被処理品Wを冷却するものであり、フランジ部21aを有する略円筒形状の真空容器21と、真空容器21の内部に収容される断熱冷却室22と、真空容器21の端部21bに取り付けられて、その一部が真空容器21に挿入される冷却循環装置23と、断熱冷却室22と冷却循環装置23との間を仕切りその一部を遮断する固定板24とを備えている。   As shown in FIGS. 1 and 2, the cooling chamber 20 circulates a cooling gas G to cool the article W to be processed, and includes a substantially cylindrical vacuum vessel 21 having a flange portion 21 a, and a vacuum vessel 21. An adiabatic cooling chamber 22 housed inside the cooling vessel 22, a cooling circulation device 23 that is attached to the end portion 21 b of the vacuum vessel 21, and a part of which is inserted into the vacuum vessel 21, And a fixing plate 24 that blocks a part thereof.

真空容器21は、端部21bに冷却循環装置23が固定され、後述の搬送室30における側壁部31dの搬入搬出口(開口部)31bの周囲を囲うようにしてフランジ部21aが気密に固定されている。すなわち、冷却室20は、真空容器21と側壁部31dと冷却循環装置23とにより、外部及び多室型熱処理炉1の他の部分と区画された内部空間を形成するものである。
この真空容器21は、比較的に小形のものであり、その内部空間が例えば0.3MPa以上の高圧となっても十分に耐え得るように耐圧設計されたものである。
The cooling vessel 23 is fixed to the end 21b of the vacuum vessel 21, and the flange portion 21a is hermetically fixed so as to surround the loading / unloading opening (opening) 31b of the side wall portion 31d in the transfer chamber 30 described later. ing. That is, the cooling chamber 20 forms an internal space that is partitioned from the outside and other portions of the multi-chamber heat treatment furnace 1 by the vacuum vessel 21, the side wall portion 31 d, and the cooling circulation device 23.
The vacuum vessel 21 is relatively small in size, and is designed to withstand pressure so that the internal space can sufficiently withstand a high pressure of, for example, 0.3 MPa or more.

真空容器21は、炉外の減圧装置(不図示)に接続された空気排出孔21cを備え、後述の搬入搬出口31bが閉じた状態において、その内部が真空排気されるようになっている。そして、真空排気後に冷却ガス供給機構(不図示)から高圧の冷却ガスGが供給されて、被処理品Wが冷却される。この冷却ガスGは、例えば0.3MPa以上のものであって、比較的高圧のものである。   The vacuum vessel 21 includes an air discharge hole 21c connected to a decompression device (not shown) outside the furnace, and the inside of the vacuum vessel 21 is evacuated in a state where a carry-in / out port 31b described later is closed. Then, after evacuation, a high-pressure cooling gas G is supplied from a cooling gas supply mechanism (not shown), and the workpiece W is cooled. The cooling gas G is, for example, 0.3 MPa or higher and has a relatively high pressure.

なお、空気排出孔21cに代えて、またはこの空気排出孔21cと併せて、冷却室20の真空容器21と搬送室30の真空容器31とを連通可能な開閉バルブを備えた連通菅を設けてもよい。すなわち、冷却室20の空気排出孔21cから真空排気してもよいし、開閉バルブを開いて、連通管を介して搬送室30の空気排出孔31cから真空排気してもよい。   Instead of the air discharge hole 21c or in combination with the air discharge hole 21c, a communication rod provided with an opening / closing valve capable of communicating the vacuum container 21 of the cooling chamber 20 and the vacuum container 31 of the transfer chamber 30 is provided. Also good. That is, vacuum exhaust may be performed from the air exhaust hole 21c of the cooling chamber 20, or an open / close valve may be opened and vacuum exhaust may be performed from the air exhaust hole 31c of the transfer chamber 30 via the communication pipe.

図4は、図2におけるIV-IV断面図である。
断熱冷却室22は、搬入搬出口31bから搬入された被処理品Wが静置されるものであり、搬入搬出口31bに隣接するように、搬送室30側の真空容器21の中央に設けられる。この断熱冷却室22は、両側面及び冷却循環装置23側の側面は気密性のある断熱壁22a〜22cで仕切られ、上下端に整流器22dが設けられている。この整流器22dは、断熱冷却室22を通過する冷却ガスGの速度分布を均一化させるものであり、例えば、貫通口が形成されたプレートと格子状に配列した複数の清流グリッドとから構成される。
また、この断熱冷却室22の内部空間の下側には、上述した複数のフリーローラFが、取付フレーム27に対向するように設けられている。この冷却室20内のフリーローラFは、上記加熱室10内のフリーローラFよりも高い位置に設けられている。
4 is a cross-sectional view taken along the line IV-IV in FIG.
The adiabatic cooling chamber 22 is where the workpiece W carried in from the carry-in / out port 31b is left stationary, and is provided in the center of the vacuum container 21 on the transfer chamber 30 side so as to be adjacent to the carry-in / out port 31b. . The adiabatic cooling chamber 22 has both side surfaces and a side surface on the cooling circulation device 23 side partitioned by airtight heat insulating walls 22a to 22c, and rectifiers 22d are provided at upper and lower ends. This rectifier 22d is for uniformizing the velocity distribution of the cooling gas G passing through the adiabatic cooling chamber 22, and is composed of, for example, a plate in which through holes are formed and a plurality of clear flow grids arranged in a grid. .
The plurality of free rollers F described above are provided below the internal space of the heat insulating cooling chamber 22 so as to face the mounting frame 27. The free roller F in the cooling chamber 20 is provided at a position higher than the free roller F in the heating chamber 10.

図1及び図2に戻って、冷却循環装置23は、断熱冷却室22を通過した冷却ガスGを吸引して加圧する冷却ファン23aと、冷却ファン23aに吸引された冷却ガスGを間接冷却する熱交換器23bとが備えられている。冷却ファン23aは、真空容器21の外部に露出するように配置された冷却ファンモータ23cにより回転駆動され、固定板24を介して中央部から冷却ガスGを吸引し、外周部から吐出する。
熱交換器23bは、例えば、内部を水冷された冷却フィンチューブであり、冷却ファン23aの外周部から吐出された冷却ガスGが冷却されるようになっている。
1 and 2, the cooling circulation device 23 indirectly cools the cooling gas 23 sucked and pressurized by the cooling fan 23 a that sucks and pressurizes the cooling gas G that has passed through the adiabatic cooling chamber 22. And a heat exchanger 23b. The cooling fan 23 a is rotationally driven by a cooling fan motor 23 c disposed so as to be exposed to the outside of the vacuum vessel 21, sucks the cooling gas G from the central portion via the fixed plate 24, and discharges it from the outer peripheral portion.
The heat exchanger 23b is, for example, a cooling fin tube whose inside is water-cooled, and the cooling gas G discharged from the outer peripheral portion of the cooling fan 23a is cooled.

このような構成に加えて、真空容器21と断熱壁22b,22cとの各間に設けられた水平仕切板25a,25b(図4参照)により冷却ガスGが上下に気密に仕切られている。また、固定板24が冷却ファン23aと同軸に回転駆動可能となっており、冷却ガスGの流出が上下切換え可能となっている。このような構成により、断熱冷却室22の内部には、上下方向に切り換え可能な冷却ガスGの流路が形成されている。   In addition to such a configuration, the cooling gas G is vertically and air-tightly partitioned by horizontal partition plates 25a and 25b (see FIG. 4) provided between the vacuum vessel 21 and the heat insulating walls 22b and 22c. The fixed plate 24 can be driven to rotate coaxially with the cooling fan 23a, and the outflow of the cooling gas G can be switched up and down. With such a configuration, a flow path of the cooling gas G that can be switched in the vertical direction is formed inside the adiabatic cooling chamber 22.

