JPH11189458A - Semiconductive ceramic and its production - Google Patents

Semiconductive ceramic and its production

Info

Publication number
JPH11189458A
JPH11189458A JP9360094A JP36009497A JPH11189458A JP H11189458 A JPH11189458 A JP H11189458A JP 9360094 A JP9360094 A JP 9360094A JP 36009497 A JP36009497 A JP 36009497A JP H11189458 A JPH11189458 A JP H11189458A
Authority
JP
Japan
Prior art keywords
crystal grains
volume
alumina
crystal
semiconductive ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9360094A
Other languages
Japanese (ja)
Inventor
Toshihiko Kamimura
俊彦 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9360094A priority Critical patent/JPH11189458A/en
Publication of JPH11189458A publication Critical patent/JPH11189458A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a semiconductive ceramic capable of being inexpensively produced in a large amount by simplifying a production process by including alumina crystal grains and one ore more kinds of crystal grins of MnNb2 O6 , MnAlO4 and MnFe2 O4 and regulating a volume specific resistance to be at a specific value. SOLUTION: This semiconductive ceramic comprises 40-85 vol.% alumina crystal grains, and one or more kinds of crystal grains of MnNb2 O6 , MnAlO4 and MnFe2 O4 , and has 10<4> -10<12> Ω.cm volume specific resistance and >=10 kV/mm absolute breakdown voltage. The ceramic is obtained by mixing an alumina powder with one or more kinds of powders of manganese oxide, niobium oxide and iron oxide in prescribed proportions, compacting the obtained raw material by a press molding or the like to form a prescribed shape, and firing the obtained compact in atmospheric surrounding at 1,200-1,350 deg.C. In the production process, components such as SiO2 , MgO, CaO, Na2 O, ArO2 and Ta2 O5 which do not take part in the crystal phase are contaminated as impurities, but the total of the contaminated amounts is required so as to be regulated to be <=0.1 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体製造
装置等で静電気防止が必要な部品(搬送用アーム、ハン
ドリング治具、ウェハー搬送用ピンセット等)に用いる
静電気防止用部材、あるいは抵抗体基体、導電材料、接
点、ヒーター、真空管部品、磁気ディスク用スペーサー
等に用いられる半導電性セラミックスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic member or a resistive substrate for use in parts (e.g., a transfer arm, a handling jig, a wafer transfer tweezer, etc.) that need to be protected from static electricity in a semiconductor manufacturing apparatus or the like. The present invention relates to semiconductive ceramics used for conductive materials, contacts, heaters, vacuum tube parts, spacers for magnetic disks, and the like.

【0002】[0002]

【従来の技術】従来、例えば半導体製造装置等で静電気
防止が必要な部品(搬送用アーム、ハンドリング治具、
ウェハー搬送用ピンセット等)に用いる静電気防止用部
材、あるいは抵抗体基体、導電材料、接点、ヒーター、
真空管部品、磁気ディスク用スペーサーには、104
108 Ωcm程度の体積固有抵抗を有するセラミックス
が用いられている。
2. Description of the Related Art Conventionally, for example, parts (e.g., a transfer arm, a handling jig,
Antistatic member used for wafer transfer tweezers, etc.), resistor base, conductive material, contact, heater,
For vacuum tube parts and magnetic disk spacers, 10 4 ~
Ceramics having a volume resistivity of about 10 8 Ωcm are used.

【0003】このような半導電性セラミックスとして
は、例えば、アルミナ粉末にアルカリ金属、遷移金属元
素を含む化合物、チタン、その酸化物等の粉末を添加
し、乾式あるいは湿式で混合後、必要に応じて成形助剤
を添加して成形し、所望の抵抗値を得るために、還元雰
囲気下で焼結して製造していた(特開昭61−3616
4号公報等参照)。
[0003] As such a semiconductive ceramic, for example, a powder of an alkali metal, a compound containing a transition metal element, titanium, an oxide thereof, or the like is added to alumina powder and mixed in a dry or wet method. To obtain a desired resistance value by sintering in a reducing atmosphere (Japanese Patent Laid-Open No. 61-3616).
No. 4 gazette).

