JPH11189851A - Grain oriented silicon steel sheet with extremely high magnetic flux density, and its manufacture - Google Patents

Grain oriented silicon steel sheet with extremely high magnetic flux density, and its manufacture

Info

Publication number
JPH11189851A
JPH11189851A JP9359159A JP35915997A JPH11189851A JP H11189851 A JPH11189851 A JP H11189851A JP 9359159 A JP9359159 A JP 9359159A JP 35915997 A JP35915997 A JP 35915997A JP H11189851 A JPH11189851 A JP H11189851A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
steel sheet
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9359159A
Other languages
Japanese (ja)
Other versions
JP4163773B2 (en
Inventor
Takeaki Wakizaka
岳顕 脇坂
Ryutaro Kawamata
竜太郎 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35915997A priority Critical patent/JP4163773B2/en
Publication of JPH11189851A publication Critical patent/JPH11189851A/en
Application granted granted Critical
Publication of JP4163773B2 publication Critical patent/JP4163773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain oriented silicon steel sheet having high magnetic flux density, which has saturation magnetic flux density, in high magnetic field, higher than that of products obtained by the conventional manufacturing method, and its manufacture. SOLUTION: The grain oriented silicon steel sheet has a composition consisting of, by weight, <=0.0030% C, <=0.050% acid soluble Al, <=0.0150% N, and the balance Fe with inevitable impurities and also has >=75% integration degree to <=10 deg. from [100] rolling direction of crystal. Further, in this steel sheet, B8 >=1.90T and B100 >=2.10T are satisfied, where B8 and B100 represent magnetic flux density at 800 A/m and magnetic flux density at 10,000 A/m, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁束密度が極めて
高い方向性電磁鋼板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having an extremely high magnetic flux density.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、二次再結晶法により
鋼板の結晶粒を特定方位に高度に配向させた成品である
ことが特徴であり、圧延面に{110}面、圧延方向に
<100>軸を有するいわゆるゴス方位を持つ結晶粒に
より構成されている。
2. Description of the Related Art A grain-oriented electrical steel sheet is characterized in that it is a product in which crystal grains of the steel sheet are highly oriented in a specific direction by a secondary recrystallization method. It is composed of crystal grains having a so-called Goss orientation having a <100> axis.

【0003】また、方向性電磁鋼板の用途としては、軟
磁性材料として主にトランスその他の電気機器の鉄心材
料に使用されるもので、近年省エネルギー、省資源への
社会的要求がますます厳しくなっている事から、方向性
電磁鋼板の鉄損低減、磁化特性改善への要求も厳しくな
ってきている。このため磁気特性、特に良好な励磁特性
と鉄損特性が求められるようになってきている。
[0003] The use of grain-oriented electrical steel sheets is mainly used as a soft magnetic material for core materials of transformers and other electrical equipment. In recent years, social demands for energy saving and resource saving have become increasingly severe. Therefore, demands for reduction of iron loss and improvement of magnetization characteristics of grain-oriented electrical steel sheets have become strict. For this reason, magnetic characteristics, particularly good excitation characteristics and iron loss characteristics, have been required.

【0004】方向性電磁鋼板の励磁特性を示す指標とし
ては、通常磁束密度B8 (磁界の強さ800A/mにお
ける磁束密度)が用いられている。また鉄損特性を示す
指標としては、W17/50 (50Hzで1.7Tの磁束密
度まで磁化させたときの単位重量あたりの鉄損)等が用
いられている。
A magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index indicating the excitation characteristics of a grain-oriented electrical steel sheet. As an index indicating iron loss characteristics, W 17/50 (iron loss per unit weight when magnetized to a magnetic flux density of 1.7 T at 50 Hz) is used.

【0005】鉄損は渦電流損とヒステリシス損からな
り、渦電流損は鋼板の電気抵抗率、板厚、結晶粒度、磁
区の形態、鋼板表面の皮膜張力等の因子により支配され
ている。一方、ヒステリシス損は磁束密度を支配する鋼
板の結晶方位、純度、内部歪等により支配される。
Iron loss consists of eddy current loss and hysteresis loss. The eddy current loss is governed by factors such as the electrical resistivity of the steel sheet, the thickness of the steel sheet, the grain size, the form of magnetic domains, and the film tension on the steel sheet surface. On the other hand, the hysteresis loss is governed by the crystal orientation, purity, internal strain and the like of the steel sheet that governs the magnetic flux density.