搬送室30は、装入抽出口31a、搬入搬出口(開口部)31b及び減圧装置(不図示)に接続された空気排出口31cが設けられた真空容器31と、装入抽出口31aに設けられた装入抽出扉32と、この装入抽出扉32を開閉させる開閉機構33と、搬入搬出口31bに設けられた搬入搬出扉34と、この搬入搬出扉34を開閉させる開閉機構35と、加熱室10まで被処理品Wを移動させる第一搬送装置36と,装入抽出口31aから加熱室10の搬入搬出口11aまで設けられて被処理品Wを水平方向に移動可能に支持する第一搬送路37と、冷却室20まで被処理品Wを移動させる第二搬送装置40と、装入抽出口31a近傍から搬入搬出口31bまで設けられて被処理品Wを水平方向に移動可能に支持する第二搬送路41とが備えられている。なお、真空容器31の側壁部31dは、冷却室20の一部をも構成している。   The transfer chamber 30 is provided in the charging / extracting port 31a, a loading / unloading port (opening) 31b, a vacuum container 31 provided with an air discharge port 31c connected to a decompression device (not shown), and the charging / extracting port 31a. A loading / extraction door 32, an opening / closing mechanism 33 for opening / closing the charging / extraction door 32, a loading / unloading door 34 provided at the loading / unloading exit 31b, and an opening / closing mechanism 35 for opening / closing the loading / unloading door 34, A first transfer device 36 that moves the workpiece W to the heating chamber 10 and a first conveyor 36 that is provided from the charging / extracting port 31a to the loading / unloading port 11a of the heating chamber 10 to support the workpiece W so as to be movable in the horizontal direction. One transport path 37, a second transport device 40 that moves the workpiece W to the cooling chamber 20, and the vicinity of the charging / extraction port 31 a to the loading / unloading port 31 b so that the workpiece W can be moved in the horizontal direction. The second transport path 41 to support It is. Note that the side wall portion 31 d of the vacuum vessel 31 also constitutes a part of the cooling chamber 20.

装入抽出口31aは、加熱室10の加熱室扉12に対向する位置に設けられている。また、装入抽出扉32は、外部に設けられた開閉機構33により、装入抽出口31aを開放すると共に気密に閉塞することが可能である。
また、搬入搬出口31bは、冷却室20側に設けられる。そして、搬入搬出扉34は、真空容器31の内部空間上部に設けられた開閉機構35により、搬入搬出口31bを開放すると共に気密に閉塞して真空容器31の内部空間を密閉することが可能である。
つまり、真空容器31は、搬入搬出口11aと装入抽出口31aと搬入搬出口34を閉塞することにより、その内部空間が密閉されて、この状態で減圧装置(不図示)を駆動するとこの内部空間が真空になるようになっている。
The charging / extracting port 31 a is provided at a position facing the heating chamber door 12 of the heating chamber 10. The charging / extracting door 32 can be closed airtight while opening the charging / extracting port 31a by an open / close mechanism 33 provided outside.
The carry-in / out port 31b is provided on the cooling chamber 20 side. The loading / unloading door 34 can open and close the loading / unloading port 31b and hermetically close the inner space of the vacuum vessel 31 by an opening / closing mechanism 35 provided in the upper portion of the inner space of the vacuum vessel 31. is there.
That is, the internal space of the vacuum container 31 is closed by closing the loading / unloading port 11a, the loading / extracting port 31a, and the loading / unloading port 34, and when the decompression device (not shown) is driven in this state, The space has become a vacuum.

第一搬送装置36は、被処理品Wに係合する第一搬送棒38と、第一搬送棒38を第一搬送路37に沿って移動させる第一駆動装置39とが備えられている。   The first transport device 36 includes a first transport rod 38 that engages with the workpiece W and a first drive device 39 that moves the first transport rod 38 along the first transport path 37.

第一搬送棒38は、起伏可能な係合部材38aを先端に有するものであり、第一搬送路37に沿ってこれの下部を移動するものである。つまり、係合部材38aは、高位置と低位置とに随時変更することができ、高位置では被処理品Wに係合して第一駆動装置39によって被処理品Wを水平に押し引きし、低位置では被処理品Wに係合することなく水平に移動できるように構成されている。   The first transport rod 38 has an engaging member 38 a that can be raised and lowered at the tip, and moves along the first transport path 37 in the lower portion thereof. That is, the engaging member 38a can be changed at any time between the high position and the low position. At the high position, the engaging member 38a is engaged with the workpiece W and the first drive device 39 pushes and pulls the workpiece W horizontally. In the low position, it can be moved horizontally without being engaged with the workpiece W.

第一搬送路37は、装入抽出口31aから加熱室10の搬入搬出口11aまで互いに対向するように設けられた取付フレーム37aに複数のフリーローラFが設けられたものであり、これらは第一搬送路37のフリーローラFと加熱室10内のフリーローラFとが同じ高さになるようになっている。   The first conveyance path 37 is provided with a plurality of free rollers F on an attachment frame 37a provided so as to face each other from the charging / extracting port 31a to the loading / unloading port 11a of the heating chamber 10. The free roller F in one conveyance path 37 and the free roller F in the heating chamber 10 are set to the same height.

第二搬送装置40は、被処理品Wに係合する第二搬送棒42と、第二搬送棒42を第二搬送路41に沿って移動させる第二駆動装置43と、第二搬送路41を昇降させる昇降装置44とが備えられている。
第二搬送棒42は、係合部材42aを先端に有し、第二搬送路41に沿ってこれの下部を移動するものである。
The second transport device 40 includes a second transport rod 42 that engages with the workpiece W, a second drive device 43 that moves the second transport rod 42 along the second transport path 41, and a second transport path 41. And an elevating device 44 for elevating and lowering.
The second transport rod 42 has an engaging member 42 a at its tip, and moves along the second transport path 41 in the lower part thereof.

第二搬送路41は、互いに対向するように設けられた取付フレーム41aに複数のフリーローラFが設けられたものであり、装入抽出口31a近傍において第一搬送路37と交差する直交領域Xから搬入搬出口31bまで設けられている。
取付フレーム41aには昇降装置44が連結されて、第二搬送路41のフリーローラFを冷却室20内のフリーローラFと同じ高さにすることが可能であると共に、取付フレーム41a及びこれに取り付けられるフリーローラFを第一搬送路37よりも低い位置にすることが可能である。
In the second transport path 41, a plurality of free rollers F are provided on a mounting frame 41a provided to face each other, and an orthogonal region X that intersects the first transport path 37 in the vicinity of the charging extraction port 31a. To the carry-in / out port 31b.
A lifting device 44 is connected to the mounting frame 41a so that the free roller F in the second transport path 41 can be made to be the same height as the free roller F in the cooling chamber 20, and the mounting frame 41a and It is possible to set the free roller F to be attached to a position lower than the first conveyance path 37.

この構成により、搬送室30の内部空間には、第一搬送路37と第二搬送路41により搬送路45が、第一搬送装置36と第二搬送装置42とで搬送装置46が構成されている。   With this configuration, in the internal space of the transfer chamber 30, the first transfer path 37 and the second transfer path 41 form a transfer path 45, and the first transfer apparatus 36 and the second transfer apparatus 42 form a transfer apparatus 46. Yes.