【0004】あるいは、その他のセラミックス中に半導
電性を有する金属酸化物、金属窒化物、金属炭化物等を
添加した半導電性セラミックスや、それ自体が適度な半
導電性を有する炭化珪素質セラミックス等が用いられて
きた。
Alternatively, semiconductive ceramics obtained by adding a semiconductive metal oxide, metal nitride, metal carbide, or the like to other ceramics, or silicon carbide ceramics which itself has an appropriate semiconductive property. Has been used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の半導電性セラミックスは、緻密質な焼結体を得るため
にホットプレスやアイソスタティックプレス等により製
造する必要があり、また、前述したように焼成雰囲気の
制御が必要であることから、製造工程が煩雑であり、生
産性が悪く製造コストが高いという問題があった。
However, these semiconductive ceramics need to be manufactured by a hot press, an isostatic press or the like in order to obtain a dense sintered body. Since the control of the atmosphere is required, there is a problem that the manufacturing process is complicated, the productivity is low, and the manufacturing cost is high.

【0006】しかも、これらの半導電性セラミックスに
用いる一次原料が高価であることもコストを高くする要
因となっていた。
[0006] Moreover, the expensive primary materials used for these semiconductive ceramics have also been a factor in increasing the cost.

【0007】[0007]

【課題を解決するための手段】そこで本発明は、40〜
85体積%のアルミナ結晶粒と、MnNb2 6 、Mn
2 AlO4 、MnFe2 4 の一種以上の結晶粒を含
み、体積固有抵抗が104 〜1012Ω・cmであり、絶
縁耐圧が10kV/mm以上の半導電性セラミックスを
特徴とする。
Accordingly, the present invention provides a method for manufacturing a semiconductor device comprising:
85% by volume of alumina crystal grains, MnNb 2 O 6 , Mn
It is characterized by a semiconductive ceramic containing one or more crystal grains of 2 AlO 4 and MnFe 2 O 4 , having a volume resistivity of 10 4 to 10 12 Ω · cm and a withstand voltage of 10 kV / mm or more.

【0008】本発明の半導電性セラミックスにおいて、
アルミナ結晶粒を40〜85体積%としたのは、アルミ
ナ結晶粒が85体積%よりも多いと体積固有抵抗が10
12Ω・cmよりも大きくなり絶縁体に近づくからであ
る。また、45体積%よりも少ないと、焼結体の強度が
低下して構造材料として用いる場合に好ましくないとと
もに、絶縁耐圧が低くなり高電圧環境下での使用ができ
なくなり、また緻密質な焼結体が得られにくくなるから
である。
[0008] In the semiconductive ceramic of the present invention,
The reason why the alumina crystal grains are set to 40 to 85% by volume is that if the alumina crystal grains are more than 85% by volume, the volume resistivity becomes 10%.
This is because it becomes larger than 12 Ω · cm and approaches the insulator. On the other hand, if the content is less than 45% by volume, the strength of the sintered body is lowered, which is not preferable when used as a structural material. In addition, the withstand voltage becomes low, so that the sintered body cannot be used in a high voltage environment. This is because it becomes difficult to obtain a unity.

【0009】また、MnNb2 6 、Mn2 AlO4
MnFe2 4 の一種以上の結晶粒を含むとしたのは、
これらの結晶粒が半導電性を有し、焼結体の中で3次元
的にネットワークを形成しているために、導電経路が確
保されていると推測されるからである。これは、本発明
の半導電性セラミックス中のアルミナ結晶粒の比率を高
くすると、体積固有抵抗が高くなり、比率を低くすると
体積固有抵抗が低くなることから上記のことが推測され
る。したがって、所望の体積固有抵抗を得るためには、
MnNb2 6 、Mn2 AlO4 、MnFe2 4 の一
種以上の結晶粒が必要となる。
Also, MnNb 2 O 6 , Mn 2 AlO 4 ,
The reason for containing one or more crystal grains of MnFe 2 O 4 is that
This is because these crystal grains have semiconductivity and form a three-dimensional network in the sintered body, so that it is presumed that a conductive path is secured. This is presumed from the fact that when the ratio of alumina crystal grains in the semiconductive ceramic of the present invention is increased, the volume resistivity increases, and when the ratio is decreased, the volume resistivity decreases. Therefore, to obtain the desired volume resistivity,
One or more crystal grains of MnNb 2 O 6 , Mn 2 AlO 4 , and MnFe 2 O 4 are required.

【0010】特に、MnNb2 6 、Mn2 AlO4
MnFe2 4 の全ての結晶粒を含むことが好ましい。
In particular, MnNb 2 O 6 , Mn 2 AlO 4 ,
It is preferable to include all the crystal grains of MnFe 2 O 4 .

【0011】しかも、これらのMnNb2 6 、Mn2
AlO4 、MnFe2 4 の結晶粒を含む本発明の半導
電性セラミックスは、安価な原料を用いて、一般的な大
気雰囲気中での焼成のみで得ることができ、製造工程を
簡略化できるとともに、安価で大量生産が可能となる。
Moreover, these MnNb 2 O 6 , Mn 2
The semiconductive ceramics of the present invention containing the crystal grains of AlO 4 and MnFe 2 O 4 can be obtained by using only inexpensive raw materials and sintering only in a general atmosphere, thereby simplifying the manufacturing process. At the same time, mass production becomes possible at low cost.

【0012】即ち、本発明の半導電性セラミックスを製
造する場合は、アルミナ粉末に、二酸化マンガン、酸化
ニオブ、酸化鉄の一種以上の粉末を混合し、得られた原
料をプレス成形等で所定形状に成形した後、大気雰囲気
中、1200〜1350℃で焼成することによって得る
ことができる。
That is, when producing the semiconductive ceramic of the present invention, one or more powders of manganese dioxide, niobium oxide and iron oxide are mixed with alumina powder, and the obtained raw material is formed into a predetermined shape by press molding or the like. And then firing at 1200 to 1350 ° C. in an air atmosphere.

【0013】なお、上記一次原料または製造工程におい
て、前述の結晶相に関与しないSiO2 、MgO、Ca
O、Na2 O、ZrO2 、Ta2 5 等の成分が不純物
として混入されるが、これら成分の混入量の合計が0.
1重量%以下であれば特性に影響は無い。
In the above-mentioned primary raw material or manufacturing process, SiO 2 , MgO, Ca which does not participate in the above-mentioned crystal phase is used.
Components such as O, Na 2 O, ZrO 2 and Ta 2 O 5 are mixed as impurities.
If it is 1% by weight or less, there is no effect on the characteristics.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0015】先ず、アルミナ粉末、二酸化マンガン粉
末、酸化ニオブ粉末、酸化鉄粉末を用意し、秤量後、回
転ミルにて湿式混合した。混合後のスラリーをスプレー
ドライにて乾燥し、焼結体用原料とした。これをプレス
成形し、大気中において1200〜1350℃の温度で
2〜3時間焼成し、直径60mm厚み3mmの円盤状焼
結体を得た。
First, alumina powder, manganese dioxide powder, niobium oxide powder, and iron oxide powder were prepared, weighed, and wet-mixed in a rotary mill. The mixed slurry was dried by spray drying to obtain a raw material for a sintered body. This was press-formed and fired in the air at a temperature of 1200 to 1350 ° C. for 2 to 3 hours to obtain a disc-shaped sintered body having a diameter of 60 mm and a thickness of 3 mm.

【0016】各試料を切断して、断面を鏡面加工し、走
査型電子顕微鏡で組織の観察を行うと共に、X線回折装
置にて各結晶相の元素の定性分析を行った。
Each sample was cut, the cross section was mirror-finished, the structure was observed with a scanning electron microscope, and the qualitative analysis of the elements of each crystal phase was performed with an X-ray diffractometer.

【0017】図1、2、3にそれぞれアルミナ結晶粒の
比率が85体積%、60体積%、40体積%のときのX
線回折チャート図を示す。これより、本発明の半導電性
セラミックスは、アルミナ結晶と、MnNb2 6 、M
2 AlO4 、MnFe2 4 の各結晶で構成されてい
ることがわかる。また、アルミナ結晶のピークが減少す
ることにより、MnNb2 6 、Mn2 AlO4 、Mn
Fe2 4 の各結晶のピークが増加していることがわか
る。
FIGS. 1, 2 and 3 show X when the ratio of alumina crystal grains is 85% by volume, 60% by volume and 40% by volume, respectively.
The figure shows a line diffraction chart. Thus, the semiconductive ceramics of the present invention has an alumina crystal, MnNb 2 O 6 , M
It can be seen that it is composed of n 2 AlO 4 and MnFe 2 O 4 crystals. Further, since the peak of the alumina crystal decreases, MnNb 2 O 6 , Mn 2 AlO 4 , Mn
It can be seen that the peak of each crystal of Fe 2 O 4 has increased.

【0018】さらに、図4、5、6に各試料を走査型電
子顕微鏡で3000倍に拡大した写真の模式図を示す。
また、この試料をX線マイクロアナライザーにて定性分
析したところ、下記表1に示す元素が検出された。
Further, FIGS. 4, 5 and 6 are schematic views of photographs of each sample enlarged 3000 times by a scanning electron microscope.
When this sample was qualitatively analyzed using an X-ray microanalyzer, the elements shown in Table 1 below were detected.

【0019】表1に示した結果より、図4〜6の写真の
模式図における薄い灰色の部分はアルミナ結晶を示し、
白色の部分はMnNb2 6 結晶を示し、濃い灰色(斜
線)の部分はMn2 AlO4 結晶とMnFe2 4 結晶
が共存していると考えられる。
From the results shown in Table 1, the light gray portions in the schematic diagrams of the photographs of FIGS. 4 to 6 indicate alumina crystals,
The white portion indicates the MnNb 2 O 6 crystal, and the dark gray (shaded) portion indicates that the Mn 2 AlO 4 crystal and the MnFe 2 O 4 crystal coexist.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、上記円盤状焼結体の試料の両端を研
磨して試料の厚みを2mmとした。得られた試料の両端
に電極を塗布し、この試料を、JIS C 2141に
定められた絶縁抵抗の測定方法に基づき、抵抗値を測定
した。体積固有抵抗は、JIS C 2141に定めら
れるように、R=r×S/t(R:体積固有抵抗、r:
抵抗値、S:電極面積、t:試料厚み)により求めた。
Next, both ends of the sample of the disc-shaped sintered body were polished to a thickness of 2 mm. Electrodes were applied to both ends of the obtained sample, and the resistance value of this sample was measured based on the insulation resistance measurement method defined in JIS C2141. As defined in JIS C 2141, the volume resistivity is R = r × S / t (R: volume resistivity, r:
Resistance value, S: electrode area, t: sample thickness).

【0022】また、得られた試料に対し、絶縁破壊を生
じるまでの電圧(絶縁耐圧)をJOS C 2141に
定められた方法により測定し、さらにアルキメデス法に
より吸水率を測定した。
With respect to the obtained sample, the voltage (breakdown voltage) until dielectric breakdown was measured by the method specified in JOSC 2141, and the water absorption was measured by the Archimedes method.

【0023】なお、得られた焼結体の結晶相は、焼結体
を粉砕し、粉末法によるX線回折により焼結体中の結晶
相を同定し、その重量比率と比重から体積比率を算出し
た。
The crystal phase of the obtained sintered body is obtained by crushing the sintered body, identifying the crystal phase in the sintered body by X-ray diffraction by a powder method, and determining the volume ratio from the weight ratio and specific gravity. Calculated.

【0024】これらの結果を表2に示す。表2より、ア
ルミナ結晶粒の比率が多くなると、体積固有抵抗が高く
なることがわかる。これは、アルミナ結晶粒が多くなる
と、半導電性を有するMnNb2 6 、Mn2 Al
4 、MnFe2 4 らの結晶粒の焼結体内での比率が
必然的に小さくなり、これら結晶粒の3次元ネットワー
クが形成されにくくなり、焼結体の体積固有抵抗が高く
なるためである。また、No.1のようにアルミナ結晶
が85体積%よりも多くなると、半導電性を有する結晶
が存在しても、ネットワークは形成されず、体積固有抵
抗が1012Ω・cmを超えて絶縁体の領域になる。
The results are shown in Table 2. Table 2 shows that the volume resistivity increases as the ratio of alumina crystal grains increases. This is because when the alumina crystal grains increase, MnNb 2 O 6 and Mn 2 Al having semiconductivity are obtained.
O 4, MnFe ratio in the sintered body of the 2 O 4 these grains inevitably small, hardly 3 dimensional network of these crystal grains is formed, because the volume resistivity of the sintered body becomes high is there. In addition, No. When the alumina crystal is more than 85% by volume as in 1, no network is formed even if a semiconductive crystal is present, and the volume specific resistance exceeds 10 12 Ω · cm and the area of the insulator is increased. Become.

