JPH03257119A - Roller hearth type vacuum furnace - Google Patents

Roller hearth type vacuum furnace

Info

Publication number
JPH03257119A
JPH03257119A JP5398590A JP5398590A JPH03257119A JP H03257119 A JPH03257119 A JP H03257119A JP 5398590 A JP5398590 A JP 5398590A JP 5398590 A JP5398590 A JP 5398590A JP H03257119 A JPH03257119 A JP H03257119A
Authority
JP
Japan
Prior art keywords
cooling
workpiece
cooling chamber
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5398590A
Other languages
Japanese (ja)
Inventor
Hideaki Matsuo
英明 松尾
Masatomo Nakamura
雅知 中村
Koichi Akutsu
阿久津 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5398590A priority Critical patent/JPH03257119A/en
Publication of JPH03257119A publication Critical patent/JPH03257119A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the generation of the unequal cooling and distortion of a work by rotating the work together with a turn table around a perpendicular axial line in a cooling chamber and cooling the entire circumference of the side face thereof with the cooling gases ejected from stationary nozzles. CONSTITUTION:The work W subjected to a heating treatment in heating chambers 12a, 12b, 12c of an annealing furnace 1 is charged by transporting rollers 51 onto the turn table 50 in the cooling chamber 13 and the turn table 50 is rotated at a low speed around the perpendicular axial line by an electric motor 54. On the other hand, a circulating fan 37 is run to suck the gaseous N2 in the cooling chamber 13 and to blast the gas toward the nozzles 40 in a circulating path 38. The gases which are deprived of heat and cooled in a heat exchanger 39 are ejected via plural pieces of the nozzles 40 into the cooling chamber 13. The ejected cooling gases collide against the side faces of the work W rotating together with the turn table 50, thereby cooling the work W. The cooling of the work W is thus nearly uniformly executed in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は真空状態において被処理物の加熱をおこなう
ローラハース式真空炉に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a roller hearth type vacuum furnace that heats a workpiece in a vacuum state.

〔従来の技術〕[Conventional technology]

ローラハース式真空炉においては、金属材料等の被処理
物の焼結や熱処理をおこなうため、真空状態で被処理物
の加熱をおこなう加熱室の出口側に、冷風により被処理
物の冷却をおこなう冷却室を設けるのが一般的である。
In roller hearth type vacuum furnaces, in order to sinter and heat treat the workpieces such as metal materials, a cooling chamber is installed on the exit side of the heating chamber that heats the workpieces in a vacuum state to cool the workpieces with cold air. It is common to have a separate room.

そしてこの冷却のための装置としては、第8図に示すよ
うに冷却室81の頂部に下向きに循環ファン82を設け
、この循環ファン82により搬送用ローラ83上の被処
理物Wに吹付けた冷却用ガスを、熱交換器84により冷
却後、被処理物Wの側方がら循環ファン82部へ還流さ
せる構成のものが多く用いられている。なお85は冷却
室の出口、86は被処理物Wを真空状態で加熱する加熱
室である。
As a device for this cooling, as shown in FIG. 8, a circulation fan 82 is provided at the top of the cooling chamber 81 in a downward direction. A configuration in which the cooling gas is cooled by the heat exchanger 84 and then circulated from the side of the object W to the circulation fan 82 is often used. Note that 85 is an outlet of the cooling chamber, and 86 is a heating chamber for heating the workpiece W in a vacuum state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが上記従来の冷却方法においては、冷却用ガスは
被処理物Wの上面から吹付けられるだけなので、被処理
物の均一冷却が困難であり、冷却むらにより被処理物に
歪が発生し、また被処理物に吹付けられたガスと炉側壁
部に沿って上方へ還流するガスとの干渉が生じ、冷却効
率の低下および循環ファン82の動力浪費の原因ともな
っていた。
However, in the conventional cooling method described above, since the cooling gas is only blown from the top surface of the workpiece W, it is difficult to uniformly cool the workpiece, and distortion occurs in the workpiece due to uneven cooling. Interference occurred between the gas blown onto the object to be treated and the gas flowing back upward along the furnace side wall, resulting in a decrease in cooling efficiency and a waste of power in the circulation fan 82.

この発明は上記従来の問題点を解決するもので、被処理
物の均一冷却をはかることができるローラハース式真空
炉を提供することを目的とする。
This invention solves the above-mentioned conventional problems, and aims to provide a roller hearth type vacuum furnace that can uniformly cool a workpiece.

〔課題を解決するための手段〕 この出願の第1発明のローラハース式真空炉は、真空状
態で被処理物の加熱をおこなう加熱室の出口側に冷却室
を設けたローラハース式真空炉において、前記冷却室の
被処理物搬送路の側方に、冷却用ガスを噴出する複数個
のノズルを設け、被処理物を搬送する搬送用ローラを上
面にそなえ鉛直軸線のまわりに回転駆動される回転台を
、前記冷却室内に設け、前記加熱室より搬送され前記回
転台上に載置された被処理物に前記ノズルから噴出した
冷却用ガスを吹付けるようにしたことを特徴とする。
[Means for Solving the Problems] A roller hearth type vacuum furnace according to the first invention of this application is a roller hearth type vacuum furnace in which a cooling chamber is provided on the exit side of a heating chamber for heating a workpiece in a vacuum state. A rotary table is provided with multiple nozzles that eject cooling gas on the side of the workpiece conveyance path in the cooling chamber, and has a conveyance roller on the top surface for conveying the workpiece and is driven to rotate around a vertical axis. is provided in the cooling chamber, and the cooling gas ejected from the nozzle is sprayed onto the workpiece transported from the heating chamber and placed on the rotary table.