続いて、多室型熱処理炉1の作用について説明する。この説明では、多室型熱処理炉1の初期状態においては、全ての扉が閉まっているものとする。
まず、搬送室30の装入抽出扉32が開けられて装入抽出口31aが開放され、被処理品Wを大気圧下で搬送室30内部に装入した後に、装入抽出扉32が閉じられる。そして、減圧装置(不図示)が駆動され、搬送室30の内部空間が真空となる。
Next, the operation of the multi-chamber heat treatment furnace 1 will be described. In this description, it is assumed that all doors are closed in the initial state of the multi-chamber heat treatment furnace 1.
First, the charging / extracting door 32 of the transfer chamber 30 is opened and the charging / extracting port 31a is opened. After the workpiece W is charged into the transfer chamber 30 under atmospheric pressure, the charging / extracting door 32 is closed. It is done. Then, a decompression device (not shown) is driven, and the internal space of the transfer chamber 30 is evacuated.

搬送室30の内部空間を真空とするのと同時に、加熱室10と冷却室20とのそれぞれの内部空間を空気排出孔11b、21cから真空排気して真空とする。なお、この際、上述したように、加熱室10と搬送室30と、冷却室20と搬送室30とにそれぞれ連通菅を設けて連通菅の開閉バルブを開くことより、加熱室10と冷却室20との内部空間を搬送室30の内部空間と同圧にしてもよい。また、冷却室20の内部空間については、搬入搬出扉34を開けることにより搬送室30の内部空間と同圧にしてもよい。   At the same time that the internal space of the transfer chamber 30 is evacuated, the internal spaces of the heating chamber 10 and the cooling chamber 20 are evacuated from the air discharge holes 11b and 21c to be evacuated. At this time, as described above, the heating chamber 10 and the cooling chamber 30 are provided by providing the communication chambers in the heating chamber 10, the transfer chamber 30, the cooling chamber 20 and the transfer chamber 30, respectively, and opening the open / close valve of the communication rod. The internal space with 20 may be the same pressure as the internal space of the transfer chamber 30. Further, the internal space of the cooling chamber 20 may have the same pressure as the internal space of the transfer chamber 30 by opening the carry-in / out door 34.

次に、搬送室30の内部空間と加熱室が同圧となった後に加熱室扉12及び断熱扉14が開けられる。
被処理品Wは、第一搬送棒38により第一搬送路37上を移動して加熱室10における断熱加熱室13の内部まで搬送される。なお、このとき、第二搬送路41は、低位置にあり第一搬送路37に干渉しないようになっている。
Next, after the internal space of the transfer chamber 30 and the heating chamber have the same pressure, the heating chamber door 12 and the heat insulating door 14 are opened.
The article W to be processed moves on the first conveyance path 37 by the first conveyance rod 38 and is conveyed to the inside of the heat insulation heating chamber 13 in the heating chamber 10. At this time, the second transport path 41 is at a low position so as not to interfere with the first transport path 37.

被処理品Wが断熱加熱室13の内部まで移動すると、加熱室扉12及び断熱扉14が閉じられ、被処理品Wは断熱状態かつ真空状態でヒータ16により加熱される。この加熱処理後、加熱室扉12、断熱扉14及び搬入搬出扉34が開けられて、被処理品Wが第一搬送棒38により第一搬送路37上を移動して第一搬送路37と第二搬送路41との直交領域Xまで搬送される。この際、加熱室10、冷却室20及び搬送室30の内部は全て真空状態である。
なお、上述した通り、冷却室20について、搬入搬出扉34を開けることにより搬送室30と同圧にする場合には搬入搬出扉34を予め開けていてもよい。
When the article to be processed W moves to the inside of the heat insulating heating chamber 13, the heating chamber door 12 and the heat insulating door 14 are closed, and the article to be processed W is heated by the heater 16 in a heat insulating state and in a vacuum state. After this heat treatment, the heating chamber door 12, the heat insulation door 14 and the carry-in / out door 34 are opened, and the article W to be processed moves on the first conveyance path 37 by the first conveyance rod 38. It is transported to a region X orthogonal to the second transport path 41. At this time, the insides of the heating chamber 10, the cooling chamber 20, and the transfer chamber 30 are all in a vacuum state.
In addition, as above-mentioned, when making the same pressure as the conveyance chamber 30 by opening the carrying in / out door 34 about the cooling chamber 20, the carrying in / out door 34 may be opened beforehand.

第一搬送路37と第二搬送路41の直交領域Xに達すると第一搬送路37よりも低位置にあった第二搬送路41が昇降装置44により上昇する。なお、この時、第一搬送棒38は、初期位置まで戻っており第二搬送路41に干渉することはない。また、この際に断熱扉14が閉じられる。
第二搬送路41のフリーローラFが冷却室20内のフリーローラFの高さとなる位置まで上昇した後に、被処理品Wを第二搬送棒42により断熱冷却室22の内部まで搬送する。
When reaching the orthogonal region X of the first transport path 37 and the second transport path 41, the second transport path 41 located at a lower position than the first transport path 37 is raised by the lifting device 44. At this time, the first transport rod 38 has returned to the initial position and does not interfere with the second transport path 41. At this time, the heat insulating door 14 is closed.
After the free roller F in the second transport path 41 rises to a position where the free roller F in the cooling chamber 20 is at the height, the workpiece W is transported to the inside of the adiabatic cooling chamber 22 by the second transport rod 42.

被処理品Wが断熱冷却室22の内部に達すると搬入搬出扉34が閉じられ、冷却室20の内部空間が密閉される。この状態において、冷却室20の内部空間に冷却ガス供給機構(不図示)から比較的高圧(例えば0.3MPa以上)かつ少量の冷却ガスGが供給され、その流れが適宜上下方向に切り換えられて断熱冷却室22を円滑かつ均一に循環することにより、被処理品Wが均一に冷却される。   When the workpiece W reaches the inside of the heat insulating cooling chamber 22, the carry-in / out door 34 is closed, and the internal space of the cooling chamber 20 is sealed. In this state, a relatively high pressure (for example, 0.3 MPa or more) and a small amount of cooling gas G are supplied to the internal space of the cooling chamber 20 from a cooling gas supply mechanism (not shown), and the flow is appropriately switched in the vertical direction. By circulating smoothly and uniformly in the adiabatic cooling chamber 22, the workpiece W is uniformly cooled.

被処理品Wの冷却中に搬送室30の内部空間は大気圧に復圧され、被処理品Wの冷却後に、冷却室20を大気圧に復圧する。この復圧後に搬入搬出扉34が開けられて、被処理品Wが第二搬送棒42により断熱冷却室22から直交領域Xまで搬送される。
なお、冷却室20と搬送室30とを連通可能な連通菅を設けた場合には、被処理品Wの冷却が完了するまで搬送室30を復圧させず、被処理品Wの冷却完了後に連通管の開閉バルブを開き、冷却室20の復圧(減圧)と搬送室30の復圧(増圧)を同時に行っても良い。この場合、搬送室30の復圧は冷却ガスGにより行うことになる。
While the workpiece W is being cooled, the internal space of the transfer chamber 30 is restored to atmospheric pressure, and after the workpiece W is cooled, the cooling chamber 20 is restored to atmospheric pressure. After this decompression, the loading / unloading door 34 is opened, and the workpiece W is transported from the adiabatic cooling chamber 22 to the orthogonal region X by the second transport rod 42.
In addition, when a communication rod capable of communicating between the cooling chamber 20 and the transfer chamber 30 is provided, the transfer chamber 30 is not decompressed until the cooling of the workpiece W is completed, and after the cooling of the workpiece W is completed. The open / close valve of the communication pipe may be opened, and the return pressure (decompression) of the cooling chamber 20 and the return pressure (pressure increase) of the transfer chamber 30 may be performed simultaneously. In this case, the return pressure of the transfer chamber 30 is performed by the cooling gas G.

被処理品Wが直交領域Xに搬送されると昇降装置44により第二搬送路41が下降し、被処理品Wは再び第一搬送路37上に載置される。さらに、炉外に設置した挿入抽出器(不図示)より直交領域Xから装入抽出口31aまで搬送されて、装入抽出口31aが開けられて、被処理品Wが炉外へと抽出される。
そして、新たな被処理品Wが炉内に装入されることにより、上記に説明した動作が再び繰り返され、複数の被処理品Wの連続的な熱処理が行われる。
When the article to be processed W is conveyed to the orthogonal region X, the second conveying path 41 is lowered by the lifting device 44, and the article to be processed W is placed on the first conveying path 37 again. Furthermore, it is conveyed from the orthogonal region X to the charging / extracting port 31a from an insertion extractor (not shown) installed outside the furnace, the charging / extracting port 31a is opened, and the workpiece W is extracted out of the furnace. The
Then, when a new workpiece W is charged into the furnace, the above-described operation is repeated again, and a plurality of workpieces W are continuously heat-treated.

このように、多室型熱処理炉1によれば、加熱室10と冷却室20とを離間配置して冷却室20における被処理品Wの移動用の搬入搬出口31bを一つだけ形成するので、冷却室20に装入抽出用の開口部を形成したり、冷却室を分離可能な構成にしたりせず、大型・大重量の密封扉や大重量のクラッチリングを設ける必要がない。これにより、冷却室20を小型化することができる。   Thus, according to the multi-chamber heat treatment furnace 1, the heating chamber 10 and the cooling chamber 20 are spaced apart to form only one carry-in / out port 31 b for moving the workpiece W in the cooling chamber 20. Further, it is not necessary to form a charging / extracting opening in the cooling chamber 20 or to make the cooling chamber separable, and it is not necessary to provide a large / heavy sealing door or a heavy clutch ring. Thereby, the cooling chamber 20 can be reduced in size.

また、加熱室10と冷却室20との間に密閉かつ減圧可能な搬送室30を設けているので、被処理品Wの装入抽出状況と多室型熱処理炉内の搬送状況に応じて、適宜搬送室30の雰囲気が調整される。これにより、加熱室10と冷却室20とを離間配置して冷却室20に被処理品Wの移動用の搬入搬出口31bを一つだけ形成しても、冷却室20と搬送室30との雰囲気を同様のものとすることができる。すなわち、減圧下で被処理品Wを搬送することにより放熱や冷却遅延を防止して、被処理品Wが所望する材質と異なるものに改質されることを防ぐことができる。   In addition, since the transfer chamber 30 that can be sealed and depressurized is provided between the heating chamber 10 and the cooling chamber 20, depending on the charging and extraction status of the article W to be processed and the transfer status in the multi-chamber heat treatment furnace, The atmosphere of the transfer chamber 30 is adjusted as appropriate. Thereby, even if the heating chamber 10 and the cooling chamber 20 are spaced apart and only one loading / unloading port 31b for moving the workpiece W is formed in the cooling chamber 20, the cooling chamber 20 and the transfer chamber 30 The atmosphere can be similar. That is, by conveying the workpiece W under reduced pressure, heat dissipation and cooling delay can be prevented, and the workpiece W can be prevented from being modified to a material different from the desired material.

また、被処理品Wを冷却室20内に搬入及び搬出する第一搬送装置36を冷却室20に設けずに搬送室30に設けるので、その余剰スペース分だけ冷却室20を小形化することができる。
さらに、冷却室20の小型化に伴って冷却ガスGの使用量を低減させると共に冷却ガスGの流れを均一にすることが容易となって被処理品Wの冷却を均一に行うことができる。
Further, since the first transfer device 36 for carrying the workpiece W into and out of the cooling chamber 20 is provided in the transfer chamber 30 without being provided in the cooling chamber 20, the cooling chamber 20 can be reduced in size by the excess space. it can.
Further, as the cooling chamber 20 is downsized, the amount of the cooling gas G used can be reduced and the flow of the cooling gas G can be made uniform, and the workpiece W can be uniformly cooled.

また、冷却室20を小型化することで耐圧性能の設計が容易となるので、例えば、0.3MPa以上の圧力に耐えうる円筒形の耐圧容器を設計することも容易となる。
また、搬送室30内部における第一搬送路37に対して第二搬送路41が直交方向に設けられているので、様々な製造ラインに幅広く対応することができる。
In addition, since the pressure-resistant performance can be easily designed by downsizing the cooling chamber 20, it is also easy to design a cylindrical pressure-resistant container that can withstand a pressure of 0.3 MPa or more, for example.
Moreover, since the 2nd conveyance path 41 is provided in the orthogonal direction with respect to the 1st conveyance path 37 in the conveyance chamber 30, it can respond | correspond widely to various manufacturing lines.

〔第二実施形態〕
図5は、本実施形態の多室型熱処理炉2を模式的に示した平面図である。なお、図1〜4と同様の構成要素については、同一の符号を付し説明を省略する。
多室型熱処理炉2は、加熱室50と、冷却室20と、搬送室30とを備えている。
加熱室50は、上記多室型熱処理炉2の加熱室10とその基本的な構成は異ならないが、加熱室10が一つの被処理品Wのみを加熱するのに対して、同時に二つの被処理品Wを加熱する点が異なる。また、加熱室50には、上記加熱室10と同様にフリーローラFが設けられている。
なお、加熱室50内において加熱室扉12の前に断熱用加熱扉があるが、これは上記第一実施形態における断熱扉14と同様のものであり、説明を省略する。
[Second Embodiment]
FIG. 5 is a plan view schematically showing the multi-chamber heat treatment furnace 2 of the present embodiment. In addition, about the component similar to FIGS. 1-4, the same code | symbol is attached | subjected and description is abbreviate | omitted.
The multi-chamber heat treatment furnace 2 includes a heating chamber 50, a cooling chamber 20, and a transfer chamber 30.
The heating chamber 50 is not different from the basic structure of the heating chamber 10 of the multi-chamber heat treatment furnace 2, but the heating chamber 10 heats only one article W to be processed, whereas two heating chambers 10 simultaneously. The difference is that the processed product W is heated. The heating chamber 50 is provided with a free roller F as in the heating chamber 10.
In addition, although there exists a heating door for heat insulation in front of the heating chamber door 12 in the heating chamber 50, this is the same as that of the heat insulation door 14 in said 1st embodiment, and description is abbreviate | omitted.

続いて、多室型熱処理炉2の作用を説明する。
多室型熱処理炉2に装入された二つの被処理品W1,W2は、上記多室型熱処理炉1と同様の過程を経て、加熱室50に搬入される。しかし、上述したように冷却室20は小型のものであり、被処理品W1,W2を同時に冷却することはできないので、これらを一つずつ冷却する。つまり、被処理品W1を先に搬出して冷却室20で冷却しこれを炉外へ抽出した後に、被処理品W2を冷却室20に搬入して冷却する。
Next, the operation of the multi-chamber heat treatment furnace 2 will be described.
The two articles W1 and W2 charged in the multi-chamber heat treatment furnace 2 are carried into the heating chamber 50 through the same process as the multi-chamber heat treatment furnace 1. However, as described above, the cooling chamber 20 is small, and the workpieces W1 and W2 cannot be cooled at the same time, so these are cooled one by one. That is, the article to be processed W1 is first carried out and cooled in the cooling chamber 20 and extracted outside the furnace, and then the article to be treated W2 is carried into the cooling chamber 20 and cooled.

