JPH11192430A - Waste gas purifying material and waste gas purifying device using the same - Google Patents

Waste gas purifying material and waste gas purifying device using the same

Info

Publication number
JPH11192430A
JPH11192430A JP10110442A JP11044298A JPH11192430A JP H11192430 A JPH11192430 A JP H11192430A JP 10110442 A JP10110442 A JP 10110442A JP 11044298 A JP11044298 A JP 11044298A JP H11192430 A JPH11192430 A JP H11192430A
Authority
JP
Japan
Prior art keywords
group
exhaust gas
gas purifying
heat
dimensional network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10110442A
Other languages
Japanese (ja)
Other versions
JP3823528B2 (en
Inventor
Tatsuro Miyazaki
達郎 宮▲崎▼
Nobuyuki Tokubuchi
信行 徳渕
Masaaki Arita
雅昭 有田
Masahiro Inoue
雅博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11044298A priority Critical patent/JP3823528B2/en
Publication of JPH11192430A publication Critical patent/JPH11192430A/en
Application granted granted Critical
Publication of JP3823528B2 publication Critical patent/JP3823528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste gas purifying catalyst for combusting and removing an uncombusted material contained in a waste gas. SOLUTION: In a three-dimensional circular structural heat resistant inorganic material having inner continuous air flow spaces, a catalyst consisting of a salt of a group 1a element, a group Va element and a group 1b element classified by IUPAC or a catalyst consisting of a salt of a group 1a element, a group Va element, a group 1b element and at least one kind of group VIa group VIIa and group VIIIa is stuck to the heat resistant inorganic material having 5-30, preferably 10-20 inner continuous air flow spaces. Further, (1) a heat resistant inorganic material is formed into a three-dimensional meshlike structural body 3. (2) The three-dimensional meshlike structural body and a honeycomb structural body are installed in series to the waste gas flow. (3) The waste gas flow-in and flow-out surface of the three-dimensional meshlike structural body has a structure not right-angled to the waste gas flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディ−ゼル機関な
どの燃焼機関や産業排ガス中に含有される炭化水素や可
燃性炭素微粒子などの粒子状物質(パティキュレート)
を除去する排ガス浄化材及びこの排ガス浄化材を用いた
排ガス浄化装置に関する。
The present invention relates to particulate matter (particulates) such as hydrocarbons and combustible carbon fine particles contained in combustion engines such as diesel engines and industrial exhaust gases.
TECHNICAL FIELD The present invention relates to an exhaust gas purifying material for removing water and an exhaust gas purifying apparatus using the exhaust gas purifying material.

【0002】[0002]

【従来の技術】ディ−ゼルエンジンの排ガス中のパティ
キュレートはその粒子径のほとんどが1ミクロン以下で
あり、大気中に浮遊しやすく呼吸により人体に取り込ま
れやすい。しかも発ガン性物質を含んでいることから、
排出の規制は今後更に厳しくなることが予測される。
2. Description of the Related Art Particles in the exhaust gas of diesel engines have a particle diameter of almost 1 micron or less, are easily suspended in the air, and are easily taken into the human body by respiration. And because it contains carcinogens,
Emission regulations are expected to become more stringent in the future.

【0003】従来、これらの微粒子状物質の除去方法と
しては、大別すると以下の2つの方法がある。
Conventionally, there are roughly the following two methods for removing these particulate matter.

【0004】(1)片端閉じのセラミックハニカム、セ
ラミックフォーム、金属発泡体などの耐熱性のガスフィ
ルターを用いて排ガス中の微粒子を捕集し、背圧が上昇
すれば電気ヒーターなどで堆積した微粒子を燃焼させフ
ィルターを再生する方法。
(1) The fine particles in the exhaust gas are collected using a heat-resistant gas filter such as a ceramic honeycomb, ceramic foam, metal foam or the like with one end closed, and the fine particles deposited by an electric heater or the like when the back pressure increases. To regenerate the filter by burning oil.

【0005】(2)触媒を用いて微粒子を触媒作用によ
り燃焼反応を行わせ、ヒーターなどを要せず排ガス中で
排ガスの温度で燃焼再生を行う方法。
(2) A method in which fine particles are catalyzed by a catalytic reaction using a catalyst to perform combustion regeneration at the temperature of the exhaust gas in the exhaust gas without the need for a heater or the like.

【0006】しかしながら、前記(1)の方法ではパテ
ィキュレートの燃焼温度が高温であり、捕集したパティ
キュレートを燃焼除去し、フィルターを再生するために
多量のエネルギーが必要となる。さらに高温域での燃焼
とその反応熱によりフィルターの溶損や割れを生じる。
また、特殊な装置を必要とするために浄化装置としての
大型化、高コスト化が問題となる。
However, in the method (1), the burning temperature of the particulates is high, and a large amount of energy is required to burn and remove the collected particulates and regenerate the filter. Further, the filter is melted or cracked due to the combustion in a high temperature range and the heat of the reaction.
In addition, since a special device is required, the size and cost of the purification device become problematic.

【0007】一方、前記(2)の方式では排ガス処理温
度域で触媒の作用で燃焼除去させるため、特殊な装置を
必要とせず小型化、低コスト化の浄化装置となるが、排
ガス温度全域で浄化が可能となる触媒は開発されていな
い。
On the other hand, in the method (2), since the catalyst is burned and removed by the action of a catalyst in the exhaust gas processing temperature range, a special-purpose device is not required, and the purification device can be reduced in size and cost. No catalyst capable of purification has been developed.

【0008】[0008]

【発明が解決しようとする課題】触媒を担持する耐熱性
の構造体としては、ガソリン車で一般に使われているハ
ニカム構造体のものや、パティキュレートの捕集を目的
としたハニカム構造の個々のセルを一個毎に閉塞させた
片端閉のハニカム構造のフィルターがある。
The heat-resistant structure for supporting the catalyst includes a honeycomb structure generally used in gasoline-powered vehicles and an individual honeycomb structure for collecting particulates. There is a filter having a one-side closed honeycomb structure in which cells are closed one by one.

【0009】しかしながら、ハニカム構造の構造体では
排ガスの通路が直線的であり、その通路を数m〜数十m
以上の速度で通過する固体状のパティキュレートは、排
ガスの流れの垂直方向(ハニカム壁方向)の速度成分は
気体分子に比べて著しく小さい。そのため、通路壁にコ
ーティングした触媒とは接触し難く、浄化反応が起こり
にくい。一方、セルの片端を閉塞させた片端閉の捕集を
目的としたハニカム構造では、セル通路を構成する壁面
によってパティキュレートが排ガス中から濾過、捕集さ
れる。このため壁面にコーティングした触媒との接触性
は良好である。
[0009] However, in the honeycomb structured body, the exhaust gas passage is linear, and the passage is several meters to several tens of meters.
In the solid particulates passing at the above speed, the velocity component in the vertical direction (toward the honeycomb wall) of the flow of the exhaust gas is significantly smaller than that of gas molecules. Therefore, the catalyst hardly comes into contact with the catalyst coated on the passage wall, and the purification reaction hardly occurs. On the other hand, in the honeycomb structure for the purpose of collecting one end closed with one end of the cell closed, the particulates are filtered and collected from the exhaust gas by the wall surface constituting the cell passage. Therefore, the contact property with the catalyst coated on the wall surface is good.

【0010】ところが、この場合、触媒の活性が十分に
作用しない低い排ガス温度域での運転が続くと、パティ
キュレートが完全には浄化されずにセル壁面上のパティ
キュレートの堆積量が増し、背圧が大きくなり、長時間
使用できないなどの問題が生じる。
However, in this case, if the operation is continued in a low exhaust gas temperature range where the activity of the catalyst does not sufficiently act, the particulates are not completely purified, and the amount of deposited particulates on the cell wall surface increases. The pressure increases, causing problems such as being unable to use for a long time.

【0011】本発明は、ディーゼル機関からのパティキ
ュレートに対して燃焼性に優れ低負荷、低回転のような
極端に排ガス温度が低く、触媒作用が十分発現しない低
温度域でも、パティキュレートのフィルターへの堆積に
よる圧力損失が問題とならない長時間安定して使用する
ことができる排ガス浄化材及びこれを用いた排ガス浄化
装置を提供することを目的とする。
[0011] The present invention provides a particulate filter even in a low temperature range where the exhaust gas temperature is extremely low, such as low load and low rotation, and the catalytic action is not sufficiently exhibited. It is an object of the present invention to provide an exhaust gas purifying material which can be used stably for a long period of time without causing a problem of pressure loss due to deposition on a gas, and an exhaust gas purifying apparatus using the same.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記問題
点解決のための検討を行った結果、特定の構造を有する
3次元網目状構造の多孔質体に特定の触媒を担持した構
造、あるいは触媒を付着せしめた特定の構造を有する3
次元網目状構造の多孔質体を排ガス上流に設置し、その
下流にハニカム構造体を設置した2段構成とし、これに
特定の触媒を担持した構造がディーゼル排ガスに対して
優れた特性を安定して維持することを見いだした。
Means for Solving the Problems The present inventors have conducted studies for solving the above problems, and as a result, have found that a structure in which a specific catalyst is supported on a three-dimensional mesh-like porous body having a specific structure. , Or 3 having a specific structure with a catalyst attached
A two-stage structure in which a porous body with a three-dimensional network structure is installed upstream of the exhaust gas and a honeycomb structure is installed downstream of the porous body, and the structure carrying a specific catalyst stabilizes excellent characteristics against diesel exhaust gas. To maintain.

【0013】すなわち、3次元の網目構造としては構造
内に連続通気空間を有し、その空間の数が1平方インチ
当たり5から30個で好ましくは10から20個のもの
である。さらに好ましくは3次元網目構造体の排ガス流
入出面への垂線が排ガス流れ方向に対して鋭角あるいは
鈍角をなすものである。また、ハニカム構造体としては
1平方インチ当たり200〜500個のものである。3
次元網目構造体、或いはハニカム構造体の材料としては
コージェライト(2MgO・5SiO2・2Al
23)、ムライト(Al23・3SiO2)、アルミナ
(Al23)、シリカ(SiO2)、チタニア(Ti
2)、ジルコニア(ZrO2)、シリカ−アルミナ、ア
ルミナ−ジルコニア、アルミナ−チタニア、シリカ−チ
タニア、シリカ−ジルコニア、チタニア−ジルコニアな
どのセラミックスと、SUS301S、インコネル(イ
ンコネルX、インコネルWなど)などの金属材料が挙げ
られるが、これに限定されるものではない。
That is, the three-dimensional network structure has a continuous ventilation space in the structure, and the number of the spaces is 5 to 30, preferably 10 to 20, per square inch. More preferably, the perpendicular to the exhaust gas inflow / outflow surface of the three-dimensional network structure forms an acute angle or an obtuse angle with the exhaust gas flow direction. The number of honeycomb structures is 200 to 500 per square inch. 3
Dimensional network structure, or as a material of the honeycomb structure of cordierite (2MgO · 5SiO 2 · 2Al
2 O 3 ), mullite (Al 2 O 3 .3SiO 2 ), alumina (Al 2 O 3 ), silica (SiO 2 ), titania (Ti
O 2), zirconia (ZrO 2), silica - alumina, alumina - zirconia, alumina - titania, silica - titania, silica - zirconia, titania - and ceramics such as zirconia, SUS301S, Inconel (Inconel X, Inconel W, etc.) , But is not limited thereto.

【0014】更に、この3次元網目構造体或いはハニカ
ム構造体に無機質コート層を形成する。無機質コート層
とは3次元網目構造体上にコートされる高比表面積の多
孔質体である。無機質コート層の材料としては通常、ア
ルミナ、シリカ、チタニア、ジルコニア、シリカ−アル
ミナ、アルミナ−ジルコニア、アルミナ−チタニアなど
のセラミックス等が好適に用いられるが、これに限定さ
れるものではない。
Further, an inorganic coating layer is formed on the three-dimensional network structure or the honeycomb structure. The inorganic coating layer is a porous body having a high specific surface area coated on the three-dimensional network structure. As the material of the inorganic coating layer, usually, ceramics such as alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, and alumina-titania are preferably used, but are not limited thereto.

【0015】3次元網目構造体或いはハニカム構造体上
へ無機質コート層を担持させる方法としては、ゾル−ゲ
ル法や、スラリー法などが挙げられる。
As a method for supporting the inorganic coating layer on the three-dimensional network structure or the honeycomb structure, a sol-gel method, a slurry method and the like can be mentioned.

【0016】ゾル−ゲル法とは、無機質コート層を構成
する金属元素の有機塩(アルコキシドなど)を含む溶液
に酸(塩酸、酢酸など)を加えて溶液のpHを調製した
後、この溶液に3次元構造体或いはハニカム構造体を含
浸して無機質コート層を構成する金属元素を含む溶液を
コーティングし、次いで3次元網目構造体或いはハニカ
ム構造体にコーティングされた溶液と水蒸気とを接触さ
せ加水分解反応によりゾル化させ、さらにゲル化を行っ
た後に焼成するものである。
The sol-gel method is a method in which an acid (hydrochloric acid, acetic acid, etc.) is added to a solution containing an organic salt (alkoxide, etc.) of a metal element constituting an inorganic coating layer to adjust the pH of the solution, and then the solution is added to the solution. The solution containing the metal element constituting the inorganic coating layer is coated by impregnating the three-dimensional structure or the honeycomb structure, and then the solution coated on the three-dimensional network structure or the honeycomb structure is brought into contact with water vapor to perform hydrolysis. It is made into a sol by a reaction, and after further gelation, it is baked.