この出願の第2発明のローラハース式真空炉は、真空状
態で被処理物の加熱をおこなう加熱室の出口側に冷却!
を設けたローラハース式真空炉において、前記冷却室の
炉体の頂部を貫通して鉛直軸線のまわりに回転駆動され
る中空の主軸に、前記冷却室の被処理物搬送路の側方に
配置される複数個のノズルを取付け、前記炉体に設けた
排気口と前記主軸とをガス循環路により接続し、このガ
ス循環路にガス循環用の送風機とガス冷却用の熱交換器
とを設け、前記加熱室より搬送され前記冷却室内の搬送
用ローラ上に載置された被処理物に前記ノズルから噴出
した冷却用ガスを吹付けるようにしたことを特徴とする
The roller hearth type vacuum furnace of the second invention of this application is cooled on the exit side of the heating chamber where the workpiece is heated in a vacuum state!
In a roller hearth type vacuum furnace equipped with a hollow main shaft that penetrates the top of the furnace body of the cooling chamber and is driven to rotate around a vertical axis, the roller hearth type vacuum furnace is provided with a plurality of nozzles are installed, an exhaust port provided in the furnace body and the main shaft are connected by a gas circulation path, and a blower for gas circulation and a heat exchanger for cooling the gas are provided in the gas circulation path, A feature of the present invention is that the cooling gas ejected from the nozzle is sprayed onto the workpiece that has been transported from the heating chamber and placed on a transport roller in the cooling chamber.

(作用) 第1発明のローラハース式真空炉においては、冷却室内
に装入された被処理−は、回転台上に載置されて回転台
と共に鉛直軸線のまわりに回転し、ノズルから噴出され
た冷却用ガスは、上記被処理物の回転に伴い被処理物の
側面の全周に順次衝突するので、被処理物はほぼ均一に
冷却される。
(Function) In the roller hearth vacuum furnace of the first invention, the workpiece charged into the cooling chamber is placed on the rotary table, rotates together with the rotary table around the vertical axis, and is ejected from the nozzle. As the cooling gas rotates, the cooling gas sequentially impinges on the entire circumference of the side surface of the workpiece, so that the workpiece is cooled almost uniformly.

また第2発明のローラハース式真空炉においては、冷却
室内に装入され搬送用ローラ上に載置された被処理物は
、主軸と共に鉛直軸線のまわりに回転するノズルから噴
出した冷却用ガスにより冷却され、この冷却用ガスは上
記ノズルの回転に伴い被処理物の側面の全周に順次衝突
するので、被処理物はほぼ均一に冷却される。
Further, in the roller hearth type vacuum furnace of the second invention, the workpiece loaded into the cooling chamber and placed on the conveying roller is cooled by the cooling gas ejected from the nozzle that rotates around the vertical axis together with the main shaft. As the nozzle rotates, this cooling gas sequentially impinges on the entire circumference of the side surface of the object to be processed, so that the object to be processed is cooled almost uniformly.

(実施例) 以下第1図乃至第4図により第1発明の一実施例である
第1実施例を説明する。
(Embodiment) A first embodiment, which is an embodiment of the first invention, will be described below with reference to FIGS. 1 to 4.

図中、1はローラハース式真空炉の一例である焼結炉で
、2は炉体であり、3は被処理物装入用の入口、4は同
じく取出用の出口である。5は入口3の扉、6は出口4
の扉で、それぞれ昇降装置7および8により昇降駆動さ
れるようになっている。また炉体2は仕切壁9.10に
より大きく三つに区画され、その内部には、真空待機室
11、脱ワツクス室である加熱室12a1焼結苗である
加熱室12b、時効処理室である加熱室12c、および
冷却室13が形成されている。各加熱室12a〜12C
(以下加熱室12と総称し、他の部分も同様に総称する
。)は、四周を黒鉛製の断熱壁14により囲繞され、そ
の人口15および出口16は、それぞれn17により開
閉されるようになっている。18は扉17の開閉装置で
、炉体2に固設した図示しないガイドにより昇降自在に
案内された枠19を、エアシリンダ20のピストンロッ
ドに連結するとともに、枠19に平行リンク21を介し
てf117を連結して成る。下端部が図示しないストッ
パに当接した扉17は、枠19がさらに下降することに
より入口15および出口16を密閉し、また枠19の引
上により扉17は入口15および出口16から離間後上
方へ引上げられるようになっている。22は加熱室12
内に設けた電熱ヒータから成る加熱装置である。また2
3は炉体2内に設けた搬送用ローラで、耐熱金属製のロ
ーラを公知の駆動機構により回転駆動するものであり、
この搬送用ロー523の上側に、入口3から出口4に至
る被処理物搬送路24が形成されている。
In the figure, 1 is a sintering furnace which is an example of a roller hearth type vacuum furnace, 2 is a furnace body, 3 is an inlet for charging a workpiece, and 4 is an outlet for taking out the same. 5 is the door of entrance 3, 6 is the door of exit 4
The doors are driven up and down by lifting devices 7 and 8, respectively. Further, the furnace body 2 is roughly divided into three parts by partition walls 9 and 10, and inside thereof there are a vacuum standby chamber 11, a heating chamber 12a which is a dewaxing chamber, a heating chamber 12b which is a sintered seedling chamber, and an aging treatment chamber. A heating chamber 12c and a cooling chamber 13 are formed. Each heating chamber 12a to 12C
(hereinafter collectively referred to as the heating chamber 12, and the other parts are also collectively referred to in the same manner) is surrounded on all four sides by a heat insulating wall 14 made of graphite, and its population 15 and outlet 16 are respectively opened and closed by n17. ing. Reference numeral 18 denotes an opening/closing device for the door 17, which connects the frame 19, which is guided so as to be raised and lowered by a guide (not shown) fixed to the furnace body 2, to the piston rod of the air cylinder 20, and connects the frame 19 via a parallel link 21 to the piston rod of the air cylinder 20. It is made by connecting f117. The door 17, whose lower end abuts a stopper (not shown), seals the inlet 15 and the outlet 16 by lowering the frame 19 further, and by pulling up the frame 19, the door 17 is separated from the inlet 15 and the outlet 16 and then moved upward. It is now possible to be raised to 22 is the heating chamber 12
This is a heating device consisting of an electric heater installed inside. Also 2
3 is a conveyance roller provided in the furnace body 2, which is a roller made of heat-resistant metal that is rotationally driven by a known drive mechanism;
A workpiece transport path 24 extending from the inlet 3 to the outlet 4 is formed above the transport row 523 .

一方冷却室13は、金属板製の仕切壁31と側壁32.
32と天井壁33とから成る壁体30で囲繞され、仕切
壁31に設けた入口34は扉35により開閉されるよう
になっている。このi’i35は前記開閉装W118に
より扉17と同様にして開閉される。36は天井133
に設けた排気口で、この排気口36の直上部には循環フ
ァン37が設けである。また38は炉体2と壁体30と
の間に形成された循環路で、39はこの循環路38内に
ガス流を横切る形で設けた冷却用の熱交換器である。4
0は側壁32に多数個設けた冷却ガス噴出用のノズルで
、その噴出口を冷却室13内に向けかつほぼ水平方向に
向けである。またノズル40の配置は、第4図に示すよ
うに、縦方向にノズル40を複数個並設したノズル列4
1を、複数列(この実施例では5列)並べたものである
が、隣り合うノズル列41.41はノズル位置を上下方
向に少しずらせてあり、第4図に鎖線42で示すように
水平方向に対して少量傾斜した直線上にノズル中心が並
んだ配置となっている。
On the other hand, the cooling chamber 13 has a partition wall 31 made of metal plates and a side wall 32.
32 and a ceiling wall 33, and an entrance 34 provided in the partition wall 31 is opened and closed by a door 35. This i'i35 is opened and closed in the same manner as the door 17 by the opening/closing device W118. 36 is the ceiling 133
A circulation fan 37 is provided directly above the exhaust port 36. Further, 38 is a circulation path formed between the furnace body 2 and the wall body 30, and 39 is a cooling heat exchanger provided within this circulation path 38 to cross the gas flow. 4
Reference numeral 0 designates a number of nozzles for ejecting cooling gas provided on the side wall 32, with their ejection ports directed into the cooling chamber 13 and in a substantially horizontal direction. Further, the arrangement of the nozzles 40 is as shown in FIG.
1 are arranged in multiple rows (5 rows in this example), but the nozzle positions of adjacent nozzle rows 41 and 41 are slightly shifted in the vertical direction, and the nozzle rows 41 and 41 are arranged horizontally as shown by the chain line 42 in FIG. The nozzle centers are arranged on a straight line that is slightly inclined with respect to the direction.

また50は回転台で、上面に搬送用ローラ51をそなえ
、下面に突設した支軸52は炉底部に設けた軸受53に
より鉛直軸線のまわりに回転自在に支持され、電動機5
4により回転駆動される構成としである。また搬送用ロ
ーラ51は、回転台50に取付けたブレーキ付きの駆動
機55により回転駆動して被処理物Wを搬送できるよう
になっている。
Reference numeral 50 denotes a rotary table, which has conveyance rollers 51 on its upper surface, a support shaft 52 protruding from its lower surface, which is rotatably supported around a vertical axis by a bearing 53 provided at the bottom of the furnace.
4. The configuration is such that it is rotationally driven by 4. Further, the conveying roller 51 is rotatably driven by a driver 55 equipped with a brake attached to the rotary table 50 so that the object to be processed W can be conveyed.