被処理品W1が加熱室50から搬送室30に搬出された後には、加熱室扉12が再び閉められて、被処理品W2が加熱室50内で待機させられる。
そして、被処理品W1の冷却処理が終了し、被処理品W1が復圧された冷却室20から搬送室30へと搬出されると、搬入搬出扉34が閉められて冷却室20内が再び減圧される。そして、装入抽出扉32が開放されて被処理品W1が装入抽出口31bから炉外へと抽出されると、装入抽出扉32が閉じられた後に搬送室30内が再び真空にされて、加熱室50内の被処理品W2の冷却処理を始める。
さらに、被処理品W2の冷却処理が終了して、これが炉外に抽出された後には新たに二つの被処理品Wが搬送室30内に装入されて加熱処理が開始される。
After the article to be processed W1 is carried out from the heating chamber 50 to the transfer chamber 30, the heating chamber door 12 is closed again, and the article to be processed W2 is made to wait in the heating chamber 50.
When the cooling process of the article to be processed W1 is completed and the article to be processed W1 is discharged from the cooled cooling chamber 20 to the transfer chamber 30, the loading / unloading door 34 is closed, and the inside of the cooling chamber 20 is restored again. Depressurized. When the charging / extracting door 32 is opened and the workpiece W1 is extracted from the charging / extracting port 31b to the outside of the furnace, the inside of the transfer chamber 30 is evacuated again after the charging / extracting door 32 is closed. Then, the cooling process of the workpiece W2 in the heating chamber 50 is started.
Furthermore, after the cooling process of the article to be processed W2 is completed and extracted from the outside of the furnace, two articles to be processed W are newly charged into the transfer chamber 30 and the heating process is started.

このように、多室熱処理炉2によれば、上述した効果と同様の効果が得られる他、加熱室50が被処理品Wを二つ収容するので、処理効率を格段に向上させることができる。すなわち、多室型熱処理炉2は高速ガス冷却方式なので、加熱時間よりも冷却時間が極めて短くなっている。つまり、冷却室20内に一つの被処理品Wしか収容できなくても、同時に加熱及び冷却処理された二つの被処理品W1及びW2は、ほとんど時間差がない状態で冷却されるので、被処理品W1及びW2の材質に差異が生じることはない。これにより、加熱室に一つの被処理品を収容した場合に比べて、処理効率を倍程度に向上させることができる。   Thus, according to the multi-chamber heat treatment furnace 2, in addition to the same effects as described above, the heating chamber 50 accommodates two workpieces W, so that the processing efficiency can be significantly improved. . That is, since the multi-chamber heat treatment furnace 2 is a high-speed gas cooling system, the cooling time is extremely shorter than the heating time. That is, even if only one workpiece W can be accommodated in the cooling chamber 20, the two workpieces W1 and W2 that are heated and cooled at the same time are cooled with almost no time difference. There is no difference between the materials of the products W1 and W2. Thereby, compared with the case where one to-be-processed product is accommodated in a heating chamber, processing efficiency can be improved about twice.

〔第三実施形態〕
図6は、本実施形態の多室型熱処理炉3を模式的に示した平面図である。多室型熱処理炉3は、いわゆる真空熱処理式ストレートスルー型の多室型熱処理炉に本発明を適用したものである。なお、図1〜5と同様の構成要素については、同一の符号を付して説明を省略する。
[Third embodiment]
FIG. 6 is a plan view schematically showing the multi-chamber heat treatment furnace 3 of the present embodiment. The multi-chamber heat treatment furnace 3 is obtained by applying the present invention to a so-called vacuum heat treatment type straight-through multi-chamber heat treatment furnace. In addition, about the component similar to FIGS. 1-5, the same code | symbol is attached | subjected and description is abbreviate | omitted.

多室型熱処理炉3は、置換室60と、第一加熱室61と、第二加熱室62と、搬送室30とが順に隣接するように設けられている。また、これらの設置方向の鉛直方向において搬送室30に隣接する冷却室20が設けられている。   The multi-chamber heat treatment furnace 3 is provided such that the replacement chamber 60, the first heating chamber 61, the second heating chamber 62, and the transfer chamber 30 are adjacent to each other in order. A cooling chamber 20 adjacent to the transfer chamber 30 is provided in the vertical direction of these installation directions.

置換室60は、装入扉70を介して被処理品Wが炉外からその内部へと装入されるものであり、加熱処理に先立って大気圧から真空へと減圧が行われるものである。なお、置換室60の内部空間は、装入扉70が閉まることで密閉されるようになっている。   In the replacement chamber 60, the article W to be processed is inserted from the outside of the furnace into the inside through the charging door 70, and the pressure is reduced from the atmospheric pressure to the vacuum prior to the heat treatment. . The internal space of the replacement chamber 60 is sealed when the charging door 70 is closed.

第一加熱室61、第二加熱室62は、加熱室50とその構成がほとんど同様のものであり、それぞれその内部空間を密閉可能な第一扉71,第二扉72が設けられており、第一扉71を開けることにより置換室60と第一加熱室61が連通し、第二扉72を開けることにより、第一加熱室61と第二加熱室62とが連通するようになっている。また、搬送室30の搬入搬出扉12を開けることにより第二加熱室62と搬送室30とが連通し、搬入搬出扉12に対向して設けられた抽出扉32を開けると搬送室30と炉外が連通するようになっている。なお、予熱室61から搬送室30までは、上記第一搬送路37と同様の搬送路が形成されており、各室は真空にすることが可能である。   The first heating chamber 61 and the second heating chamber 62 have almost the same configuration as the heating chamber 50, and are provided with a first door 71 and a second door 72 that can seal the internal space, respectively. The replacement chamber 60 and the first heating chamber 61 communicate with each other by opening the first door 71, and the first heating chamber 61 and the second heating chamber 62 communicate with each other by opening the second door 72. . Further, when the loading / unloading door 12 of the transfer chamber 30 is opened, the second heating chamber 62 and the transfer chamber 30 communicate with each other, and when the extraction door 32 provided facing the loading / unloading door 12 is opened, the transfer chamber 30 and the furnace The outside is in communication. In addition, the conveyance path similar to the said 1st conveyance path 37 is formed from the preheating chamber 61 to the conveyance chamber 30, and each chamber can be evacuated.

第一加熱室61と第二加熱室62との間の被処理品Wの移動は、二つずつなされる。すなわち、第二加熱室62は二つの被処理品Wが戴置されるスペースしか有さないので、第二加熱室62の2つの被処理品Wが順次冷却室20を経て炉外に抽出された時に、第一加熱室61の2つの被処理品Wが不図示の搬送機構により第二加熱室62に移動される。第二加熱室62に移動された被処理品Wは、上記加熱室50の場合と同様に冷却室20を介して炉外に抽出される。
移動を2つずつとしたのは、冷却処理や減圧処理(ガス置換)に比べて、加熱処理は長時間を要するからであり、被処理品Wの材質のバラつきが大きくなることを避けるためである。
なお、第一加熱室61内において第一扉71及び第二扉72のそれぞれの前に、第二加熱室62内において第二扉72及び加熱室扉12のそれぞれの前に、断熱用加熱扉が設けられているが、これは上記第一実施形態における断熱扉14と同様のものであり、説明を省略する。
Two articles W are moved between the first heating chamber 61 and the second heating chamber 62. That is, since the second heating chamber 62 has only a space for placing the two workpieces W, the two workpieces W in the second heating chamber 62 are sequentially extracted outside the furnace through the cooling chamber 20. At this time, the two workpieces W in the first heating chamber 61 are moved to the second heating chamber 62 by a transport mechanism (not shown). The workpiece W moved to the second heating chamber 62 is extracted outside the furnace through the cooling chamber 20 as in the case of the heating chamber 50.
The reason for the two movements is that the heat treatment takes a long time compared to the cooling treatment or the decompression treatment (gas replacement), so that the variation in the material of the workpiece W is not increased. is there.
In addition, in the 1st heating chamber 61, before each of the 1st door 71 and the 2nd door 72, in the 2nd heating chamber 62, before each of the 2nd door 72 and the heating chamber door 12, it is a heat insulation heating door. However, this is the same as the heat insulating door 14 in the first embodiment, and the description is omitted.

続いて、多室型熱処理炉3の作用について説明する。なお、各扉は全て閉まっているものとし、各室は全て真空である。
置換室60の装入扉70が大気圧下で開けられて、その内部空間に被処理品Wが装入される。その後、密閉された置換室60の内部空間が減圧されて真空となる。
Next, the operation of the multi-chamber heat treatment furnace 3 will be described. Note that all doors are closed, and all the chambers are vacuum.
The charging door 70 of the replacement chamber 60 is opened under atmospheric pressure, and the workpiece W is charged into the internal space. Thereafter, the internal space of the sealed replacement chamber 60 is depressurized to become a vacuum.

第一加熱室61の2つの被処理品Wが第二加熱室62へと搬送されると、第一扉71が開けられ置換室60内の被処理品Wが第一加熱室61に搬送される。この後に第一扉71は閉じられるが、新たな被処理品Wが置換室60内に搬送されると減圧処理の後にこの新たな被処理品Wが第一加熱室61に搬送される。そして、第一扉71が再度閉められ、これら二つの被処理品Wに対して加熱処理が行われる。   When the two workpieces W in the first heating chamber 61 are conveyed to the second heating chamber 62, the first door 71 is opened, and the workpieces W in the replacement chamber 60 are conveyed to the first heating chamber 61. The Thereafter, the first door 71 is closed, but when a new workpiece W is transferred into the replacement chamber 60, the new workpiece W is transferred to the first heating chamber 61 after the decompression process. Then, the first door 71 is closed again, and the heat treatment is performed on these two workpieces W.

また、第二加熱室62内に被処理品Wが無くなり、かつ、第一加熱室61での加熱時間を経過すると第二扉72が開けられて、第一加熱室61から第二加熱室62内に被処理品Wが搬送される。   In addition, when there is no workpiece W in the second heating chamber 62 and the heating time in the first heating chamber 61 has elapsed, the second door 72 is opened, and the first heating chamber 61 to the second heating chamber 62 are opened. The article W to be processed is transported inside.

このように、多室型熱処理炉3によれば、上述した本発明の効果と同様の効果が得られる他、二つの加熱室が備えられるので、様々な方法の熱処理を行うことができ、被処理品Wについて様々な材質を得ることができる。また、搬送室30を備えるので、これに搬送装置が設けられて複数室の間を自由に搬送することができる構成を容易に得ることができると共に、多室型熱処理炉の設計の自由度も高めることができる。   Thus, according to the multi-chamber heat treatment furnace 3, in addition to the effects similar to the effects of the present invention described above, since two heating chambers are provided, various methods of heat treatment can be performed. Various materials can be obtained for the processed product W. In addition, since the transfer chamber 30 is provided, it is possible to easily obtain a configuration in which a transfer device is provided and can freely transfer between a plurality of chambers, and the degree of freedom in designing a multi-chamber heat treatment furnace is also provided. Can be increased.

〔第四実施形態〕
図7は、本実施形態の多室型熱処理炉4を模式的に示した平面図である。多室型熱処理炉4は、いわゆる雰囲気炉型ストレートスルー型の多室型熱処理炉に本発明を適用したものである。なお、図1〜6と同様の構成要素については、同一の符号を付して説明を省略する。
[Fourth embodiment]
FIG. 7 is a plan view schematically showing the multi-chamber heat treatment furnace 4 of the present embodiment. The multi-chamber heat treatment furnace 4 is the one in which the present invention is applied to a so-called atmospheric furnace type straight-through multi-chamber heat treatment furnace. In addition, about the component similar to FIGS. 1-6, the same code | symbol is attached | subjected and description is abbreviate | omitted.

多室型熱処理炉4は、予熱室80と、第一加熱室61と、第二加熱室62と、予熱置換室81と、搬送室30とが順に隣接するように設けられている。また、これらの設置方向の直交方向において搬送室30に隣接する冷却室20が設けられている。   The multi-chamber heat treatment furnace 4 is provided so that the preheating chamber 80, the first heating chamber 61, the second heating chamber 62, the preheating replacement chamber 81, and the transfer chamber 30 are adjacent to each other in order. A cooling chamber 20 adjacent to the transfer chamber 30 is provided in a direction orthogonal to the installation direction.

予熱室80は、装入扉90を介して被処理品Wが炉外からその内部へと装入されるものであり、加熱処理に先立って被処理品Wを予熱処理するものである。なお、予熱室80の内部空間は、装入扉90が閉まることで雰囲気遮断されるようになっている。
なお、余熱室80内において第一扉71の前に断熱用加熱扉が設けられているが、これは上記第一実施形態における断熱扉14と同様のものであり、説明を省略する。
In the preheating chamber 80, the article to be processed W is charged into the inside of the furnace from the outside through the charging door 90, and the article to be processed W is preheated prior to the heat treatment. The internal space of the preheating chamber 80 is shut off by closing the charging door 90.
In addition, although the heat insulation heating door is provided in front of the 1st door 71 in the preheating chamber 80, this is the same as that of the heat insulation door 14 in said 1st embodiment, and description is abbreviate | omitted.

予熱置換室81は、第三扉91を介して内部に搬入された被処理品Wに予熱処理を行うと共に、予熱室80にて混入した大気をガス置換するものである。
なお、予熱室80から搬送室30までは、上記第一搬送路37と同様の搬送路が形成されている。この内、予熱置換室81、搬送室30及び冷却室20は、真空にすることが可能である。
The preheating replacement chamber 81 performs a preheat treatment on the workpiece W carried inside through the third door 91 and also replaces the air mixed in the preheating chamber 80 with a gas.
A transport path similar to the first transport path 37 is formed from the preheating chamber 80 to the transport chamber 30. Among these, the preheating replacement chamber 81, the transfer chamber 30, and the cooling chamber 20 can be evacuated.

続いて、多室型熱処理炉4の作用について説明する。なお、各扉は全て閉まっているものとする。
予熱室80の装入扉90が大気圧下で開けられて、その内部空間に被処理品Wが装入される。この時、第一加熱室61、第二加熱室62の内部には、爆発性のガスや表面改質ガスが充填されている場合がある。なお、その圧力は大気圧にほぼ等しい。
各室の移動は被処理品Wが一つずつ移動していき、移動の前後には各扉が開閉する。そして、予熱加熱室81において、予熱室80から混入した雰囲気ガスをガス置換する。この際、被処理品Wが第二加熱室62から予熱置換室81に移動した際に爆発性のガスや表面改質ガスが混入したとしても、雰囲気ガスと共に排気され真空にされる。真空後、搬送室30を介して冷却室20内で被処理品Wが冷却される。
Next, the operation of the multi-chamber heat treatment furnace 4 will be described. Note that all doors are closed.
The charging door 90 of the preheating chamber 80 is opened under atmospheric pressure, and the workpiece W is charged into the internal space. At this time, the inside of the 1st heating chamber 61 and the 2nd heating chamber 62 may be filled with explosive gas and surface modification gas. The pressure is almost equal to atmospheric pressure.
Each chamber is moved one by one, and the doors are opened and closed before and after the movement. In the preheating heating chamber 81, the atmospheric gas mixed from the preheating chamber 80 is replaced with gas. At this time, even if explosive gas or surface reforming gas is mixed when the article to be processed W moves from the second heating chamber 62 to the preheating replacement chamber 81, it is exhausted and vacuumed together with the atmospheric gas. After the vacuum, the workpiece W is cooled in the cooling chamber 20 via the transfer chamber 30.

このように、多室型熱処理炉4によれば、上述した本発明の効果と同様の効果が得られる。   Thus, according to the multi-chamber heat treatment furnace 4, the same effect as the effect of the present invention described above can be obtained.

なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   Note that the operation procedures shown in the above-described embodiments, the shapes and combinations of the constituent members, and the like are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上述した実施の形態においては、冷却室20の一部を搬送室30の側壁部31dにより構成したが、真空容器21のフランジ部21a側に端壁を設けてこれに開口部を設ける構成にしてもよい。
また、第一搬送路37と第二搬送路41にフリーローラFを設ける構成としたが、例えば、これに代えてローラハースを用いると共に、この搬送装置としてモータを用いてもよい。
For example, in the embodiment described above, a part of the cooling chamber 20 is configured by the side wall portion 31d of the transfer chamber 30, but a configuration in which an end wall is provided on the flange portion 21a side of the vacuum vessel 21 and an opening is provided in the end wall. It may be.
Moreover, although the free roller F was provided in the 1st conveyance path 37 and the 2nd conveyance path 41, it replaced with this and, for example, while using a roller hearth, you may use a motor as this conveyance apparatus.

また、上記実施形態においては、水平方向に各処理室を配置したが、鉛直方向に各処理室を配置する構成にしてもよい。
また、上記実施形態においては、加熱室10と冷却室20とを直交するように配置させたが、直列的に配置してもよい。
Moreover, in the said embodiment, although each process chamber was arrange | positioned in the horizontal direction, you may make it the structure which arrange | positions each process chamber in the vertical direction.
Moreover, in the said embodiment, although the heating chamber 10 and the cooling chamber 20 were arrange | positioned so as to be orthogonal, you may arrange | position in series.

また、例えば加熱室の下部に車輪やレールを敷設して、加熱室10を移動可能及び搬送室30と着脱可能に構成し、被処理品Wの加熱処理が終了した後又は加熱処理と同時に加熱室10を搬送室30近傍に移動すると共に搬送室30に連結させて、シール材等により雰囲気遮断した後に加熱室10から搬送室30へと被処理品Wを移動させて、その後冷却室20に搬送する構成にしてもよい。   Further, for example, a wheel or rail is laid in the lower part of the heating chamber so that the heating chamber 10 is movable and detachable from the transfer chamber 30, and is heated after the heat treatment of the article W to be processed or simultaneously with the heat treatment. The chamber 10 is moved to the vicinity of the transfer chamber 30 and connected to the transfer chamber 30, the atmosphere is blocked by a sealing material or the like, the article W is moved from the heating chamber 10 to the transfer chamber 30, and then the cooling chamber 20 is moved. You may make it the structure which conveys.

本発明の第一実施形態の多室型熱処理炉1を示す概略構成図である。1 is a schematic configuration diagram showing a multi-chamber heat treatment furnace 1 of a first embodiment of the present invention. 本発明の第一実施形態において、図1におけるII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 in the first embodiment of the present invention. 本発明の第一実施形態において、図2におけるIII-III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2 in the first embodiment of the present invention. 本発明の第一実施形態において、図2におけるIV-IV断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2 in the first embodiment of the present invention. 本発明の第二実施形態の多室型熱処理炉2を示す概略構成図である。It is a schematic block diagram which shows the multi-chamber heat treatment furnace 2 of 2nd embodiment of this invention. 本発明の第三実施形態の多室型熱処理炉3を示す概略構成図である。It is a schematic block diagram which shows the multi-chamber heat treatment furnace 3 of 3rd embodiment of this invention. 本発明の第四実施形態の多室型熱処理炉4を示す概略構成図である。It is a schematic block diagram which shows the multi-chamber heat treatment furnace 4 of 4th embodiment of this invention.

符号の説明Explanation of symbols

1,2,3,4…多室型熱処理炉
10,50…加熱室
20…冷却室
21…真空容器(耐圧容器)
30…搬送室
31b…搬入搬出口(開口部)
37…第一搬送炉
40…第二搬送装置
41…第二搬送路
45…搬送路
46…搬送装置
60…置換室
71…第一加熱室(加熱室)
72…第二加熱室(加熱室)
80…予熱室
81…予熱置換室
G…冷却ガス
W…被処理品
1, 2, 3, 4 ... multi-chamber heat treatment furnace 10, 50 ... heating chamber 20 ... cooling chamber 21 ... vacuum vessel (pressure vessel)
30 ... Transport chamber 31b ... Loading / unloading exit (opening)
37 ... First transfer furnace 40 ... Second transfer device 41 ... Second transfer path 45 ... Transfer path 46 ... Transfer device 60 ... Replacement chamber 71 ... First heating chamber (heating chamber)
72 ... Second heating chamber (heating chamber)
80 ... Preheating chamber 81 ... Preheating replacement chamber G ... Cooling gas W ... Products to be treated

Claims (7)

密閉可能な内部空間に搬入された被処理品を減圧下において加熱可能な加熱室と、
前記被処理品の移動用の開口部を一つだけ有し密閉かつ減圧可能な内部空間に搬入された前記被処理品を冷却ガスにより冷却可能な冷却室と、
前記加熱室内部と前記冷却室内部とに向かって形成された搬送路と前記被処理品を前記搬送路に沿って移動させる搬送装置とが密閉かつ減圧可能な内部空間に設けられた搬送室と、
を備えることを特徴とする多室型熱処理炉。
A heating chamber capable of heating the article to be processed carried into the sealable interior space under reduced pressure;
A cooling chamber that has only one opening for moving the article to be treated and can cool the article to be treated carried into a sealed and depressurized internal space with a cooling gas;
A transfer chamber provided in an internal space in which a transfer path formed toward the inside of the heating chamber and the inside of the cooling chamber and a transfer device for moving the article to be processed along the transfer path are sealed and depressurized. ,
A multi-chamber heat treatment furnace comprising:
前記冷却室は、0.3MPa以上の圧力に耐えうる円筒形の耐圧容器からなることを特徴とする請求項1に記載の多室型熱処理炉。   The multi-chamber heat treatment furnace according to claim 1, wherein the cooling chamber is formed of a cylindrical pressure vessel that can withstand a pressure of 0.3 MPa or more. 前記搬送路は、前記被処理品の下部の両端部のみを搬送方向に移動可能に支持する複数のフリーローラが設けられ、
前記搬送装置は、前記被処理品に係合しながら移動して前記被処理品を押し引きするプッシュプル部材と前記プッシュプル部材を移動させる駆動装置とが設けられることを特徴とする請求項1又は請求項2に記載の多室型熱処理炉。
The transport path is provided with a plurality of free rollers that support only the lower ends of the article to be processed so as to be movable in the transport direction.
2. The transport device includes a push-pull member that moves while being engaged with the object to be processed and pushes and pulls the object to be processed, and a drive device that moves the push-pull member. Alternatively, a multi-chamber heat treatment furnace according to claim 2.
前記搬送路は、前記加熱室内部に向かって形成される第一搬送路に対して前記冷却室内部に向かって形成される第二搬送路が直交方向に設けられることを特徴とする請求項1から請求項3のうちいずれか一項に記載の多室型熱処理炉。   The said conveyance path is provided with the 2nd conveyance path formed toward the said cooling chamber inside in the orthogonal direction with respect to the 1st conveyance path formed toward the said heating chamber inside. The multi-chamber heat treatment furnace according to any one of claims 1 to 3. 前記加熱室に前記被処理品を搬入させる前に、前記被処理品に予熱処理を施す予熱室を備えることを特徴とする請求項1から請求項4のうちいずれか一項に記載の多室型熱処理炉。   The multi-chamber according to any one of claims 1 to 4, further comprising a preheating chamber that preheats the article to be treated before the article to be treated is carried into the heating chamber. Mold heat treatment furnace. 前記加熱室に前記被処理品を搬入させる前に、前記被処理品に減圧処理を施す置換室を備えることを特徴とする請求項1から請求項5のうちいずれか一項に記載の多室型熱処理炉。   The multi-chamber according to any one of claims 1 to 5, further comprising a replacement chamber that performs a decompression process on the article to be treated before the article to be treated is carried into the heating chamber. Mold heat treatment furnace. 前記加熱室から前記被処理品を搬出させた後に、前記被処理品に減圧処理を施すと共に均熱処理を施す予熱置換室を備えることを特徴とする請求項1から請求項6のうちいずれか一項に記載の多室型熱処理炉。   7. A preheating substitution chamber is provided, wherein after the product to be processed is unloaded from the heating chamber, a preheating substitution chamber is provided for subjecting the product to be processed to pressure reduction and soaking. The multi-chamber heat treatment furnace described in the item.
JP2008027653A 2008-02-07 2008-02-07 Multichamber heat treatment furnace Pending JP2009185349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027653A JP2009185349A (en) 2008-02-07 2008-02-07 Multichamber heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027653A JP2009185349A (en) 2008-02-07 2008-02-07 Multichamber heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2009185349A true JP2009185349A (en) 2009-08-20

Family

ID=41068875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027653A Pending JP2009185349A (en) 2008-02-07 2008-02-07 Multichamber heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2009185349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229795A (en) * 2014-06-06 2015-12-21 高砂工業株式会社 Vacuum heat treatment system
JP2016074983A (en) * 2014-10-06 2016-05-12 セコ/ワーウィック・エス・アー Device for individual quench hardening of equipment components
CN107937701A (en) * 2017-11-30 2018-04-20 江阴振宏重型锻造有限公司 A kind of heat treatment system
CN115446311A (en) * 2022-09-19 2022-12-09 株洲坤锐硬质合金有限公司 Vacuum degreasing sintering furnace for hard alloy production

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148088A (en) * 1986-07-17 1988-06-20 大亜真空株式会社 Continuous type vacuum heat treating furnace
JPH02267216A (en) * 1989-04-08 1990-11-01 Ulvac Corp Vacuum heat treatment furnace
JPH06273054A (en) * 1993-03-16 1994-09-30 Daido Steel Co Ltd Roller hearth vacuum furnace
JPH08319512A (en) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd In-furnace carrier in vacuum heat treatment furnace
JPH1017944A (en) * 1996-07-05 1998-01-20 Daido Steel Co Ltd Coil heat treatment furnace and its operation
JP2002294429A (en) * 2001-03-29 2002-10-09 Dowa Mining Co Ltd Method and apparatus for carburizing and quenching
JP2002363727A (en) * 2001-06-05 2002-12-18 Dowa Mining Co Ltd Carburizing method and device thereof
JP2002363726A (en) * 2001-06-05 2002-12-18 Dowa Mining Co Ltd Carburizing treatment method and apparatus therefor
JP2003202189A (en) * 2002-01-09 2003-07-18 Chugai Ro Co Ltd Tray conveyance type continuous furnace provided with heating belt and cooling belt
JP2003239016A (en) * 2002-02-18 2003-08-27 Hirohisa Taniguchi Continuous gas quenching method and its system
JP2004250782A (en) * 2003-01-31 2004-09-09 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment apparatus
JP2005105396A (en) * 2003-10-02 2005-04-21 Dowa Mining Co Ltd Carburizing method
JP2007023336A (en) * 2005-07-15 2007-02-01 Edison Haado Kk Heat-treatment furnace
JP2007084863A (en) * 2005-09-20 2007-04-05 Edison Haado Kk Heat treatment furnace

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148088A (en) * 1986-07-17 1988-06-20 大亜真空株式会社 Continuous type vacuum heat treating furnace
JPH02267216A (en) * 1989-04-08 1990-11-01 Ulvac Corp Vacuum heat treatment furnace
JPH06273054A (en) * 1993-03-16 1994-09-30 Daido Steel Co Ltd Roller hearth vacuum furnace
JPH08319512A (en) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd In-furnace carrier in vacuum heat treatment furnace
JPH1017944A (en) * 1996-07-05 1998-01-20 Daido Steel Co Ltd Coil heat treatment furnace and its operation
JP2002294429A (en) * 2001-03-29 2002-10-09 Dowa Mining Co Ltd Method and apparatus for carburizing and quenching
JP2002363727A (en) * 2001-06-05 2002-12-18 Dowa Mining Co Ltd Carburizing method and device thereof
JP2002363726A (en) * 2001-06-05 2002-12-18 Dowa Mining Co Ltd Carburizing treatment method and apparatus therefor
JP2003202189A (en) * 2002-01-09 2003-07-18 Chugai Ro Co Ltd Tray conveyance type continuous furnace provided with heating belt and cooling belt
JP2003239016A (en) * 2002-02-18 2003-08-27 Hirohisa Taniguchi Continuous gas quenching method and its system
JP2004250782A (en) * 2003-01-31 2004-09-09 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment apparatus
JP2005105396A (en) * 2003-10-02 2005-04-21 Dowa Mining Co Ltd Carburizing method
JP2007023336A (en) * 2005-07-15 2007-02-01 Edison Haado Kk Heat-treatment furnace
JP2007084863A (en) * 2005-09-20 2007-04-05 Edison Haado Kk Heat treatment furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229795A (en) * 2014-06-06 2015-12-21 高砂工業株式会社 Vacuum heat treatment system
JP2016074983A (en) * 2014-10-06 2016-05-12 セコ/ワーウィック・エス・アー Device for individual quench hardening of equipment components
CN107937701A (en) * 2017-11-30 2018-04-20 江阴振宏重型锻造有限公司 A kind of heat treatment system
CN115446311A (en) * 2022-09-19 2022-12-09 株洲坤锐硬质合金有限公司 Vacuum degreasing sintering furnace for hard alloy production
CN115446311B (en) * 2022-09-19 2023-07-25 株洲坤锐硬质合金有限公司 Vacuum degreasing sintering furnace for hard alloy production

Similar Documents

Publication Publication Date Title
JP4645592B2 (en) Two-chamber heat treatment furnace
TWI517286B (en) Loading unit and processing system
JP5167640B2 (en) Heat treatment equipment
JP6078000B2 (en) Cooling system
JP2011078354A (en) Method and apparatus for sterilizing food
JP6607368B2 (en) Continuous vacuum sintering equipment
JP2009185349A (en) Multichamber heat treatment furnace
US7377774B2 (en) Change-over apparatus for cooling gas passages in vacuum heat treating furnace
JP2019515484A (en) Chamber for degassing a substrate
JPS6047505B2 (en) Continuous vacuum heating furnace
US10648050B2 (en) Heat treatment apparatus
JP4849785B2 (en) Vacuum heat treatment equipment
US20170254592A1 (en) Thermal treatment device
WO2005080286A1 (en) Method of sealing glass panel assembly and sealing furnace
JPH0633944B2 (en) Roller hearth type vacuum furnace
JP3853487B2 (en) Continuous heat treatment furnace
JP5686918B1 (en) Heat treatment equipment
JP6297471B2 (en) Heat treatment equipment
JP6184718B2 (en) Heat treatment furnace
JP3218840B2 (en) Continuous processing equipment
CN111670113B (en) Method for processing articles and method for high-pressure treatment of articles
JPH0726694U (en) Continuous heat treatment furnace
TW201732935A (en) Chamber for degassing substrates
JP2023107329A (en) Heat treatment device and heat treatment method
JP2015209554A (en) Vacuum quenching treatment installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226