【0017】スラリー法とは、無機質コート層の原料粉
体をあらかじめ分散剤(ポリカルボン酸塩など)を溶解
した水溶液に投入し、この水溶液中の原料粉体をボール
ミルなどにて解粒、混合を行うことによりスラリーを調
製した後、このスラリーに3次元網目構造体或いはハニ
カム構造体を含浸してスラリーをコーティングした後に
焼成するものである。これらが担持の一般的方法として
挙げられるが、これに限定されるものではない。
In the slurry method, the raw material powder of the inorganic coating layer is charged into an aqueous solution in which a dispersant (such as a polycarboxylate) is previously dissolved, and the raw material powder in the aqueous solution is pulverized and mixed by a ball mill or the like. After preparing a slurry by performing the above, the slurry is impregnated with a three-dimensional network structure or a honeycomb structure, coated with the slurry, and then fired. These are mentioned as general methods of loading, but are not limited thereto.

【0018】但し、3次元網目構造体に形成される無機
質部としてはZrO2やTiO2、SiO2などがあげら
れ、特にSiO2のゾルが好ましく、また、ゾルの粒子
径は5nmよりも大きく、且つ160nmよりも小さい
ものが好ましい。又は当該ゾルに耐熱性の粉末を混合し
たものであり、その粉末の粒子径が0.5μmよりも大
きく、且つ9μmよりも小さいものが好ましい。
However, examples of the inorganic portion formed in the three-dimensional network structure include ZrO 2 , TiO 2 , and SiO 2, and a sol of SiO 2 is particularly preferable, and the particle size of the sol is larger than 5 nm. And smaller than 160 nm is preferred. Alternatively, a heat-resistant powder is mixed with the sol, and the particle diameter of the powder is preferably larger than 0.5 μm and smaller than 9 μm.

【0019】これら構造体に付着せしめる触媒材料とし
ては、IUPAC分類による1a族元素の塩と5a族元
素と1b族元素からなるもの、及び、1a族元素の塩と
5a族元素と1b族元素と6a族、7a族、8a族の中
の少なくとも1種からなるもの、があげられる。
Examples of the catalyst material to be attached to these structures include a salt of a Group 1a element, a Group 5a element and a Group 1b element according to IUPAC classification, and a salt of a Group 1a element with a Group 5a and Group 1b element. One composed of at least one of the 6a group, 7a group and 8a group is mentioned.

【0020】上記触媒は以下の方法により作製する。す
なわち、各構成元素の酸化物、水酸化物、炭酸塩、酢酸
塩、硝酸塩、シュウ塩、塩化物などを所定の割合で混合
する。混合する方法としては、各材料を固体状態で混合
する方法、各金属塩の混合水溶液を調製した後、溶媒を
蒸発させ、金属塩を固化させる方法、各金属塩の混合水
溶液を調製した後、アンモニア水などを加え加水分解す
る方法、各金属塩の混合水溶液を調製した後、適量のク
エン酸、リンゴ酸などの多価の有機カルボン酸を添加
し、溶媒を蒸発させるか、溶液のpH調整することによ
り固化させる方法を用いることができる。このようにし
て調製した混合物を焼成することにより所定の触媒が得
られる。また、触媒の各構成元素を別々に上記と同等の
方法で、作製することも可能である。
The above catalyst is prepared by the following method. That is, oxides, hydroxides, carbonates, acetates, nitrates, oxalates, chlorides, and the like of the respective constituent elements are mixed at a predetermined ratio. As a method of mixing, a method of mixing each material in a solid state, a method of preparing a mixed aqueous solution of each metal salt, evaporating the solvent and solidifying the metal salt, a method of preparing a mixed aqueous solution of each metal salt, A method of adding ammonia water and hydrolyzing, preparing a mixed aqueous solution of each metal salt, adding an appropriate amount of a polyvalent organic carboxylic acid such as citric acid and malic acid, and evaporating the solvent or adjusting the pH of the solution. Then, a method of solidifying can be used. By firing the mixture thus prepared, a predetermined catalyst is obtained. Further, it is also possible to separately prepare each constituent element of the catalyst by the same method as described above.

【0021】この構成により、触媒と排出されてくるパ
ティキュレートとの接触が十分に保たれ、高い活性を有
する本触媒によりパティキュレートの浄化反応が進行す
る。
According to this configuration, the contact between the catalyst and the discharged particulates is sufficiently maintained, and the purification reaction of the particulates proceeds with the present catalyst having high activity.

【0022】また、排ガス温度が極端に低い場合には、
本触媒の作用により排出パティキュレートの一部は燃焼
され、未燃焼のパティキュレートは系外に排出される。
これにより触媒の作用によりパティキュレートを100
%燃焼除去できない排ガス温度域においてもフィルター
内にパティキュレートが堆積し差圧が上昇することがな
く、連続的に安定してパティキュレートの燃焼除去が可
能となる。
When the exhaust gas temperature is extremely low,
A part of the discharged particulates is burned by the action of the present catalyst, and the unburned particulates are discharged out of the system.
As a result, the particulates are reduced to 100 by the action of the catalyst.
% Even in the exhaust gas temperature range where combustion cannot be removed, particulates do not accumulate in the filter and the differential pressure does not increase, so that the particulates can be burnt and removed continuously and stably.

【0023】また、上記無機構造体の排ガス入り口側
に、IUPAC分類による1a族元素の塩と5a族元素
と1b族元素からなる触媒、または1a族元素の塩と5
a族元素と1b族元素と6a族、7a族、8a族の中の
少なくとも1種からなる触媒を付着させた構成とし、排
ガス出口側に白金族を付着させた構成とすることにより
パティキュレートに加えて、CO、HCの浄化も可能と
なる。
A catalyst comprising a Group 1a element salt and a Group 5a element and a Group 1b element according to IUPAC classification, or a Group 1a element salt and
A particulate material can be obtained by using a structure in which a catalyst consisting of a group a element, a group 1b element, and at least one of group 6a, 7a, and 8a is attached, and a platinum group attached to an exhaust gas outlet side. In addition, CO and HC can be purified.

【0024】[0024]

【発明の実施の形態】本発明の請求項1に記載の発明
は、内部連続通気空間を有する3次元網状構造の耐熱性
無機材料を用いる排ガス浄化材であって、内部連続通気
空間の数が1平方インチ当たり5〜30個である耐熱性
無機材料にIUPAC分類による1a族元素の塩と5a
族元素と1b族元素からなる触媒を付着させた構成より
なる。なお、IUPAC分類とは、国際純正応用化学連
合による分類によるもので、長周期表において左から1
a,2a,3a,4a,5a,6a,7a,8,1b,
2b,3b,4b,5b,7b,0族と定義される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is an exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is reduced. 5a to 30 heat-resistant inorganic materials per square inch are combined with a salt of a Group 1a element according to IUPAC classification and 5a
It has a configuration in which a catalyst composed of a Group 1 element and a Group 1b element is attached. The IUPAC classification is based on the classification by the International Union of Pure and Applied Chemistry.
a, 2a, 3a, 4a, 5a, 6a, 7a, 8, 1b,
It is defined as group 2b, 3b, 4b, 5b, 7b, 0 group.

【0025】この構成によれば、構造体に付着せしめた
触媒への排出パティキュレートの適度な接触及び未燃の
パティキュレートが残存することによる背圧増大の抑制
が実現できる。さらに構造体に付着させる触媒が重要で
あり、パティキュレートなどの炭素基質に対して活性の
高い1a族元素とこれを活性化させる5a族と1b族の
組み合わせにより、パティキュレートの堆積が問題とな
らず、構造体通過中に効率良く長時間安定してパティキ
ュレートの燃焼が可能となるという作用を有する。
According to this configuration, it is possible to realize appropriate contact of the discharged particulates to the catalyst adhered to the structure and to suppress increase in the back pressure due to the remaining unburned particulates. Further, a catalyst to be attached to the structure is important, and if a combination of a group 1a element having high activity with respect to a carbon substrate such as particulates and a group 5a and group 1b that activates the group 1a causes a problem of particulate deposition, In addition, there is an effect that the particulates can be efficiently and stably burned for a long time while passing through the structure.

【0026】請求項2に記載の発明は、内部連続通気空
間を有する3次元網状構造の耐熱性無機材料を用いる排
ガス浄化材であって、内部連続通気空間の数が1平方イ
ンチ当たり5〜30個である耐熱性無機材料にIUPA
C分類による1a族元素の塩、5a族元素と1b族元
素、及び6a族、7a族、8a族の中の少なくとも1種
からなる、触媒を付着させてなるものであり、このよう
な構成を備えた構造体を用いることにより構造体に付着
せしめた触媒への排出パティキュレートの適度な接触及
び未燃のパティキュレートが残存することによる背圧増
大の抑制が実現できる。さらに、構造体に付着させる触
媒が重要であり、パティキュレートなどの炭素基質に対
して活性の高い1a族元素とこれを活性化させる5a族
元素と1b族元素と6a族、7a族、8a族の中の少な
くとも1種からなる元素からなる触媒を付着させた構成
により、パティキュレートの堆積が問題とならず、構造
体通過中に効率良く長時間安定してパティキュレートの
燃焼が可能となるという作用を有する。
According to a second aspect of the present invention, there is provided an exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. IUPA for heat-resistant inorganic material
A catalyst comprising a salt of a Group 1a element, a Group 5a element and a Group 1b element, and at least one of Group 6a, Group 7a and Group 8a according to Class C is attached. By using the provided structure, it is possible to realize appropriate contact of the exhaust particulates to the catalyst adhered to the structure, and to suppress increase in back pressure due to remaining unburned particulates. Further, a catalyst to be attached to the structure is important, and a group 1a element having high activity to a carbon substrate such as particulates, a group 5a element, a group 1b element, a group 6a, a group 7a, and a group 8a which activate the group 1a element are activated. The structure to which a catalyst made of at least one element is attached does not cause the problem of particulate deposition, and enables efficient and stable burning of particulate during passage through the structure. Has an action.

【0027】請求項3に記載の発明は、内部連続通気空
間を有する3次元網状構造の耐熱性無機材料を用いる排
ガス浄化材であって、内部連続通気空間の数が1平方イ
ンチ当たり5〜30個である耐熱性無機材料の排ガス入
り口側にIUPAC分類による1a族元素の塩と5a族
元素と1b族元素からなる触媒を付着させ、出口側に白
金族元素を付着させてなるものであり、蒸気圧の高いパ
ティキュレートや未燃の炭化水素及びCOの浄化性能も
向上するという作用を有する。
According to a third aspect of the present invention, there is provided an exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. A heat-resistant inorganic material, which is a heat-resistant inorganic material, is formed by adhering a salt of a Group 1a element and a catalyst comprising a Group 5a element and a Group 1b element according to IUPAC classification on the exhaust gas inlet side, and adhering a platinum group element on the outlet side. It also has the effect of improving the performance of purifying particulates with high vapor pressure, unburned hydrocarbons and CO.

【0028】請求項4に記載の発明は、内部連続通気空
間を有する3次元網状構造の耐熱性無機材料を用いる排
ガス浄化材であって、内部連続通気空間の数が1平方イ
ンチ当たり5〜30個である耐熱性無機材料の排ガス入
り口側にIUPAC分類による1a族元素の塩、5a族
元素と1b族元素、及び6a族、7a族、8a族の中の
少なくとも1種からなる触媒を付着させ、出口側に白金
族元素を付着させてなるものであり、パティキュレート
は固体の“すす”と比較的蒸気圧の高い炭化水素とから
なるが、本発明の構成によれば、蒸気圧の高いパティキ
ュレートや未燃の炭化水素、COの浄化性能も向上させ
うるという作用を有する。
According to a fourth aspect of the present invention, there is provided an exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. A catalyst comprising a salt of a Group 1a element according to the IUPAC classification, a Group 5a element and a Group 1b element, and at least one of Group 6a, Group 7a and Group 8a is attached to the exhaust gas inlet side of the individual heat-resistant inorganic material. The particulates are formed by attaching a platinum group element to the outlet side. The particulates are composed of solid "soot" and hydrocarbons having a relatively high vapor pressure. It has the effect of improving the performance of purifying particulates, unburned hydrocarbons, and CO.

【0029】請求項5に記載の発明は、内部連続通気空
間を有する3次元網状構造の耐熱性無機材料を用いる排
ガス浄化材であって、内部連続通気空間の数が1平方イ
ンチ当たり5〜30個である耐熱性無機材料と1平方イ
ンチ当たり200〜500個の通気孔を有する耐熱性無
機材料からなるハニカム構造体を排ガスの流れに対して
直列に配置し、かつその配置が当該3次元網状構造体が
排ガス上流で、その下流に当該ハニカム構造体を設置
し、さらにこれら3次元網状構造及びハニカム構造の耐
熱性無機材料の表面に触媒を付着させたものであり、パ
ティキュレートの堆積が問題とならず、構造体通過中に
効率良く長時間安定してパティキュレートの燃焼が可能
となり、さらに蒸気圧の高いパティキュレートや未燃の
炭化水素、COの浄化性能も向上し得るという作用を有
する。
The invention according to claim 5 is an exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. The honeycomb structure made of a heat-resistant inorganic material and a heat-resistant inorganic material having 200 to 500 air holes per square inch is arranged in series with respect to the flow of the exhaust gas, and the arrangement is such that the three-dimensional network is formed. The structure is the exhaust gas upstream, the honeycomb structure is installed downstream of the exhaust gas, and the catalyst is attached to the surface of the heat-resistant inorganic material having the three-dimensional network structure and the honeycomb structure. It is possible to burn particulates efficiently and stably for a long time while passing through the structure, and to purify particulates with high vapor pressure, unburned hydrocarbons, and CO. Performance has the effect of being able to improve.

【0030】請求項6に記載の発明は、請求項5に記載
の排ガス浄化材において内部連続通気空間を有する3次
元網状構造体にIUPAC分類による1a族元素の塩と
5a族元素と1b族元素からなる触媒を付着させ、ハニ
カム構造体に白金族を付着させたものであり、パティキ
ュレートの堆積が問題とならず、構造体通過中に効率良
く長時間安定してパティキュレートの燃焼が可能とな
り、さらに蒸気圧の高いパティキュレートや未燃の炭化
水素、COの浄化性能も向上し得るという作用を有す
る。
According to a sixth aspect of the present invention, there is provided the exhaust gas purifying material according to the fifth aspect, wherein the three-dimensional network structure having an internal continuous ventilation space has a salt of a Group 1a element, a Group 5a element and a Group 1b element according to IUPAC classification. The catalyst consists of a platinum group attached to the honeycomb structure.Particulate deposition does not pose a problem, and the particulates can be burned efficiently and stably for a long time while passing through the structure. It also has the effect of improving the performance of purifying particulates with high vapor pressure, unburned hydrocarbons, and CO.

【0031】請求項7に記載の発明は、請求項5に記載
の排ガス浄化材において内部連続通気空間を有する3次
元網状構造体にIUPAC分類による1a族元素の塩
と、5a族元素と1b族元素、及び6a族、7a族、8
a族の中の少なくとも1種からなる触媒を付着させ、ハ
ニカム構造体に白金族を付着させたものであり、パティ
キュレートの堆積が問題とならず、構造体通過中に効率
良く長時間安定してパティキュレートの燃焼が可能とな
り、さらに蒸気圧の高いパティキュレートや未燃の炭化
水素、COの浄化性能も向上し得るという作用を有す
る。
According to a seventh aspect of the present invention, there is provided the exhaust gas purifying material according to the fifth aspect, wherein the three-dimensional network structure having an internal continuous ventilation space includes a salt of a Group 1a element according to IUPAC classification, a Group 5a element and a Group 1b. Element and group 6a, 7a, 8
A catalyst consisting of at least one member selected from the group a, and a platinum group adhered to the honeycomb structure. The deposition of particulates does not cause a problem, and the honeycomb structure efficiently and stably passes for a long time. Thus, the particulates can be burned, and the purification performance of particulates having high vapor pressure, unburned hydrocarbons, and CO can be improved.

【0032】請求項8に記載の発明は、請求項1〜7の
いずれかに記載の排ガス浄化材において3次元網目構造
体に付着させる1a族元素を硫酸塩としたものであり、
排ガスパティキュレートに対して高い活性を有し、安価
で排ガス中の共存ガスにより劣化し難く、構造体通過中
に効率良いパティキュレートの燃焼が可能となるという
作用を有する。
According to an eighth aspect of the present invention, in the exhaust gas purifying material according to any one of the first to seventh aspects, the Group 1a element to be attached to the three-dimensional network structure is a sulfate.
It has a high activity against exhaust gas particulates, is inexpensive, hardly deteriorates by coexisting gas in exhaust gas, and has an effect of enabling efficient combustion of particulates during passage through a structure.

【0033】請求項9及び10の発明は、請求項1,
3,6のいずれかに記載の排ガス浄化材において3次元
網目構造体に付着させるIUPAC分類による1a族元
素の塩と5a族元素と1b族元素を規定したものであ
り、当該触媒を用いることにより、排ガスパティキュレ
ートに対してより高い活性を有し、安価で排ガス中の共
存ガスにより劣化し難く、構造体通過中に効率良いパテ
ィキュレートの燃焼が可能となるという作用を有する。
The inventions of claims 9 and 10 are based on claim 1,
The exhaust gas purifying material according to any one of Items 3 and 6, wherein a salt of a Group 1a element, a Group 5a element and a Group 1b element according to the IUPAC classification to be adhered to the three-dimensional network structure is defined. It has a higher activity for exhaust gas particulates, is inexpensive, is less likely to be degraded by coexisting gases in the exhaust gas, and has the effect of enabling efficient combustion of particulates while passing through the structure.

【0034】請求項11の発明は、請求項2,4,7,
9,10のいずれかに記載の排ガス浄化材において、1
a族元素の塩が硫酸塩であり、CuとVの複合酸化物で
あるCuVO3、Cu328、Cu5210の少なくと
も1つの化合物のCuあるいはVの一部をCr,Mo,
W,Fe,Co,Niの少なくとも1つで置換するかC
r,Mo,W,Fe,Co,Niの酸化物の少なくとも
1つとの混合物であるものであり、排ガスパティキュレ
ートに対してより高い活性を有し、安価で排ガス中の共
存ガスにより劣化し難く、構造体通過中に効率良いパテ
ィキュレートの燃焼が可能となるという作用を有する。
[0034] The invention of claim 11 is the invention of claims 2, 4, 7,
9. The exhaust gas purifying material according to any one of items 9 and 10,
The salt of a group a element is a sulfate, and Cu or V of at least one compound of CuVO 3 , Cu 3 V 2 O 8 , and Cu 5 V 2 O 10 , which is a composite oxide of Cu and V, is replaced with Cr. , Mo,
Replace with at least one of W, Fe, Co, Ni or C
It is a mixture with at least one of the oxides of r, Mo, W, Fe, Co, and Ni, has higher activity for exhaust gas particulates, is inexpensive, and hardly deteriorates by coexisting gas in the exhaust gas. This has the effect of enabling efficient burning of particulates while passing through the structure.

【0035】請求項12の発明は、請求項5〜11のい
ずれかに記載の排ガス浄化材において、ハニカム構造体
及び網目状構造体の表面に耐熱無機材料をコーティング
したものであり、触媒の微細な付着面積が増し、蒸気圧
の高いパティキュレートや未燃の炭化水素、COの浄化
性能も向上し得るという作用を有する。
According to a twelfth aspect of the present invention, in the exhaust gas purifying material according to any one of the fifth to eleventh aspects, the surface of the honeycomb structure and the reticulated structure is coated with a heat-resistant inorganic material. This has the effect that the adhesion area can be increased and the purification performance of particulates having high vapor pressure, unburned hydrocarbons and CO can be improved.

【0036】請求項13の発明は、請求項12に記載の
排ガス浄化材において、耐熱無機材料がSiO2である
ものであり、該触媒の3次元無機構造体との反応を抑制
し、かつ触媒を付着させる基体として高表面積を提供す
る。これにより、構造体通過中にパティキュレートや排
ガス中に含まれるCO,HCに対する活性を向上し得る
という作用を有する。
According to a thirteenth aspect of the present invention, in the exhaust gas purifying material according to the twelfth aspect, the heat-resistant inorganic material is SiO 2 , and the reaction of the catalyst with the three-dimensional inorganic structure is suppressed. Provides a high surface area as a substrate to which is deposited. This has the effect of improving the activity against CO and HC contained in particulates and exhaust gas during passage through the structure.

【0037】請求項14の発明は、請求項1〜13のい
ずれかに記載の排ガス浄化材と、前記排ガス浄化材を収
納する容器と、前記容器の一部に形成された排ガス流入
口と、前記容器の他側部に形成された排ガス流入口とを
備えた排ガス浄化装置であり、装置構成が簡単で排ガス
浄化特性に優れた浄化装置が得られるという作用を有す
る。
According to a fourteenth aspect of the present invention, there is provided an exhaust gas purifying material according to any one of the first to thirteenth aspects, a container accommodating the exhaust gas purifying material, an exhaust gas inlet formed in a part of the container, An exhaust gas purifying device having an exhaust gas inlet formed on the other side of the container, and has an operation of obtaining a purifying device having a simple device configuration and excellent exhaust gas purifying characteristics.

【0038】請求項15の発明は、請求項14に記載の
浄化装置において、前記容器及び/又は前記容器の排ガ
ス流入口とエンジンを接続する接続管の周囲に設置され
た断熱手段を有するものであり、エンジン燃焼部からの
排ガスが触媒部に流入する温度の低下を防止して触媒活
性を向上させ得るという作用を有する。
According to a fifteenth aspect of the present invention, there is provided the purification apparatus according to the fourteenth aspect, further comprising a heat insulating means provided around the container and / or a connecting pipe connecting an exhaust gas inlet of the container and an engine. In addition, there is an effect that it is possible to prevent a decrease in the temperature at which exhaust gas from the engine combustion section flows into the catalyst section and improve the catalytic activity.

【0039】請求項16の発明は、請求項15の発明に
おいて、前記容器がエンジンマニホールドに近接して配
置されたものであり、エンジン燃焼部からの排ガスが触
媒部に流入する温度の低下を防止して触媒活性を向上さ
せることができるという作用を有する。
According to a sixteenth aspect of the present invention, in accordance with the fifteenth aspect, the container is disposed in proximity to the engine manifold to prevent a decrease in temperature at which exhaust gas from the engine combustion section flows into the catalyst section. Thus, the catalyst activity can be improved.

【0040】請求項17の発明は、3次元構造体に形成
した材料が耐熱性無機材料のゾルでありその粒子径が5
nmよりも大きく且つ160nmよりも小さいものであ
る。これにより、3次元構造体に均一な耐熱性無機材料
の形成部が得られ、触媒が3次元構造体と反応し劣化す
ることを抑制でき、高い活性を長時間安定して維持でき
る。
According to a seventeenth aspect of the present invention, the material formed in the three-dimensional structure is a sol of a heat-resistant inorganic material having a particle size of 5.
nm and smaller than 160 nm. As a result, a uniform portion of the heat-resistant inorganic material is formed in the three-dimensional structure, the catalyst can be prevented from reacting with the three-dimensional structure and deteriorating, and high activity can be stably maintained for a long time.

【0041】請求項18の発明は3次元構造体に形成す
る材料が耐熱性無機材料のゾルと耐熱性無機材料の粉末
からなるもので、3次元構造体の表面に凹凸の耐熱性無
機材料部が得られる。これにより、この上に付着させた
触媒が3次元網目構造体との反応により劣化することを
抑制でき、更に触媒とパティキュレートとの接触性が向
上し、3次元構造体通過中に効率よくパティキュレート
の燃焼が可能となる。
According to an eighteenth aspect of the present invention, the material formed in the three-dimensional structure comprises a sol of a heat-resistant inorganic material and a powder of the heat-resistant inorganic material. Is obtained. As a result, it is possible to prevent the catalyst deposited on the catalyst from deteriorating due to the reaction with the three-dimensional network structure. Further, the contact between the catalyst and the particulates is improved, so that the catalyst can efficiently pass through the three-dimensional structure. Curate combustion becomes possible.

【0042】請求項19の発明は、請求項18の発明に
おいて粒子径が5nmよりも大きく且つ160nmより
も小さい耐熱性無機材料のゾルと混合する耐熱性無機材
料の粒子の粒子径が0.5μmよりも大きく且つ9μm
よりも小さいものであり、これにより混合する耐熱性無
機材料の粒子が脱離することなく安定して3次元構造体
表面に形成される。これにより、この上に付着させた触
媒が3次元網目構造体との反応により劣化することが抑
制でき、更に触媒とパティキュレートとの接触性が向上
し、3次元構造体通過中に効率よく長時間安定してパテ
ィキュレートの燃焼が可能となる。
According to a nineteenth aspect, in the eighteenth aspect, the particle diameter of the heat-resistant inorganic material mixed with the sol of the heat-resistant inorganic material having a particle diameter larger than 5 nm and smaller than 160 nm is 0.5 μm. Larger than 9 μm
Thus, the particles of the heat-resistant inorganic material to be mixed are stably formed on the surface of the three-dimensional structure without detachment. As a result, it is possible to prevent the catalyst deposited on the catalyst from deteriorating due to the reaction with the three-dimensional network structure, further improve the contact between the catalyst and the particulates, and efficiently increase the length of the catalyst during passage through the three-dimensional structure. Burning of particulates can be stably performed over time.

【0043】請求項20の発明は耐熱性無機材料をその
表面に形成した3次元構造体を触媒付着させる前に酸で
エッチィングするもので、これにより3次元構造体表面
に凸凹が形成される。これにより表面が凸凹の3次元構
造体上に付着させた触媒とパティキュレートとの接触性
が向上し、3次元構造体通過中に効率よくパティキュレ
ートの燃焼が可能となる。
According to a twentieth aspect of the present invention, a three-dimensional structure having a heat-resistant inorganic material formed on its surface is etched with an acid before the catalyst is deposited thereon, whereby irregularities are formed on the surface of the three-dimensional structure. . Thereby, the contact property between the catalyst and the particulates attached on the three-dimensional structure having the uneven surface is improved, and the particulates can be efficiently burned while passing through the three-dimensional structure.

【0044】請求項21の発明は3次元構造体の表面に
形成する耐熱性無機酸化物がSiO 2であるものであ
る。これにより、この上に形成した触媒が3次元網目構
造体との反応により劣化することが抑制でき、更に触媒
とパティキュレートとの接触性が向上し、3次元構造体
通過中に効率よく長時間安定してパティキュレートの燃
焼が可能となる。
According to a twenty-first aspect of the present invention, the surface of the three-dimensional structure is
The heat-resistant inorganic oxide to be formed is SiO TwoThat is
You. As a result, the catalyst formed thereon has a three-dimensional network structure.
Deterioration due to reaction with the structure can be suppressed, and catalyst
3D structure with improved contact between particles and particulates
Efficient and stable for a long time during passing
Baking becomes possible.

【0045】請求項22の発明は触媒を付着させる内部
連続通気空間を有する3次元網目構造体の排ガス流入面
が排ガス流れに対して垂直でない構造であり、これによ
り排ガス流れに対する3次元網目構造体の断面積を垂直
な場合に比べて大きくすることが可能となり排ガス流入
面が排ガス流れに対して垂直な3次元構造体に比べて差
圧が小さくなる。従って排ガス流入面が排ガス流れに対
して垂直な3次元構造体に比べて3次元構造体の排ガス
流れ方向の長さを長くすることができ、触媒とパティキ
ュレートとの接触回数を増大させることができるという
作用を有す。
According to a twenty-second aspect of the present invention, the exhaust gas inflow surface of the three-dimensional network having an internal continuous ventilation space for adhering the catalyst is not perpendicular to the exhaust gas flow. Can be increased as compared with the case where the cross section is vertical, and the differential pressure becomes smaller as compared with a three-dimensional structure in which the exhaust gas inflow surface is perpendicular to the exhaust gas flow. Therefore, the length of the three-dimensional structure in the exhaust gas flow direction can be made longer than that of the three-dimensional structure in which the exhaust gas inflow surface is perpendicular to the exhaust gas flow, and the number of times of contact between the catalyst and the particulates can be increased. Has the effect of being able to.

【0046】請求項23の発明は、請求項1から4いず
れかの発明における触媒を付着させた3次元網目構造体
が請求項22の発明における3次元構造体であるもので
あり、初期の差圧が小さく、パティキュレートの堆積が
問題とならず、構造体通過中に効率良く長時間安定して
パティキュレートの燃焼が可能となるという作用を有す
る。
According to a twenty-third aspect of the present invention, the three-dimensional network structure to which the catalyst according to any one of the first to fourth aspects is attached is the three-dimensional structure according to the twenty-second aspect of the present invention. The pressure is small, the accumulation of particulates does not pose a problem, and the particulates can be burned efficiently and stably for a long time while passing through the structure.

【0047】請求項24の発明は、請求項17から21
のいずれかの排ガス浄化材において3次元網目構造体が
請求項22の発明における3次元構造体であるものであ
り、初期の差圧が小さく、パティキュレートの堆積が問
題とならず、構造体通過中に効率良く長時間安定してパ
ティキュレートの燃焼が可能となるという作用を有す
る。
The invention according to claim 24 is the invention according to claims 17 to 21.
In the exhaust gas purifying material of any one of the above, the three-dimensional network structure is the three-dimensional structure according to the invention of claim 22, wherein the initial pressure difference is small, the accumulation of particulates is not a problem, This has the effect that the particulates can be burned efficiently and stably for a long time.

【0048】請求項25の発明は、請求項17から24
のいずれかに記載の排ガス浄化材と、前記排ガス浄化材
を収納する容器と、前記容器の一部に形成された排ガス
流入口と、前記容器の他側部に形成された排ガス流入口
とを備えた排ガス浄化装置であり、装置構成が簡単で排
ガス浄化特性に優れた浄化装置が得られるという作用を
有する。
The twenty-fifth aspect of the present invention relates to the seventeenth to twenty-fourth aspects.
The exhaust gas purifying material according to any of the above, a container for storing the exhaust gas purifying material, an exhaust gas inlet formed in a part of the container, and an exhaust gas inlet formed on the other side of the container. An exhaust gas purifying apparatus provided with the above-described apparatus, and has an effect that a purifying apparatus having a simple apparatus configuration and excellent exhaust gas purifying characteristics can be obtained.

【0049】請求項26の発明は、請求項25に記載の
浄化装置において、前記容器及び/又は前記容器の排ガ
ス流入口とエンジンを接続する接続管の周囲に設置され
た断熱手段を有するものであり、エンジン燃焼部からの
排ガスが触媒部に流入する温度の低下を防止して触媒活
性を向上させ得るという作用を有する。
According to a twenty-sixth aspect of the present invention, in the purifying apparatus according to the twenty-fifth aspect, there is provided a heat-insulating means provided around the container and / or a connection pipe connecting an exhaust gas inlet of the container and an engine. In addition, there is an effect that it is possible to prevent a decrease in the temperature at which exhaust gas from the engine combustion section flows into the catalyst section and improve the catalytic activity.

【0050】請求項27の発明は、請求項26の発明に
おいて、前記容器がエンジンマニホールドに近接して配
置されたものであり、エンジン燃焼部からの排ガスが触
媒部に流入する温度の低下を防止して触媒活性を向上さ
せることができるという作用を有する。
According to a twenty-seventh aspect, in the twenty-sixth aspect, the container is disposed close to the engine manifold to prevent a decrease in temperature at which exhaust gas from the engine combustion section flows into the catalyst section. Thus, the catalyst activity can be improved.

【0051】以下、本発明の実施の形態における排ガス
浄化材について説明する。図1は本発明の実施の形態に
おける排ガス浄化装置の構成を示す図であり、図2は排
ガス浄化材の他の実施の形態を示す排ガス浄化装置の部
分拡大図である。また、図3は本発明の3次元網目構造
の形態を示す図である。
Hereinafter, the exhaust gas purifying material according to the embodiment of the present invention will be described. FIG. 1 is a view showing a configuration of an exhaust gas purifying apparatus according to an embodiment of the present invention, and FIG. 2 is a partially enlarged view of the exhaust gas purifying apparatus showing another embodiment of the exhaust gas purifying material. FIG. 3 is a diagram showing a form of the three-dimensional network structure of the present invention.

【0052】図1において、エンジン6に接続した排ガ
ス入口1と排ガス出口2との間にキャン5を形成し、そ
の中に3次元網目状構造体3を組み込み、キャン5をバ
イパスする流路には差圧計7を配置している。また、図
2においては、3次元網目状構造体3の下流側にハニカ
ム構造体4が組み込まれている。
In FIG. 1, a can 5 is formed between an exhaust gas inlet 1 and an exhaust gas outlet 2 connected to an engine 6, and a three-dimensional network structure 3 is incorporated in the can 5, and is provided in a flow path bypassing the can 5. Is provided with a differential pressure gauge 7. In FIG. 2, a honeycomb structure 4 is incorporated downstream of the three-dimensional network structure 3.

【0053】図1及び図2において、3次元網目状構造
体3及びハニカム構造体4がそれぞれ内部連続通気空間
を形成する3次元構造体であり、これらの3次元網目状
構造体3及びハニカム構造体4の表面に耐熱性無機材料
及び触媒(白金属元素を含む)が付着させられている。
また、キャン5は真空容器であって断熱手段を自身に備
えたものであり、エンジン6との接続点部分が本実施の
形態におけるマニホールドに相当する。
In FIGS. 1 and 2, the three-dimensional network structure 3 and the honeycomb structure 4 are three-dimensional structures forming internal continuous ventilation spaces, respectively. A heat-resistant inorganic material and a catalyst (including a white metal element) are attached to the surface of the body 4.
Further, the can 5 is a vacuum vessel and has a heat insulating means in itself, and a connection point portion with the engine 6 corresponds to a manifold in the present embodiment.

【0054】図3において3次元構造体の排ガス流入出
面への垂線が排ガス流れ方向に対して鋭角あるいは鈍角
をなしている。
In FIG. 3, the perpendicular to the exhaust gas inflow / outflow surface of the three-dimensional structure forms an acute angle or an obtuse angle with respect to the exhaust gas flow direction.

【0055】[0055]

【実施例】(実施例1〜5)コージェライトの粉末(粒
径:5μm)をこの粉末量に対して0.5wt%となる
ようにポリカルボン酸アンモニウム塩を溶解させた水溶
液に投入した後、ボールミルにて18時間解粒・混合し
て、スラリーを調製した。次にこのスラリーに密度、孔
径の異なるウレタン製の発泡体を含浸させ、遠心分離器
により余剰のスラリーを取り除いた後、1380℃で5
時間焼成して(表1)に示す特性のものを実施例1〜5
としてそれぞれ3次元網目構造体を作製した。
EXAMPLES (Examples 1 to 5) After a cordierite powder (particle size: 5 μm) was put into an aqueous solution in which ammonium polycarboxylate was dissolved so as to be 0.5 wt% based on the amount of the powder, The mixture was pulverized and mixed in a ball mill for 18 hours to prepare a slurry. Next, this slurry is impregnated with urethane foams having different densities and pore diameters, and after removing excess slurry by a centrifugal separator, the slurry is heated at 1380 ° C. for 5 minutes.
After sintering for a time, those having the characteristics shown in (Table 1) were used in Examples 1 to 5.
Respectively, to prepare a three-dimensional network structure.

【0056】[0056]

【表1】 [Table 1]

【0057】また、出発原料として硫酸セシウム、硝酸
銅を3次元構造体に対して7wt%、モル比:Cs/C
u=1/4となるように秤量して蒸留水に溶解させて水
溶液を調製した後、前記3次元網目構造体を含浸した
後、真空デシケーター内を減圧して3次元網目構造体内
の気泡を取り除き、3次元網目構造体の内部までスラリ
ーを浸透させた。次に余分なスラリーを遠心分離器を利
用し、振り切って120℃で5時間乾燥したのち、90
0℃で2時間焼成して触媒を付着した3次元網目構造体
を作製した。
Cesium sulfate and copper nitrate were used as starting materials in an amount of 7 wt% based on the three-dimensional structure, and the molar ratio was Cs / C.
After weighing so that u = 1/4 and dissolving it in distilled water to prepare an aqueous solution, impregnating the three-dimensional network structure, depressurizing the inside of the vacuum desiccator to remove bubbles in the three-dimensional network structure. Then, the slurry was permeated into the three-dimensional network structure. Next, the excess slurry was shaken off using a centrifuge and dried at 120 ° C. for 5 hours.
It was calcined at 0 ° C. for 2 hours to produce a three-dimensional network structure to which a catalyst was attached.

【0058】(実施例6〜18)出発原料として1a族
元素に硫酸セシウムを用いこれと硝酸銅、酸化硫酸バナ
ジウム、硝酸クロム、酢酸マンガン、酢酸鉄、酢酸コバ
ルト、酢酸ニッケル、7モリブデン酸6アンモニウム4
水和物、タングステン酸アンモニウムパラ5水和物を用
い各原料を3次元構造体に対して7wt%、セシウムに
対してモル比で1:4になるように秤量し、約40℃の
蒸留水に溶解させて水溶液を作製した。次に内部連続通
気空間の数が23個の前記3次元網目構造体を含浸した
後、真空デシケーター内を減圧して3次元網目構造体内
の気泡を取り除き、3次元網目構造体の内部までスラリ
ーを浸透させた。次に余分なスラリーを遠心分離器を利
用し、振り切って120℃で5時間乾燥したのち、90
0℃で2時間焼成して触媒を付着した実施例6〜18の
3次元網目構造体を作製した。
(Examples 6 to 18) Cesium sulfate was used as a group 1a element as a starting material, and copper nitrate, vanadium oxide, chromium nitrate, manganese acetate, iron acetate, cobalt acetate, nickel acetate, and 7 ammonium ammonium molybdate were used. 4
Using hydrate and ammonium tungstate parapentahydrate, each raw material was weighed to 7 wt% with respect to the three-dimensional structure and to a molar ratio of 1: 4 with respect to cesium, and distilled water at about 40 ° C. To prepare an aqueous solution. Next, after impregnating the three-dimensional network structure in which the number of the internal continuous ventilation spaces is 23, the inside of the three-dimensional network structure is removed by reducing the pressure in the vacuum desiccator to remove the slurry to the inside of the three-dimensional network structure. Infiltrated. Next, the excess slurry was shaken off using a centrifuge and dried at 120 ° C. for 5 hours.
The three-dimensional network structures of Examples 6 to 18 in which the catalyst was attached by firing at 0 ° C. for 2 hours were produced.

【0059】(実施例19〜20)SiO2、γ−Al2
3粉末を用い、3次元網目構造体にたいして15wt
%になるように秤量し、この粉体に対して0.5wt%
のポリカルボン酸アンモニウム塩を溶解させた水溶液
に、接着剤として用いるアルミニウムイソプロポキシト
とこれらの粉末を各々投入した後、これをボールミルに
て18時間解粒・混合して、スラリーを調製した。
(Examples 19 and 20) SiO 2 , γ-Al 2
Using O 3 powder, 15 wt% for the three-dimensional network structure
%, And 0.5 wt% to this powder.
After adding aluminum isopropoxide used as an adhesive and these powders to an aqueous solution in which the ammonium salt of a polycarboxylic acid was dissolved, these were pulverized and mixed in a ball mill for 18 hours to prepare a slurry.

【0060】次に、真空デシケーター内で、得られたス
ラリーに3次元網目構造体を含浸した後、真空デシケー
ター内を減圧して3次元網目構造体内の気泡を取り除
き、3次元網目構造体の内部までスラリーを浸透させ
た。次に余分なスラリーを遠心分離器を利用し、振り切
って120℃で5時間乾燥したのち、900℃で2時間
焼成した。次に実施例6と同様の方法にて所定の触媒を
担持した。
Next, in the vacuum desiccator, the obtained slurry is impregnated with the three-dimensional network structure, and then the inside of the vacuum desiccator is depressurized to remove bubbles in the three-dimensional network structure. The slurry was allowed to penetrate until Next, the excess slurry was shaken off using a centrifugal separator, dried at 120 ° C. for 5 hours, and fired at 900 ° C. for 2 hours. Next, a predetermined catalyst was loaded in the same manner as in Example 6.

【0061】(実施例21)γ−Al23の粉末を用
い、これに対して0.5wt%となるようにポリカルボ
ン酸アンモニウム塩を溶解させた水溶液に、更に接着剤
としてアルミニウムイソプロポキシトを加えた後、真空
デシケーター内で、得られたスラリーに3次元網目構造
体を含浸した後、真空デシケーター内を減圧して3次元
網目構造体内の気泡を取り除き、3次元網目構造体の内
部までスラリーを浸透させた。次に余分なスラリーを遠
心分離器を利用し、振り切って120℃で5時間乾燥し
たのち、900℃で2時間焼成した。
(Example 21) An aqueous solution in which γ-Al 2 O 3 powder was used and a polycarboxylate ammonium salt was dissolved so as to be 0.5% by weight thereof, and aluminum isopropoxy was further used as an adhesive. Then, the slurry obtained is impregnated with the three-dimensional network structure in a vacuum desiccator, and then the pressure in the vacuum desiccator is reduced to remove air bubbles in the three-dimensional network structure, and the inside of the three-dimensional network structure is removed. The slurry was allowed to penetrate until Next, the excess slurry was shaken off using a centrifugal separator, dried at 120 ° C. for 5 hours, and fired at 900 ° C. for 2 hours.

【0062】次に実施例6と同じ方法にて所定の触媒ス
ラリーを調製し、3次元網目構造体の片側を含浸させ
る。含浸した側の3次元網目構造体を遠心分離器の回転
の外側になるように設定して回転させて、余剰の触媒ス
ラリーを取り除いて900℃で2時間焼成した。
Next, a predetermined catalyst slurry is prepared in the same manner as in Example 6, and one side of the three-dimensional network structure is impregnated. The impregnated three-dimensional network structure was rotated so as to be outside of the rotation of the centrifuge to remove excess catalyst slurry, and then calcined at 900 ° C. for 2 hours.

【0063】次に上記触媒を付着させていない側をγ−
Al23に対して1.5wt%になるようにヘキサクロ
ロ白金酸を溶解させた溶液に同様に含浸、乾燥を行い6
00℃で3時間焼成することにより触媒付着フィルター
を調製した。
Next, the side on which the above-mentioned catalyst is not attached is referred to as γ-
A solution obtained by dissolving hexachloroplatinic acid in an amount of 1.5 wt% with respect to Al 2 O 3 is similarly impregnated and dried to obtain 6%.
By baking at 00 ° C. for 3 hours, a catalyst-attached filter was prepared.

【0064】(実施例22)γ−Al23の粉末を用
い、これに対して0.5wt%となるようにポリカルボ
ン酸アンモニウム塩を溶解させた水溶液に、接着剤とし
て用いるアルミニウムイソプロポキシトとこれらの粉末
を各々投入した後、これをボールミルにて18時間解粒
・混合して、スラリーを調製した。
Example 22 Aluminum isopropoxy used as an adhesive was added to an aqueous solution in which γ-Al 2 O 3 powder was used and an ammonium polycarboxylate was dissolved so as to be 0.5 wt% based on the powder. After adding each of these powders and these powders, they were pulverized and mixed in a ball mill for 18 hours to prepare a slurry.

【0065】次に、真空デシケーター内で、得られたス
ラリーにハニカム構造体を含浸した後、真空デシケータ
ー内を減圧してハニカム構造体内の気泡を取り除き、ハ
ニカム構造体の内部までスラリーを浸透させた。次に余
分なスラリーを遠心分離器を利用し、振り切って120
℃で5時間乾燥したのち、900℃で2時間焼成した。
Next, after the obtained slurry was impregnated with the honeycomb structure in the vacuum desiccator, the pressure in the vacuum desiccator was reduced to remove air bubbles in the honeycomb structure, and the slurry was permeated into the honeycomb structure. . Next, the excess slurry is shaken off using a centrifuge to remove
After drying at 5 ° C. for 5 hours, baking was performed at 900 ° C. for 2 hours.

【0066】次に担持量が1.5wt%になるように調
整したヘキサクロロ白金酸塩の水溶液に真空デシケータ
ー内で、このハニカム構造体を含浸した後、真空デシケ
ーター内を減圧してハニカム構造体内の気泡を取り除
き、ハニカム構造体の内部までスラリーを浸透させた。
次に余分なスラリーを遠心分離器を利用し、振り切って
120℃で5時間乾燥したのち、600℃で2時間焼成
した(触媒フィルターAとする)。
Next, this honeycomb structure was impregnated in a vacuum desiccator with an aqueous solution of hexachloroplatinate adjusted to have a loading amount of 1.5 wt%, and then the pressure in the vacuum desiccator was reduced to reduce the pressure in the honeycomb structure. Air bubbles were removed, and the slurry was allowed to penetrate to the inside of the honeycomb structure.
Next, the excess slurry was shaken off using a centrifugal separator, dried at 120 ° C. for 5 hours, and then calcined at 600 ° C. for 2 hours (referred to as catalyst filter A).

【0067】次に実施例6と同じ方法で所定の触媒を3
次元網目構造体に触媒を付着させた(触媒フィルターB
とする)。
Next, the same catalyst as in Example 6 was
The catalyst was attached to the three-dimensional network structure (catalyst filter B
And).

【0068】以上の触媒フィルターAを排ガス流出口
に、触媒フィルターBを排ガス入口に設置して排ガス浄
化装置を作製した。先に示した図2はこの実施例の排ガ
ス浄化装置に対応する。
The above-mentioned catalyst filter A was installed at the exhaust gas outlet and the catalyst filter B was installed at the exhaust gas inlet to produce an exhaust gas purifying apparatus. FIG. 2 shown above corresponds to the exhaust gas purifying apparatus of this embodiment.

【0069】(実施例25)コージェライトの粉末(粒
径:5μm)をこの粉末量に対して0.5wt%となる
ようにポリカルボン酸アンモニウム塩を溶解させた水溶
液に投入した後、ボールミルにて18時間解粒・混合し
て、スラリーを調製した。次にこのスラリーにウレタン
製の発泡体を含浸させ、遠心分離器により余剰のスラリ
ーを取り除いた後、1380℃で5時間焼成して1イン
チ当たりの内部連続空間の数が20個である3次元網目
構造体を作製した。次に3次元網目構造体の排ガス流入
出面が図3に示すように排ガス流れに対して60度傾い
た形状に切り出して実施例25の3次元網目状構造体を
作製した。
Example 25 A cordierite powder (particle size: 5 μm) was put into an aqueous solution in which ammonium polycarboxylate was dissolved so as to be 0.5 wt% based on the amount of the powder, and then charged into a ball mill. For 18 hours to prepare a slurry. Next, the slurry is impregnated with a urethane foam, and the excess slurry is removed by a centrifugal separator. Then, the slurry is fired at 1380 ° C. for 5 hours, and the number of internal continuous spaces per inch is 20. A network structure was produced. Next, as shown in FIG. 3, the exhaust gas inflow / outflow surface of the three-dimensional network structure was cut into a shape inclined at 60 degrees with respect to the flow of the exhaust gas to produce a three-dimensional network structure of Example 25.

【0070】(実施例26、27)3次元網目構造体に
ゾル粒径が10nm,100nmのSiO2ゾル溶液に
含浸した後に、120℃で乾燥した後、900℃で5時
間焼成してSiO2コート3次元網目構造体を作製し
た。出発原料として硫酸セシウム、硝酸銅を3次元構造
体に対して7wt%、モル比:Cs/Cu=1/4とな
るように秤量して蒸留水に溶解させて水溶液を調製した
後、前記3次元網目構造体を含浸した後、真空デシケー
ター内を減圧して3次元網目構造体内の気泡を取り除
き、3次元網目構造体の内部までスラリーを浸透させ
た。次に余分なスラリーを遠心分離器を利用し、振り切
って120℃で5時間乾燥したのち、900℃で2時間
焼成して触媒を付着した3次元網目構造体を作製した。
(Examples 26 and 27) After impregnating a three-dimensional network structure with a SiO 2 sol solution having a sol particle size of 10 nm and 100 nm, drying at 120 ° C., and calcining at 900 ° C. for 5 hours, the SiO 2 was baked at 900 ° C. for 5 hours. A coated three-dimensional network structure was produced. As a starting material, cesium sulfate and copper nitrate were weighed to 7 wt% with respect to the three-dimensional structure so as to have a molar ratio of Cs / Cu = 1/4 and dissolved in distilled water to prepare an aqueous solution. After impregnating the three-dimensional network structure, the inside of the vacuum desiccator was depressurized to remove bubbles in the three-dimensional network structure, and the slurry was allowed to penetrate into the three-dimensional network structure. Next, the excess slurry was shaken off using a centrifugal separator and dried at 120 ° C. for 5 hours, and then calcined at 900 ° C. for 2 hours to produce a three-dimensional network structure to which a catalyst was attached.

【0071】(実施例28、29)3次元網目構造体に
ゾル粒径が10nmのSiO2ゾル溶液に粒径が1.5
μmのSiO2粒子をそれぞれ含浸した後に、120℃
で乾燥した後、900℃で5時間焼成してSiO2コー
ト3次元構造体を作製した。出発原料として硫酸セシウ
ム、硝酸銅を3次元構造体に対して7wt%、モル比:
Cs/Cu=1/4となるように秤量して蒸留水に溶解
させて水溶液を調製した後、前記3次元網目構造体を含
浸した後、真空デシケーター内を減圧して3次元網目構
造体内の気泡を取り除き、3次元網目構造体の内部まで
スラリーを浸透させた。次に余分なスラリーを遠心分離
器を利用し、振り切って120℃で5時間乾燥したの
ち、900℃で2時間焼成して触媒を付着した3次元網
目構造体を作製した。
(Examples 28 and 29) In a three-dimensional network structure, an SiO 2 sol solution having a sol particle size of 10 nm was added with a particle size of 1.5.
After each impregnation with SiO 2 particles of
, And baked at 900 ° C. for 5 hours to produce a SiO 2 coated three-dimensional structure. Cesium sulfate and copper nitrate were used as starting materials in an amount of 7 wt% with respect to the three-dimensional structure at a molar ratio of:
After weighing so that Cs / Cu = 1/4 and dissolving it in distilled water to prepare an aqueous solution, impregnating the three-dimensional network structure, reducing the pressure in the vacuum desiccator and reducing the pressure in the three-dimensional network structure Bubbles were removed and the slurry was allowed to penetrate into the three-dimensional network structure. Next, the excess slurry was shaken off using a centrifugal separator and dried at 120 ° C. for 5 hours, and then calcined at 900 ° C. for 2 hours to produce a three-dimensional network structure to which a catalyst was attached.

【0072】(実施例30)3次元網目構造体にゾル粒
径が100nmのSiO2ゾル溶液に含浸した後に、1
20℃で乾燥した後、900℃で5時間焼成してSiO
2コート3次元網目構造体を作製し、0.1%のHFに
浸食させた後に、蒸留水で洗浄して、酸処理3次元網目
構造体を作製した。次に出発原料として硫酸セシウム、
硝酸銅を3次元構造体に対して7wt%、モル比:Cs
/Cu=1/4となるように秤量して蒸留水に溶解させ
て水溶液を調製した後、前記3次元網目構造体を含浸し
た後、真空デシケーター内を減圧して3次元網目構造体
内の気泡を取り除き、3次元網目構造体の内部までスラ
リーを浸透させた。次に余分なスラリーを遠心分離器を
利用し、振り切って120℃で5時間乾燥したのち、9
00℃で2時間焼成して触媒を付着した3次元網目構造
体を作製した。
Example 30 A three-dimensional network structure was impregnated with an SiO 2 sol solution having a sol particle size of 100 nm,
After drying at 20 ° C., it is baked at 900 ° C. for 5 hours to form SiO 2
A two- coat three-dimensional network structure was prepared, and after being eroded in 0.1% HF, washed with distilled water to prepare an acid-treated three-dimensional network structure. Next, cesium sulfate as a starting material,
Copper nitrate is 7 wt% with respect to the three-dimensional structure, molar ratio: Cs
/ Cu = 1/4, weighed and dissolved in distilled water to prepare an aqueous solution, impregnated with the three-dimensional network structure, and then depressurized the vacuum desiccator to reduce bubbles in the three-dimensional network structure. Was removed and the slurry was allowed to penetrate into the interior of the three-dimensional network structure. Next, the excess slurry was shaken off using a centrifugal separator and dried at 120 ° C. for 5 hours.
It was calcined at 00 ° C. for 2 hours to produce a three-dimensional network structure to which a catalyst was attached.

【0073】(比較例1〜6)硫酸セシウム、水酸化セ
シウム、炭酸セシウム、酢酸マンガン、酢酸コバルト、
酢酸ランタン、酢酸鉄、硝酸銅、酸化硫酸バナジウムを
用いた他は実施例6〜20と同じ方法にて触媒フィルタ
ーを作製した。
(Comparative Examples 1 to 6) Cesium sulfate, cesium hydroxide, cesium carbonate, manganese acetate, cobalt acetate,
Except for using lanthanum acetate, iron acetate, copper nitrate, and vanadium oxide sulfate, catalyst filters were prepared in the same manner as in Examples 6 to 20.

【0074】(比較例7)ヘキサクロロ白金酸塩を用い
て担持量が1.5wt%になるように調整したヘキサク
ロロ白金酸塩の水溶液に真空デシケーター内で、このハ
ニカム構造体を含浸した後、真空デシケーター内を減圧
してハニカム構造体内の気泡を取り除き、ハニカム構造
体の内部までスラリーを浸透させた。次に余分なスラリ
ーを遠心分離器を利用し、振り切って120℃で5時間
乾燥したのち、600℃で2時間焼成して触媒担持フィ
ルターを作製した。
Comparative Example 7 This honeycomb structure was impregnated in a vacuum desiccator with an aqueous solution of hexachloroplatinate adjusted to have a loading amount of 1.5 wt% using hexachloroplatinate, and then vacuumed. The pressure in the desiccator was reduced to remove bubbles in the honeycomb structure, and the slurry was allowed to penetrate into the honeycomb structure. Next, the excess slurry was shaken off using a centrifugal separator and dried at 120 ° C. for 5 hours, and then calcined at 600 ° C. for 2 hours to prepare a catalyst-carrying filter.

【0075】以上のようにして作製した実施例1〜22
の排ガス浄化触媒、浄化触媒フィルターと比較例1〜7
の排ガス浄化触媒、浄化触媒フィルターについて性能比
較試験を行った。以下その結果について説明する。
Examples 1-22 produced as described above
Exhaust gas purification catalyst, purification catalyst filter and Comparative Examples 1 to 7
A performance comparison test was conducted on the exhaust gas purifying catalyst and the purifying catalyst filter of the above. Hereinafter, the results will be described.

【0076】(比較例10、11)3次元網目構造体に
ゾル粒径が5nm,160nmのSiO2ゾル溶液に含
浸した後に、120℃で乾燥した後、900℃で5時間
焼成してSiO2コート3次元構造体を作製した。出発
原料として硫酸セシウム、硝酸銅を3次元構造体に対し
て7wt%、モル比:Cs/Cu=1/4となるように
秤量して蒸留水に溶解させて水溶液を調製した後、前記
3次元網目構造体を含浸した後、真空デシケーター内を
減圧して3次元網目構造体内の気泡を取り除き、3次元
網目構造体の内部までスラリーを浸透させた。次に余分
なスラリーを遠心分離器を利用し、振り切って120℃
で5時間乾燥したのち、900℃で2時間焼成して触媒
を付着した3次元網目構造体を作製した。
(Comparative Examples 10 and 11) After impregnating a three-dimensional network structure with an SiO 2 sol solution having a sol particle size of 5 nm and 160 nm, drying at 120 ° C., and calcination at 900 ° C. for 5 hours, the SiO 2 was baked at 900 ° C. for 5 hours. A coated three-dimensional structure was produced. As a starting material, cesium sulfate and copper nitrate were weighed to 7 wt% with respect to the three-dimensional structure so as to have a molar ratio of Cs / Cu = 1/4 and dissolved in distilled water to prepare an aqueous solution. After impregnating the three-dimensional network structure, the inside of the vacuum desiccator was depressurized to remove bubbles in the three-dimensional network structure, and the slurry was allowed to penetrate into the three-dimensional network structure. Next, the excess slurry is shaken off using a centrifugal separator, and is cooled to 120 ° C.
For 5 hours, and then calcined at 900 ° C. for 2 hours to produce a three-dimensional network structure with a catalyst attached.

【0077】(比較例12、13)3次元網目構造体に
ゾル粒径が10nmのSiO2ゾル溶液に粒径が0.
5、9μmのSiO2粒子をそれぞれ含浸した後に、1
20℃で乾燥した後、900℃で5時間焼成してSiO
2コート3次元構造体を作製した。出発原料として硫酸
セシウム、硝酸銅を3次元構造体に対して7wt%、モ
ル比:Cs/Cu=1/4となるように秤量して蒸留水
に溶解させて水溶液を調製した後、前記3次元網目構造
体を含浸した後、真空デシケーター内を減圧して3次元
網目構造体内の気泡を取り除き、3次元網目構造体の内
部までスラリーを浸透させた。次に余分なスラリーを遠
心分離器を利用し、振り切って120℃で5時間乾燥し
たのち、900℃で2時間焼成して触媒を付着した3次
元網目構造体を作製した。
(Comparative Examples 12 and 13) The three-dimensional network structure had a sol particle diameter of 10 nm and a SiO 2 sol solution having a sol particle diameter of 0.1 nm.
After each impregnation with 5.9 μm SiO 2 particles,
After drying at 20 ° C., it is baked at 900 ° C. for 5 hours to form SiO 2
A two- coat three-dimensional structure was produced. As a starting material, cesium sulfate and copper nitrate were weighed to 7 wt% with respect to the three-dimensional structure so as to have a molar ratio of Cs / Cu = 1/4 and dissolved in distilled water to prepare an aqueous solution. After impregnating the three-dimensional network structure, the inside of the vacuum desiccator was depressurized to remove bubbles in the three-dimensional network structure, and the slurry was allowed to penetrate into the three-dimensional network structure. Next, the excess slurry was shaken off using a centrifugal separator and dried at 120 ° C. for 5 hours, and then calcined at 900 ° C. for 2 hours to produce a three-dimensional network structure to which a catalyst was attached.

【0078】(比較例9)コージェライトの粉末(粒
径:5μm)をこの粉末量に対して0.5wt%となる
ようにポリカルボン酸アンモニウム塩を溶解させた水溶
液に投入した後、ボールミルにて18時間解粒・混合し
て、スラリーを調製した。次にこのスラリーにウレタン
製の発泡体を含浸させ、遠心分離器により余剰のスラリ
ーを取り除いた後、1380℃で5時間焼成して1イン
チ当たりの内部連続空間の数が20個である3次元網目
構造体を作製して比較例9の3次元網目状構造体を作製
した。
Comparative Example 9 Cordierite powder (particle size: 5 μm) was added to an aqueous solution in which ammonium polycarboxylate was dissolved so as to be 0.5 wt% based on the amount of the powder, and then charged into a ball mill. For 18 hours to prepare a slurry. Next, the slurry is impregnated with a urethane foam, and the excess slurry is removed by a centrifugal separator. Then, the slurry is fired at 1380 ° C. for 5 hours, and the number of internal continuous spaces per inch is 20. A three-dimensional network structure of Comparative Example 9 was manufactured by manufacturing a network structure.

【0079】(評価例1)(表1)の実施例1〜5に示
す1平方インチ当たりの内部空間通気孔の個数を持つ3
次元網目構造体へ台上エンジン(排気量:3000c
c)からの排ガスを導入し、3次元網目構造体の上流と
下流での差圧を測定した。更に、触媒を付着させた前記
3次元網目構造体に流入するパティキュレートの量と同
構造体を通過後の排出パティキュレートの量及び同構造
体に残存するパティキュレートの量から同構造体に付着
させた触媒の作用によるパティキュレートの燃焼率を測
定した。その結果を(表1)に示す。
(Evaluation Example 1) As shown in Examples 1 to 5 in (Table 1), 3 having the number of internal space vents per square inch was used.
To a three-dimensional mesh structure engine on a bench (displacement: 3000c
Exhaust gas from c) was introduced, and the differential pressure upstream and downstream of the three-dimensional network structure was measured. Further, the amount of particulates flowing into the three-dimensional network structure to which the catalyst is attached, the amount of particulates discharged after passing through the structure, and the amount of particulates remaining in the structure are attached to the structure. The burning rate of the particulate due to the action of the catalyst was measured. The results are shown in (Table 1).

【0080】(表1)から明らかなように、内部連続通
気孔の増大に伴い差圧は上昇傾向にあり、実施例5の場
合、差圧の上昇率が著しく大きい。一方内部連続通気孔
の増大に伴い触媒とパティキュレートとの衝突回数が増
大しパティキュレートの燃焼除去率も増大する。実施例
1では差圧の上昇率は小さいが、付着触媒とパティキュ
レートとの接触回数が小さい。差圧の上昇率が小さく、
パティキュレートの燃焼に有利な仕様としては内部連続
通気孔が15〜30程度であることが判る。
As is clear from Table 1, the differential pressure tends to increase with the increase of the internal continuous vents, and in the case of Example 5, the rate of increase of the differential pressure is remarkably large. On the other hand, as the number of internal continuous vent holes increases, the number of collisions between the catalyst and the particulates increases, and the burning and removal rate of the particulates also increases. In Example 1, the rate of increase in the differential pressure is small, but the number of times of contact between the attached catalyst and the particulate is small. The rate of increase of differential pressure is small,
It can be seen that the internal combustion vent is preferably about 15 to 30 as a specification advantageous for burning particulates.

【0081】(評価例2)(表2)に示すように実施例
6〜18及び比較例1〜7のそれぞれの組成の触媒を付
着させた3次元網目構造体へ台上エンジン(排気量:3
000cc)の排ガスを導入し、3次元網目構造体の上
流と下流での差圧を測定した。更に、触媒を付着させた
前記3次元網目構造体に流入するパティキュレートの量
と同構造体を通過後の排出パティキュレートの量及び同
構造体に残存するパティキュレートの量から同構造体に
付着させた触媒の作用によるパティキュレートの燃焼率
を測定した。1時間後及び30時間後の燃焼率について
の結果を(表2)に示す。
(Evaluation Example 2) As shown in Table 2, a three-dimensional mesh structure to which the catalysts of Examples 6 to 18 and Comparative Examples 1 to 7 were attached was mounted on a bench engine (displacement: 3
000 cc) of exhaust gas was introduced, and the differential pressure upstream and downstream of the three-dimensional network structure was measured. Further, the amount of particulates flowing into the three-dimensional network structure to which the catalyst is attached, the amount of particulates discharged after passing through the structure, and the amount of particulates remaining in the structure are attached to the structure. The burning rate of the particulate due to the action of the catalyst was measured. The results for the combustion rates after 1 hour and 30 hours are shown in (Table 2).

【0082】[0082]

【表2】 [Table 2]

【0083】(表2)から明らかなように、排ガスパテ
ィキュレートの燃焼率は、比較例1〜7の排ガス浄化触
媒を用いた場合に比べ、実施例6〜20における排ガス
浄化触媒を用いた場合の方が初期の燃焼率が高く、また
耐久性も高いことが判った。
As is clear from Table 2, the combustion rate of the exhaust gas particulates was higher when the exhaust gas purifying catalysts of Examples 6 to 20 were used than when the exhaust gas purifying catalysts of Comparative Examples 1 to 7 were used. It was found that the higher the initial combustion rate and the higher the durability.

【0084】(評価例3)(表3)に示すように実施例
6の組成のままのもの、実施例19,20及び比較例7
の触媒に対してそれぞれコーティング耐熱材料を付着さ
せた3次元網目構造体へ台上エンジン(排気量:300
0cc)の排ガスを導入し3次元網目構造体の上流と下
流での差圧を測定した。更に、触媒を付着させた前記3
次元網目構造体に流入するパティキュレートの量と同構
造体を通過後の排出パティキュレートの量及び同構造体
に残存するパティキュレートの量から同構造体に付着さ
せた触媒の作用によるパティキュレートの燃焼率を測定
した。さらにガスクロマトグラフを用いて触媒を付着さ
せた3次元網目構造体通過前後の排ガス中の炭化水素の
量を調べた。パティキュレート及び炭化水素の燃焼率の
測定結果を(表3)に示す。
(Evaluation Example 3) As shown in Table 3, the compositions of Example 6 were left as they were, Examples 19 and 20, and Comparative Example 7
A three-dimensional network structure in which a coating heat-resistant material is adhered to each of the catalysts is mounted on a bench engine (displacement: 300
0 cc) of exhaust gas was introduced, and the differential pressure between the upstream and downstream of the three-dimensional network structure was measured. Further, the catalyst 3
Based on the amount of particulates flowing into the three-dimensional network structure, the amount of particulates discharged after passing through the same structure, and the amount of particulates remaining in the same structure, the formation of particulates by the action of a catalyst attached to the same structure The burn rate was measured. Further, using a gas chromatograph, the amount of hydrocarbons in the exhaust gas before and after passing through the three-dimensional network structure on which the catalyst was attached was examined. Table 3 shows the measurement results of the burning rates of particulates and hydrocarbons.

【0085】[0085]

【表3】 [Table 3]

【0086】(表3)から明らかなように、本発明に係
る実施例6,19,20については比較例7に比べてパ
ティキュレートの燃焼率が高く、また炭化水素の燃焼熱
も高いことが判った。
As is clear from Table 3, in Examples 6, 19 and 20 according to the present invention, the burning rate of particulates and the heat of combustion of hydrocarbons are higher than those of Comparative Example 7. understood.

【0087】(評価例4)実施例21,22の触媒を付
着させた3次元網目構造体を試料として、台上エンジン
(排気量:3000cc)の排ガスを導入し、3次元網
目構造体の上流と下流での差圧を測定した。更に、触媒
を付着させた前記3次元網目構造体に流入するパティキ
ュレートの量と同構造体を通過後の排出パティキュレー
トの量及び同構造体に残存するパティキュレートの量か
ら同構造体に付着させた触媒の作用によるパティキュレ
ートの燃焼率を測定した。さらにガスクロマトグラフを
用いて触媒を付着させた3次元網目構造体通過前後の排
ガス中の炭化水素の量を調べた。この測定によるパティ
キュレート及び炭化水素の燃焼率のみについてその結果
を(表4)に示す。
(Evaluation Example 4) Using the three-dimensional network structure to which the catalysts of Examples 21 and 22 were attached as a sample, exhaust gas of a bench engine (displacement: 3000 cc) was introduced, and the upstream of the three-dimensional network structure was introduced. And the downstream differential pressure was measured. Further, the amount of particulates flowing into the three-dimensional network structure to which the catalyst is attached, the amount of particulates discharged after passing through the structure, and the amount of particulates remaining in the structure are attached to the structure. The burning rate of the particulate due to the action of the catalyst was measured. Further, using a gas chromatograph, the amount of hydrocarbons in the exhaust gas before and after passing through the three-dimensional network structure on which the catalyst was attached was examined. The results are shown in Table 4 for only the burning rates of the particulates and hydrocarbons by this measurement.