上記構成の焼結炉1において真空焼結処理をおこなうに
は、入口3から装入した被処理物Wを真空待機室11で
待機させたのち加熱室12aにおいて真空中で脱ワツク
スし、加熱室12bにおいて真空状態で焼結し、次いで
加熱室12C内で所定時間高温中で保持して時効処理を
おこなった後、入口34から冷却室13内に装入して冷
却をおこなう。このとき、被処理物Wが回転台50上に
到達したら搬送用ローラ51を停止状態とし、電動機5
4により回転台50を鉛直軸線のまわりに低速で回転さ
せる。一方循環フアン37を運転して冷却室13内のガ
ス(たとえばN2ガス)を吸弓して循環路38内をノズ
ル40に向って送風し、このとき熱交換器39部の通過
によりガスは奪熱冷却され、低温の冷却用ガスとして各
ノズル40から冷却室13内に噴出する。この噴出した
冷却用ガスは回転台50と共に回転している被処理物W
の側面に衝突し、被処理物Wを冷却する。被処理物Wの
回転により、各ノズル40からの冷却用ガスが被処理物
Wの各部に衝突する角度は順次変化し、また被処理部W
の側面全周に冷却用ガスが順次衝突することになるので
、被処理物Wは冷却むらが少なくほぼ均一に冷却される
のである。また特にこの実施例では、隣合うノズル列4
1のノズル上下位置をずらせであるので、回転する被処
理物Wは、丁度上下ピッチの細かい多数個のノズル40
によって冷却されたのと同様な冷却作用を受け、さらに
均一な冷却効果が得られるのである。
To perform a vacuum sintering process in the sintering furnace 1 having the above configuration, the workpiece W charged from the inlet 3 is made to wait in the vacuum waiting chamber 11, and then dewaxed in vacuum in the heating chamber 12a. The material is sintered in a vacuum state in the heating chamber 12b, then kept at high temperature for a predetermined time in the heating chamber 12C for aging treatment, and then charged into the cooling chamber 13 through the inlet 34 to be cooled. At this time, when the workpiece W reaches the rotating table 50, the conveying roller 51 is stopped, and the electric motor 5
4 rotates the turntable 50 around the vertical axis at low speed. On the other hand, the circulation fan 37 is operated to suck up gas (for example, N2 gas) in the cooling chamber 13 and blow it through the circulation path 38 toward the nozzle 40. At this time, the gas is removed by passing through the heat exchanger 39. It is thermally cooled and ejected from each nozzle 40 into the cooling chamber 13 as a low-temperature cooling gas. This ejected cooling gas is transferred to the workpiece W rotating together with the rotary table 50.
The object to be processed W is cooled. As the workpiece W rotates, the angle at which the cooling gas from each nozzle 40 collides with each part of the workpiece W changes sequentially, and the rotation of the workpiece W changes sequentially.
Since the cooling gas sequentially collides with the entire circumference of the side surface, the object to be processed W is cooled almost uniformly with little uneven cooling. In particular, in this embodiment, the adjacent nozzle rows 4
Since the vertical positions of the nozzles 1 and 1 are shifted, the rotating workpiece W is passed through a large number of nozzles 40 with exactly fine vertical pitches.
This results in a cooling effect similar to that achieved by cooling, and a more uniform cooling effect can be obtained.

また冷却用ガスの循環系路は、壁体30によって区画さ
れているので被処理物への衝突前後のガス同士の干渉が
防止され、円滑で効率のよい冷却がおこなわれる。
Further, since the cooling gas circulation path is partitioned by the wall 30, interference between the gases before and after colliding with the object to be processed is prevented, and smooth and efficient cooling is performed.

上記のようにして所定時間冷却後、回転台50を停止さ
せ、搬送用ローラ51を駆動して被処理物Wを出口4か
ら炉外へ送出し、以下同様の工程を繰返す。
After cooling for a predetermined time as described above, the rotary table 50 is stopped, the conveying rollers 51 are driven to send the workpiece W out of the furnace from the outlet 4, and the same process is repeated.

上記構成の焼結炉1において、加熱室12における焼結
により得られた直径30am、長さ100履の焼結晶(
材質5LJS410L)をトレーに150個装入して成
る被処理品Wを、1200℃に加熱した状態で加熱室1
2Gから冷却室13に装入し、回転台50の回転数: 
5 r pm、冷却用ガス(N2)温度:50℃、同循
環風量=150尻/分、の条件下で60分間冷却処理し
たところ、焼結晶の歪は0.02履(平均値)であった
。これに対して比較例として第8図の冷却室81を有す
る焼結炉を用いて、従来の冷却法(但し冷却用ガスおよ
び冷却時間は上記と同じ)により上記と同じ被処理品W
の冷却をおこなったところ、焼結晶の歪は0.15履(
平均値)であった。
In the sintering furnace 1 having the above configuration, the sintered crystal (with a diameter of 30 am and a length of 100 mm) obtained by sintering in the heating chamber 12 (
The workpieces W made up of 150 pieces of material 5LJS410L) placed in a tray were heated to 1200°C in the heating chamber 1.
Charge the cooling chamber 13 from 2G, and the rotation speed of the turntable 50:
When the crystals were cooled for 60 minutes under the following conditions: 5 rpm, cooling gas (N2) temperature: 50°C, and circulating air flow rate = 150/min, the strain of the fired crystal was 0.02 (average value). Ta. On the other hand, as a comparative example, a sintering furnace having the cooling chamber 81 shown in FIG.
When cooling was performed, the strain of the fired crystal was 0.15 (
average value).

次に第5図乃至第7図により第2発明の一実施例である
第2実施例を説明する。
Next, a second embodiment, which is an embodiment of the second invention, will be described with reference to FIGS. 5 to 7.

図中、第1図と同一部分には同一符号を付してあり、加
熱室12Gより炉入口側の炉の構成は、第1図と同じで
ある。61は耐熱鋼製の筒状の主軸で、炉体2の頂部を
貫通し、炉体2に取付けた軸受62により、冷却室13
の中央付近を通る鉛直軸線のまわりに回転自在に支持さ
れている。63は炉体2上に取付けた電動機で、主軸6
1をチェン駆動するためのものである。64は主軸61
の上端部が嵌合するロータリージヨイントである。
In the figure, the same parts as in FIG. 1 are given the same reference numerals, and the structure of the furnace on the furnace inlet side from the heating chamber 12G is the same as in FIG. 1. Reference numeral 61 denotes a cylindrical main shaft made of heat-resistant steel, which passes through the top of the furnace body 2 and is connected to the cooling chamber 13 by a bearing 62 attached to the furnace body 2.
It is rotatably supported around a vertical axis passing near the center of. 63 is an electric motor installed on the furnace body 2, and the main shaft 6
1 to drive the chain. 64 is the main shaft 61
This is a rotary joint that fits into the upper end of the

−万65は主軸61の下端部に接続された耐熱鋼製のノ
ズル支持管で、中間部が主軸61に接続され水平方向に
延びる主管66と、この主管66の両端部に接続された
弯曲管状の分岐管67と、この分岐管67に上端部を接
続され下端部が密閉された枝管68とから成る。主軸6
1、主管66、分岐管67、枝管68は、それぞれ内部
の中空部が互いに連通している。主軸61の停止状態に
おいては、各枝管68は搬送される被処理物Wに衝突し
ないように、被処理物搬送路24の側方位置にあり、こ
の枝管68の管壁には、被処理物Wに対向しほぼ水平方
向に向う噴出口を有する複数個のノズル69が設けであ
る。またこれらのノズル69の配置は、前記実施例と同
様に、隣り合う枝管68,68に設けたノズル位置を上
下方向に少しずらせである。また第7図において71は
炉体2に設けた排気口で、この排気ロア1と炉頂部のロ
ータリージヨイント64の固定管部との間には、冷却用
ガスを循環させるガス循環路72を接続してあり、73
はガス循環路72に設けた送風機、74は同じくガス冷
却用の熱交換器である。
- Man 65 is a nozzle support tube made of heat-resistant steel that is connected to the lower end of the main shaft 61, which includes a main pipe 66 whose middle part is connected to the main shaft 61 and extends in the horizontal direction, and a curved tubular shape connected to both ends of this main pipe 66. It consists of a branch pipe 67 and a branch pipe 68 whose upper end is connected to the branch pipe 67 and whose lower end is sealed. Main shaft 6
1. The main pipe 66, the branch pipe 67, and the branch pipe 68 have internal hollow portions that communicate with each other. When the main shaft 61 is in a stopped state, each branch pipe 68 is located at a side position of the workpiece transport path 24 so as not to collide with the workpiece W being transported. A plurality of nozzles 69 are provided which face the object to be processed W and have ejection ports extending in a substantially horizontal direction. Further, the arrangement of these nozzles 69 is such that the positions of the nozzles provided on adjacent branch pipes 68, 68 are slightly shifted in the vertical direction, as in the previous embodiment. Further, in FIG. 7, 71 is an exhaust port provided in the furnace body 2, and a gas circulation path 72 for circulating cooling gas is provided between the exhaust lower 1 and the fixed pipe portion of the rotary joint 64 at the top of the furnace. Connected, 73
is a blower provided in the gas circulation path 72, and 74 is a heat exchanger for cooling the gas.

上記構成の焼結炉75においては、加熱室12Cの出口
16から冷却室13内に被処理物Wを装入したら、搬送
用ローラ23上で被処理物Wを停止させ、電動163に
より主軸61およびこれと一体のノズル支持管65を鉛
直軸線のまわりに低速で回転させる。一方送風機73を
運転して冷却室13内のガスを吸引してガス循環路72
内をロータリージヨイント64部に向って送風し、この
とき熱交換器74部の通過によりガスを奪熱冷却する。
In the sintering furnace 75 having the above configuration, after the workpiece W is charged into the cooling chamber 13 from the outlet 16 of the heating chamber 12C, the workpiece W is stopped on the conveying roller 23, and the main shaft 61 is stopped by the electric motor 163. And the nozzle support tube 65 integrated therewith is rotated at low speed around the vertical axis. On the other hand, the blower 73 is operated to suck the gas in the cooling chamber 13 and the gas circulation path 72
Air is blown inside toward the rotary joint 64, and at this time, the gas is cooled by absorbing heat by passing through the heat exchanger 74.

得られた低温の冷却用ガスは、主軸61内からノズル支
持管65内を経て、各ノズル69から冷却室13内に噴
出する。各ノズル69は被処理物Wのまわりに回転して
いるので、各ノズル69からの冷却用ガスが被処理物W
の各部に衝突する角度は順次変化し、また被処理物Wの
側面全周と冷却用ガスが順次衝突することになるので、
被処理物Wは冷却むらが少なく、はぼ均一に冷却される
。被処理物への衝突により昇温したガスは、排気ロア1
からガス循環路72を通って冷却され、再度炉内へ循環
供給される。
The obtained low-temperature cooling gas passes through the main shaft 61, the nozzle support tube 65, and is ejected from each nozzle 69 into the cooling chamber 13. Since each nozzle 69 rotates around the workpiece W, the cooling gas from each nozzle 69 is rotated around the workpiece W.
The angle at which the cooling gas collides with each part changes sequentially, and the cooling gas collides sequentially with the entire circumference of the side surface of the workpiece W.
The object W to be processed is cooled almost uniformly with little uneven cooling. The gas whose temperature has increased due to collision with the object to be processed is exhausted from the exhaust lower 1.
The gas then passes through the gas circulation path 72, is cooled, and is again circulated and supplied into the furnace.

上記のようにして所定時間冷却後、主軸61を停止させ
、搬送用ローラ23を駆動して被処理物Wを炉外へ送出
し、以下同様の工程を繰返す。
After cooling for a predetermined time as described above, the main shaft 61 is stopped, the conveyance rollers 23 are driven to send the workpiece W out of the furnace, and the same steps are repeated.

上記構成の焼結炉75において、前記第1実施例と同じ
被処理物Wに対して同条件(ただし主軸61の回転速度
:5rom)で冷却処理をおこなったところ、焼結晶の
歪は0.015Mm(平均値)であった。
In the sintering furnace 75 having the above configuration, cooling treatment was performed on the same workpiece W as in the first embodiment under the same conditions (however, the rotation speed of the main shaft 61: 5 ROM), and the strain of the sintered crystal was 0. 015 Mm (average value).

この発明は上記各実施例に限定されるものではなく、た
とえば第1実施例のノズル40は上記のように壁体30
の側壁32部に設けるかわりに、壁体32を設けずに各
ノズル列41分の複数個のノズル40を第2実施例と同
様に上下方向に延びるパイプ材の管壁に設け、このパイ
プ材を複数本並設して、冷却室13から炉体2外へ吸引
したガスを熱交換器により冷却後、前記パイプ材に供給
して冷却室内に噴出させるようにしてもよい。また第2
実施例におけるノズル支持管65のかわりに、側面が被
処理物に対向する扁平な風箱状のノズル支持体を用い、
これにノズル69を複数個設けるようにしてもよい。ま
たノズル40.?iよび69としては、上下方向に連続
したスリット状の開口部を有するものを用いてもよい。
The present invention is not limited to the above embodiments; for example, the nozzle 40 of the first embodiment
Instead of providing the wall 32 on the side wall 32, a plurality of nozzles 40 for each nozzle row 41 are provided on the pipe wall of a pipe material extending in the vertical direction as in the second embodiment. A plurality of them may be arranged in parallel, and the gas drawn from the cooling chamber 13 to the outside of the furnace body 2 may be cooled by a heat exchanger, and then supplied to the pipe material and ejected into the cooling chamber. Also the second
Instead of the nozzle support tube 65 in the embodiment, a flat wind box-shaped nozzle support whose side surface faces the object to be processed is used,
A plurality of nozzles 69 may be provided here. Also nozzle 40. ? As i and 69, those having slit-like openings that are continuous in the vertical direction may be used.

さらに被処理物に上方または下方から冷却用ガスを吹付
ける補助ノズルを付設してもよい。
Furthermore, an auxiliary nozzle may be provided for spraying cooling gas onto the object to be processed from above or below.

またこの発明は焼結炉のほかの各種用途および構造のロ
ーラハース式真空炉にも適用できるものである。
The present invention can also be applied to roller hearth type vacuum furnaces of various uses and structures other than sintering furnaces.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、冷却室において
、被処理物は回転台と共に鉛直軸線のまわりに回転しつ
つ固定ノズルから噴出される冷却用ガスによりその側面
全周が冷却され(第1発明)、あるいは停止した被処理
物が主軸と共に鉛直軸線のまわりに回転するノズルから
噴aされる冷却用ガスによりその側面全周が冷却される
(第2発明)ので、被処理物の冷却むらおよびそれに伴
う歪の発生が低減化される。
As explained above, according to the present invention, in the cooling chamber, the workpiece rotates around the vertical axis together with the rotary table, and the entire circumference of the side surface of the workpiece is cooled by the cooling gas ejected from the fixed nozzle (the first invention), or the entire circumference of the side surface of the stopped workpiece is cooled by the cooling gas jetted from a nozzle that rotates around the vertical axis together with the main shaft (second invention), thereby reducing uneven cooling of the workpiece. and the generation of distortion associated with it is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例を示す焼結炉の縦断面図
、第2図は第7図のA−AI断面図、第3図は同じ<B
−B線断面図、第4図は第3図のC−C線断面図、第5
図はこの発明の第2実施例を示す焼結炉の冷却室部分の
縦断面図、第6図は第5図のD−D線断面図、第7図は
同じ<E−E線断面図、第8図は従来の焼結炉の一例を
示す冷却室部分の縦断面図である。 1・・・焼結炉、2・・・炉体、11・・・真空待機室
、12a〜12G・・・加熱室、13・・・冷却室、2
2・・・加熱装置、23・・・搬送用ローラ、24・・
・被処理物搬送路、30・・・壁体、32・・・側壁、
37・・・循環ファン、38・・・循環路、39・・・
熱交換器、40・・・ノズル、50・・・回転台、51
・・・搬送用ローラ、52・・・支軸、53・・・軸受
、54・・・電動機、55・・・駆動機61・・・主軸
、62・・・軸受、63・・・電動機、64・・・ロー
タリージヨイント1.65・・・ノズル支持管、68・
・・枝管、69・・・ノズル、71・・・排気口、72
・・・ガス循環路、73・・・送風機、74・・・熱交
換器、75・・・焼結炉。 50 第30 0 8 第5図 第6回 第7囲
Fig. 1 is a longitudinal sectional view of a sintering furnace showing a first embodiment of the present invention, Fig. 2 is a sectional view taken along A-AI in Fig. 7, and Fig. 3 is the same <B
-B sectional view, Figure 4 is a C-C sectional view of Figure 3,
The figure is a longitudinal sectional view of the cooling chamber portion of a sintering furnace showing a second embodiment of the present invention, FIG. 6 is a sectional view taken along line D-D in FIG. 5, and FIG. 7 is a sectional view taken along line E-E of the same < , FIG. 8 is a longitudinal sectional view of a cooling chamber portion showing an example of a conventional sintering furnace. DESCRIPTION OF SYMBOLS 1... Sintering furnace, 2... Furnace body, 11... Vacuum standby chamber, 12a-12G... Heating chamber, 13... Cooling chamber, 2
2... Heating device, 23... Conveyance roller, 24...
・Workpiece conveyance path, 30... wall, 32... side wall,
37...Circulation fan, 38...Circulation path, 39...
Heat exchanger, 40... Nozzle, 50... Turntable, 51
... Conveyance roller, 52 ... Support shaft, 53 ... Bearing, 54 ... Electric motor, 55 ... Drive machine 61 ... Main shaft, 62 ... Bearing, 63 ... Electric motor, 64... Rotary joint 1.65... Nozzle support tube, 68...
... Branch pipe, 69 ... Nozzle, 71 ... Exhaust port, 72
... Gas circulation path, 73 ... Blower, 74 ... Heat exchanger, 75 ... Sintering furnace. 50 30 0 8 Figure 5 6th Box 7

Claims (1)

【特許請求の範囲】 1、真空状態で被処理物の加熱をおこなう加熱室の出口
側に冷却室を設けたローラハース式真空炉において、前
記冷却室の被処理物搬送路の側方に、冷却用ガスを噴出
する複数個のノズルを設け、被処理物を搬送する搬送用
ローラを上面にそなえ鉛直軸線のまわりに回転駆動され
る回転台を、前記冷却室内に設け、前記加熱室より搬送
され前記回転台上に載置された被処理物に前記ノズルか
ら噴出した冷却用ガスを吹付けるようにしたことを特徴
とするローラハース式真空炉。 2、真空状態で被処理物の加熱をおこなう加熱室の出口
側に冷却室を設けたローラハース式真空炉において、前
記冷却室の炉体の頂部を貫通して鉛直軸線のまわりに回
転駆動される中空の主軸に、前記冷却室の被処理物搬送
路の側方に配置される複数個のノズルを取付け、前記炉
体に設けた排気口と前記主軸とをガス循環路により接続
し、このガス循環路にガス循環用の送風機とガス冷却用
の熱交換器とを設け、前記加熱室より搬送され前記冷却
室内の搬送用ローラ上に載置された被処理物に前記ノズ
ルから噴出した冷却用ガスを吹付けるようにしたことを
特徴とするローラハース式真空炉。
[Scope of Claims] 1. In a roller hearth vacuum furnace in which a cooling chamber is provided on the exit side of a heating chamber that heats a workpiece in a vacuum state, a cooling chamber is provided on the side of a workpiece transport path in the cooling chamber. A rotary table having a plurality of nozzles for ejecting gas, and having a conveyance roller on the upper surface for conveying the workpiece and being driven to rotate around a vertical axis is provided in the cooling chamber, and the workpiece is conveyed from the heating chamber. A roller hearth type vacuum furnace characterized in that cooling gas ejected from the nozzle is blown onto the workpiece placed on the rotary table. 2. In a roller hearth vacuum furnace that heats the workpiece in a vacuum and has a cooling chamber on the exit side of a heating chamber, the roller hearth is driven to rotate around a vertical axis through the top of the furnace body of the cooling chamber. A plurality of nozzles arranged on the side of the workpiece conveyance path in the cooling chamber are attached to the hollow main shaft, and the exhaust port provided in the furnace body and the main shaft are connected by a gas circulation path. A blower for gas circulation and a heat exchanger for cooling the gas are provided in the circulation path, and the cooling air jetted from the nozzle onto the workpiece transported from the heating chamber and placed on the transport roller in the cooling chamber. A roller hearth vacuum furnace characterized by blowing gas.
JP5398590A 1990-03-05 1990-03-05 Roller hearth type vacuum furnace Pending JPH03257119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5398590A JPH03257119A (en) 1990-03-05 1990-03-05 Roller hearth type vacuum furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5398590A JPH03257119A (en) 1990-03-05 1990-03-05 Roller hearth type vacuum furnace

Publications (1)

Publication Number Publication Date
JPH03257119A true JPH03257119A (en) 1991-11-15

Family

ID=12957918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5398590A Pending JPH03257119A (en) 1990-03-05 1990-03-05 Roller hearth type vacuum furnace

Country Status (1)

Country Link
JP (1) JPH03257119A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747743B1 (en) * 2007-04-13 2007-08-08 한국기계연구원 Heating furnace, cooler and roller hearth type annealing furnace with a preventing vortex guide
KR100767285B1 (en) * 2006-06-20 2007-10-17 김성주 Apparatus for cooling extruded pvc round bar
KR100767806B1 (en) * 2007-04-13 2007-10-17 한국기계연구원 Heating furnace, cooler and roller hearth type annealing furnace with transforming protrusion
JP2010048467A (en) * 2008-08-21 2010-03-04 Espec Corp Plate cooling device and heat treatment system
JP2010107193A (en) * 2003-01-31 2010-05-13 Ihi Corp Heat treatment apparatus
WO2012117803A1 (en) * 2011-03-02 2012-09-07 株式会社村田製作所 Hot air circulation furnace
CN103225012A (en) * 2013-05-15 2013-07-31 湖南新新线缆有限公司 Numerical control type micro-pressure gas cold-heat circulating annealing furnace
KR20140050734A (en) 2011-09-30 2014-04-29 닛폰 피스톤 린구 가부시키가이샤 Cooling device
JP2015014041A (en) * 2013-07-08 2015-01-22 住友電工焼結合金株式会社 Sinter hardening method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107193A (en) * 2003-01-31 2010-05-13 Ihi Corp Heat treatment apparatus
KR100767285B1 (en) * 2006-06-20 2007-10-17 김성주 Apparatus for cooling extruded pvc round bar
KR100747743B1 (en) * 2007-04-13 2007-08-08 한국기계연구원 Heating furnace, cooler and roller hearth type annealing furnace with a preventing vortex guide
KR100767806B1 (en) * 2007-04-13 2007-10-17 한국기계연구원 Heating furnace, cooler and roller hearth type annealing furnace with transforming protrusion
JP2010048467A (en) * 2008-08-21 2010-03-04 Espec Corp Plate cooling device and heat treatment system
WO2012117803A1 (en) * 2011-03-02 2012-09-07 株式会社村田製作所 Hot air circulation furnace
CN103392108A (en) * 2011-03-02 2013-11-13 株式会社村田制作所 Hot air circulation furnace
JP5737385B2 (en) * 2011-03-02 2015-06-17 株式会社村田製作所 Hot air circulation furnace
KR20140050734A (en) 2011-09-30 2014-04-29 닛폰 피스톤 린구 가부시키가이샤 Cooling device
CN103225012A (en) * 2013-05-15 2013-07-31 湖南新新线缆有限公司 Numerical control type micro-pressure gas cold-heat circulating annealing furnace
CN103225012B (en) * 2013-05-15 2014-10-22 湖南新新线缆有限公司 Numerical control type micro-pressure gas cold-heat circulating annealing furnace
JP2015014041A (en) * 2013-07-08 2015-01-22 住友電工焼結合金株式会社 Sinter hardening method

Similar Documents

Publication Publication Date Title
JPS6212288B2 (en)
US4462577A (en) Apparatus for gas cooling work parts under high pressure in a continuous heat treating vacuum furnace
JPH0364569B2 (en)
US9187799B2 (en) 20 bar super quench vacuum furnace
JPH03257119A (en) Roller hearth type vacuum furnace
CN102399953B (en) Suspended isothermal normalizing production line
US4588378A (en) Continuous heat treating furnace for metallic strip
US6147328A (en) Apparatus for the heat treatment of workpieces
KR100792715B1 (en) Controlling apparatus for atmospheric gas using dx-gas burner
US4449923A (en) Continuous heat-treating furnace
US4628615A (en) Process and installation for the heat treatment of cylindrical bodies, especially pipes
JP3670617B2 (en) Heat treatment apparatus and heat treatment method
JP7155709B2 (en) Continuous atmosphere heat treatment furnace
US7371296B1 (en) Annealing furnace cooling and purging system and method
JPH0651882B2 (en) Vacuum sintering quenching furnace
JP2010107193A (en) Heat treatment apparatus
JPH0452214A (en) Vacuum heat treating furnace
JP2003077398A (en) Manufacturing method of plasma display panel and furnace equipment for same
JPS6145152B2 (en)
JP2020003095A (en) Heat treatment furnace
US3930831A (en) Furnace for heat treating glass sheet material
JPS6056402B2 (en) Heat treatment equipment for forged products
JPH0599572A (en) Continuous vacuum furnace
JP2513194Y2 (en) Heat treatment furnace
JP2003171717A (en) Two-chamber type heat treatment furnace