【0025】逆にアルミナ結晶粒の比率が少なくなる
と、上記半導電性を有する結晶の比率が多くなり、体積
固有抵抗が低くなる。しかし、No.8,9に示すよう
にアルミナ結晶粒の比率が40体積%未満になると、こ
れら結晶の比率が多くなり過ぎて絶縁耐圧が10kV/
mm未満と低くなってしまうとともに、個々の結晶粒の
粒径が大きくなり、焼結体の強度が低下してしまう。
Conversely, when the ratio of the alumina crystal grains decreases, the ratio of the semiconductive crystals increases, and the volume resistivity decreases. However, no. As shown in FIGS. 8 and 9, when the ratio of the alumina crystal grains is less than 40% by volume, the ratio of these crystals becomes too large and the withstand voltage becomes 10 kV /.
mm, the grain size of each crystal grain increases, and the strength of the sintered body decreases.

【0026】したがって、アルミナ結晶粒の比率は、体
積固有抵抗、絶縁耐圧、強度の点から40〜85体積%
が望ましい。
Therefore, the ratio of the alumina crystal grains is 40 to 85% by volume in view of the volume resistivity, the dielectric strength and the strength.
Is desirable.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上記述した通り、本発明の半導電性セ
ラミックス焼結体は、アルミナ結晶粒とMnNb
2 6 、Mn2 AlO4 、MnFe2 4 の一種以上を
含み、体積固有抵抗が104 〜1012Ωc・mを有する
と共に、耐電圧が10kV/mm以上となることから、
例えば、半導体製造装置等で静電気防止が必要な部品
(搬送用アーム、ハンドリング治具、ウェハー搬送用ピ
ンセット等)に用いる静電気防止用部材、あるいは抵抗
体基体、導電材料、接点、ヒーター、真空管部品、磁気
ディスク用スペーサー等に最適な半導電性セラミックス
をを得ることができる。
As described above, the semiconductive ceramic sintered body of the present invention has a structure in which alumina crystal grains and MnNb
It contains at least one of 2 O 6 , Mn 2 AlO 4 and MnFe 2 O 4 , has a volume resistivity of 10 4 to 10 12 Ωcm, and has a withstand voltage of 10 kV / mm or more.
For example, an antistatic member used for a part (such as a transfer arm, a handling jig, a wafer transfer tweezer, or the like) required to prevent static electricity in a semiconductor manufacturing apparatus or the like, or a resistor base, a conductive material, a contact, a heater, a vacuum tube part, It is possible to obtain a semiconductive ceramic which is most suitable for a magnetic disk spacer or the like.

【0029】しかも、本発明の半導電性セラミックス
は、安価な材料を用い、一般的な大気雰囲気中での焼成
のみで得られるため、製造工程を簡略化し、安価に大量
生産することができる。
Moreover, since the semiconductive ceramic of the present invention can be obtained only by firing in a general air atmosphere using an inexpensive material, the manufacturing process can be simplified and mass production can be performed at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導電性セラミックスのX線回折チャ
ート図である。
FIG. 1 is an X-ray diffraction chart of a semiconductive ceramic of the present invention.

【図2】本発明の半導電性セラミックスのX線回折チャ
ート図である。
FIG. 2 is an X-ray diffraction chart of the semiconductive ceramic of the present invention.

【図3】本発明の半導電性セラミックスのX線回折チャ
ート図である。
FIG. 3 is an X-ray diffraction chart of the semiconductive ceramic of the present invention.

【図4】本発明の半導電性セラミックスの結晶組織を示
す電子顕微鏡写真の模式図である。
FIG. 4 is a schematic view of an electron micrograph showing a crystal structure of a semiconductive ceramic of the present invention.

【図5】本発明の半導電性セラミックスの結晶組織を示
す電子顕微鏡写真の模式図である。
FIG. 5 is a schematic view of an electron micrograph showing a crystal structure of a semiconductive ceramic of the present invention.

【図6】本発明の半導電性セラミックスの結晶組織を示
す電子顕微鏡写真の模式図である。
FIG. 6 is a schematic view of an electron micrograph showing a crystal structure of a semiconductive ceramic of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】40〜85体積%のアルミナ結晶粒と、M
nNb2 6 、Mn2 AlO4 、MnFe2 4 の一種
以上の結晶粒を含み、体積固有抵抗が104〜1012Ω
・cmである半導電性セラミックス。
1. An alumina crystal grain comprising 40 to 85% by volume of M
It contains one or more crystal grains of nNb 2 O 6 , Mn 2 AlO 4 and MnFe 2 O 4 , and has a volume resistivity of 10 4 to 10 12 Ω.
-Semi-conductive ceramics in cm.
【請求項2】最終的に40〜85体積%となるアルミナ
粉末と、二酸化マンガン、酸化ニオブ、酸化鉄の一種以
上とを混合し、得られた原料を成形した後、大気雰囲気
中、1200〜1350℃で焼成して、MnNb
2 6 、Mn2 AlO4 、MnFe2 4 の一種以上の
結晶粒を生成する工程からなる半導電性セラミックスの
製造方法。
2. A mixture of alumina powder finally having a volume of 40 to 85% by volume and at least one of manganese dioxide, niobium oxide, and iron oxide, and molding the obtained raw material. Baking at 1350 ° C., MnNb
A method for producing a semiconductive ceramic, comprising a step of generating one or more crystal grains of 2 O 6 , Mn 2 AlO 4 , and MnFe 2 O 4 .
JP9360094A 1997-12-26 1997-12-26 Semiconductive ceramic and its production Withdrawn JPH11189458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9360094A JPH11189458A (en) 1997-12-26 1997-12-26 Semiconductive ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9360094A JPH11189458A (en) 1997-12-26 1997-12-26 Semiconductive ceramic and its production

Publications (1)

Publication Number Publication Date
JPH11189458A true JPH11189458A (en) 1999-07-13

Family

ID=18467874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9360094A Withdrawn JPH11189458A (en) 1997-12-26 1997-12-26 Semiconductive ceramic and its production

Country Status (1)

Country Link
JP (1) JPH11189458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033066A (en) * 2000-07-17 2002-01-31 A & D Co Ltd Electron gun
US7091146B2 (en) 2002-09-12 2006-08-15 Sodick Co., Ltd. Enhanced ceramic material for precision alignment mechanism
CN113042033A (en) * 2021-01-20 2021-06-29 西南交通大学 Method for improving crystallization degree of columbite phase multi-element oxide material and material application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033066A (en) * 2000-07-17 2002-01-31 A & D Co Ltd Electron gun
US7091146B2 (en) 2002-09-12 2006-08-15 Sodick Co., Ltd. Enhanced ceramic material for precision alignment mechanism
CN113042033A (en) * 2021-01-20 2021-06-29 西南交通大学 Method for improving crystallization degree of columbite phase multi-element oxide material and material application
CN113042033B (en) * 2021-01-20 2022-07-22 西南交通大学 Method for improving crystallization degree of columbite phase multi-element oxide material and material application

Similar Documents

Publication Publication Date Title
US7229940B2 (en) Dense cordierite based sintered body and method of manufacturing the same
JP2617204B2 (en) Method for producing solid electrolyte
JP4307152B2 (en) Sintered body for thermistor element, manufacturing method thereof, thermistor element, temperature sensor
KR100518906B1 (en) Aluminum nitride materials and members used for the production of semiconductors
JPH11189458A (en) Semiconductive ceramic and its production
JP4247936B2 (en) Piezoelectric ceramic composition
KR101545763B1 (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
EP1597738B1 (en) A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for preparing thereof
JP3331447B2 (en) Method for producing porcelain composition for thermistor
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP6675050B1 (en) Thermistor sintered body and temperature sensor element
JPH06116026A (en) Zirconia solid electrolyte
JPH0570222A (en) Bao-xtio2-based dielectric ceramics
JP3131071B2 (en) Ceramic heating element
JP3395577B2 (en) Method of manufacturing dielectric ceramic electronic component
JP3121967B2 (en) Ceramic heating element
JP3085849B2 (en) Alumina sintered body
JPH07149521A (en) Zirconia electrolyte powder
JPH10152372A (en) Barium titanate-based semiconductor porcelain and its production
JP2004077304A (en) Piezo-electric element and knocking sensor using the same
JP3329990B2 (en) Conductive ceramics
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JP2006169032A (en) Piezoelectric ceramic composition and piezoelectric element
JPH11106258A (en) Baxsr1-xti03-y target material for sputtering
JP3145568B2 (en) Ceramic heating element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050221