【0088】[0088]

【表4】 [Table 4]

【0089】(表4)から明らかなように、排ガスパテ
ィキュレートの燃焼率は、本発明の実施例における排ガ
ス浄化触媒を用いた場合にパティキュレートの燃焼率が
高く、また炭化水素の燃焼熱も高いことが判った。
As is clear from Table 4, when the exhaust gas purifying catalyst of the embodiment of the present invention is used, the burning rate of the particulates is high, and the combustion heat of the hydrocarbons is low. It turned out to be high.

【0090】(評価例5)実施例25と比較例9に示し
た内部空間通気孔を持つ3次元網目構造体へ台上エンジ
ン(排気量:3000cc)からの排ガスを導入し、3
次元網目構造体の上流と下流での差圧を測定した。その
結果を(表5)に示す。
(Evaluation Example 5) Exhaust gas from a tabletop engine (displacement: 3000 cc) was introduced into the three-dimensional network structure having an internal space ventilation hole shown in Example 25 and Comparative Example 9, and
The differential pressure upstream and downstream of the three-dimensional network structure was measured. The results are shown in (Table 5).

【0091】[0091]

【表5】 [Table 5]

【0092】(表5)から明らかなように、同じ容積の
場合、3次元構造体の排ガス流入出面が排ガス流れに対
して垂直でない場合、垂直な場合に比べて排ガス差圧が
低い事が判る。このように3次元構造体の排ガス流入出
口が排ガス流れに対して垂直では無い場合、垂直な場合
に比べて差圧が小さいために、排ガス流れ方向の長さを
長くできる。3次元構造体の排ガス流れ方向の長さを長
くすることにより、パティキュレートとの接触性を増す
事が可能となり性能を向上させることができることが判
る。
As is apparent from Table 5, when the exhaust gas inflow / outflow surface of the three-dimensional structure is not perpendicular to the exhaust gas flow in the case of the same volume, the exhaust gas differential pressure is lower than in the case where it is vertical. . As described above, when the exhaust gas inlet / outlet of the three-dimensional structure is not perpendicular to the exhaust gas flow, the length in the exhaust gas flow direction can be increased because the differential pressure is smaller than in the case where the exhaust gas flow is perpendicular. It can be seen that by increasing the length of the three-dimensional structure in the exhaust gas flow direction, it is possible to increase the contact with the particulates and improve the performance.

【0093】(評価例6)(表6)に示すように実施例
26〜30及び比較例10〜13のそれぞれの組成の触
媒を付着させた3次元網目構造体へ台上エンジン(排気
量:3000cc)の排ガスを導入し、3次元網目構造
体の上流と下流での差圧を測定した。更に、触媒を付着
させた前記3次元網目構造体に流入するパティキュレー
トの量と同構造体を通過後の排出パティキュレートの量
及び同構造体に残存するパティキュレートの量から同構
造体に付着させた触媒の作用によるパティキュレートの
燃焼率を測定した。1時間後及び30時間後の燃焼率に
ついての結果を(表6)に示す。
(Evaluation Example 6) As shown in Table 6, a three-dimensional network structure to which the catalysts of Examples 26 to 30 and Comparative Examples 10 to 13 were attached was mounted on a bench engine (displacement: (3,000 cc) of exhaust gas was introduced, and the differential pressure between the upstream and downstream of the three-dimensional network structure was measured. Further, the amount of particulates flowing into the three-dimensional network structure to which the catalyst is attached, the amount of particulates discharged after passing through the structure, and the amount of particulates remaining in the structure are attached to the structure. The burning rate of the particulate due to the action of the catalyst was measured. The results for the combustion rates after 1 hour and 30 hours are shown in (Table 6).

【0094】[0094]

【表6】 [Table 6]

【0095】(表6)から明らかなように、排ガスパテ
ィキュレートの燃焼率は、比較例10〜13の排ガス浄
化触媒を用いた場合に比べ、実施例26〜30における
排ガス浄化触媒を用いた場合の方が初期の燃焼率が高
く、また耐久性も高いことが判った。
As is clear from Table 6, the combustion rate of the exhaust gas particulates was higher when the exhaust gas purifying catalysts of Examples 26 to 30 were used than when the exhaust gas purifying catalysts of Comparative Examples 10 to 13 were used. It was found that the higher the initial combustion rate and the higher the durability.

【0096】[0096]

【発明の効果】本発明によれば、最適な構造を有るす構
造体に適正な触媒を付着させることにより、触媒のパテ
ィキュレートに対する接触性が向上され、かつ触媒が作
用しない温度域でもパティキュレートが触媒を担持した
構造体に堆積することなく、長時間安定してパティキュ
レートの浄化が可能となる。
According to the present invention, by adhering an appropriate catalyst to a structure having an optimum structure, the contact of the catalyst with the particulates is improved, and the particulates can be used even in a temperature range where the catalyst does not act. Can be stably purified for a long time without accumulating on the structure supporting the catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における排ガス浄化装置の
構成を示す図
FIG. 1 is a diagram showing a configuration of an exhaust gas purifying apparatus according to an embodiment of the present invention.

【図2】排ガス浄化材の他の実施の形態を示す排ガス浄
化装置の部分拡大図
FIG. 2 is a partially enlarged view of an exhaust gas purifying apparatus showing another embodiment of the exhaust gas purifying material.

【図3】本発明の3次元網目構造体の形態を示す図FIG. 3 is a diagram showing a form of a three-dimensional network structure of the present invention.

【符号の説明】 1 排ガス入口 2 排ガス出口 3 3次元網目状構造体 4 ハニカム構造体 5 キャン 6 エンジン 7 差圧計[Description of Signs] 1 Exhaust gas inlet 2 Exhaust gas outlet 3 Three-dimensional network structure 4 Honeycomb structure 5 Can 6 Engine 7 Differential pressure gauge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 雅博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiro Inoue 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】内部連続通気空間を有する3次元網状構造
の耐熱性無機材料を用いる排ガス浄化材であって、内部
連続通気空間の数が1平方インチ当たり5〜30個であ
る耐熱性無機材料に、IUPAC分類による1a族元素
の塩と5a族元素と1b族元素からなる触媒を付着させ
てなることを特徴とする排ガス浄化材。
An exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. An exhaust gas purifying material characterized by adhering a catalyst comprising a Group 1a element salt, a Group 5a element and a Group 1b element according to IUPAC classification.
【請求項2】内部連続通気空間を有する3次元網状構造
の耐熱性無機材料を用いる排ガス浄化材であって、内部
連続通気空間の数が1平方インチ当たり5〜30個であ
る耐熱性無機材料に、IUPAC分類による1a族元素
の塩、5a族元素と1b族元素、及び6a族、7a族、
8a族の中の少なくとも1種からなる、触媒を付着させ
てなることを特徴とする排ガス浄化材。
2. An exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. A group 1a element salt according to the IUPAC classification, a 5a group element and a 1b group element, and a 6a group, a 7a group,
An exhaust gas purifying material comprising at least one member selected from the group 8a and having a catalyst attached thereto.
【請求項3】内部連続通気空間を有する3次元網状構造
の耐熱性無機材料を用いる排ガス浄化材であって、内部
連続通気空間の数が1平方インチ当たり5〜30個であ
る耐熱性無機材料の排ガス入り口側にIUPAC分類に
よる1a族元素の塩と5a族元素と1b族元素からなる
触媒を付着させ、出口側に白金族元素を付着させてなる
ことを特徴とする排ガス浄化材。
3. An exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. An exhaust gas purifying material characterized in that a salt comprising a Group 1a element according to IUPAC classification, a catalyst comprising a Group 5a element and a Group 1b element is deposited on the inlet side of the exhaust gas, and a platinum group element is deposited on the outlet side.
【請求項4】内部連続通気空間を有する3次元網状構造
の耐熱性無機材料を用いる排ガス浄化材であって、内部
連続通気空間の数が1平方インチ当たり5〜30個であ
る耐熱性無機材料の排ガス入り口側にIUPAC分類に
よる1a族元素の塩、5a族元素と1b族元素、及び6
a族、7a族、8a族の中の少なくとも1種からなる触
媒を付着させ、出口側に白金族元素を付着させてなるこ
とを特徴とする排ガス浄化材。
4. An exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. At the inlet side of the exhaust gas of Group 1a element salt according to IUPAC classification, Group 5a element and Group 1b element, and 6
An exhaust gas purifying material, comprising a catalyst comprising at least one member selected from the group consisting of a group a, 7a, and 8a, and a platinum group element attached to an outlet side.
【請求項5】内部連続通気空間を有する3次元網状構造
の耐熱性無機材料を用いる排ガス浄化材であって、内部
連続通気空間の数が1平方インチ当たり5〜30個であ
る耐熱性無機材料と、1平方インチ当たり200〜50
0個の通気孔を有する耐熱性無機材料からなるハニカム
構造体を排ガスの流れに対して直列に配置し、かつその
配置が当該3次元網状構造体が排ガス上流で、その下流
に当該ハニカム構造体を設置し、さらにこれら3次元網
状構造及びハニカム構造の耐熱性無機材料の表面に触媒
を付着させたことを特徴とする排ガス浄化材。
5. An exhaust gas purifying material using a heat-resistant inorganic material having a three-dimensional network structure having an internal continuous ventilation space, wherein the number of the internal continuous ventilation spaces is 5 to 30 per square inch. And 200 to 50 per square inch
A honeycomb structure made of a heat-resistant inorganic material having zero air holes is arranged in series with respect to the flow of exhaust gas, and the arrangement is such that the three-dimensional network structure is upstream of the exhaust gas and downstream of the honeycomb structure. An exhaust gas purifying material comprising: a heat-resistant inorganic material having a three-dimensional network structure and a honeycomb structure;
【請求項6】請求項5に記載の排ガス浄化材において、
内部連続通気空間を有する3次元網状構造体にIUPA
C分類による1a族元素の塩と5a族元素と1b族元素
からなる触媒を付着させ、ハニカム構造体に白金族を付
着させたことを特徴とする排ガス浄化材。
6. The exhaust gas purifying material according to claim 5, wherein
IUPA to three-dimensional network structure with internal continuous ventilation space
An exhaust gas purifying material, wherein a catalyst comprising a salt of a Group 1a element, a Group 5a element and a Group 1b element according to Class C is attached, and a platinum group is attached to a honeycomb structure.
【請求項7】請求項5に記載の排ガス浄化材において、
内部連続通気空間を有する3次元網状構造体にIUPA
C分類による1a族元素の塩、5a族元素と1b族元
素、及び6a族、7a族、8a族の中の少なくとも1種
からなる触媒を付着させ、ハニカム構造体に白金族を付
着させたことを特徴とする排ガス浄化材。
7. The exhaust gas purifying material according to claim 5, wherein
IUPA to three-dimensional network structure with internal continuous ventilation space
A catalyst comprising at least one of a salt of a Group 1a element, a Group 5a element and a Group 1b element, and a Group 6a, Group 7a or Group 8a according to Class C, and a platinum group attached to the honeycomb structure. An exhaust gas purifying material characterized by the following.
【請求項8】1a族元素が硫酸塩であることを特徴とす
る請求項1〜7のいずれかに記載の排ガス浄化材。
8. The exhaust gas purifying material according to claim 1, wherein the Group 1a element is a sulfate.
【請求項9】1a族元素の塩が硫酸塩であり、5a族元
素がVで1b族元素がCuであり、これらの複合酸化物
であることを特徴とする請求項1,3,6のいずれかに
記載の排ガス浄化材。
9. The composite oxide according to claim 1, wherein the salt of the Group 1a element is a sulfate, the Group 5a element is V, and the Group 1b element is Cu. An exhaust gas purifying material according to any of the above.
【請求項10】VとCuの複合酸化物がCuVO3、C
328、Cu52 10で表される少なくとも1つの
物質を含むことを特徴とする請求項9に記載の排ガス浄
化材。
10. The composite oxide of V and Cu is CuVO.Three, C
uThreeVTwoO8, CuFiveVTwoO TenAt least one represented by
The exhaust gas purification according to claim 9, further comprising a substance.
Chemical material.
【請求項11】1a族元素の塩が硫酸塩であり、Cuと
Vの複合酸化物であるCuVO3、Cu328、Cu5
210の少なくとも1つの化合物のCuあるいはVの
一部をCr,Mo,W,Fe,Co,Niの少なくとも
1つで置換するかCr,Mo,W,Fe,Co,Niの
酸化物の少なくとも1つとの混合物であることを特徴と
する請求項2,4,7,9,10のいずれかに記載の排
ガス浄化材。
11. A salt of a Group 1a element is a sulfate, and CuVO 3 , Cu 3 V 2 O 8 , Cu 5 is a composite oxide of Cu and V.
Substituting at least one of Cu or V of at least one compound of V 2 O 10 with at least one of Cr, Mo, W, Fe, Co, Ni, or an oxide of Cr, Mo, W, Fe, Co, Ni The exhaust gas purifying material according to any one of claims 2, 4, 7, 9, and 10, which is a mixture with at least one of the following.
【請求項12】ハニカム構造体及び網目状構造体の表面
に耐熱無機材料をコーティングしたことを特徴とする請
求項5〜11のいずれかに記載の排ガス浄化材。
12. The exhaust gas purifying material according to claim 5, wherein the surfaces of the honeycomb structure and the network structure are coated with a heat-resistant inorganic material.
【請求項13】耐熱無機材料がSiO2であることを特
徴とする請求項12に記載の排ガス浄化材。
13. The exhaust gas purifying material according to claim 12, wherein the heat-resistant inorganic material is SiO 2 .
【請求項14】請求項1〜13のいずれかに記載の排ガ
ス浄化材と、前記排ガス浄化材を収納する容器と、前記
容器の一部に形成された排ガス流入口と、前記容器の他
側部に形成された排ガス流入口と、を備えたことを特徴
とする排ガス浄化装置。
14. An exhaust gas purifying material according to claim 1, a container for accommodating said exhaust gas purifying material, an exhaust gas inlet formed in a part of said container, and the other side of said container. And an exhaust gas inlet formed in the section.
【請求項15】前記容器及び/又は前記容器の排ガス流
入口とエンジンを接続する接続管の周囲に設置された断
熱手段を有することを特徴とする請求項14に記載の排
ガス浄化装置。
15. The exhaust gas purifying apparatus according to claim 14, further comprising heat insulating means provided around a connection pipe connecting the container and / or an exhaust gas inlet of the container to an engine.
【請求項16】前記容器がエンジンマニホールドに近接
して配置されていることを特徴とする請求項15に記載
の排ガス浄化装置。
16. The exhaust gas purifying apparatus according to claim 15, wherein said container is disposed close to an engine manifold.
【請求項17】内部連続通気孔を有する3次元網目構造
体の表面に粒子径が5nm以上で160nm以下からな
る耐熱性無機材料のゾルにより形成された耐熱性無機材
料部と当該耐熱性無機材料部の表面にIUPAC分類に
よる1a族元素と5a族元素と1b族元素とを含む触
媒、あるいは、a)1a族元素と、b)5a族元素と、
c)1b族元素と、d)6a族、7a族、8a族の中の
少なくとも1種以上を含む触媒、のいずれかを付着させ
たことを特徴とする排ガス浄化材。
17. A heat-resistant inorganic material portion formed of a sol of a heat-resistant inorganic material having a particle diameter of 5 nm or more and 160 nm or less on the surface of a three-dimensional network having internal continuous ventilation holes, and the heat-resistant inorganic material. A catalyst containing a Group 1a element, a Group 5a element and a Group 1b element according to the IUPAC classification on the surface of the part, or a) a Group 1a element and b) a Group 5a element;
An exhaust gas purifying material comprising: c) a group 1b element and d) a catalyst containing at least one of group 6a, group 7a and group 8a.
【請求項18】内部連続通気孔を有する3次元網目構造
体の表面に耐熱性無機材料のゾルと耐熱性無機材料の酸
化物粉末の混合物で形成された耐熱性無機材料部と当該
耐熱性無機材料部の表面にIUPAC分類による1a族
元素と5a族元素と1b族元素とを含む触媒、あるい
は、a)1a族元素と、b)5a族元素と、c)1b族
元素と、d)6a族、7a族、8a族の中の少なくとも
1種以上を含む触媒、のいずれかを付着させたことを特
徴とする排ガス浄化材。
18. A heat-resistant inorganic material portion formed of a mixture of a heat-resistant inorganic material sol and a heat-resistant inorganic material oxide powder on the surface of a three-dimensional network having internal continuous ventilation holes, and the heat-resistant inorganic material portion A catalyst containing a Group 1a element, a Group 5a element and a Group 1b element according to the IUPAC classification on the surface of the material part, or a) a Group 1a element, b) a Group 5a element, c) a Group 1b element, and d) 6a An exhaust gas purifying material, characterized by adhering at least one of a catalyst containing at least one of Group III, Group 7a and Group 8a.
【請求項19】請求項18に記載の耐熱性無機材料のゾ
ルの粒子径が5nmよりも大きく且つ160nmよりも
小さくて、耐熱性無機材料の酸化物粒子の粒子径が0.
5μmよりも大きくて9μmよりも小さいことを特徴と
する排ガス浄化材。
19. The heat-resistant inorganic material according to claim 18, wherein the particle size of the sol is larger than 5 nm and smaller than 160 nm, and the particle size of the oxide particles of the heat-resistant inorganic material is 0.1.
An exhaust gas purifying material having a size larger than 5 μm and smaller than 9 μm.
【請求項20】内部連続通気孔を有する3次元網目構造
体の表面に形成し、さらに酸でエッチィングした耐熱性
無機材料部と当該耐熱性無機材料部の表面に付着された
IUPAC分類による1a族元素と5a族元素と1b族
元素とを含む触媒、あるいは、a)1a族元素と、b)
5a族元素と、c)1b族元素と、d)6a族、7a
族、8a族の中の少なくとも1種以上を含む触媒、のい
ずれかを付着させたことを特徴とする排ガス浄化材。
20. A heat-resistant inorganic material portion formed on the surface of a three-dimensional network having internal continuous ventilation holes and further etched with an acid, and 1a according to IUPAC classification attached to the surface of the heat-resistant inorganic material portion. A catalyst comprising a Group 5 element, a Group 5a element and a Group 1b element, or a) a Group 1a element and b)
Group 5a element, c) group 1b element, d) group 6a, 7a
An exhaust gas purifying material, wherein a catalyst containing at least one of Group V and Group 8a is attached.
【請求項21】内部連続通気孔を有する3次元網目構造
体の表面に形成する耐熱性無機材料がSiO2であるこ
とを特徴とする請求項17〜20のいずれかに記載の排
ガス浄化材。
21. The exhaust gas purifying material according to claim 17, wherein the heat-resistant inorganic material formed on the surface of the three-dimensional network having internal continuous ventilation holes is SiO 2 .
【請求項22】触媒を付着させた内部連続通気孔を有す
る3次元網目構造体の排ガス浄化材において当該3次元
編状構造体の排ガス流入出面への垂線が排ガス流れ方向
に対して鋭角あるいは鈍角をなすことを特徴とする排ガ
ス浄化材。
22. In the exhaust gas purifying material having a three-dimensional network structure having internal continuous ventilation holes to which a catalyst is attached, the perpendicular to the exhaust gas inflow / outflow surface of the three-dimensional knitted structure is acute or obtuse to the exhaust gas flow direction. Exhaust gas purifying material characterized by:
【請求項23】排ガス流入出面への垂線が排ガス流れ方
向に対して鋭角あるいは鈍角をなすことを特徴とする請
求項1〜4のいずれかに記載排ガス浄化材。
23. The exhaust gas purifying material according to claim 1, wherein a perpendicular to the exhaust gas inflow / outflow surface forms an acute angle or an obtuse angle with respect to the exhaust gas flow direction.
【請求項24】排ガス流入出面への垂線が排ガス流れ方
向に対して鋭角あるいは鈍角をなすことを特徴とする請
求項17〜21のいずれかに記載の排ガス浄化材。
24. The exhaust gas purifying material according to claim 17, wherein a perpendicular to the exhaust gas inflow / outflow surface forms an acute angle or an obtuse angle with respect to the exhaust gas flow direction.
【請求項25】請求項17〜24のいずれかに記載の排
ガス浄化材と、前記排ガス浄化材を収納する容器と、前
記容器の一部に形成された排ガス流入口と、前記容器の
他側部に形成された排ガス流入口と、を備えたことを特
徴とする排ガス浄化装置。
25. An exhaust gas purifying material according to claim 17, a container for accommodating said exhaust gas purifying material, an exhaust gas inlet formed in a part of said container, and the other side of said container. And an exhaust gas inlet formed in the section.
【請求項26】前記容器及び/又は前記容器の排ガス流
入口とエンジンを接続する接続管の周囲に設置された断
熱手段を有することを特徴とする請求項25に記載の排
ガス浄化装置。
26. The exhaust gas purifying apparatus according to claim 25, further comprising heat insulating means provided around a connecting pipe connecting the container and / or an exhaust gas inlet of the container to an engine.
【請求項27】前記容器がエンジンマニホールドに近接
して配置されていることを特徴とする請求項26に記載
の排ガス浄化装置。
27. The exhaust gas purifying apparatus according to claim 26, wherein the container is disposed near an engine manifold.
JP11044298A 1997-10-27 1998-04-21 Exhaust gas purification material and exhaust gas purification apparatus using the same Expired - Fee Related JP3823528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11044298A JP3823528B2 (en) 1997-10-27 1998-04-21 Exhaust gas purification material and exhaust gas purification apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29388297 1997-10-27
JP9-293882 1997-10-27
JP11044298A JP3823528B2 (en) 1997-10-27 1998-04-21 Exhaust gas purification material and exhaust gas purification apparatus using the same

Publications (2)

Publication Number Publication Date
JPH11192430A true JPH11192430A (en) 1999-07-21
JP3823528B2 JP3823528B2 (en) 2006-09-20

Family

ID=26450072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11044298A Expired - Fee Related JP3823528B2 (en) 1997-10-27 1998-04-21 Exhaust gas purification material and exhaust gas purification apparatus using the same

Country Status (1)

Country Link
JP (1) JP3823528B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286758A (en) * 2000-04-11 2001-10-16 Matsushita Electric Ind Co Ltd Exhaust gas cleaning material
JP2002102704A (en) * 2000-10-02 2002-04-09 Matsushita Electric Ind Co Ltd Waste gas cleaning catalyst and waste gas cleaning material using the same
JP2002174111A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Exhaust gas purifying material
JP2003033657A (en) * 2001-07-23 2003-02-04 Matsushita Electric Ind Co Ltd Exhaust gas cleaning catalyst and exhaust gas cleaning catalyst filter using the same
JP5401315B2 (en) * 2007-08-27 2014-01-29 東京濾器株式会社 Exhaust gas purification catalyst manufacturing method and exhaust gas purification catalyst
JP2016125796A (en) * 2015-01-08 2016-07-11 東京窯業株式会社 Arrangement structure of honeycomb structure
WO2018110144A1 (en) * 2016-12-14 2018-06-21 エヌ・イーケムキャット株式会社 Method for manufacturing inorganic oxide particle-supporting structural carrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286758A (en) * 2000-04-11 2001-10-16 Matsushita Electric Ind Co Ltd Exhaust gas cleaning material
JP2002102704A (en) * 2000-10-02 2002-04-09 Matsushita Electric Ind Co Ltd Waste gas cleaning catalyst and waste gas cleaning material using the same
JP4639455B2 (en) * 2000-10-02 2011-02-23 パナソニック株式会社 Exhaust gas purification material
JP2002174111A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Exhaust gas purifying material
JP2003033657A (en) * 2001-07-23 2003-02-04 Matsushita Electric Ind Co Ltd Exhaust gas cleaning catalyst and exhaust gas cleaning catalyst filter using the same
JP5401315B2 (en) * 2007-08-27 2014-01-29 東京濾器株式会社 Exhaust gas purification catalyst manufacturing method and exhaust gas purification catalyst
JP2016125796A (en) * 2015-01-08 2016-07-11 東京窯業株式会社 Arrangement structure of honeycomb structure
WO2018110144A1 (en) * 2016-12-14 2018-06-21 エヌ・イーケムキャット株式会社 Method for manufacturing inorganic oxide particle-supporting structural carrier
JP2018094508A (en) * 2016-12-14 2018-06-21 エヌ・イーケムキャット株式会社 Production method of inorganic oxide particle carrying structural carrier

Also Published As

Publication number Publication date
JP3823528B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
KR950002223B1 (en) Catalyst for purification of exhausted gas from diesel engine
US4749671A (en) Exhaust gas cleaning catalyst and process for production thereof
EP1371826B1 (en) Filter catalyst for purifying exhaust gases
US5911961A (en) Catalyst for purification of diesel engine exhaust gas
JP5085176B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP2736099B2 (en) Diesel engine exhaust gas purification catalyst
EP1888885B1 (en) Segregated catalyzed metallic wire filter for diesel soot filtration
KR100874790B1 (en) Catalytic Diesel Particulate Exhaust Filter
CN105121803A (en) Catalytic articles, systems and methods for the oxidation of nitric oxide
JPH09220423A (en) Diesel exhaust gas purifying filter and production thereof
CN113905816A (en) Catalytic article and method of making a catalytic article
JP4210552B2 (en) Diesel engine exhaust gas purification catalyst and method for producing the same
JP2004058013A (en) Purification catalyst for exhaust gas
JPS62129146A (en) Catalyst for purifying exhaust gas and its preparation
JPH09276708A (en) Catalyst for cleaning of exhaust gas from diesel engine
JP2004216305A (en) Exhaust gas purification catalyst, exhaust gas purification material using same, and production method therefor
GB2091584A (en) Composition and method for exhaust gas treatment
JP3823528B2 (en) Exhaust gas purification material and exhaust gas purification apparatus using the same
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JP4639455B2 (en) Exhaust gas purification material
EP1979070A1 (en) Exhaust gas-purifying catalyst
JP2003080081A (en) Catalyst for cleaning exhaust gas
JPH0568301B2 (en)
US20110076202A1 (en) Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
JPS627448A (en) Catalyst for purifying exhaust gas and its preparation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees