JPH11190339A - Static pressure fluid bearing - Google Patents

Static pressure fluid bearing

Info

Publication number
JPH11190339A
JPH11190339A JP9358644A JP35864497A JPH11190339A JP H11190339 A JPH11190339 A JP H11190339A JP 9358644 A JP9358644 A JP 9358644A JP 35864497 A JP35864497 A JP 35864497A JP H11190339 A JPH11190339 A JP H11190339A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
ultrasonic
bearing
slider
hydrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9358644A
Other languages
Japanese (ja)
Inventor
Koji Akashi
幸治 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9358644A priority Critical patent/JPH11190339A/en
Publication of JPH11190339A publication Critical patent/JPH11190339A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only

Abstract

PROBLEM TO BE SOLVED: To enhance characteristics of a static fluid pressure bearing, including a resolution, a responsiveness, a straightness and a positioning reproducibility. SOLUTION: Compressed air is fed through a gap between a first member 1 serving as a guide shaft, and a second member 2 serving as a slider surrounding the first member, and accordingly, the second member 2 as the slider is supported by static pressure in a noncontact manner. An ultrasonic motor 5 incorporating a vibrating member 7 which carries out elliptic oscillation when an ultrasonic vibrator 6 serving as a drive means oscillates is set to the second member 2 so that the vibrating member 7 makes into contact with the first member 1 so as to constitute a static pressure fluid bearing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波モータを駆
動手段として具備する静圧流体軸受に関するものであ
り、具体的には、直線案内装置などに用いられるスラス
ト軸受やエアースピンドルなどに用いられるラジアル軸
受として好適に使用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic bearing having an ultrasonic motor as driving means, and more specifically to a thrust bearing and an air spindle used in a linear guide device and the like. It can be suitably used as a radial bearing.

【0002】[0002]

【従来の技術】従来、物体を所定の位置に移動、位置決
めする直線案内装置などに用いられるスラスト軸受や回
転量を制御するスピンドルなどに用いられるラジアル軸
受として静圧流体軸受が使用されている。
2. Description of the Related Art Conventionally, a hydrostatic bearing has been used as a thrust bearing used for a linear guide device for moving and positioning an object at a predetermined position and a radial bearing used for a spindle for controlling the amount of rotation.

【0003】図7は直線案内装置としての従来の静圧流
体軸受を示す斜視図であり、この直線案内装置は、ガイ
ド軸をなす第1部材21と、該第1部材21を囲繞する
スライダーとしての第2部材22とからなり、上記第2
部材22に備える流体供給孔23から第1部材21と第
2部材22との隙間に圧縮流体を供給して静圧流体層を
形成することによりスライダーとしての第2部材22を
非接触の状態で支承するようになっていた。
FIG. 7 is a perspective view showing a conventional hydrostatic fluid bearing as a linear guide device. This linear guide device includes a first member 21 forming a guide shaft and a slider surrounding the first member 21. And the second member 22
By supplying a compressed fluid from the fluid supply hole 23 provided in the member 22 to the gap between the first member 21 and the second member 22 to form a hydrostatic fluid layer, the second member 22 as a slider is brought into a non-contact state. Was to be supported.

【0004】また、上記第2部材22の側面にはナット
24が取着してあり、このナット24を回転自在に軸支
されたネジ軸25とボールネジ方式で連結し、上記ネジ
軸25を電磁式モータ26によって回転させることによ
りスライダーとしての第2部材22を所定位置へ移動、
位置決めするようになっていた(特開昭58−1939
64号公報、特開平1−135960号公報、特開平1
−159152号公報参照)。
A nut 24 is attached to a side surface of the second member 22. The nut 24 is connected to a screw shaft 25 rotatably supported by a ball screw system, and the screw shaft 25 is electromagnetically connected. The second member 22 as a slider is moved to a predetermined position by being rotated by the expression motor 26,
Positioning was performed (Japanese Patent Laid-Open No. 58-1939).
No. 64, JP-A-1-135960, JP-A-1
159152).

【0005】[0005]

【発明が解決しようとする問題点】ところが、上記の如
き従来の静圧流体軸受は、スライダーとしての第2部材
22と駆動手段である電磁モータ26とが動力伝達手段
を介して連結されているため、この動力伝達手段を構成
するナット24とネジ軸25との結合部及びネジ軸25
とモータ26との結合部におけるガタ付きやネジ軸25
の反りなどにより、第2部材22を移動させるとヨーイ
ングやピッチングが発生し、滑らかに移動させることが
できないといった課題があった。
However, in the conventional hydrostatic bearing as described above, the second member 22 as the slider and the electromagnetic motor 26 as the driving means are connected via the power transmission means. Therefore, the coupling portion between the nut 24 and the screw shaft 25 constituting the power transmission means and the screw shaft 25
And the screw shaft 25 at the joint between the motor and the motor 26.
When the second member 22 is moved due to warpage or the like, yawing or pitching occurs, and there is a problem that the second member 22 cannot be moved smoothly.

【0006】また、近年、超高精密測定用や超高精密加
工用に使用される静圧流体軸受にはナノメートルオーダ
ーの位置決め精度が要求されているのであるが、ボール
ネジ方式の動力伝達手段を使用した従来の静圧流体軸受
では、ナット24とネジ軸25及びネジ軸25とモータ
26との間のバックラッシュ、ナット24とネジ軸25
とを結合するボール(不図示)との間の摺動抵抗、ネジ
軸25のピッチ精度等の影響により、スライダーとして
の第2部材22をナノメートルオーダーの分解能にて位
置決めすることが難しいといった問題点があった。しか
も、これらバックラッシュや摺動抵抗の影響により、第
2部材22を所定の位置へ繰り返し移動させた時の位置
決め再現性も悪かった。
In recent years, positioning accuracy on the order of nanometers has been required for hydrostatic fluid bearings used for ultra-high precision measurement and ultra-high precision machining. In the conventional hydrostatic bearing used, the backlash between the nut 24 and the screw shaft 25 and between the screw shaft 25 and the motor 26, the nut 24 and the screw shaft 25
And the like, it is difficult to position the second member 22 as a slider at a resolution of the order of nanometers due to the sliding resistance between the ball and a ball (not shown) connecting the second member 22 and the pitch accuracy of the screw shaft 25. There was a point. In addition, due to the effects of the backlash and the sliding resistance, the reproducibility of positioning when the second member 22 is repeatedly moved to a predetermined position is poor.

【0007】さらに、ネジ軸25を回転させる電磁式モ
ータ26は、モータ内における回転軸とコイルとが非接
触であるため、停止させようとしても慣性力が働いてい
るために停止時のバックラッシュが大きく、振動を生じ
るとともに直ちに停止させることができないといった問
題点があった。その為、第2部材22を移動させてから
所定の位置に位置決めするまでの時間を短くするには限
界があった。
Further, the electromagnetic motor 26 for rotating the screw shaft 25 has a non-contact between the rotating shaft and the coil in the motor. However, there is a problem that vibration is generated and it cannot be stopped immediately. Therefore, there is a limit in shortening the time from the movement of the second member 22 to the positioning at the predetermined position.

【0008】しかも、電磁式モータ26はかなり大きな
磁性を有することから、半導体装置や電子部品等の製造
工程などでは次のような問題点があった。
In addition, since the electromagnetic motor 26 has a considerably large magnetism, there are the following problems in the manufacturing process of semiconductor devices and electronic parts.

【0009】例えば、半導体製造工程の露光処理時に
は、磁場の存在によりスライダーとしての第2部材22
の位置を検出するリニアスケールの出力結果が狂い、位
置決め精度が低下するとともに、電子線が磁場によって
曲げられるために正確な露光処理ができなかった。
For example, during exposure processing in a semiconductor manufacturing process, the second member 22 as a slider is used due to the presence of a magnetic field.
The output result of the linear scale for detecting the position of is out of order, the positioning accuracy is reduced, and an accurate exposure process cannot be performed because the electron beam is bent by a magnetic field.

【0010】その上、従来の静圧流体軸受は、スライダ
ーとしての第2部材22を移動、位置決めするのに動力
伝達手段としてのナット24とネジ軸25が必要である
ことから、軸受全体が大型化するのを避けられず、設置
のために広いスペースが必要となるといった問題点もあ
った。
In addition, the conventional hydrostatic bearing requires a nut 24 and a screw shaft 25 as power transmission means to move and position the second member 22 as a slider. There is also a problem that a large space is required for installation.

【0011】[0011]

【問題点を解決するための手段】そこで、本発明は上記
課題に鑑み、第1部材と該第1部材を囲繞する第2部材
とからなり、上記第1部材と第2部材との隙間に圧縮流
体を供給して静圧流体層を形成し、上記第1部材又は第
2部材を非接触の状態で移動又は回転させてなる静圧流
体軸受において、超音波振動子の振動に伴って楕円振動
する振動体を備えた超音波モーターを前記第2部材に配
設し、上記超音波モーターの駆動力により前記第1部材
又は第2部材を移動又は回転させるようにしたことを特
徴とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention comprises a first member and a second member surrounding the first member, and a gap between the first member and the second member is provided. In a hydrostatic fluid bearing formed by supplying a compressed fluid to form a hydrostatic fluid layer and moving or rotating the first member or the second member in a non-contact state, the elliptical shape is caused by the vibration of the ultrasonic vibrator. An ultrasonic motor having a vibrating body is disposed on the second member, and the driving force of the ultrasonic motor moves or rotates the first member or the second member.

【0012】[0012]

【作用】本発明によれば、第1部材と第2部材とが非接
触の状態で静圧支持されていることから、移動や回転時
の摺動抵抗が殆ど皆無であり、第1部材又は第2部材を
滑らかに移動又は回転させることができる。そして、駆
動手段として超音波モータを用い、該超音波モータを第
1部材に当接させた状態で振動させることにより、第1
部材との間の摩擦抵抗によって直接第1部材又は第2部
材に駆動力を付与し、移動あるいは回転させることがで
きるため、高分解能な位置決めが可能であるとともに、
真直度や位置決め再現性を大幅に向上させることができ
る。しかも、従来のようなボールネジ方式等の動力伝達
手段が不要であるため、軸受全体をコンパクト化するこ
とができる。
According to the present invention, since the first member and the second member are statically supported in a non-contact state, there is almost no sliding resistance at the time of movement or rotation, and the first member or the second member has no sliding resistance. The second member can be smoothly moved or rotated. Then, an ultrasonic motor is used as a driving unit, and the ultrasonic motor is vibrated in a state where the ultrasonic motor is in contact with the first member.
Because a driving force can be directly applied to the first member or the second member by the frictional resistance between the members and can be moved or rotated, high-resolution positioning is possible,
Straightness and positioning reproducibility can be greatly improved. In addition, since a conventional power transmission means such as a ball screw system is not required, the entire bearing can be made compact.

【0013】さらに、駆動手段として用いる超音波モー
タは、電磁モータのように停止時に振動を生じることが
なく、また、短時間で停止させることができるため、位
置決めに要する時間を短くすることができ、応答性を高
めることができるとともに、非磁性であることから、磁
場の発生を嫌う半導体装置や電子部品の製造工程におい
ても使用することができる。
Further, the ultrasonic motor used as the driving means does not generate vibration when stopped, unlike an electromagnetic motor, and can be stopped in a short time, so that the time required for positioning can be shortened. In addition, the responsiveness can be improved, and since it is non-magnetic, it can be used also in a manufacturing process of a semiconductor device or an electronic component, which does not want to generate a magnetic field.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。図1は本発明に係る静圧流体軸受を直線案内装置に
用いた例を示す斜視図であり、ガイド軸をなす第1部材
1と、該第1部材1を囲繞するスライダーとしての第2
部材2とからなり、上記第2部材2の側面に設けた流体
供給孔3より圧縮流体を上記第1部材1と第2部材2と
の隙間に供給することにより静圧流体層を形成し、スラ
イダーとしての第2部材2をガイド軸としての第1部材
に対して非接触の状態で支承するようにしてある。
Embodiments of the present invention will be described below. FIG. 1 is a perspective view showing an example in which the hydrostatic bearing according to the present invention is used for a linear guide device, and includes a first member 1 forming a guide shaft and a second member as a slider surrounding the first member 1.
A static pressure fluid layer is formed by supplying a compressed fluid to a gap between the first member 1 and the second member 2 from a fluid supply hole 3 provided on a side surface of the second member 2; The second member 2 as a slider is supported without contact with the first member as a guide shaft.

【0015】なお、図2に示すように第2部材2を構成
する各壁板2A〜2Dの内面には、流体供給孔3と連通
し、かつ各壁板2A〜2Dを結ぶ主要溝2aと該主要溝
2aに連通するT字状をした浅めの絞り溝2bをそれぞ
れ刻設してあり、上記流体供給孔3に供給された圧縮流
体は上記主要溝2a及び絞り溝2bを介して各壁板2A
〜2Dの全域に広がり、第1部材1と第2部材2との隙
間に静圧流体層を形成するようになっている。
As shown in FIG. 2, the inner surface of each of the wall plates 2A to 2D constituting the second member 2 has a main groove 2a communicating with the fluid supply hole 3 and connecting the wall plates 2A to 2D. T-shaped shallow throttle grooves 2b communicating with the main grooves 2a are provided, respectively, and the compressed fluid supplied to the fluid supply holes 3 is supplied to each wall through the main grooves 2a and the throttle grooves 2b. Board 2A
2D, and forms a hydrostatic fluid layer in the gap between the first member 1 and the second member 2.

【0016】また、この直線案内装置は、直方体をした
圧電材料からなる超音波振動子6と該超音波振動子6の
端面に取着された円柱状の振動体7とからなる超音波モ
ータ5を駆動手段とし、該超音波モータ5は振動体7を
前記第1部材1と当接させた状態で第2部材2に配設し
てある。
The linear guide device is an ultrasonic motor 5 comprising an ultrasonic vibrator 6 made of a rectangular parallelepiped piezoelectric material and a columnar vibrator 7 attached to an end face of the ultrasonic vibrator 6. The ultrasonic motor 5 is disposed on the second member 2 in a state where the vibrating body 7 is in contact with the first member 1.

【0017】図3に超音波モータ5の固定構造を示すよ
うに、第2部材2の壁体2Cには凹部を備え、この凹部
を囲むように壁体2Cにはケース4を固着してある。そ
して、このケース4内に超音波モータ5の超音波振動子
6を収納するのであるが、超音波振動子6とケース4と
の間に弾性支持体8を配置して超音波振動子6の変位を
妨げないように支持するとともに、超音波振動子6の振
動体7と反対側の表面にはケース4を貫通して設けられ
たピン9を当接させてあり、該ピン9の先端部に設けら
れたフランジ部9aとケース4との間にコイル10を介
在させることで、上記超音波モータ5の振動体7を第1
部材1と当接させてある。
As shown in FIG. 3, the fixing structure of the ultrasonic motor 5 is provided with a recess in the wall 2C of the second member 2, and a case 4 is fixed to the wall 2C so as to surround the recess. . The ultrasonic vibrator 6 of the ultrasonic motor 5 is housed in the case 4, and the elastic support 8 is disposed between the ultrasonic vibrator 6 and the case 4 to form the ultrasonic vibrator 6. A pin 9 provided through the case 4 is brought into contact with the surface of the ultrasonic vibrator 6 on the side opposite to the vibrator 7, and the distal end of the pin 9 is supported. By interposing the coil 10 between the flange portion 9a provided in the case and the case 4, the vibrating body 7 of the ultrasonic motor 5 is moved to the first position.
It is in contact with the member 1.

【0018】なお、第2部材2の位置検出にはリニアエ
ンコーダ等を用いることができ、図示していないが、第
1部材1の下面にリニアスケールを設けるとともに、第
2部材2の壁板2Bに検出ヘッドを配置し、この検出ヘ
ッドによりリニアスケールの目盛りを読み取ることで位
置情報を検出すれば良い。
A linear encoder or the like can be used to detect the position of the second member 2, and although not shown, a linear scale is provided on the lower surface of the first member 1 and the wall plate 2B of the second member 2 is provided. The position information may be detected by arranging a detection head at the position and reading the scale of the linear scale with the detection head.

【0019】この直線案内装置を作動させるには、超音
波モータ5に交流電圧を印加して超音波振動子6を楕円
振動させれば、振動体7と第1部材1との間の摩擦抵抗
によってスライダーとしての第2部材2を矢印の方向に
移動させることができ、リニアスケール等の位置検出手
段によって第2部材2が所定の位置に達したことを検知
し、超音波モータ5への通電を閉じれば、振動体7と第
1部材1との間の摩擦抵抗が急激に増大するため、振動
を生じることなく直ちにスライダーとしての第2部材2
を停止させて所定の位置に位置決めすることができる。
なお、超音波モータ5に印加する交流電圧の位相を90
°ずらすことで、スライダーとしての第2部材2を矢印
と逆の方向に移動させることができる。
In order to operate the linear guide device, an alternating voltage is applied to the ultrasonic motor 5 to cause the ultrasonic vibrator 6 to elliptically vibrate, so that the frictional resistance between the vibrating body 7 and the first member 1 is increased. The slider 2 can move the second member 2 as a slider in the direction of the arrow, and the position detection means such as a linear scale detects that the second member 2 has reached a predetermined position, and energizes the ultrasonic motor 5. Is closed, the frictional resistance between the vibrating body 7 and the first member 1 sharply increases, so that the second member 2 as a slider immediately does not generate vibration.
Can be stopped and positioned at a predetermined position.
Note that the phase of the AC voltage applied to the ultrasonic motor 5 is 90
The second member 2 as a slider can be moved in the direction opposite to the arrow by shifting the angle.

【0020】そして、本発明によれば、駆動手段に超音
波モータ5を用い、該超音波モータ5の振動体7を第1
部材1と当接させた状態で配置し、この間での摩擦抵抗
によって直接第2部材2に駆動力を付与するようにして
あることから、第2部材2の移動時におけるピッチング
やヨーイングを抑え、真直度を高めることができるとと
もに、超音波モータ5によるナノメートルオーダーの高
分解能な位置決めと、第2部材2を移動させてから所定
の位置に位置決めするまでに要する時間を大幅に短縮す
ることができる。
According to the present invention, the ultrasonic motor 5 is used as the driving means, and the vibrating body 7 of the ultrasonic motor 5 is moved to the first position.
Since it is arranged in a state of being in contact with the member 1 and the driving force is directly applied to the second member 2 by frictional resistance between them, pitching and yawing during movement of the second member 2 are suppressed, Straightness can be improved, and high-resolution positioning on the order of nanometers by the ultrasonic motor 5 and the time required to move the second member 2 to a predetermined position can be significantly reduced. it can.

【0021】また、従来の直線案内装置のように、ボー
ルネジ方式のような動力伝達手段が不要であるため、装
置全体をコンパクト化できるとともに、超音波モータ5
は非磁性であることから、磁場の発生を嫌う半導体装置
や電子部品の製造工程においても使用することができ
る。
Further, unlike the conventional linear guide device, power transmission means such as a ball screw type is not required, so that the entire device can be made compact and the ultrasonic motor 5 can be used.
Since it is non-magnetic, it can be used in the process of manufacturing semiconductor devices and electronic components that dislike generating a magnetic field.

【0022】一方、超音波モータ5を用いることによる
問題点として、超音波モータ5を駆動させると超音波振
動子6が発熱し、この熱によって振動特性が変化するた
めに、分解能、応答性、真直度、位置決め再現性といっ
た特性に悪影響を与えるとともに、超音波モータ5の振
動体7と第1部材1との間の摩擦抵抗に伴う摩擦熱によ
って第1部材1や第2部材2が微小な熱変形を受け、測
定精度や加工精度に悪影響を及ぼす恐れがあるが、本発
明によれば、第1部材1と第2部材2との隙間に供給さ
れる圧縮流体によって常に超音波モータ5及び超音波モ
ータ5の駆動部を冷却することができるため、超音波モ
ータ5の発熱に伴う振動特性の劣化や摩擦熱に伴う第1
部材1や第2部材の熱変形を抑えることができる。
On the other hand, the problem with the use of the ultrasonic motor 5 is that, when the ultrasonic motor 5 is driven, the ultrasonic vibrator 6 generates heat, and the heat changes the vibration characteristics. In addition to adversely affecting characteristics such as straightness and positioning reproducibility, the first member 1 and the second member 2 are minute due to frictional heat generated by frictional resistance between the vibrating body 7 of the ultrasonic motor 5 and the first member 1. According to the present invention, the ultrasonic motor 5 and the ultrasonic motor 5 are always subjected to the thermal deformation due to the compressed fluid supplied to the gap between the first member 1 and the second member 2, which may adversely affect the measurement accuracy and the processing accuracy. Since the drive unit of the ultrasonic motor 5 can be cooled, the vibration characteristics of the ultrasonic motor 5 deteriorate due to heat generation and the first characteristic due to frictional heat.
Thermal deformation of the member 1 and the second member can be suppressed.

【0023】かくして、本発明の直線案内装置を用いれ
ば、高分解能な位置決めが可能であるとともに、応答
性、真直度、位置決め再現性を大幅に向上させることが
でき、超高精密測定用や超高精密加工用として好適に使
用することができる。
Thus, by using the linear guide device of the present invention, high-resolution positioning can be performed, and responsiveness, straightness, and positioning reproducibility can be greatly improved. It can be suitably used for high precision machining.

【0024】次に、本発明の他の実施形態を説明する。
図4は本発明に係る静圧流体軸受をエアースピンドルに
用いた例を示す斜視図であり、円柱状をした回転軸をな
す第1部材11と、該第1部材11を囲繞する円筒状の
固定体をなす第2部材12とからなり、上記第2部材1
2の側面に設けた流体供給孔13より圧縮流体を上記第
1部材11と第2部材12との隙間に供給することによ
り静圧流体層を形成し、回転軸としての第1部材11を
固定体としての第2部材12に対して非接触の状態で支
承するようにしてある。
Next, another embodiment of the present invention will be described.
FIG. 4 is a perspective view showing an example in which the hydrostatic bearing according to the present invention is used for an air spindle, and includes a first member 11 serving as a column-shaped rotating shaft, and a cylindrical member surrounding the first member 11. A second member 12 forming a fixed body;
A compressed fluid is supplied to a gap between the first member 11 and the second member 12 through a fluid supply hole 13 provided on the side surface of the second member 12 to form a hydrostatic fluid layer, and the first member 11 as a rotation axis is fixed. The second member 12 as a body is supported in a non-contact state.

【0025】なお、図5に示すように第2部材12の内
面には、金属又はセラミックスからなる多孔質体2aを
埋設してあり、上記流体供給孔13に供給された圧縮流
体を上記多孔質体2aから第1部材11に対して噴出さ
せることで、第1部材11と第2部材12との隙間に静
圧流体層を形成するようになっている。
As shown in FIG. 5, a porous body 2a made of metal or ceramics is embedded in the inner surface of the second member 12, and the compressed fluid supplied to the fluid supply hole 13 is supplied to the porous member 2a. By spraying the first member 11 from the body 2a, a hydrostatic fluid layer is formed in the gap between the first member 11 and the second member 12.

【0026】また、このエアースピンドルは、直方体を
した圧電材料からなる超音波振動子16と該超音波振動
子16の端面に取着された円柱状の振動体17とからな
る超音波モータ15を駆動手段として用い、該超音波モ
ータ15の振動体17を前記第1部材11の外周面と当
接させた状態で第2部材12に配設してある。
This air spindle is provided with an ultrasonic motor 15 comprising an ultrasonic vibrator 16 made of a rectangular parallelepiped piezoelectric material and a columnar vibrator 17 attached to an end face of the ultrasonic vibrator 16. The vibration member 17 of the ultrasonic motor 15 is disposed on the second member 12 in a state where the vibration member 17 is in contact with the outer peripheral surface of the first member 11.

【0027】図6に超音波モータ15の固定構造を示す
ように、第2部材2の一部に凹部を備え、この凹部を囲
むようにケース14を固着してある。そして、このケー
ス14内に超音波モータ15の超音波振動子16を収納
するのであるが、超音波振動子16とケース14との間
には弾性支持体18を配置し、超音波振動子16の変位
を妨げないように支持するとともに、超音波振動子16
の振動体17と反対側の表面にはケース14を貫通して
設けられたピン19を当接させてあり、該ピン19の先
端部に設けられたフランジ部19aとケース14との間
にコイル20を介在させることで、上記超音波モータ1
5の振動体17を第1部材11と当接させてある。ま
た、第2部材12にはケース14内に連通する貫通孔1
2bを穿設してあり、この貫通孔12bからも第1部材
11と第2部材12との隙間に供給された圧縮流体を導
き、超音波モータ15の冷却効率を高めるようにしてあ
る。
As shown in FIG. 6, a structure for fixing the ultrasonic motor 15 is provided with a concave portion in a part of the second member 2, and a case 14 is fixed so as to surround the concave portion. Then, the ultrasonic vibrator 16 of the ultrasonic motor 15 is housed in the case 14. An elastic support 18 is disposed between the ultrasonic vibrator 16 and the case 14, and the ultrasonic vibrator 16 Of the ultrasonic vibrator 16
A pin 19 provided through the case 14 is in contact with the surface on the opposite side of the vibrating body 17. A coil 19 is provided between a flange 19 a provided at the tip of the pin 19 and the case 14. 20 so that the ultrasonic motor 1
The fifth vibrating body 17 is in contact with the first member 11. The second member 12 has a through hole 1 communicating with the case 14.
The compressed fluid supplied to the gap between the first member 11 and the second member 12 is also guided from the through hole 12b to increase the cooling efficiency of the ultrasonic motor 15.

【0028】このエアースピンドルを駆動させるには、
超音波モータ15に交流電圧を印加して超音波振動子1
6を楕円振動させれば、振動体17と第1部材11との
間の摩擦抵抗によって回転軸としての第1部材11に駆
動力を付与し、矢印の方向に回転させることができ、第
1部材11が所定の位置まで回転したことを検知し、超
音波モータ15への通電を閉じれば、振動体17と第1
部材11との間の摩擦抵抗が急激に増大するため、振動
を生じることなく直ちに回転軸としての第1部材11を
停止させて所定の回転量に制御することができる。な
お、超音波モータ15に印加する交流電圧の位相を90
°ずらせば、回転軸としての第1部材11を矢印と逆の
方向に回転させることができる。
To drive this air spindle,
AC voltage is applied to the ultrasonic motor 15 and the ultrasonic vibrator 1
6 can be rotated in the direction of the arrow by applying a driving force to the first member 11 as a rotating shaft by frictional resistance between the vibrating body 17 and the first member 11 by causing the first member 11 to rotate in the direction of the arrow. When it is detected that the member 11 has rotated to a predetermined position and the power supply to the ultrasonic motor 15 is closed, the vibration body 17 and the first
Since the frictional resistance between the first member 11 and the member 11 increases rapidly, the first member 11 serving as the rotating shaft can be stopped immediately without vibration to control the rotation amount to a predetermined value. Note that the phase of the AC voltage applied to the ultrasonic motor 15 is 90
If it is shifted, the first member 11 as a rotation axis can be rotated in the direction opposite to the arrow.

【0029】そして、本発明によれば、駆動手段に超音
波モータ15を用い、該超音波モータ15の振動体17
を第1部材11と当接させた状態で配置し、この間での
摩擦抵抗によって直接第1部材11に駆動力を付与する
ようにしてあることから、第1部材11を滑らかに回転
させることができるとともに、超音波モータ15による
高分解能な回転量の制御と、第1部材11の応答性を向
上させることができる。
According to the present invention, the ultrasonic motor 15 is used as the driving means, and the vibrating body 17 of the ultrasonic motor 15 is used.
Are arranged in contact with the first member 11, and the driving force is directly applied to the first member 11 by frictional resistance therebetween, so that the first member 11 can be smoothly rotated. Besides, it is possible to control the rotation amount with high resolution by the ultrasonic motor 15 and improve the responsiveness of the first member 11.

【0030】かくして、本発明のエアースピンドルを用
いれば、高分解能な回転量の制御が可能となり、位置制
御が必要なスピンドルとして好適に使用することができ
る。
Thus, the use of the air spindle of the present invention makes it possible to control the amount of rotation with high resolution, and it can be suitably used as a spindle requiring position control.

【0031】なお、図1及び図4の静圧流体軸受におい
て、第1部材1,11及び第2部材2,12を構成する
材質としては、軽量で熱膨張係数が小さく、かつ高精度
に加工できるものが良く、アルミナ、ジルコニア、炭化
珪素、窒化珪素、窒化アルミニウムなどのセラミックス
を用いることができる。
In the hydrostatic bearing shown in FIGS. 1 and 4, the materials constituting the first members 1, 11 and the second members 2, 12 are lightweight, have a small coefficient of thermal expansion, and are processed with high precision. Preferably, ceramics such as alumina, zirconia, silicon carbide, silicon nitride, and aluminum nitride can be used.

【0032】また、超音波モータ5,15の固定構造と
しては図3、図6に示したものだけに限らず、超音波モ
ータ5,15の振動特性を阻害することなく振動体7,
17が第1部材1,11と当接するように固定できる構
造であれば良い。
The fixing structure of the ultrasonic motors 5, 15 is not limited to those shown in FIGS. 3 and 6, and the vibration members 7,
Any structure can be used as long as it can fix the first member 17 so as to be in contact with the first members 1 and 11.

【0033】(実験例)ここで、図1に示す本発明の静
圧流体軸受と、図7に示す従来の静圧流体軸受とを用意
し、性能を比較する実験を行った。
(Experimental Example) Here, the hydrostatic bearing of the present invention shown in FIG. 1 and the conventional hydrostatic fluid bearing shown in FIG. 7 were prepared, and an experiment for comparing the performance was performed.

【0034】本実験では、静圧流体軸受を構成するガイ
ド軸としての第1部材1,21を、断面形状が60×6
0mm、長さ810mmの角柱体とし、スライダーとし
ての第2部材2,21は、幅110mm、長さ150m
m、厚さ20mmの2枚の壁板2B,2Dと、幅60m
m、長さ150mm、厚さ25mmの2枚の壁板2A,
2Cとを正方形に接合したものを使用した。なお、上記
第1部材1,21及び第2材2,22はいずれも純度9
9.5%のアルミナセラミックスにより形成した。
In this experiment, the first members 1 and 21 as the guide shafts constituting the hydrostatic bearing were used in a cross section of 60 × 6.
The second members 2 and 21 serving as sliders each have a width of 110 mm and a length of 150 m.
m, two wall boards 2B and 2D having a thickness of 20 mm and a width of 60 m
m, 150 mm long, 25 mm thick two wall plates 2A,
What joined 2C and 2C was used. Each of the first members 1 and 21 and the second members 2 and 22 has a purity of 9%.
It was formed of 9.5% alumina ceramics.

【0035】そして、移動ストロークを300mmと
し、スライダーとしての第2部材2,21の移動時間、
位置決め分解能、真直精度をそれぞれ測定した。
Then, the moving stroke is set to 300 mm, the moving time of the second members 2 and 21 as the slider,
Positioning resolution and straightness accuracy were measured.

【0036】結果は表1に示す通りである。The results are as shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】この結果、従来の静圧流体軸受では1mm
±0.1μmを移動させるのに1秒要したのに対し、本
発明の静圧流体軸受は0.2秒しかかからなかった。
As a result, in the conventional hydrostatic bearing, 1 mm
It took 1 second to move ± 0.1 μm, while the hydrostatic bearing of the present invention took only 0.2 seconds.

【0039】また、位置決め分解能も従来の静圧流体軸
受では0.1μmであるのに対し、本発明の静圧流体軸
受は、0.005μmと従来の1/20の分解性能が得
られた。
The positioning resolution is 0.1 μm in the conventional hydrostatic bearing, whereas the hydrostatic bearing of the present invention has a resolution of 1/20 of 0.005 μm.

【0040】さらに、真直精度においては、従来品がネ
ジ軸25の振れ回り等の影響により、水平、垂直方向と
も0.3μm/300mmであったのに対し、本発明品
は、0.1μm/300mmと優れた真直精度を有して
いた。
Further, in the straightness accuracy, the conventional product was 0.3 μm / 300 mm in both the horizontal and vertical directions due to the influence of whirling of the screw shaft 25, whereas the product of the present invention was 0.1 μm / 300 mm. It had an excellent straightness accuracy of 300 mm.

【0041】また、静圧流体軸受の大きさを比較したと
ころ、従来品では、ナット24とネジ軸25の幅が10
0mmもあるため、全体の幅としては210mmが必要
であったのに対し、本発明品は、超音波モータ5を収納
するケース分だけのスペースがあれば良く、全体の幅と
しては130mmあれば充分であった。
When the sizes of the hydrostatic bearings were compared, the width of the nut 24 and the screw shaft 25 was 10 in the conventional product.
Since there is also 0 mm, the entire width needs to be 210 mm. On the other hand, the present invention only needs to have a space for the case accommodating the ultrasonic motor 5. It was enough.

【0042】[0042]

【発明の効果】以上のように、本発明によれば、第1部
材と該第1部材を囲繞する第2部材とからなり、上記第
1部材と第2部材との隙間に圧縮流体を供給して静圧流
体層を形成し、上記第1部材又は第2部材を非接触の状
態で移動又は回転させてなる静圧流体軸受において、超
音波振動子の振動に伴って楕円振動する振動体を備えた
超音波モータを前記第2部材に配設し、上記超音波モー
タの駆動力により前記第1部材又は第2部材を移動又は
回転させるようにしたことから、移動又は回転する第1
部材又は第2部材の高分解能な位置決めが可能であると
ともに、真直度、応答性、位置決め再現性を大幅に向上
させることができる。しかも、従来の静圧流体軸受のよ
うなボールネジ方式等の動力伝達手段が不要であるた
め、軸受全体をコンパクト化することができる。
As described above, according to the present invention, the first member and the second member surrounding the first member are provided, and the compressed fluid is supplied to the gap between the first member and the second member. Forming a hydrostatic fluid layer, and moving or rotating the first member or the second member in a non-contact state, in a vibrating body that elliptically vibrates with the vibration of the ultrasonic vibrator The ultrasonic motor provided with the second member is disposed on the second member, and the driving force of the ultrasonic motor moves or rotates the first member or the second member.
High-resolution positioning of the member or the second member is possible, and straightness, responsiveness, and positioning reproducibility can be significantly improved. In addition, since a power transmission means such as a ball screw system as in a conventional hydrostatic fluid bearing is not required, the entire bearing can be made compact.

【0043】さらに、超音波モータや超音波モータの駆
動部は、第1部材と第2部材との隙間に供給される圧縮
流体によって常に冷却することができるため、超音波モ
ータの発熱や超音波モータの駆動部における摩擦熱を直
ちに放熱し、振動特性の劣化や熱変形を防ぐことができ
るとともに、超音波モータは非磁性であることから、半
導体装置の製造工程にように磁場の発生を嫌うようなと
ころにも使用できる。
Further, since the ultrasonic motor and the drive section of the ultrasonic motor can be constantly cooled by the compressed fluid supplied to the gap between the first member and the second member, the heat generated by the ultrasonic motor and the ultrasonic wave can be reduced. Immediately dissipates frictional heat in the motor drive, preventing deterioration of vibration characteristics and thermal deformation, and since the ultrasonic motor is non-magnetic, dislikes the generation of a magnetic field as in the semiconductor device manufacturing process. Can be used in such places.

【0044】その為、本発明の静圧流体軸受を用いれ
ば、超高精密測定用や超高精密加工用のスラスト軸受や
ラジアル軸受として好適に使用することができる。
Therefore, if the hydrostatic bearing of the present invention is used, it can be suitably used as a thrust bearing or a radial bearing for ultra-high precision measurement or ultra-high precision machining.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る静圧流体軸受を直線案内装置に用
いた例を示す斜視図である。
FIG. 1 is a perspective view showing an example in which a hydrostatic bearing according to the present invention is used in a linear guide device.

【図2】図1の第2部材のみを示す一部を破断した斜視
図である。
FIG. 2 is a partially broken perspective view showing only a second member of FIG. 1;

【図3】図1の静圧流体軸受に備える超音波モータの固
定構造を示す断面図である。
FIG. 3 is a sectional view showing a fixing structure of an ultrasonic motor provided in the hydrostatic bearing of FIG. 1;

【図4】本発明に係る静圧流体軸受をエアースピンドル
に用いた例を示す斜視図である。
FIG. 4 is a perspective view showing an example in which the hydrostatic bearing according to the present invention is used for an air spindle.

【図5】図4の第2部材のみを示す一部を破断した斜視
図である。
FIG. 5 is a partially cutaway perspective view showing only a second member of FIG. 4;

【図6】図4の静圧流体軸受に備える超音波モータの固
定構造を示す断面図である。
FIG. 6 is a sectional view showing a fixing structure of an ultrasonic motor provided in the hydrostatic bearing of FIG. 4;

【図7】直線案内装置としての従来の静圧流体軸受を示
す斜視図である。
FIG. 7 is a perspective view showing a conventional hydrostatic bearing as a linear guide device.

【符号の説明】[Explanation of symbols]

1・・・第1部材 2・・・第2部材 2A〜2D・・
・壁板 2a・・・主要溝 2b・・・絞り溝 3・・・流体供
給孔 4・・・ケース 5・・・超音波モータ 6・・・超音波振動子 7・・
・振動体 8・・・弾性支持体 9・・・ピン 10・・・コイル
1 1st member 2 2nd member 2A-2D ...
・ Wall plate 2a ・ ・ ・ Main groove 2b ・ ・ ・ Throttle groove 3 ・ ・ ・ Fluid supply hole 4 ・ ・ ・ Case 5 ・ ・ ・ Ultrasonic motor 6 ・ ・ ・ Ultrasonic vibrator 7 ・ ・
・ Vibrator 8 ・ ・ ・ Elastic support 9 ・ ・ ・ Pin 10 ・ ・ ・ Coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1部材と該第1部材を囲繞する第2部材
とからなり、上記第1部材と第2部材との隙間に圧縮流
体を供給して静圧流体層を形成し、上記第1部材又は第
2部材を非接触の状態で移動又は回転させてなる静圧流
体軸受において、超音波振動子の振動に伴って楕円振動
する振動体を備えた超音波モータを前記第2部材に配設
し、上記超音波モータの駆動力により前記第1部材又は
第2部材を移動又は回転させるようにしたことを特徴と
する静圧流体軸受。
A first member that surrounds the first member and a second member that surrounds the first member; a compressed fluid is supplied to a gap between the first member and the second member to form a hydrostatic fluid layer; In a hydrostatic bearing in which a first member or a second member is moved or rotated in a non-contact state, an ultrasonic motor including a vibrating body that performs an elliptical vibration with the vibration of an ultrasonic vibrator is provided by the second member. Wherein the first member or the second member is moved or rotated by the driving force of the ultrasonic motor.
JP9358644A 1997-12-25 1997-12-25 Static pressure fluid bearing Withdrawn JPH11190339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358644A JPH11190339A (en) 1997-12-25 1997-12-25 Static pressure fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358644A JPH11190339A (en) 1997-12-25 1997-12-25 Static pressure fluid bearing

Publications (1)

Publication Number Publication Date
JPH11190339A true JPH11190339A (en) 1999-07-13

Family

ID=18460383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358644A Withdrawn JPH11190339A (en) 1997-12-25 1997-12-25 Static pressure fluid bearing

Country Status (1)

Country Link
JP (1) JPH11190339A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069773A (en) * 1999-08-31 2001-03-16 Kyocera Corp Guide unit having ultrasonic motor as drive source for mover
JP2001218482A (en) * 2000-02-03 2001-08-10 Nikon Corp Vibration actuator
JP2001237178A (en) * 1999-12-16 2001-08-31 Tokyo Electron Ltd Film-forming equipment
EP1143487A1 (en) * 2000-04-04 2001-10-10 ESEC Trading S.A. Linear guide with an air bearing
EP1143489A1 (en) * 2000-04-04 2001-10-10 ESEC Trading SA Linear guide with an air bearing
JP2002130269A (en) * 2000-10-27 2002-05-09 Sigma Technos Kk Linear motion stage, composite stage, guide for linear motion stage, and movable member
JP2003056563A (en) * 2001-08-10 2003-02-26 Isel Co Ltd Guide device
US6571461B2 (en) 2000-04-04 2003-06-03 Esec Trading Sa Linear guide with an air bearing having provision for heating a support element of the linear guide to maintain fluid gap
JP2005328628A (en) * 2004-05-13 2005-11-24 Olympus Corp Ultrasonic motor
JP2016145822A (en) * 2015-01-30 2016-08-12 株式会社東京精密 Three-dimensional coordinate measurement device
CN106736612A (en) * 2016-12-14 2017-05-31 西安交通大学 A kind of ring-like pneumato-static slideway of precision lead screw drive-type
US9921049B2 (en) 2015-01-30 2018-03-20 Tokyo Seimitsu Co., Ltd. Three-dimensional coordinate measurement apparatus
CN113977298A (en) * 2021-12-27 2022-01-28 中机智能装备创新研究院(宁波)有限公司 Supporting plate sliding device
CN113977299A (en) * 2021-12-27 2022-01-28 中机智能装备创新研究院(宁波)有限公司 Linear sliding device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069773A (en) * 1999-08-31 2001-03-16 Kyocera Corp Guide unit having ultrasonic motor as drive source for mover
JP2001237178A (en) * 1999-12-16 2001-08-31 Tokyo Electron Ltd Film-forming equipment
JP2001218482A (en) * 2000-02-03 2001-08-10 Nikon Corp Vibration actuator
JP4491888B2 (en) * 2000-02-03 2010-06-30 株式会社ニコン Vibration actuator
EP1143487A1 (en) * 2000-04-04 2001-10-10 ESEC Trading S.A. Linear guide with an air bearing
EP1143489A1 (en) * 2000-04-04 2001-10-10 ESEC Trading SA Linear guide with an air bearing
US6571461B2 (en) 2000-04-04 2003-06-03 Esec Trading Sa Linear guide with an air bearing having provision for heating a support element of the linear guide to maintain fluid gap
JP2002130269A (en) * 2000-10-27 2002-05-09 Sigma Technos Kk Linear motion stage, composite stage, guide for linear motion stage, and movable member
JP4567926B2 (en) * 2001-08-10 2010-10-27 アイセル株式会社 Guide device
JP2003056563A (en) * 2001-08-10 2003-02-26 Isel Co Ltd Guide device
JP2005328628A (en) * 2004-05-13 2005-11-24 Olympus Corp Ultrasonic motor
JP2016145822A (en) * 2015-01-30 2016-08-12 株式会社東京精密 Three-dimensional coordinate measurement device
US9921049B2 (en) 2015-01-30 2018-03-20 Tokyo Seimitsu Co., Ltd. Three-dimensional coordinate measurement apparatus
US10663283B2 (en) 2015-01-30 2020-05-26 Tokyo Seimitsu Co., Ltd. Three-dimensional coordinate measurement apparatus
US11067382B2 (en) 2015-01-30 2021-07-20 Tokyo Seimitsu Co., Ltd. Three-dimensional coordinate measurement apparatus
CN106736612A (en) * 2016-12-14 2017-05-31 西安交通大学 A kind of ring-like pneumato-static slideway of precision lead screw drive-type
CN113977298A (en) * 2021-12-27 2022-01-28 中机智能装备创新研究院(宁波)有限公司 Supporting plate sliding device
CN113977299A (en) * 2021-12-27 2022-01-28 中机智能装备创新研究院(宁波)有限公司 Linear sliding device
CN113977298B (en) * 2021-12-27 2022-04-01 中机智能装备创新研究院(宁波)有限公司 Supporting plate sliding device

Similar Documents

Publication Publication Date Title
JPH11190339A (en) Static pressure fluid bearing
US7915787B2 (en) Actuator
US8297149B2 (en) Friction drive actuator
JP4296041B2 (en) Piezoelectric motor and electronic device with piezoelectric motor
JP4881406B2 (en) Piezoelectric motor and electronic device with piezoelectric motor
JPH02111271A (en) X-y stage
JP2002090282A (en) Endless track translating/turning stage
US7944129B2 (en) Ultrasonic actuator and magnetic recording apparatus using the same
JP2001116867A (en) Xy stage
Borodin et al. Nano-positioning system using linear ultrasonic motor with “shaking beam”
Hu et al. A piezoelectric spherical motor with two degree-of-freedom
Zhang et al. Resonant-type piezoelectric screw motor for one degree of freedom positioning platform application
JPH08170636A (en) Linear guide unit
JP2705785B2 (en) Stage equipment
Goda et al. Examination of hemispherical shell stator for lightweight spherical ultrasonic motor
Wang et al. Non-resonant piezoelectric linear motor with alternating normal contact force
Ferreira Design of a flexible conveyer microrobot with electromagnetic field-based friction drive control for microfactory stations
Isobe et al. Motion error correction for non-contact ultrasonic motor driven by multi-layered piezoelectric actuators
JP2006271169A (en) Ultrasonic motor
JP2764285B2 (en) Rotary positioning device
JP3069931B2 (en) Surface shape measuring method and device
Claeyssen et al. Piezoelectric actuators and motors based on shell structures
JP2001186783A (en) Guiding device using ultrasonic motor as driving source of movable body
JP2001224188A (en) Guide apparatus applying ultrasonic motor as drive source
JP2009044952A (en) Ultrasonic actuator, magnetic recorder

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050221