JPH0568301B2 - - Google Patents
Info
- Publication number
- JPH0568301B2 JPH0568301B2 JP60244193A JP24419385A JPH0568301B2 JP H0568301 B2 JPH0568301 B2 JP H0568301B2 JP 60244193 A JP60244193 A JP 60244193A JP 24419385 A JP24419385 A JP 24419385A JP H0568301 B2 JPH0568301 B2 JP H0568301B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- platinum
- manufacturing
- catalytically active
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
[産業上の利用分野]
本発明は、デイーゼルエンジン排ガスあるいは
可燃性炭素微粒子を含有する産業排ガスの浄化用
触媒の製法に関するものである。近年、デイーゼ
ルエンジン排ガス中の微粒子状物質(主として固
体状炭素微粒子、硫酸塩など硫黄系微粒子、そし
て液状ないし、固体状の高分子量炭化水素微粒子
などよりなる)が環境衛生上問題化する傾向にあ
る。これら微粒子はその粒子径がほとんど1ミク
ロン以下であり大気中に浮遊しやすく呼吸により
人体間に取り込まれやすいためである。したがつ
てこれら微粒子のデイーゼルエンジンなどからの
排出規制を厳しくしていく方向で検討が進められ
ている。
ところで、これら微粒子の除去方法としては、
大別して以下の2つの方法がある。1つは耐熱性
ガスフイルター(セラミツクフオーム、ワイヤー
メツシユ、金属発泡体、ウオールフロータイプの
セラミツクハニカムなど)を用いて排気ガスを濾
過して微粒子を捕捉し、圧損が上昇すればバーナ
ーなどで蓄積した微粒子を燃焼せしめてフイルタ
ーを再生する方法と、他はこの耐熱性ガスフイル
ター構造を持つ担体に触媒物質を担持させ濾過操
作とともに、燃焼処理も行なわせて上記燃焼再生
の頻度を少なくするとか、再生の必要のないほど
に触媒の燃焼活性を高める方法である。
前者の場合、微粒子の除去効果を高めれば高め
るほど圧損上昇が早く再生頻度も多くなり煩瑣で
あり、経済的にも著しく不利となるであろう。そ
れにくらべ後者の方法は、デイーゼルエンジン排
気ガスの排出条件(ガス組成および温度)におい
て、触媒活性を有効に維持しうる触媒物質が採用
されるならばはるかに優れた方法と考えられる。
しかし、デイーゼルエンジンの排気ガス温度は
ガソリンエンジンの場合と比較して格段に低く、
通常のエンジンの走行条件下でえられる温度内で
蓄積した微粒子を良好に着火燃焼させる性能を有
する上記排ガス浄化触媒が要求されるにもかかわ
らず、今迄この条件に適合する触媒の製法は提案
されていないのが現状である。
(従来の技術)
従来よりカーボン質微粒子の捕捉効果を高める
目的で種々の提案がなされている。貫通孔を有す
る構造体の貫通孔内壁に耐熱性無機質繊維を接着
せしめ、カーボン質微粒子の捕捉効果を高める試
み(特開昭59−142820号公報)、あるいは貫通孔
を有するセラミツクハニカム構造体の内壁に不規
則な配列状態の突起を多数設けてカーボン質微粒
子を補足しようという試み(特開昭57−99314号
公報)またオープンハニカムあるいはウオールフ
ローハニカムにセラミツク粗大粒子を付着させる
かあるいは壁面を発泡させるかして突起を作製し
た後乾燥、焼成を行なうことによりカーボン質微
粒子の捕捉効果を高める担体の製法が提案されて
いる(特開昭58−14921号公報)。
また白金族金属をカーボン質微粒子燃焼用触媒
の製法として使用している例としては、ロジウム
7.5%/白金合金とか、Pt/Pd=50/50の混合物
とか、酸化タンタルまたは酸化セリウム上に担持
したパラジウムあるいはパラジウムと75重量%以
下の白金からなる合金等が、SOF(soluble
organic fraction)に対して効果があることが提
案されている(特開昭55−24597号公報)。
その他、貴金属、クロムおよびこれらのものの
触媒的に活性な化合物からなる群から選ばれた少
なくとも1種の担持された材料および第1遷移系
列の元素、銀、ハフニウムおよびこれらのものの
触媒的に活性な化合物から成る群から選ばれた少
くとも1種のバルク材料の、触媒的に有効な量の
混合物から成り、担持された該材料が多孔性耐火
無機酸化物に担持されていることから成る組成物
の製法(特開昭57−24640号公報)、
バナジウムまたはバナジウム化合物にアンチモ
ン、アルカリ金属、モリブデン、白金、ランタン
どを組合わせた炭素系微粒子浄化用触媒の製法
(特開昭58−174236号公報)、
銅または銅化合物にモリブデンまたはバナジウ
ムを組合せ、さらに白金、ロジウムなどをも組合
せてなる炭素系微粒子浄化用触媒の製法(特開昭
59−82944)、
白金を担持して700〜1000℃で熱処理してサル
フエートの生成能を抑制した炭素系微粒子浄化用
触媒の製法(特開昭59−36543号公報)、パラジウ
ムとロジウム、ルテニウム、ニツケル、亜鉛およ
びチタニウムの少なくとも1種とを組合せてなる
炭素系微粒子浄化用触媒の製法(特開昭59−
80330号公報)等の提案がなされている。
しかしながら、本発明者らは、白金族元素を炭
素系微粒子の燃焼用触媒として使用する場合、こ
れらに開示されている触媒では、白金族元素の有
する炭素系微粒子の低温着火性を充分に引き出す
ことは困難であることを見い出した。
すなわち、白金族元素の有する炭素系微粒子の
低温着火性を引き出すには、排ガスのガス接触面
あるいは接触部において、層状に蓄積する炭素系
微粒子に対して、接触効率を高めるように、接触
担持層を突起状に担持せしめる必要があり、さら
にその形状に機械的強度を与えることにより、か
くして低温着火性能を有する実用的触媒の製法を
提案しうることを見出したものである。
[発明が解決しようとする問題点]
本発明者らは、ここに特にデイーゼルエンジン
からの排ガス中に含まれるカーボン質微粒子を、
より低温から燃焼させうる触媒の製法を提案す
る。
本発明にかかる触媒の製法は以下の如き点で高
い評価が与えられる。上述のようにデイーゼルエ
ンジンからの排ガス温度は、ガソリン車に比べて
格段に低く市中走行時排ガス温度は、マニホール
ド出口でも450℃に達しないことから、300℃以下
でもカーボン質微粒子の燃焼性能が良好な触媒が
要求される。
しかし従来提案されている白金族を含有する触
媒は三次元構造体のガス接触部に微細粒子で層状
に触媒成分が担持されているか、あるいは骨材の
内部細孔内壁面に担持されていて、捕捉されたカ
ーボン質微粒子との接触効率が悪く、白金族を含
有する触媒活性物質から充分な燃焼性能を引き出
せていないのが現状である。
従つて、本発明者らは、カーボン質微粒子がガ
ス接触部壁面あるいはガス接触部に層状に蓄積す
ることに注目し、該蓄積層に触媒活性成分の粗粒
状物を突起状に担持させ、触媒とカーボン質微粒
子の接触効率を上げることにより著しく、触媒性
能を高めることを見い出し本発明を完成したもの
である。
[問題点を解決するための手段]
本発明は以下の如く特定される。
(1) 触媒活性物質を担持せしめた耐火性無機質基
材よりなる粗粒状物を、アルミナゾル、チタニ
アゾル、ジルコニアゾル、シリカゾル、可溶性
ベーマイト、可溶性有機高分子化合物よりなる
群から選ばれた少くとも1種の分散剤とともに
水性スラリー化し、えられたスラリーを用いて
耐火性三次元構造体のガス接触面あるいはガス
接触部に該粗粒状物を突起状に担持せしめるこ
とを特徴とする排ガス浄化用触媒の製法。
(2) 耐火性三次元構造体が、セラミツクフオー
ム、セラミツクハニカム、ウオールフロータイ
プのハニカムモノリス、メタルハニカムまたは
金属発泡体である上記(1)記載の製法。
(3) 白金、ロジウム、パラジウムよりなる白金族
元素の少くとも1種を含有してなる触媒活性物
質を突起状に形成されてなる耐火性無機質基材
上に担持せしめてなる上記(1)記載の製法。
(4) 白金、ロジウム、パラジウムよりなる白金族
元素の少なくとも1種と鉄、コバルト、ニツケ
ル、モリブデン、タングステン、ニオブ、リ
ン、鉛、亜鉛、錫、銅、マンガン、セリウム、
ランタン、銀、バリウム、マグネシウム、カル
シウム、ストロンチウムよりなるアルカリ土類
金属、カリウム、ナトリウム、セシウム、ルビ
ジウムよりなるアルカリ金属よりなる群から選
ばれた少くとも1種を含有してなる触媒活性物
質を突起状に形成されてなる耐火性無機質基材
上に担持せしめてなる上記(1)記載の製法。
炭素系微粒子は三次元構造体のガス接触部に層
状に蓄積し、例えば、ウオールフロータイプのハ
ニカム(ガス流れ方向に、多数の流通管よりなり
該流通管は交互に、入口部が開口し、出口部で閉
塞されている流通管と、入口部が閉鎖され出口部
で開口されている流通管とから構成され、その流
通管壁がガスフイルター機構を有する多孔性隔壁
で構成されているセラミツクモノリスハニカム)
の隔壁には多数の細孔が存在し、この細孔を通し
てガスが通過する際、炭素系微粒子は濾過される
が細孔の平均径が炭素系微粒子の直径よりもかな
り大きいにもかかわらず炭素系微粒子は、細孔入
口側壁面にブリツジを形成し、ガス入口側隔壁面
に層状に累積する。仮に白金族元素含有触媒がこ
の隔壁面あるいは隔壁細孔内骨材上に、突起を形
成することなく層状に担持されている場合は、該
炭素系微粒子の蓄積物に対する触媒活性成分の接
触効率は悪く好ましい触媒作用は見られない。
従つて本発明においては、三次元構造体のガス
接触部に白金族元素含有の触媒組成物を突起状に
担持せしめ接触効率を高め炭素系微粒子の燃焼効
率を著しく向上させたことを特徴としている。
三次元構造体としては、セラミツクフオーム、
セラミツクハニカム、ウオールフロータイプのハ
ニカムモノリス、メタルハニカム、金属発泡体等
が好適に用いられる。
白金族元素などの触媒成分を担持する耐火性無
機質基材としては、活性アルミナ、シリカ、チタ
ニア、ジルコニア、シリカ−アルミナ、アルミナ
−ジルコニア、アルミナ−チタニア、シリカ−チ
タニア、シリカ−ジルコニア、チタニア−ジルコ
ニア、ゼオライト等が好適である。
本発明にかかる触媒の製法を、以下に具体的な
手順として例示する。
すなわち、活性アルミナペレツトに触媒活性成
分の水可溶性塩の水溶液で含浸担持し、乾燥焼成
する。次いでハンマーミル(例えば細川ミクロン
社製、PULVERIXER)で粉砕し、粉砕品を分
級機(例えば細川ミクロン社製、MICRON
SEPARATOR、MS−O型)にて分級し、5μm
〜300μmの範囲の粒径に実質的に分布する程度
の耐火性無機質粗粒子に白金族元素などの触媒成
分を担持した触媒活性物質担持粉末をえる。
次いでこの該粒状物を、可溶性ベーマイト(例
えばCONDEA社製、DISPURAL)をアルミナ
(Al2O3)換算で1〜20重量%含有する水溶液に
投入し撹拌する。分散剤としてのベーマイトの増
粘効果により撹拌中はもちろんのこと、撹拌を止
めても粒状活性物質は沈降せずに安定なスラリー
がえられる。
該スラリーを用いて三次元構造体に担持し、余
分なスラリーを除くことにより、構造体内部壁面
あるいは骨格表面に凹凸の大きい突起状の触媒被
覆層を形成することが出来る。次いで乾燥し200
〜800℃とくに300℃〜700℃の温度で焼成する。
この調整方法において粗粒状触媒活性成分をス
ラリー化する際粗粒子が沈降しないように増粘効
果を有するアルミナ、チタニア、ジルコニア、シ
リカなどのゾルや可溶性ベーマイト、可溶性有機
高分子化合物よりなる群から選ばれた少なくとも
1種の分散剤とともに水性スラリー化せしめて使
用しうるが、該可溶性有機高分子化合物として
は、ポリアクリル酸ナトリウム、ポリアクリル酸
アンモニウム、アクリル酸−マレイン酸共重合体
のナトリウム塩またはアンモニウム塩、ポリエチ
レンオキサイド、ポリビニルアルコール、カルボ
キシメチルセルロース、メチルセルロース、ヒド
ロキシエチルセルロース、でんぷん、アラビアゴ
ム、グアーガム、にかわ等が好適に用いられる。
また粗粒子状触媒活性成分の担持強度を向上させ
る目的でスラリー中に無機質繊維状物質、例えば
ガラス繊維、アルミナ繊維、窒化ケイ素
(Si3N4)、シリコンカーバイド(SiC)、チタン酸
カリウム、ロツクウール等を分散させても良い。
また触媒コート層をさらに多孔性にするために
スラリー中にポリエチレングリコールなどの可溶
性有機高分子化合物を添加して焼成により除去す
る方法を併用しても良い。
本発明にかかる触媒の製法においては、触媒活
性成分担持量はとくに限定されるものではないが
本発明が規定する粗粒状物として触媒1当り10
〜200g、好ましくは20〜150gの範囲である。そ
して、耐熱性無機質基材としては触媒1当り5
〜150g好ましくは10〜120gの範囲、触媒活性成
分は酸化物あるいは金属として触媒1当り0.01
〜50g、好ましくは0.05〜30gの範囲である。
[作用]
カーボン質微粒子の燃焼反応は固体−固体の反
応であり、触媒活性物質とカーボン質微粒子の接
触効率が非常に重要な要因である。
本発明はこの点に鑑み、触媒粒状物質をガス入
口側壁面に突起状に担持し、接触効率を積極的に
高めたことにより著しく活性を向上させたことに
本発明の作用効果がある。
以下本発明の実施例と比較例とを示し、本発明
を具体的に説明する。
実施例 1
市販の活性アルミナペレツト(3〜5mmφ、表
面積150m2/g)1Kgを量りとり、白金(Pt)と
して20g含有するジニトロジアンミン白金の硝酸
溶液の水溶液750mlに浸漬担持し、150℃で3時間
乾燥し、500℃で2時間焼成した。
該焼成ペレツトを、ハンマーミルで粉砕し、分
級装置で5μm以下の粒径をカツトし、また300μ
m以上の程度のものは篩を用いて取り除いた。え
られた粉末触媒の粒度分布は5〜30μm11重量
%、30〜45μm14重量%、45〜74μm20重量%、
74〜105μm24重量%、105〜149μm15重量%、
149〜300μm16重量%の粒度分布を有しており平
均粒子径81μmであつた。
あらかじめ可溶性ベーマイト15g(Al2O3換算
11.25g)を溶解させてえた水溶液に該分級粉末
触媒150gを分散させ安定したスラリー520mlをえ
た。
このスラリーの粘度は22cps(室温)であつた。
担体として、市販のプラグハニカム(材質:コー
ジエライト)5.66インチ径×6.0インチ長さ、100
セル/平方インチ、壁厚17ミルのものを用いた。
該担体の隔壁の有する平均細孔径は、28μmであ
つた。該担体のガス入口部側面から上記スラリー
520mlを注ぎ、余分なスラリーを反対側からの空
気ブローで取り除いた。ついで150℃で3時間乾
燥し、空気中500℃で2時間焼成し、完全触媒を
えた。
出来上りの各成分の担持量は、Al2O350g/
−担体、Pt1.0g/−担体、であつた。
この触媒は担体壁面上にその細孔を閉塞するこ
となく粗粒子の突起を形成しているのが観察され
た。
実施例 2
市販の活性アルミナペレツト(3〜5mmφ表面
積150m2/g)2Kgを量りとり、Ptとして15g含
有するジニトロジアンミン白金の硝酸溶液と、ロ
ジウム(Rh)として1.67g含有する硝酸ロジウ
ム水溶液の混合溶液1.4に浸漬担持し、150℃で
3時間乾燥し500℃で2時間焼成した。
実施例1におけると同様に粉砕、分級して、平
均粒子径78μmのPt;Rh担持した粉末触媒をえ
た。あらかじめ可溶性ベーマイト100g(Al2O3
換算75g)を、溶解させてえた水溶液に該分級粉
末触媒1Kgを分散させ安定したスラリー2をえ
た。
このスラリーの粘度は72cps(室温)であつた。
担体として、市販のオープンハニカムモノリス
(材質コージエライト)5.66インチ径×6.0インチ
長さ、300セル/平方インチ、壁厚6ミルのもの
を用いた。
該担体をスラリーに浸漬し引上げて余分なスラ
リーをエアーブローで取除いた。ついで150℃で
3時間乾燥し空気中500℃で2時間焼成し完成触
媒をえた。出来上りの各成分の担持量は
Al2O3120g/−担体、Pt0.9g/−担体、
Rh0.1g/−担体であつた。
実施例 3
市販の活性アルミナペレツト(3〜5mmφ、表
面積150m2/g)1Kgに硝酸セリウム(Ce
(NO3)3・6H2O)630.7gを溶解した水溶液750ml
に含浸した。150℃3時間乾燥し500℃2時間焼成
した。ついで、Ptとして、25g含有するジニト
ロジアンミン白金の硝酸溶液750mlに含浸した。
150℃3時間乾燥し、500℃2時間焼成した。
実施例1におけると同じように粉砕分級して平
均粒径79μmの触媒含有粉末触媒をえた。あらか
じめシリカゾル(スローテツクス−O日産化学
製)をSiO2換算で15g含有する水溶液に該分級
粉末触媒150gを分散させ安定したスラリー520ml
をえた。実施例1におけると同様な担体を用いて
触媒化した。出来上りの各成分の担体量は
Al2O340g/−担体、CeO210g/−担体、
Pt1.0g/−担体であつた。
実施例 4
実施例2において、担体としてオープンハニカ
ムモノリスのかわりに、市販のセラミツクフオー
ム(嵩密度0.35g/cm3、空孔率87.5%、容積1.7
)を用いる以外は全て同じ方法で触媒を調整し
た。出来上りの各成分の担持量はAl2O3120g/
−担体、Pt0.9g/−担体、Rh0.1g/−担
体であつた。
実施例 5
実施例1〜4におけると同じ方法で、下記表1
に示す触媒組成の触媒をえた。
ここでモリブデンはパラモリブデン酸アンモニ
ウム、リンはリン酸二水素アンモニウム、タング
ステンはパラタングステン酸アンモン、ニオブは
五塩化ニオブ、他はすべて硝酸塩を用いた。
[Industrial Field of Application] The present invention relates to a method for producing a catalyst for purifying diesel engine exhaust gas or industrial exhaust gas containing combustible carbon particles. In recent years, particulate matter (mainly composed of solid carbon particles, sulfur-based particles such as sulfates, and liquid or solid high-molecular-weight hydrocarbon particles) in diesel engine exhaust gas has tended to become an environmental health problem. . This is because most of these fine particles have particle diameters of 1 micron or less and are easily suspended in the atmosphere and easily taken into the human body through breathing. Therefore, consideration is being given to tightening regulations on the emission of these particulates from diesel engines and the like. By the way, the methods for removing these fine particles are as follows:
There are two main methods as follows. One is to filter exhaust gas using a heat-resistant gas filter (ceramic foam, wire mesh, metal foam, wall-flow type ceramic honeycomb, etc.) to capture fine particles, and if the pressure drop increases, they will accumulate in burners, etc. Another method is to reduce the frequency of the above-mentioned combustion regeneration by carrying a catalyst substance on a carrier having a heat-resistant gas filter structure and performing a combustion process along with the filtration operation. This is a method of increasing the combustion activity of the catalyst to such an extent that regeneration is not necessary. In the former case, the higher the particle removal effect, the faster the pressure drop increases and the frequency of regeneration increases, which is cumbersome and economically disadvantageous. In comparison, the latter method is considered to be a much better method if a catalytic material that can effectively maintain catalytic activity under the exhaust conditions (gas composition and temperature) of diesel engine exhaust gas is employed. However, the exhaust gas temperature of diesel engines is much lower than that of gasoline engines.
Despite the need for an exhaust gas purification catalyst that has the ability to successfully ignite and burn accumulated particulates within the temperature range found under normal engine running conditions, no method of manufacturing a catalyst that satisfies this condition has been proposed until now. The current situation is that this has not been done. (Prior Art) Various proposals have been made for the purpose of increasing the trapping effect of carbonaceous fine particles. An attempt was made to bond heat-resistant inorganic fibers to the inner walls of the through-holes of a structure having through-holes to increase the capture effect of carbonaceous particles (Japanese Unexamined Patent Publication No. 142820/1982), or the inner wall of a ceramic honeycomb structure having through-holes. An attempt was made to supplement carbonaceous fine particles by providing a large number of irregularly arranged protrusions on the honeycomb (Japanese Patent Application Laid-open No. 57-99314).Also, an attempt was made to attach coarse ceramic particles to an open honeycomb or wall flow honeycomb, or to foam the wall surface. A method for manufacturing a carrier has been proposed in which the effect of trapping carbonaceous particles is enhanced by forming protrusions, followed by drying and firing (Japanese Unexamined Patent Publication No. 14921/1983). Rhodium
SOF (soluble
It has been proposed that this method is effective against organic fraction (Japanese Patent Application Laid-Open No. 55-24597). In addition, at least one supported material selected from the group consisting of noble metals, chromium and catalytically active compounds of these and elements of the first transition series, silver, hafnium and catalytically active compounds of these A composition comprising a catalytically effective amount of a mixture of at least one bulk material selected from the group consisting of compounds, the supported material being supported on a porous refractory inorganic oxide. (Japanese Unexamined Patent Publication No. 57-24640), a method for manufacturing carbon-based particulate purification catalysts in which vanadium or vanadium compounds are combined with antimony, alkali metals, molybdenum, platinum, lanthanum, etc. (Japanese Unexamined Patent Publication No. 58-174236) ), a method for producing a carbon-based particulate purification catalyst made by combining copper or a copper compound with molybdenum or vanadium, and further combining platinum, rhodium, etc.
59-82944), Method for producing carbon-based particulate purification catalyst in which platinum is supported and heat treated at 700 to 1000°C to suppress sulfate generation ability (Japanese Patent Application Laid-Open No. 1983-36543), palladium, rhodium, ruthenium, Method for producing a catalyst for purification of carbon-based fine particles comprising a combination of at least one of nickel, zinc, and titanium
80330) and other proposals have been made. However, the present inventors have found that when platinum group elements are used as combustion catalysts for carbon-based fine particles, the catalysts disclosed in these documents do not fully bring out the low-temperature ignitability of carbon-based fine particles possessed by platinum group elements. found it difficult. In other words, in order to bring out the low-temperature ignitability of carbon-based fine particles possessed by platinum group elements, a contact support layer is required to increase the contact efficiency with respect to the carbon-based fine particles that accumulate in a layer at the gas contact surface or contact portion of exhaust gas. The inventors have discovered that it is necessary to support the catalyst in the form of protrusions, and that by imparting mechanical strength to the shape, it is possible to propose a method for producing a practical catalyst that has low-temperature ignition performance. [Problems to be Solved by the Invention] The present inventors have specifically identified carbonaceous particles contained in exhaust gas from diesel engines as
We propose a method for producing a catalyst that can be burned at lower temperatures. The method for producing a catalyst according to the present invention is highly evaluated for the following points. As mentioned above, the exhaust gas temperature from a diesel engine is much lower than that of a gasoline car, and the exhaust gas temperature during city driving does not reach 450°C even at the manifold outlet, so the combustion performance of carbonaceous particles is low even below 300°C. A good catalyst is required. However, in the catalysts containing platinum group that have been proposed so far, catalyst components are supported in a layered manner with fine particles in the gas contacting part of a three-dimensional structure, or supported on the inner wall surface of the internal pores of the aggregate. At present, sufficient combustion performance cannot be extracted from the catalytically active material containing the platinum group due to poor contact efficiency with captured carbonaceous fine particles. Therefore, the present inventors focused on the fact that carbonaceous fine particles accumulate in a layer on the wall surface of the gas contacting part or the gas contacting part, and by supporting the coarse particles of the catalytically active component in the accumulation layer in the form of protrusions, the catalyst The present invention has been completed by discovering that the catalyst performance can be significantly improved by increasing the contact efficiency between carbonaceous particles and carbonaceous fine particles. [Means for solving the problems] The present invention is specified as follows. (1) Coarse particles made of a refractory inorganic base material supporting a catalytically active substance are mixed with at least one kind selected from the group consisting of alumina sol, titania sol, zirconia sol, silica sol, soluble boehmite, and soluble organic polymer compound. A catalyst for exhaust gas purification, characterized in that the coarse particles are formed into an aqueous slurry with a dispersant, and the resulting slurry is used to support the coarse particles in the form of protrusions on the gas contact surface or gas contact portion of a refractory three-dimensional structure. Manufacturing method. (2) The method according to (1) above, wherein the fire-resistant three-dimensional structure is a ceramic foam, a ceramic honeycomb, a wall-flow type honeycomb monolith, a metal honeycomb, or a metal foam. (3) The method described in (1) above, wherein a catalytically active substance containing at least one platinum group element consisting of platinum, rhodium, and palladium is supported on a refractory inorganic base material formed in protrusions. manufacturing method. (4) At least one platinum group element consisting of platinum, rhodium, and palladium, and iron, cobalt, nickel, molybdenum, tungsten, niobium, phosphorus, lead, zinc, tin, copper, manganese, cerium,
Protruding catalytic active material containing at least one selected from the group consisting of alkaline earth metals such as lanthanum, silver, barium, magnesium, calcium, and strontium, and alkali metals such as potassium, sodium, cesium, and rubidium. The manufacturing method according to (1) above, wherein the method is supported on a refractory inorganic base material formed in a shape. Carbon-based fine particles accumulate in a layered manner in the gas-contacting part of a three-dimensional structure, for example, a wall-flow type honeycomb (consisting of a large number of flow pipes in the gas flow direction, the flow pipes having inlet ports open alternately, A ceramic monolith consisting of a flow pipe that is closed at the outlet, and a flow pipe that is closed at the inlet and open at the outlet, and the wall of the flow pipe is composed of a porous partition wall with a gas filter mechanism. honeycomb)
There are many pores in the partition walls of the pores, and when gas passes through these pores, carbon-based fine particles are filtered out, but even though the average diameter of the pores is much larger than the diameter of the carbon-based fine particles, The system fine particles form a bridge on the side wall surface of the pore entrance and accumulate in a layer on the partition wall surface on the gas inlet side. If the platinum group element-containing catalyst is supported in a layered manner on the partition wall surface or the aggregate in the partition wall pores without forming protrusions, the contact efficiency of the catalytically active component with the carbon-based fine particle accumulation will be No favorable catalytic action was observed. Therefore, the present invention is characterized in that a catalyst composition containing a platinum group element is supported in the gas contacting part of the three-dimensional structure in the form of protrusions, thereby increasing the contact efficiency and significantly improving the combustion efficiency of carbon-based fine particles. . As a three-dimensional structure, ceramic foam,
Ceramic honeycombs, wall-flow type honeycomb monoliths, metal honeycombs, metal foams, etc. are preferably used. Examples of refractory inorganic base materials supporting catalyst components such as platinum group elements include activated alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, and titania-zirconia. , zeolite, etc. are suitable. The method for producing the catalyst according to the present invention will be exemplified below as a specific procedure. That is, activated alumina pellets are impregnated with an aqueous solution of a water-soluble salt of a catalytically active component, and then dried and calcined. Next, the product is crushed with a hammer mill (for example, PULVERIXER manufactured by Hosokawa Micron Co., Ltd.), and the crushed product is passed through a classifier (for example, MICRON manufactured by Hosokawa Micron Co., Ltd.).
SEPARATOR, MS-O type) to classify, 5μm
A catalytically active substance-supported powder is obtained in which a catalyst component such as a platinum group element is supported on refractory inorganic coarse particles having a particle size substantially distributed in the range of ~300 μm. Next, the granules are added to an aqueous solution containing 1 to 20% by weight of soluble boehmite (for example, CONDEA, DISPURAL) in terms of alumina (Al 2 O 3 ) and stirred. Due to the thickening effect of boehmite as a dispersant, a stable slurry can be obtained without the granular active substance settling during stirring or even after stirring is stopped. By using the slurry to support a three-dimensional structure and removing excess slurry, a protruding catalyst coating layer with large irregularities can be formed on the inner wall surface or skeleton surface of the structure. Then dry 200
Calcinate at a temperature of ~800°C, especially 300°C to 700°C. In this preparation method, in order to prevent the coarse particles from settling when slurrying the coarse particles, a sol such as alumina, titania, zirconia, silica, etc., which has a thickening effect, soluble boehmite, and a soluble organic polymer compound is selected. The soluble organic polymer compound can be used by forming an aqueous slurry together with at least one dispersant. Examples of the soluble organic polymer compound include sodium polyacrylate, ammonium polyacrylate, sodium salt of acrylic acid-maleic acid copolymer, or Ammonium salts, polyethylene oxide, polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, starch, gum arabic, guar gum, glue and the like are preferably used.
In addition, inorganic fibrous substances such as glass fiber, alumina fiber, silicon nitride (Si 3 N 4 ), silicon carbide (SiC), potassium titanate, and rock wool are added to the slurry in order to improve the supporting strength of the coarse particulate catalyst active component. etc. may be dispersed. Further, in order to make the catalyst coat layer more porous, a method of adding a soluble organic polymer compound such as polyethylene glycol to the slurry and removing it by baking may be used in combination. In the method for producing a catalyst according to the present invention, the amount of catalyst active components supported is not particularly limited, but the amount of supported catalyst active components is 10 per catalyst as coarse particles defined by the present invention.
~200g, preferably 20-150g. As the heat-resistant inorganic base material, 5
~150g Preferably in the range of 10-120g, the catalytically active component being 0.01 per catalyst as an oxide or metal
~50g, preferably 0.05-30g. [Operation] The combustion reaction of carbonaceous particles is a solid-solid reaction, and the contact efficiency between the catalytically active substance and the carbonaceous particles is a very important factor. In view of this point, the present invention has an effect in that the activity is significantly improved by supporting the catalyst particulate material in a protruding manner on the side wall surface of the gas inlet and actively increasing the contact efficiency. EXAMPLES The present invention will be specifically explained below by showing examples and comparative examples of the present invention. Example 1 1 kg of commercially available activated alumina pellets (3 to 5 mmφ, surface area 150 m 2 /g) was weighed out, immersed in 750 ml of an aqueous solution of dinitrodiammine platinum in nitric acid containing 20 g of platinum (Pt), and supported at 150°C. It was dried for 3 hours and fired at 500°C for 2 hours. The fired pellets are pulverized with a hammer mill, and a particle size of 5 μm or less is cut with a classifier, and a particle size of 300 μm or less is
Those with a particle size of m or more were removed using a sieve. The particle size distribution of the obtained powder catalyst was 11% by weight of 5-30μm, 14% by weight of 30-45μm, 20% by weight of 45-74μm,
74-105μm 24% by weight, 105-149μm 15% by weight,
It had a particle size distribution of 149 to 300 μm, 16% by weight, and an average particle size of 81 μm. 15g of soluble boehmite (Al 2 O 3 equivalent)
150 g of the classified powder catalyst was dispersed in an aqueous solution obtained by dissolving 11.25 g of the classified powder catalyst to obtain 520 ml of stable slurry. The viscosity of this slurry was 22 cps (room temperature).
As a carrier, commercially available plug honeycomb (material: cordierite) 5.66 inch diameter x 6.0 inch length, 100
Cells per square inch and 17 mil wall thickness were used.
The average pore diameter of the partition walls of the carrier was 28 μm. The above slurry is poured from the side of the gas inlet of the carrier.
520 ml was poured and the excess slurry was removed by air blowing from the other side. The catalyst was then dried at 150°C for 3 hours and calcined in air at 500°C for 2 hours to obtain a complete catalyst. The amount of each component supported in the finished product is Al 2 O 3 50g/
- carrier, Pt1.0g/- carrier. It was observed that this catalyst formed protrusions of coarse particles on the wall surface of the carrier without clogging the pores. Example 2 2 kg of commercially available activated alumina pellets (3 to 5 mmφ surface area 150 m 2 /g) were weighed and mixed with a nitric acid solution of dinitrodiammine platinum containing 15 g of Pt and a rhodium nitrate aqueous solution containing 1.67 g of rhodium (Rh). It was supported by immersion in mixed solution 1.4, dried at 150°C for 3 hours, and fired at 500°C for 2 hours. The powder was pulverized and classified in the same manner as in Example 1 to obtain a Pt;Rh supported powder catalyst having an average particle size of 78 μm. 100g of soluble boehmite (Al 2 O 3
A stable slurry 2 was obtained by dispersing 1 kg of the classified powder catalyst in an aqueous solution obtained by dissolving 75 g of the classified powder catalyst. The viscosity of this slurry was 72 cps (room temperature).
The support used was a commercially available open honeycomb monolith (cordierite material) 5.66 inch diameter x 6.0 inch length, 300 cells/inch square, and 6 mil wall thickness. The carrier was immersed in the slurry, pulled out, and excess slurry was removed by air blowing. The catalyst was then dried at 150°C for 3 hours and calcined in air at 500°C for 2 hours to obtain a completed catalyst. The amount of each component supported in the finished product is
Al 2 O 3 120g/- carrier, Pt 0.9 g/- carrier,
Rh was 0.1 g/− carrier. Example 3 Cerium nitrate (Ce
750 ml of an aqueous solution containing 630.7 g of (NO 3 ) 3・6H 2 O)
Impregnated with. It was dried at 150°C for 3 hours and fired at 500°C for 2 hours. Then, it was impregnated with 750 ml of a nitric acid solution containing 25 g of dinitrodiammine platinum as Pt.
It was dried at 150°C for 3 hours and fired at 500°C for 2 hours. The powder was pulverized and classified in the same manner as in Example 1 to obtain a catalyst-containing powder catalyst having an average particle size of 79 μm. 150 g of the classified powder catalyst was dispersed in advance in an aqueous solution containing 15 g of silica sol (Slowtex-O, manufactured by Nissan Chemical) in terms of SiO 2 to create a stable slurry of 520 ml.
I got it. A support similar to that in Example 1 was used for catalysis. The amount of carrier for each component in the finished product is
Al 2 O 3 40g/- carrier, CeO 2 10 g/- carrier,
Pt1.0g/- carrier. Example 4 In Example 2, commercially available ceramic foam (bulk density 0.35 g/cm 3 , porosity 87.5%, volume 1.7) was used instead of the open honeycomb monolith as the carrier.
) All catalysts were prepared in the same manner except that they were used. The finished amount of each component supported is Al 2 O 3 120g/
- carrier, Pt 0.9 g/- carrier, Rh 0.1 g/- carrier. Example 5 In the same manner as in Examples 1-4, Table 1 below
A catalyst with the catalyst composition shown below was obtained. Here, ammonium paramolybdate was used for molybdenum, ammonium dihydrogen phosphate was used for phosphorus, ammonium paratungstate was used for tungsten, niobium pentachloride was used for niobium, and nitrate was used for all others.
【表】【table】
【表】
* 酸化物のモル比を示す。
実施例 6
実施例1で得られたPt担持アルミナの粉末触
媒150gと市販のSiCウイスカー10gとを、実施
例1と同様にあらかじめ可溶性ベーマイト15g
(Al2O3換算11.25g)を溶解させてえた水溶液に
分散させ安定したスラリー520mlをえて、触媒化
した。
出来上りの各成分の担持量はAl2O350g/−
担体、Pt1.0g/−担体、SiCウイスカー3.3
g/−担体であつた。
比較例 1
実施例1におけると同様に調製したPt担持ア
ルミナペレツトを粉砕し、その後湿式ミルで通常
のウオツシユコートを行なう程度まで湿式粉砕
し、平均粒子径を1.1μmとしたスラリーを調製
し、520mlのスラリーをえた。実施例1において
これを用いる以外は、すべて同じ方法で触媒を調
製し、Al2O350g/−担体、Pt1.0g/−担
体、担持の触媒をえた。
比較例 2
実施例2におけると同様に、調製したPt、Rh
担持アルミナペレツトを粉砕し、その後湿式ミル
で通常のウオツシユコートを行なう程度まで湿式
粉砕し、平均粒子径を1.0μmとしたスラリーを調
製した。該スラリーを用いてオープンハニカムモ
ノリス担持触媒をえた。出来上りの各成分の担持
量は、Al2O3120g/担体、Pt0.9g/−担体、
RhO0.1g/−担体であつた。
比較例 3
実施例2において、Pt、Rhを使用しない以外
はすべて同じ方法で触媒を調製し、Al2O3担持オ
ープンハニカムモノリスを調製した。
比較例 4
実施例3において、硝酸セリウムの630.7gを
用いるかわりに硝酸クロム〔Cr(NO3)3・9H2O〕
を1316gを用いる以外は同じ方法で触媒を調製し
出来上りの各成分の担持量はAl2O340g/−担
体、Cr2O310g/−担体、Pt1.0g/−担体で
あつた。
実施例 7
実施例1〜6、比較例1〜4でえられた触媒に
ついて、排気量2300c.c.、4気筒デイーゼルエンジ
ンを用いて、触媒の評価試験を行なつた。エンジ
ン回転数2500rpm、トルク4.0Kg・mの条件で微
粒子の捕捉約2時間を行ない、次いでトルクを
0.58Kg・m間隔で5分毎に上昇させて、触媒層の
圧損変化を連続的に記録し、微粒子が触媒上で排
ガス温度上昇に伴ない、微粒子の蓄積による圧力
上昇と微粒子の燃焼による圧力降下とが等しくな
る温度(Te)と着火燃焼し、圧損が急激に降下
する温度(Ti)を求めた。また2500rpm、トル
ク4.0Kg・mで微粒子を補足する場合の圧損の経
時変化を1時間あたりの圧損変化量をチヤートか
ら計算してΔP(mmHg/Hr)の値を求めた。
また、2500rpm、トルク4.0Kg・mの微粒子捕
捉条件下でダイリユーシヨントンネルを用いて、
微粒子の触媒入口、および出口の微粒子の量を測
定し微粒子の捕捉率(%)を求めた。これらの結
果を表2に示した。[Table] * Shows the molar ratio of oxides.
Example 6 150 g of the Pt-supported alumina powder catalyst obtained in Example 1 and 10 g of commercially available SiC whiskers were mixed with 15 g of soluble boehmite in advance in the same manner as in Example 1.
(11.25 g in terms of Al 2 O 3 ) was dissolved in an aqueous solution to obtain 520 ml of stable slurry, which was then catalyzed. The amount of each component supported in the finished product is Al 2 O 3 50g/-
Support, Pt1.0g/-support, SiC whisker 3.3
g/- carrier. Comparative Example 1 Pt-supported alumina pellets prepared in the same manner as in Example 1 were pulverized, and then wet pulverized in a wet mill to the extent that a normal wash coating was performed to prepare a slurry with an average particle size of 1.1 μm. , 520ml of slurry was obtained. Catalysts were prepared in the same manner as in Example 1, except that 50 g of Al 2 O 3 per support and 1.0 g of Pt per support were obtained. Comparative Example 2 Pt, Rh prepared in the same manner as in Example 2
The supported alumina pellets were pulverized and then wet pulverized in a wet mill to the extent that a normal wash coating could be applied to prepare a slurry having an average particle size of 1.0 μm. An open honeycomb monolith supported catalyst was obtained using the slurry. The supported amount of each component in the finished product is Al 2 O 3 120g/carrier, Pt 0.9g/-carrier,
RhO was 0.1 g/− carrier. Comparative Example 3 A catalyst was prepared in the same manner as in Example 2 except that Pt and Rh were not used, and an open honeycomb monolith supporting Al 2 O 3 was prepared. Comparative Example 4 In Example 3, chromium nitrate [Cr(NO 3 ) 3 ·9H 2 O] was used instead of using 630.7 g of cerium nitrate.
A catalyst was prepared in the same manner except that 1316 g of Pt was used, and the amount of each component supported in the finished product was 40 g of Al 2 O 3 /- support, 10 g of Cr 2 O 3 /- support, and 1.0 g of Pt /- support. Example 7 The catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were evaluated using a 4-cylinder diesel engine with a displacement of 2300 c.c. Particulate capture was carried out for approximately 2 hours under the conditions of engine rotation speed 2500 rpm and torque 4.0 kg・m, and then the torque was
The change in pressure drop in the catalyst layer was continuously recorded by raising the pressure at 0.58 kg/m intervals every 5 minutes, and as the exhaust gas temperature rose on the catalyst, the pressure increased due to accumulation of fine particles and the pressure due to combustion of fine particles. The temperature at which the drop is equal (Te) and the temperature at which ignition and combustion occur and the pressure drop drops rapidly (Ti) were determined. In addition, the value of ΔP (mmHg/Hr) was calculated by calculating the change in pressure drop per hour from a chart when capturing fine particles at 2500 rpm and a torque of 4.0 Kg·m. In addition, using a dilution tunnel under particle capture conditions of 2500 rpm and 4.0 kg・m torque,
The amount of fine particles at the catalyst inlet and outlet was measured to determine the trapping rate (%) of fine particles. These results are shown in Table 2.
【表】【table】
Claims (1)
材よりなる粗粒状物を、アルミナゾル、チタニア
ゾル、ジルコニアゾル、シリカゾル、可溶性ベー
マイト、可溶性有機高分子化合物よりなる群から
選ばれた少くとも1種の分散剤とともに水性スラ
リー化し、えられたスラリーを用いて耐火性三次
元構造体のガス接触面あるいはガス接触部に該粗
粒状物を突起状に担持せしめることを特徴とする
排ガス浄化用触媒の製法。 2 耐火性三次元構造体が、セラミツクフオー
ム、セラミツクハニカム、ウオールフロータイプ
のハニカムモノリス、メタルハニカムまたは金属
発泡体である特許請求の範囲1記載の製法。 3 白金、ロジウム、パラジウムよりなる白金族
元素の少くとも1種を含有してなる触媒活性物質
を突起状に形成されてなる耐火性無機質基材上に
担持せしめてなる特許請求の範囲1記載の製法。 4 白金、ロジウム、パラジウムよりなる白金族
元素の少なくとも1種と鉄、コバルト、ニツケ
ル、モリブデン、タングステン、ニオブ、リン、
鉛、亜鉛、錫、銅、マンガン、セリウム、ランタ
ン、銀、バリウム、マグネシウム、カルシウム、
ストロンチウムよりなるアルカリ土類金属、カリ
ウム、ナトリウム、セシウム、ルビジウムよりな
るアルカリ金属よりなる群から選ばれた少くとも
1種を含有してなる触媒活性物質を突起状に形成
されてなる耐火性無機質基材上に担持せしめてな
る特許請求の範囲1記載の製法。[Claims] 1. Coarse particles made of a refractory inorganic base material supporting a catalytically active substance are selected from the group consisting of alumina sol, titania sol, zirconia sol, silica sol, soluble boehmite, and soluble organic polymer compound. An exhaust gas characterized in that it is made into an aqueous slurry with at least one type of dispersant, and the resulting slurry is used to support the coarse particles in the form of projections on the gas contacting surface or gas contacting portion of a refractory three-dimensional structure. Manufacturing method for purification catalysts. 2. The manufacturing method according to claim 1, wherein the fire-resistant three-dimensional structure is a ceramic foam, a ceramic honeycomb, a wall-flow type honeycomb monolith, a metal honeycomb, or a metal foam. 3. A catalytically active substance containing at least one platinum group element consisting of platinum, rhodium, and palladium is supported on a refractory inorganic base material formed into protrusions. Manufacturing method. 4 At least one platinum group element consisting of platinum, rhodium, and palladium, and iron, cobalt, nickel, molybdenum, tungsten, niobium, phosphorus,
Lead, zinc, tin, copper, manganese, cerium, lanthanum, silver, barium, magnesium, calcium,
A refractory inorganic base formed in the form of protrusions of a catalytically active material containing at least one selected from the group consisting of alkaline earth metals such as strontium, and alkali metals such as potassium, sodium, cesium, and rubidium. The manufacturing method according to claim 1, which comprises supporting on a material.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60244193A JPS62106843A (en) | 1985-11-01 | 1985-11-01 | Catalyst for purifying exhaust gas and its preparation |
CA000512739A CA1260909A (en) | 1985-07-02 | 1986-06-30 | Exhaust gas cleaning catalyst and process for production thereof |
EP86108950A EP0211233B1 (en) | 1985-07-02 | 1986-07-01 | Exhaust gas cleaning catalyst and process for production thereof |
AT86108950T ATE47533T1 (en) | 1985-07-02 | 1986-07-01 | EXHAUST GAS PURIFICATION CATALYST AND PROCESS OF PRODUCTION. |
DE8686108950T DE3666536D1 (en) | 1985-07-02 | 1986-07-01 | Exhaust gas cleaning catalyst and process for production thereof |
US06/880,827 US4749671A (en) | 1985-07-02 | 1986-07-01 | Exhaust gas cleaning catalyst and process for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60244193A JPS62106843A (en) | 1985-11-01 | 1985-11-01 | Catalyst for purifying exhaust gas and its preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62106843A JPS62106843A (en) | 1987-05-18 |
JPH0568301B2 true JPH0568301B2 (en) | 1993-09-28 |
Family
ID=17115156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60244193A Granted JPS62106843A (en) | 1985-07-02 | 1985-11-01 | Catalyst for purifying exhaust gas and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62106843A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007512133A (en) * | 2003-11-24 | 2007-05-17 | ダウ グローバル テクノロジーズ インコーポレイティド | Catalyst for diesel particulate filter |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04250848A (en) * | 1990-12-27 | 1992-09-07 | Toyota Motor Corp | Catalyst to decrease diesel particulate |
JP2001073742A (en) * | 1999-06-29 | 2001-03-21 | Sumitomo Electric Ind Ltd | Particulate trap for diesel engine |
JP4628676B2 (en) * | 2002-02-15 | 2011-02-09 | 株式会社アイシーティー | Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method |
KR100871898B1 (en) * | 2005-10-28 | 2008-12-05 | 에스케이에너지 주식회사 | Exhaust gas purification device of diesel engine |
JP7020110B2 (en) * | 2017-12-26 | 2022-02-16 | トヨタ自動車株式会社 | Manufacturing method of catalyst for exhaust gas purification and catalyst for exhaust gas purification |
JP7445464B2 (en) * | 2020-03-09 | 2024-03-07 | 株式会社Subaru | Filter manufacturing method |
-
1985
- 1985-11-01 JP JP60244193A patent/JPS62106843A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007512133A (en) * | 2003-11-24 | 2007-05-17 | ダウ グローバル テクノロジーズ インコーポレイティド | Catalyst for diesel particulate filter |
Also Published As
Publication number | Publication date |
---|---|
JPS62106843A (en) | 1987-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950002223B1 (en) | Catalyst for purification of exhausted gas from diesel engine | |
EP0211233B1 (en) | Exhaust gas cleaning catalyst and process for production thereof | |
JP4628676B2 (en) | Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method | |
CN100406096C (en) | Catalytic filter for removing soot particles from diesel engine exhaust and method for manufacturing the same | |
JP5085176B2 (en) | Exhaust gas purification catalyst and exhaust gas purification device | |
JP4165400B2 (en) | Diesel particulate matter exhaust filter carrying catalyst | |
JPH0771634B2 (en) | Exhaust gas purifying catalyst and its manufacturing method | |
JP2017502838A (en) | Exhaust gas treatment catalyst | |
JP2004058013A (en) | Purification catalyst for exhaust gas | |
JP2004330118A (en) | Filter for clarifying exhaust gas | |
JPH0568301B2 (en) | ||
JP4057811B2 (en) | Engine exhaust gas purification catalyst | |
JP4639455B2 (en) | Exhaust gas purification material | |
JPH0768176A (en) | Catalyst for purification of exhaust gas from diesel engine | |
JP4218559B2 (en) | Diesel exhaust gas purification device | |
WO2007083779A1 (en) | Exhaust gas-purifying catalyst | |
JPH0724740B2 (en) | Exhaust gas purifying catalyst and its manufacturing method | |
JP3823528B2 (en) | Exhaust gas purification material and exhaust gas purification apparatus using the same | |
JP2577757B2 (en) | Diesel exhaust gas purification catalyst | |
JPS6146246A (en) | Catalyst for purifying exhaust gas | |
JP2001321671A (en) | Exhaust gas purifying material, its preparation method and exhaust gas purifying apparatus using the same | |
JPH0462779B2 (en) | ||
JP2002331241A (en) | Exhaust gas purification catalyst and exhaust gas purification material using the same | |
JPH0260374B2 (en) | ||
JPH0578385B2 (en) |