【0006】従来、鉄損を低減させるために、Si含有
量を高め鋼板の電気抵抗を大きくすることが行われてき
た。しかしながら、Si含有量を高めるのに伴い飽和磁
束密度が低下するため、これを従来技術では二次再結晶
方位の集積度を上昇させることで補って高磁束密度方向
性電磁鋼板を製造してきた。
Conventionally, in order to reduce iron loss, it has been practiced to increase the Si content and increase the electrical resistance of a steel sheet. However, since the saturation magnetic flux density decreases with an increase in the Si content, the prior art has compensated for this by increasing the degree of integration of the secondary recrystallization orientation to produce a high magnetic flux density grain-oriented electrical steel sheet.

【0007】このために、従来技術においては、二次再
結晶を安定して発現させるとともにその方位集積度を高
め、磁束密度を向上させる因子として、インヒビターの
役割が重要である。この目的のため、従来技術ではMn
S、AlN、MnSe等がインヒビターとして用いられ
てきている。
[0007] For this reason, in the prior art, the role of the inhibitor is important as a factor for stably expressing secondary recrystallization, increasing the degree of azimuth integration, and improving magnetic flux density. For this purpose, the prior art uses Mn
S, AlN, MnSe and the like have been used as inhibitors.

【0008】従来の方向性電磁鋼板の製造法は、二次再
結晶方位制御に用いられるインヒビターの種類により大
きく3種類に大別される。
Conventional methods for producing grain-oriented electrical steel sheets are roughly classified into three types depending on the type of inhibitor used for controlling the secondary recrystallization orientation.

【0009】第一は、M.F.Littmannにより特公昭30−
3651号公報に開示されている、インヒビターにMn
S用い、二回冷延法で製造する方法である。第二、特公
昭40−15644号公報に田口、坂倉らにより開示さ
れた、MnSに加えてAlNをインヒビターとする製造
方法である。このインヒビターにAlNを用いる方法に
より、方向性電磁鋼板のB8 は1.870T以上に向上
し、磁気特性の改善による省エネルギーに多大な貢献を
果たした。第三に、特公昭51−13469号公報に今
中等により開示されたMnSとSbもしくはMnS、M
nSeとSbを用い、二回冷延法により製造する方法で
ある。
The first is by MFLittmann,
No. 3651 discloses an inhibitor Mn.
This is a method of manufacturing by cold rolling twice using S. Second, a production method using AlN as an inhibitor in addition to MnS, disclosed by Taguchi and Sakakura et al. In Japanese Patent Publication No. 40-15644. By using AlN for this inhibitor, B 8 of the grain-oriented electrical steel sheet was improved to 1.870 T or more, and the improvement of magnetic properties contributed greatly to energy saving. Third, MnS and Sb or MnS, M disclosed in Ichinaka et al. In JP-B-51-13469.
This is a method in which nSe and Sb are used and are manufactured by a double cold rolling method.

【0010】これらの従来法においては本質的あるいは
良好な磁束密度を得るためにはインヒビターの析出制御
を目的として、高温スラブ加熱により一旦インヒビター
を構成する析出物を溶体化し、これを熱延工程あるいは
特公昭46−23820号公報に開示されているように
熱延板焼鈍時に微細に析出させることが必要である。こ
のように従来法では製鋼段階での成分調整と熱延の段階
でほぼ製品の特性が決定されるため、上工程での材質造
り込みの安定性確立が重要な課題であった。
In these conventional methods, in order to obtain an essential or good magnetic flux density, for the purpose of controlling the precipitation of the inhibitor, the precipitate constituting the inhibitor is once dissolved by high-temperature slab heating, and this is subjected to a hot rolling step or As disclosed in JP-B-46-23820, it is necessary to precipitate finely during hot-rolled sheet annealing. As described above, in the conventional method, the properties of the product are almost determined at the stage of the component adjustment at the steel making stage and at the stage of hot rolling. Therefore, it is an important issue to establish the stability of the material building in the upper process.

【0011】これらの従来法においては、鉄損を低減さ
せることが第一目標であり、その目標を達成するために
磁束密度を高めることが特徴であった。何故ならば、方
向性電磁鋼板の皮膜張力の効果と磁束密度の間には、J.
Appl.Phys.,vol.41.no.7.p2981-2984(1970) に指摘され
ているように、磁束密度B8 の値が高いほどその鉄損低
減効果が大きいことが知られている。また磁区細分化に
よる鉄損低減法は特開昭58−5968号公報、特開昭
58−26405号公報に述べられているが、磁区細分
化処理前のプレーン材の磁束密度が高いほどその効果が
大きいことが知られているからである。
In these conventional methods, the primary goal is to reduce iron loss, and the feature is to increase the magnetic flux density in order to achieve the goal. Because, between the effect of the film tension of the grain-oriented electrical steel sheet and the magnetic flux density, J.
Appl.Phys., As pointed out in vol.41.no.7.p2981-2984 (1970), it is known that the iron loss reducing effect as the value of the magnetic flux density B 8 is high is large. The method of reducing iron loss by magnetic domain refining is described in JP-A-58-5968 and JP-A-58-26405. However, the effect increases as the magnetic flux density of the plain material before the magnetic domain refining process increases. Is known to be large.

【0012】一方、近年では、トランス鉄心において特
に小型軽量/高性能化のために、従来の方向性電磁鋼板
とは異なり、鉄損よりも高磁束密度を重視する需要家の
要求が高まってきており、その製造技術の確立が急がれ
ていた。高磁束密度を得るためには従来技術で重視され
たように方位集積度を上げることの他に、材料中の鉄そ
のものの含有量を高め、飽和磁束密度を上げることが有
効である。鉄は2.16Tという高い飽和磁束密度を持
っている。しかし、鉄にSi等の非磁性不純物を添加す
ると飽和磁束密度は低下する。例えば、3%のSiを鉄
に添加すると飽和磁束密度は2.03Tにまで低下して
しまう。したがって、不純物の低減による飽和磁束密度
の向上は、高磁束密度を得るためには大変効果的であ
る。
On the other hand, in recent years, in order to improve the size and the weight and the performance of the transformer core, in particular, unlike conventional grain-oriented electrical steel sheets, there is an increasing demand from consumers who place importance on high magnetic flux density rather than iron loss. Therefore, the establishment of the manufacturing technology was urgent. In order to obtain a high magnetic flux density, it is effective to increase the content of iron itself in the material and increase the saturation magnetic flux density in addition to increasing the degree of azimuth integration as emphasized in the prior art. Iron has a high saturation magnetic flux density of 2.16T. However, when a nonmagnetic impurity such as Si is added to iron, the saturation magnetic flux density decreases. For example, when 3% of Si is added to iron, the saturation magnetic flux density decreases to 2.03T. Therefore, improvement of the saturation magnetic flux density by reducing impurities is very effective for obtaining a high magnetic flux density.

【0013】発明者等はこの目的で、これまでに特公平
7−122093号公報、特開平4−301053号公
報等で、高磁束密度方向性電磁鋼板の製造法について開
示を行ってきた。しかしながら、近年では小型トランス
の鉄心材料等において、これらの製造法による高磁束密
度方向性電磁鋼板よりも、高磁場における飽和磁束密度
の高いものが要求されているのが現状である。
For this purpose, the inventors have disclosed a method of manufacturing a high magnetic flux density grain-oriented electrical steel sheet in Japanese Patent Publication No. 7-122093 and Japanese Patent Application Laid-Open No. Hei 4-301553. However, in recent years, iron core materials of small transformers and the like are required to have a higher saturation magnetic flux density in a high magnetic field than a high magnetic flux density grain-oriented electrical steel sheet manufactured by these methods.

【0014】[0014]

【発明が解決しようとする課題】本発明は、上述したよ
うに、小型トランスの鉄心材料等において近年要求され
ているような高磁束密度方向性電磁鋼板であって、従来
の製造方法で得られていた製品よりも、高磁場における
飽和磁束密度の高い高磁束密度方向性電磁鋼板及びその
製造法を提供することを目的とする。
SUMMARY OF THE INVENTION As described above, the present invention relates to a high magnetic flux density grain-oriented electrical steel sheet, which is required in recent years for iron materials for small transformers and the like, and can be obtained by a conventional manufacturing method. It is an object of the present invention to provide a high magnetic flux density grain-oriented electrical steel sheet having a higher saturation magnetic flux density in a high magnetic field than a product which has been used, and a method for manufacturing the same.

【0015】[0015]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1) 重量%で、 C≦0.0030%、 酸可溶性Al≦0.050%、 N≦0.0150%、 を含有し、残部がFe及び不可避的不純物からなり、結
晶の[100]の圧延方向から10゜以内への集積度が
75%以上である方向性電磁鋼板であって、800A/
mでの磁束密度:B8 ≧1.90T、かつ10000A
/mでの磁束密度:B100 ≧2.10Tであることを特
徴とする磁束密度の極めて高い方向性電磁鋼板。
The gist of the present invention is as follows. (1) In% by weight, C ≦ 0.0030%, acid-soluble Al ≦ 0.050%, N ≦ 0.0150%, and the balance consists of Fe and unavoidable impurities. A grain-oriented electrical steel sheet having a degree of integration within 10 ° from the rolling direction of 75% or more, and is 800A /
Magnetic flux density at m: B 8 ≧ 1.90T and 10,000A
Magnetic flux density at / m: B 100 ≧ 2.10T, a grain-oriented electrical steel sheet having an extremely high magnetic flux density.

【0016】(2) 重量%で、 0.010%≦C≦0.14%、 0.010%≦酸可溶性Al≦0.050%、 0.0030%≦N≦0.0150% を含有し、残部がFe及び不可避的不純物からなるスラ
ブを、加熱、熱延した後、1回以上の冷延を行って最終
板厚とし、脱炭焼鈍後、Ac1 変態点以下の温度域で最
終焼鈍する方向性電磁鋼板の製造方法であって、最終冷
延圧下率が75%以上90%以下であることを特徴とす
る請求項1記載の磁束密度の極めて高い方向性電磁鋼板
の製造方法。
(2) 0.010% ≦ C ≦ 0.14%, 0.010% ≦ acid-soluble Al ≦ 0.050%, 0.0030% ≦ N ≦ 0.0150% by weight A slab consisting of Fe and unavoidable impurities is heated and hot-rolled, cold-rolled one or more times to a final thickness, decarburized, and finally annealed in a temperature range below the Ac 1 transformation point. The method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density according to claim 1, wherein the final cold rolling reduction is 75% or more and 90% or less.

【0017】[0017]

【発明の実施の形態】本発明者らは、従来技術での検討
の主眼とされたインヒビター制御技術以外の製造プロセ
ス上の検討課題として、鉄損の中の渦電流損成分を低減
するために成品板厚を薄くし、かつ高磁束密度も両立さ
せるために、冷延条件の制御による磁束密度の高い方向
性電磁鋼板の製造法について鋭意検討した結果、最終冷
延圧下率を75%以上90%以下に制御することで、成
品における結晶の[100]の圧延方向から10゜以内
への集積度が75%以上に向上し、磁束密度が向上する
ことを見いだし、発明の完成に至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The inventors of the present invention have studied a manufacturing process other than the inhibitor control technology, which has been the focus of the prior art, to reduce the eddy current loss component in iron loss. In order to reduce the thickness of the product and to achieve high magnetic flux density, the inventors studied the method of manufacturing grain-oriented electrical steel sheets with high magnetic flux density by controlling the cold rolling conditions. As a result, the final cold rolling reduction was 75% or more. %, The degree of integration of the crystal in the product within [10] from the rolling direction of [100] was improved to 75% or more, and the magnetic flux density was improved. Thus, the invention was completed.

【0018】以下に本発明を詳細に説明する。まず、本
発明の製造方法で用いるスラブの含有成分について説明
する。Cはその含有量が0.010%未満になると二次
再結晶が不安定となり、磁束密度が著しく低下するので
0.010%以上とする。一方、0.14%を超える
と、脱炭焼鈍に要する時間が長くなりすぎ、不経済であ
るので0.14%以下とする。
Hereinafter, the present invention will be described in detail. First, the components contained in the slab used in the production method of the present invention will be described. If the content of C is less than 0.010%, the secondary recrystallization becomes unstable and the magnetic flux density is remarkably reduced. On the other hand, if it exceeds 0.14%, the time required for decarburization annealing becomes too long, which is uneconomical.

【0019】酸可溶性AlはNと化合してインヒビター
であるAlNを形成する。その含有量が0.010%未
満であるとインヒビター析出量が不足し二次再結晶が不
安定となるので0.010%以上とする。一方、その含
有量が0.050%超となると析出状態が粗大化し、イ
ンヒビター効果が損なわれ磁束密度が低下するので、
0.050%以下とする。
The acid-soluble Al combines with N to form AlN, an inhibitor. If the content is less than 0.010%, the amount of inhibitor deposited becomes insufficient and secondary recrystallization becomes unstable. Therefore, the content is set to 0.010% or more. On the other hand, if the content exceeds 0.050%, the precipitation state becomes coarse, the inhibitor effect is impaired, and the magnetic flux density is reduced.
0.050% or less.

【0020】Nは0.0030%以上0.0150%以
下にする必要がある。0.0150%を超えるとブリス
ターと呼ばれる鋼板表面の膨れが発生するとともに、一
次再結晶組織の調整が困難となるので0.0150%以
下とする。一方、N含有量が0.0030%未満である
と、インヒビターであるAlNの形成が不足し二次再結
晶の発現が困難になるのでN含有量は0.0030%以
上とする。
N must be 0.0030% or more and 0.0150% or less. If it exceeds 0.0150%, blisters called “blisters” occur on the steel sheet surface, and it becomes difficult to adjust the primary recrystallization structure. On the other hand, if the N content is less than 0.0030%, the formation of AlN, which is an inhibitor, becomes insufficient and secondary recrystallization becomes difficult, so the N content is made 0.0030% or more.

【0021】本発明鋼は、このようなスラブを出発材と
して、後述のプロセスによって得られるものである。以
下、本発明鋼の成分について説明する。Cは脱炭焼鈍に
おいて低減されるが、製品である本発明鋼においてCが
0.0030%を超えると磁気時効が問題となるので
0.0030%以下とする。また、スラブの成分として
は0.010%〜0.050%含有されている酸可溶性
Alは、鋼板表面に形成される酸化被膜等に若干量が消
費されるため、本発明鋼では単に0.050%以下と
し、下限値は設けなかった。Nについても、脱炭焼鈍時
等に若干量が鋼板から抜けるため、本発明鋼では0.0
50%以下として下限値は設けなかった。
The steel of the present invention is obtained by using the slab as a starting material by the process described below. Hereinafter, the components of the steel of the present invention will be described. C is reduced by decarburizing annealing, but if the content of C in the steel of the present invention as a product exceeds 0.0030%, magnetic aging becomes a problem. Further, the acid-soluble Al contained as a component of the slab in an amount of 0.010% to 0.050% is slightly consumed in an oxide film or the like formed on the surface of the steel sheet. 050% or less, and no lower limit was provided. As for N, since a small amount of N comes out of the steel sheet during decarburization annealing or the like, the steel of the present invention has
No lower limit was set as 50% or less.

【0022】そして、本発明では結晶の[100]の圧
延方向から10゜以内への集積度を75%以上とする。
この値が75%未満では所望の高磁束密度が得られない
ためである。従来、無方向性電磁鋼板の分野では鉄の純
度を高めることにより磁束密度を向上することは行われ
ていた。しかし、本発明のような方向性電磁鋼板の分野
においては、鉄損低減のためにSiを添加することが通
常であり、鉄の純度を高めて磁束密度を向上することは
従来行われていない。このように製品において結晶の
[100]の圧延方向から10゜以内への集積度を75
%以上とするには、後述のように最終冷延率を制御すれ
ばよい。
In the present invention, the degree of integration of the crystal within [100] from the rolling direction of [100] is set to 75% or more.
If the value is less than 75%, a desired high magnetic flux density cannot be obtained. Conventionally, in the field of non-oriented electrical steel sheets, improving the magnetic flux density by increasing the purity of iron has been performed. However, in the field of grain-oriented electrical steel sheets as in the present invention, it is usual to add Si to reduce iron loss, and it has not been conventionally performed to improve the magnetic flux density by increasing the purity of iron. . Thus, the degree of integration of the crystal within 10 ° from the rolling direction of [100] in the product is 75
%, The final cold-rolling rate may be controlled as described later.

【0023】次に、本発明のプロセスについて説明す
る。本発明の電磁鋼スラブは、転炉または電気炉等の溶
解炉で鋼を溶製し、必要に応じて真空脱ガス処理し、次
いで連続鋳造により、あるいは造塊後分塊圧延すること
によって得られる。
Next, the process of the present invention will be described. The electromagnetic steel slab of the present invention is obtained by melting steel in a melting furnace such as a converter or an electric furnace, subjecting the steel to vacuum degassing if necessary, and then performing continuous casting or ingot rolling after ingot casting. Can be

【0024】その後、熱間圧延に先立ちスラブ加熱が行
われる。本発明のプロセスにおいては、スラブの加熱温
度は適切に制御して主要インヒビターであるAlNを鋼
中に再固溶させることが肝要である。
Thereafter, slab heating is performed prior to hot rolling. In the process of the present invention, it is important that the heating temperature of the slab is appropriately controlled so that the main inhibitor AlN is re-dissolved in the steel.

【0025】このスラブを熱延して所定の厚みの熱延板
とする。熱延以降の工程については、析出物制御を目的
として1回の圧延で最終板厚とする場合は最終冷延前に
熱延板板焼鈍を行っても良い。また、2回以上の冷間圧
延により最終板厚とする場合は、1回目の冷間圧延前に
熱延板焼鈍を行っても良い。酸洗後、1回もしくは中間
焼鈍を含む2回以上の冷間圧延により最終板厚とする。
This slab is hot-rolled into a hot-rolled sheet having a predetermined thickness. In the steps after the hot rolling, if the final sheet thickness is obtained by one rolling for the purpose of controlling precipitates, the sheet may be annealed before the final cold rolling. When the final thickness is obtained by performing the cold rolling two or more times, the hot rolled sheet annealing may be performed before the first cold rolling. After the pickling, the final thickness is obtained by cold rolling once or twice or more including intermediate annealing.

【0026】ここで、高磁束密度を得るためには最終冷
延率の制御が重要である。すなわち、75%以上90%
以下である必要がある。最終冷延率がこの範囲を外れる
と、得られる製品の結晶方向を制御できず、本発明が目
的とする超高磁束密度が得られないので、最終冷延率は
75%以上90%以下に定める。
Here, in order to obtain a high magnetic flux density, control of the final cold rolling reduction is important. That is, 75% or more and 90%
Must be: If the final cold rolling ratio is out of this range, the crystal direction of the obtained product cannot be controlled, and the ultra-high magnetic flux density aimed at by the present invention cannot be obtained. Determine.

【0027】次に湿水素雰囲気などの雰囲気中で脱炭焼
鈍をする。この焼鈍は、磁気時効等により成品板の磁気
特性を劣化させるCを問題のない量まで低減させるため
の焼鈍で、通常知られたプロセスで行う。
Next, decarburization annealing is performed in an atmosphere such as a wet hydrogen atmosphere. This annealing is an annealing for reducing C, which degrades the magnetic properties of the product sheet due to magnetic aging or the like, to an amount that does not cause a problem, and is performed by a generally known process.

【0028】次いで焼鈍分離材を塗布し仕上げ焼鈍を行
い、二次再結晶および引き続いて純化を行う。本発明の
鋼はαγ変態を有するため、良好な二次再結晶方位を維
持するために仕上げ焼鈍温度はαγ変態点以下で行う。
二次再結晶完了後の純化焼鈍は水素雰囲気中で実施す
る。
Next, an annealing separator is applied and finish annealing is performed, and secondary recrystallization and subsequent purification are performed. Since the steel of the present invention has an αγ transformation, the finish annealing temperature is set to be lower than the αγ transformation point in order to maintain a good secondary recrystallization orientation.
The purification annealing after the completion of the secondary recrystallization is performed in a hydrogen atmosphere.

【0029】この様にして得られた製品には、板間の絶
縁を確保して鉄心としての鉄損を低下させるために、絶
縁皮膜を塗布して最終製品としても良いし、皮膜を施さ
ずに最終製品としても良い。
In order to secure insulation between plates and reduce iron loss as an iron core, the product obtained in this manner may be coated with an insulating film to form a final product, or may not be coated. It may be a final product.

【0030】本発明による製造法における冷延圧下率と
成品磁束密度との関係について実験結果に基づき説明す
る。C:0.05%、酸可溶性Al:0.018%、
N:0.0065%を含有し、残部Feおよび不可避的
不純物からなるスラブを加熱後、熱延を行い厚み2.1
mmの熱延板とした。得られた熱延板に825℃2分の熱
延板焼鈍を施し、酸洗後、73.8〜91.9%の圧下
率で冷延し、最終板厚を0.55〜0.17mmに仕上げ
た。これに830℃の湿水素雰囲気中で5分間の脱炭焼
鈍を施し、その後乾水素中で890℃×10時間の仕上
焼鈍を行った。冷延圧下率と磁界の強さ800,100
00A/mでの磁束密度:B8 ,B100 の関係について
表1に示す。
The relationship between the cold rolling reduction and the product magnetic flux density in the production method according to the present invention will be described based on experimental results. C: 0.05%, acid-soluble Al: 0.018%,
N: A slab containing 0.0065%, the balance being Fe and unavoidable impurities is heated and then hot-rolled to a thickness of 2.1.
mm hot rolled sheet. The obtained hot-rolled sheet is subjected to hot-rolled sheet annealing at 825 ° C. for 2 minutes, and after pickling, cold-rolled at a rolling reduction of 73.8 to 91.9% to a final sheet thickness of 0.55 to 0.17 mm. Finished. This was subjected to decarburizing annealing for 5 minutes in a wet hydrogen atmosphere at 830 ° C., and then to finish annealing at 890 ° C. × 10 hours in dry hydrogen. Cold rolling reduction and magnetic field strength 800,100
Table 1 shows the relationship between the magnetic flux density at 00 A / m: B 8 and B 100 .

【0031】[0031]

【表1】 [Table 1]

【0032】表1より、冷延圧下率を75%以上90%
以下の範囲とすることによって、鋼板の結晶方向を所望
に制御することができ、結果として磁束密度B8 ≧1.
90,B100 ≧2.10Tという極めて優れた磁束密度
を有する方向性電磁鋼板が得られることがわかる。
According to Table 1, the rolling reduction of the cold rolling was 75% or more and 90% or more.
With the following range, the crystal direction of the steel sheet can be controlled as desired, and as a result, the magnetic flux density B 8 ≧ 1.
It can be seen that a grain-oriented electrical steel sheet having an extremely excellent magnetic flux density of 90, B 100 ≧ 2.10T can be obtained.

【0033】[0033]

【実施例】[実施例1]表2の成分を含有し、残部Fe
および不可避的不純物からなるスラブを加熱後、熱延し
て2.1mmの厚みの熱延板とした。得られた熱延板に8
30℃2分の熱延板焼鈍を施し、その後酸洗し73.8
〜91.9%の冷延を施し、0.55〜0.17mmに仕
上げた。これを830℃の湿水素雰囲気中で脱炭焼鈍を
施した。その後890℃×10時間の仕上焼鈍を行っ
た。
EXAMPLES Example 1 The components shown in Table 2 were contained, and the balance Fe
The slab comprising unavoidable impurities was heated and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.1 mm. 8 on the obtained hot rolled sheet
The hot-rolled sheet is annealed at 30 ° C. for 2 minutes, and then is pickled and washed 73.8
It was cold rolled to 〜91.9% and finished to 0.55 to 0.17 mm. This was subjected to decarburization annealing at 830 ° C. in a wet hydrogen atmosphere. Thereafter, finish annealing at 890 ° C. × 10 hours was performed.

【0034】[0034]

【表2】 [Table 2]

【0035】冷延圧下率と仕上げ焼鈍後の磁気特性との
関係を表3に示す。表3より、冷延圧下率が75〜90
%の場合に、鋼板の結晶方向を所望に制御することがで
き、結果として磁束密度B8 ≧1.90,B100 ≧2.
10Tの良好な磁束密度を有する方向性電磁鋼板が得ら
れることがわかる。
Table 3 shows the relationship between the cold rolling reduction and the magnetic properties after finish annealing. From Table 3, the cold rolling reduction is 75 to 90.
%, The crystal direction of the steel sheet can be controlled as desired, and as a result, the magnetic flux densities B 8 ≧ 1.90 and B 100 ≧ 2.
It can be seen that a grain-oriented electrical steel sheet having a good magnetic flux density of 10T can be obtained.

【0036】[0036]

【表3】 [Table 3]

【0037】[実施例2]表4の成分を含有し、残部F
eおよび不可避的不純物からなるスラブを加熱後、熱延
して3.0mmの厚みの熱延板とした。得られた熱延板に
830℃2分の熱延板焼鈍を施し、その後酸洗し73.
3〜91.7%の一回の冷延を施し、0.80〜0.2
5mmに仕上げた。これを830℃の湿水素雰囲気中で脱
炭焼鈍を施した。その後890℃×10時間の仕上焼鈍
を行った。
Example 2 The components shown in Table 4 were contained and the balance F
After heating the slab comprising e and the inevitable impurities, the slab was hot-rolled into a hot-rolled sheet having a thickness of 3.0 mm. The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 830 ° C. for 2 minutes, followed by acid washing.
A single cold rolling of 3 to 91.7% is performed, and 0.80 to 0.2
Finished to 5mm. This was subjected to decarburization annealing at 830 ° C. in a wet hydrogen atmosphere. Thereafter, finish annealing at 890 ° C. × 10 hours was performed.

【0038】[0038]

【表4】 [Table 4]

【0039】冷延圧下率と仕上げ焼鈍後の磁気特性との
関係を表5に示す。表5より、冷延圧下率が75〜90
%の場合に、鋼板の結晶方向を所望に制御することがで
き、その結果として磁束密度B8 ≧1.90,B100
2.10Tの良好な磁束密度を有する方向性電磁鋼板が
得られることがわかる。
Table 5 shows the relationship between the cold rolling reduction and the magnetic properties after finish annealing. From Table 5, the cold rolling reduction is 75 to 90.
%, The crystal direction of the steel sheet can be controlled as desired, and as a result, the magnetic flux density B 8 ≧ 1.90, B 100
It can be seen that a grain-oriented electrical steel sheet having a good magnetic flux density of 2.10 T is obtained.

【0040】[0040]

【表5】 [Table 5]

【0041】[実施例3]表6の成分を含有し、残部F
eおよび不可避的不純物からなるスラブを加熱後、熱延
して3.5mmの厚みの熱延板とした。得られた熱延板に
800℃90秒の熱延板焼鈍を施し酸洗を施した。その
後、一回目の冷間圧延により2.1mmに仕上げた。さら
にこれに830℃90秒の中間焼鈍を施し、その後これ
に73.8〜91.9%の圧下率の最終冷延を施し、
0.55〜0.17mmに仕上げた。これを830℃の湿
水素雰囲気中で脱炭焼鈍を施した。その後、890℃×
10時間の仕上焼鈍を行った。
Example 3 The components shown in Table 6 were contained and the balance F
After heating the slab comprising e and the inevitable impurities, the slab was hot-rolled into a hot-rolled sheet having a thickness of 3.5 mm. The obtained hot-rolled sheet was annealed at 800 ° C. for 90 seconds and pickled. Then, it finished to 2.1 mm by the first cold rolling. Further, this was subjected to an intermediate annealing at 830 ° C. for 90 seconds, and then to a final cold rolling at a reduction of 73.8 to 91.9%,
Finished to 0.55 to 0.17 mm. This was subjected to decarburization annealing at 830 ° C. in a wet hydrogen atmosphere. Then, 890 ° C x
Finish annealing was performed for 10 hours.

【0042】[0042]

【表6】 [Table 6]

【0043】冷延圧下率と仕上げ焼鈍後の磁気特性との
関係を表7に示す。表7より、冷延圧下率が75〜90
%の場合に、鋼板の結晶方向を所望に制御することがで
き、その結果として磁束密度B8 ≧1.90,B100
2.10Tの良好な磁束密度を有する方向性電磁鋼板が
得られることがわかる。
Table 7 shows the relationship between the cold rolling reduction and the magnetic properties after finish annealing. From Table 7, the cold rolling reduction is 75 to 90.
%, The crystal direction of the steel sheet can be controlled as desired, and as a result, the magnetic flux density B 8 ≧ 1.90, B 100
It can be seen that a grain-oriented electrical steel sheet having a good magnetic flux density of 2.10 T is obtained.

【0044】[0044]

【表7】 [Table 7]

【0045】[0045]

【発明の効果】このように本発明によれば、磁束密度が
極めて高い方向性電磁鋼板を製造することが可能であ
る。
As described above, according to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having an extremely high magnetic flux density.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C≦0.0030%、 酸可溶性Al≦0.050%、 N≦0.0150%、 を含有し、残部がFe及び不可避的不純物からなり、結
晶の[100]の圧延方向から10゜以内への集積度が
75%以上である方向性電磁鋼板であって、800A/
mでの磁束密度:B8 ≧1.90T、かつ10000A
/mでの磁束密度:B100 ≧2.10Tであることを特
徴とする磁束密度の極めて高い方向性電磁鋼板。
1. The composition contains, by weight%, C ≦ 0.0030%, acid-soluble Al ≦ 0.050%, and N ≦ 0.0150%, with the balance being Fe and unavoidable impurities, ] A grain-oriented electrical steel sheet having a degree of integration of 75% or more within 10 ° from the rolling direction of 800 A /
Magnetic flux density at m: B 8 ≧ 1.90T and 10,000A
Magnetic flux density at / m: B 100 ≧ 2.10T, a grain-oriented electrical steel sheet having an extremely high magnetic flux density.
【請求項2】 重量%で、 0.010%≦C≦0.14%、 0.010%≦酸可溶性Al≦0.050%、 0.0030%≦N≦0.0150% を含有し、残部がFe及び不可避的不純物からなるスラ
ブを、加熱、熱延した後、1回以上の冷延を行って最終
板厚とし、脱炭焼鈍後、Ac1 変態点以下の温度域で最
終焼鈍する方向性電磁鋼板の製造方法であって、最終冷
延圧下率が75%以上90%以下であることを特徴とす
る請求項1記載の磁束密度の極めて高い方向性電磁鋼板
の製造方法。
2. The composition according to claim 1, further comprising: 0.010% ≦ C ≦ 0.14%, 0.010% ≦ acid-soluble Al ≦ 0.050%, 0.0030% ≦ N ≦ 0.0150% by weight. A slab consisting of Fe and unavoidable impurities is heated and hot-rolled, and then cold-rolled one or more times to a final sheet thickness. After decarburizing annealing, final annealing is performed in a temperature range below the Ac 1 transformation point. 2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the final cold rolling reduction is 75% or more and 90% or less.
JP35915997A 1997-12-26 1997-12-26 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4163773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35915997A JP4163773B2 (en) 1997-12-26 1997-12-26 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35915997A JP4163773B2 (en) 1997-12-26 1997-12-26 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH11189851A true JPH11189851A (en) 1999-07-13
JP4163773B2 JP4163773B2 (en) 2008-10-08

Family

ID=18463055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35915997A Expired - Fee Related JP4163773B2 (en) 1997-12-26 1997-12-26 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4163773B2 (en)

Also Published As

Publication number Publication date
JP4163773B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH0688171A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JPS631371B2 (en)
JP3656913B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JP4163773B2 (en) Method for producing grain-oriented electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
KR970007161B1 (en) Making method of oriented electrical steel sheet having low iron loss
JPH11269543A (en) Production of grain oriented electric steel sheet
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3215177B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH10121212A (en) Grain-oriented silicon steel sheet and its production
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees