JPH11186596A - Light-emitting diode - Google Patents

Light-emitting diode

Info

Publication number
JPH11186596A
JPH11186596A JP35111497A JP35111497A JPH11186596A JP H11186596 A JPH11186596 A JP H11186596A JP 35111497 A JP35111497 A JP 35111497A JP 35111497 A JP35111497 A JP 35111497A JP H11186596 A JPH11186596 A JP H11186596A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting diode
light
algainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35111497A
Other languages
Japanese (ja)
Other versions
JP3630212B2 (en
Inventor
Toshiki Yoshiuji
俊揮 吉氏
Ryoichi Takeuchi
良一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP35111497A priority Critical patent/JP3630212B2/en
Publication of JPH11186596A publication Critical patent/JPH11186596A/en
Application granted granted Critical
Publication of JP3630212B2 publication Critical patent/JP3630212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an AlGaInP light-emitting diode of high reliability which is durable to stress of resin or the like and can be used practically under low- temperature environment. SOLUTION: In a light-emitting diode in which light-emitting surface 13, side surfaces 15 and slanting surfaces 14 from the light-emitting surface to the side surfaces are arranged, and an AlGaInP layer is made a light-emitting layer, an end surface 5a of the AlGaInP light-emitting layer is positioned in the slanting surfaces 14, and an angle (α) which is made by a tangent of the slanting surface and the light-emitting surface, at the point on which the slanting surface and the light-emitting surface intersect, is set to be at least 110 deg. and at most 125. The radius of curvature of the corner of the lightemitting surface is set to be at least 3 μm, and the distance (d) between the side surface and the light-emitting surface is set to be at least 15 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はAlGaInPを発
光層とする高輝度発光ダイオードに係わり、特に信頼性
を改善するのに有効な素子形状を有する発光ダイオード
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-brightness light-emitting diode using AlGaInP as a light-emitting layer, and more particularly to a light-emitting diode having an element shape effective for improving reliability.

【0002】[0002]

【従来の技術】AlGaInP系材料は、窒化物を除く
III −V族化合物半導体混晶のなかでは最大の直接遷移
型エネルギーギャップをもち、GaAs結晶と格子整合
がとれるため、近年、AlGaInPを発光部に用い
た、赤〜緑色の発光領域における高輝度のAlGaIn
P発光ダイオードが実用化されつつある。
2. Description of the Related Art AlGaInP-based materials exclude nitrides
Among the III-V compound semiconductor mixed crystals, they have the largest direct transition energy gap and can be lattice-matched to GaAs crystals. AlGaIn
P light emitting diodes are being put into practical use.

【0003】これらの発光ダイオードは、GaAs単結
晶基板にエピタキシャル層を成長したウェーハを用いて
作製される。エピタキシャル成長の方法としては、有機
金属化学気相成長法(MOCVD)や分子線エピタキシ
ャル法(MBE)などが用いられている。
[0003] These light emitting diodes are manufactured using a wafer in which an epitaxial layer is grown on a GaAs single crystal substrate. As a method of epitaxial growth, metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or the like is used.

【0004】エピタキシャル成長方法としては、成長炉
内へGaAs基板を設置し、その上にn−GaAsバッ
ファ層、n−AlGaInPクラッド層、AlGaIn
P発光層、p−AlGaInPクラッド層、p−AlG
aAs電流拡散層を順次積層する。このようなエピタキ
シャル層を成長したウェーハを炉より取り出し、ウェー
ハの上面と下面にそれぞれp電極、n電極を形成し、ダ
イシングソー等で素子に分離することにより、図1に示
す様な発光面13と側面15のなす角度がほぼ90度と
なる直方体状の半導体チップよりなる発光ダイオードを
作製するのが一般的である(特開平6−32636
0)。なお、図1で示した発光ダイオードでは、発光面
13には表面電極が形成されており、主にこの面から光
が取り出される。また、側面15は発光面とほぼ垂直
で、ダイシングソーなどによる切断で形成される。ま
た、図1中の5aはAlGaInP発光層の端面であ
る。
As an epitaxial growth method, a GaAs substrate is placed in a growth furnace, and an n-GaAs buffer layer, an n-AlGaInP cladding layer, an AlGaIn
P light emitting layer, p-AlGaInP cladding layer, p-AlG
aAs current diffusion layers are sequentially laminated. The wafer on which such an epitaxial layer has been grown is taken out of the furnace, a p-electrode and an n-electrode are formed on the upper and lower surfaces of the wafer, respectively, and separated into elements using a dicing saw or the like. In general, a light emitting diode made of a rectangular semiconductor chip in which the angle formed between the semiconductor chip and the side surface 15 is approximately 90 degrees is manufactured (Japanese Patent Laid-Open No. 6-32636).
0). In the light emitting diode shown in FIG. 1, a surface electrode is formed on the light emitting surface 13, and light is mainly extracted from this surface. The side surface 15 is substantially perpendicular to the light emitting surface and is formed by cutting with a dicing saw or the like. Further, 5a in FIG. 1 is an end face of the AlGaInP light emitting layer.

【0005】一方、前記の直方体形状と異なるAlGa
InP発光ダイオードとしては、側面からの不要な光を
外部に取り出せないようにし単色性を向上させるため、
側面の上部を傾斜構造にしたもの(特開平7−3074
89)や、側面を曲面構造とし半導体内部での反射を抑
制し光の外部取り出し効率を向上させたもの(特開平9
−116196)が開示されている。これらは側面形状
に着目し、反射や吸収などの光学的観点から発光特性を
改善することを目的としている。
On the other hand, AlGa which is different from the aforementioned rectangular parallelepiped shape
As an InP light emitting diode, in order to prevent unnecessary light from the side from being extracted to the outside and to improve monochromaticity,
The upper part of the side surface has an inclined structure (Japanese Unexamined Patent Publication No. 7-3074)
89) and a device having a curved side surface to suppress reflection inside the semiconductor and improve the light extraction efficiency (Japanese Unexamined Patent Application Publication No.
-116196) is disclosed. These are aimed at improving light emission characteristics from an optical point of view such as reflection and absorption by focusing on side shapes.

【0006】[0006]

【発明が解決しようとする課題】従来より発光ダイオー
ドは、半導体チップをエポキシ樹脂で封止して使用する
のが一般的である。しかし、樹脂を硬化させる時樹脂が
収縮するため、内部の半導体チップに応力が掛かる。こ
の応力と通電などのストレスにより半導体に欠陥が入
り、発光ダイオードの輝度が時間と伴に低下する劣化現
象が起こる重大な課題がある。これに対し、例えばGa
AsP発光ダイオードにおいては特開平2−24097
5に記載されている様に、発光面の隅の曲率半径や切り
出し面(側面)の平滑度を改良することにより劣化現象
を抑制し信頼性を高めた発光ダイオードが提案されてい
る。
Conventionally, a light emitting diode is generally used by sealing a semiconductor chip with an epoxy resin. However, since the resin shrinks when the resin is cured, stress is applied to the internal semiconductor chip. There is a serious problem that a defect occurs in the semiconductor due to the stress and the stress such as the energization, and a deterioration phenomenon occurs in which the luminance of the light emitting diode decreases with time. On the other hand, for example, Ga
Japanese Patent Application Laid-Open No. 2-24097 discloses an AsP light emitting diode.
As described in No. 5, there has been proposed a light emitting diode in which a deterioration phenomenon is suppressed and reliability is improved by improving a curvature radius of a corner of a light emitting surface and a smoothness of a cut surface (side surface).

【0007】しかし、AlGaInPを発光層とする発
光ダイオードに対しては、上記のような形状で素子を作
製しても劣化現象を改善する十分な効果が得られなかっ
た。例えば、発光面の隅の曲率半径を7μmとした場合
でも、樹脂の応力が大きくなる低温(−40℃)で20
mA通電を500時間行った時の発光ダイオードの輝度
の残存率(500時間後の輝度/初期の輝度×100
%)は56%程度であった。この劣化の原因は、AlG
aInP発光ダイオードがGaP、GaAs、AlGa
As、GaAsPなどの発光ダイオード材料に比べ、樹
脂からの応力に対して弱く結晶欠陥が入りやすいことに
よるものと考えられる。
However, for a light-emitting diode using AlGaInP as a light-emitting layer, a sufficient effect of improving the deterioration phenomenon cannot be obtained even if the device is manufactured in the above-described shape. For example, even when the radius of curvature of the corner of the light emitting surface is 7 μm, the temperature is 20 ° C. at a low temperature (−40 ° C.) where the stress of the resin increases.
The residual ratio of the luminance of the light emitting diode when the mA current was applied for 500 hours (luminance after 500 hours / initial luminance × 100)
%) Was about 56%. The cause of this deterioration is AlG
aInP light emitting diode is GaP, GaAs, AlGa
This is considered to be due to the fact that crystal defects are apt to be generated due to weakness against the stress from the resin as compared with light emitting diode materials such as As and GaAsP.

【0008】上記のように、従来提案されている方法で
はAlGaInPを発光層とする発光ダイオードの劣化
現象を抑制して十分な信頼性を得ることができなかっ
た。従って、AlGaInP発光ダイオードは、信頼性
に乏しく実用化できる環境が限られていた。例えば、低
温環境での劣化が激しいことから、屋外ディスプレイ等
の屋外用途に使用が困難であった。
[0008] As described above, in the conventionally proposed method, it was not possible to suppress the deterioration phenomenon of the light emitting diode using AlGaInP as the light emitting layer and to obtain sufficient reliability. Therefore, AlGaInP light-emitting diodes have poor reliability and the environment where they can be put to practical use is limited. For example, it is difficult to use it for outdoor applications such as an outdoor display because of severe deterioration in a low temperature environment.

【0009】このようにAlGaInP発光ダイオード
には、特に低温環境下での輝度の劣化が大きいという信
頼性の面での重大な課題がある。本発明は、上述の課題
を解決すべく、高輝度AlGaInP発光ダイオードの
材質的強度を研究し、応力劣化が素子形状、結晶欠陥、
残留歪みに関連することに着目し、AlGaInP発光
ダイオードに適する素子形状を見い出し、樹脂などの応
力に強く低温環境下で実用できる高信頼性AlGaIn
P発光ダイオードを提供することを目的とする。
As described above, the AlGaInP light emitting diode has a serious problem in terms of reliability that the luminance is greatly deteriorated particularly in a low temperature environment. In order to solve the above-described problems, the present invention has studied the material strength of a high-brightness AlGaInP light-emitting diode, and has found that stress deterioration is an element shape, a crystal defect,
Focusing on the relation to the residual strain, a device shape suitable for an AlGaInP light emitting diode was found, and a highly reliable AlGaIn which was resistant to stresses such as resin and could be used in a low temperature environment.
It is an object to provide a P light emitting diode.

【0010】[0010]

【課題を解決するための手段】本発明に係わる発光ダイ
オードは、発光面と側面および発光面から側面に至る傾
斜面を有し、AlGaInPを発光層とする発光ダイオ
ードにおいて、前記AlGaInP発光層の端面が前記
傾斜面内に位置し、傾斜面と発光面とが交わる点に於け
る傾斜面の接線と発光面とがなす角度(α)が110度
以上125度以下であることを特徴とする。上記発光ダ
イオードにおいては、発光面の隅の曲率半径(R)が3
μm以上であることが好ましい。また上記発光ダイオー
ドにおいては、発光面の端と側面との距離(d)が15
μm以上であることが好ましい。
A light-emitting diode according to the present invention has a light-emitting surface, a side surface, and an inclined surface extending from the light-emitting surface to a side surface. In the light-emitting diode using AlGaInP as a light-emitting layer, an end face of the AlGaInP light-emitting layer is used. Is located within the inclined surface, and an angle (α) between a tangent of the inclined surface and the light emitting surface at a point where the inclined surface and the light emitting surface intersect is 110 ° or more and 125 ° or less. In the above light emitting diode, the radius of curvature (R) at the corner of the light emitting surface is 3
It is preferably at least μm. In the above light emitting diode, the distance (d) between the end of the light emitting surface and the side surface is 15 mm.
It is preferably at least μm.

【0011】また上記発光ダイオードにおいては、発光
面の表面が、AlGaInP混晶であることが好まし
い。また上記発光ダイオードにおいては、厚さ200μ
m以下のGaAs基板を使用していることが好ましい。
本発明は、発光層の構造がダブルへテロ構造であり、エ
ピタキシャル成長層にヘテロ界面が5個以上含む発光ダ
イオードに特に有効に用いることができる。また本発明
は、エピタキシャル成長層の膜厚が20μm以下であ
り、半導体で形成された反射層を含む発光ダイオードに
特に有効に用いることができる。
In the above light emitting diode, it is preferable that the surface of the light emitting surface is made of an AlGaInP mixed crystal. In the light emitting diode, the thickness is 200 μm.
It is preferable to use a GaAs substrate of m or less.
INDUSTRIAL APPLICABILITY The present invention can be particularly effectively used for a light emitting diode in which the light emitting layer has a double hetero structure and the epitaxial growth layer has five or more heterointerfaces. In addition, the present invention can be used particularly effectively for a light emitting diode including a reflective layer formed of a semiconductor, in which the thickness of the epitaxial growth layer is 20 μm or less.

【0012】[0012]

【発明の実施の形態】本発明者らは、前記課題を解決す
るため信頼性低下の原因を検討し、AlGaInPの材
質、ヘテロ界面の数、層厚などの因子から決まるエピタ
キシャル層の強度(機械的強度、結晶欠陥の発生し易
さ)と応力劣化の劣化率とが関連あることを見い出し
た。この点に着目し、エピタキシャル層の強度を検討し
た結果、AlGaInP系エピタキシャル成長層の強度
が、GaAs、GaPなどの液相エピタキシャル成長層
やGaNなどの強い材質からなるエピタキシャル成長層
に比較して、非常に弱いことが判った。従って、従来の
応力劣化に対する技術では、AlGaInP発光ダイオ
ードに対しては劣化現象を抑制する十分な効果が得られ
なかった為、固有の技術を研究し、本発明に至った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have studied the causes of reliability deterioration in order to solve the above-mentioned problems, and have investigated the strength of the epitaxial layer (mechanical strength) determined by factors such as the material of AlGaInP, the number of heterointerfaces, and the layer thickness. And the likelihood of occurrence of crystal defects) and the rate of stress degradation. Focusing on this point, as a result of examining the strength of the epitaxial layer, the strength of the AlGaInP-based epitaxial growth layer is much weaker than that of a liquid phase epitaxial growth layer such as GaAs or GaP or an epitaxial growth layer made of a strong material such as GaN. It turns out. Therefore, the conventional technique for stress deterioration cannot provide a sufficient effect of suppressing the deterioration phenomenon for the AlGaInP light emitting diode, and therefore, studied a unique technique and reached the present invention.

【0013】本発明は、図5および図6に示した様な発
光面13と側面15および発光面から側面に至る傾斜面
14を有し、AlGaInPを発光層とする発光ダイオ
ードにおいて、前記AlGaInP発光層の端面5aが
前記傾斜面14内に位置し、傾斜面と発光面とが交わる
点に於ける傾斜面の接線と発光面とがなす角度(α)が
110度以上の場合に、応力劣化が発生しにくくなるこ
とを見出したものである。本発明はさらに、発光面の隅
の曲率半径(R)を3μm以上にすること及び側面と発
光面との距離(d)を15μm以上にすることにより、
応力劣化に対する信頼性が一層向上することを見出した
ものである。なお、図5は本発明に係わる発光ダイオー
ドの断面図であり、図6は本発明に係わる発光ダイオー
ドの平面図である。
The present invention relates to a light emitting diode having a light emitting surface 13 and a side surface 15 as shown in FIGS. 5 and 6 and an inclined surface 14 extending from the light emitting surface to the side surface and using AlGaInP as a light emitting layer. When the end surface 5a of the layer is located within the inclined surface 14 and the angle (α) between the tangent of the inclined surface and the light emitting surface at the intersection of the inclined surface and the light emitting surface is 110 degrees or more, the stress deterioration occurs. Have been found to be less likely to occur. The present invention further provides a light emitting surface having a radius of curvature (R) of 3 μm or more and a distance (d) between the side surface and the light emitting surface of 15 μm or more.
It has been found that reliability against stress deterioration is further improved. FIG. 5 is a sectional view of a light emitting diode according to the present invention, and FIG. 6 is a plan view of the light emitting diode according to the present invention.

【0014】応力劣化を防止するためには、モールド樹
脂からの応力集中を抑制する素子形状を作製すること、
及び発光層とその近傍に結晶欠陥や歪が少ない事が重要
である。そこで本発明者らは、モールド樹脂からの応力
が発光面と側面との接合部に集中する事、及び発光層に
機械的強度を弱める結晶欠陥や歪が多く存在する事が劣
化の主な原因であると考えた。そのため、発光特性に対
して最も重要な役割を果たしている発光層は、応力集中
を避けられ応力の小さい傾斜面内に位置する事が大切で
ある。
In order to prevent stress deterioration, it is necessary to prepare an element shape for suppressing concentration of stress from the mold resin.
It is important that the light emitting layer and its vicinity have few crystal defects and distortion. Therefore, the present inventors have found that the main cause of deterioration is that stress from the mold resin is concentrated on the joint between the light emitting surface and the side surface, and that there are many crystal defects and strains that weaken the mechanical strength in the light emitting layer. I thought it was. Therefore, it is important that the light-emitting layer, which plays the most important role in the light-emitting characteristics, is located on an inclined plane where stress concentration is avoided and stress is small.

【0015】発光層を含む傾斜面は、結晶に歪や結晶欠
陥を生じさせない化学的エッチングにより形成すること
ができる。本発明者らは、様々なエッチング条件(温
度、時間、エッチャント)を選択し、発光面から側面に
至る傾斜面を有する様々な形状の発光ダイオードを作製
した。
The inclined surface including the light emitting layer can be formed by chemical etching that does not cause distortion or crystal defects in the crystal. The present inventors selected various etching conditions (temperature, time, etchant) and produced light emitting diodes of various shapes having inclined surfaces extending from the light emitting surface to the side surfaces.

【0016】そしてそれら作製した発光ダイオードにつ
いて、樹脂の応力が大きくなる低温(−40℃)で20
mA通電を500時間行った。そして輝度の残存率(5
00時間後の輝度/初期の輝度×100%)が80%以
下を不良素子として、不良素子の発生数と素子形状の関
係を調べた。その結果、図2、3、4の結果が得られ
た。
[0016] The light emitting diodes thus manufactured are subjected to a low temperature (-40 ° C) at which the stress of the resin increases.
mA energization was performed for 500 hours. Then, the remaining ratio of luminance (5
The relationship between the number of occurrences of defective elements and the element shape was examined, with the defective element having a luminance of 00 hours / initial luminance × 100%) of 80% or less. As a result, the results of FIGS. 2, 3, and 4 were obtained.

【0017】図2は、素子の不良数と傾斜面と発光面と
が交わる点に於ける傾斜面の接線と発光面とがなす角度
(α)との関係を示した図である。図2の結果から、傾
斜面と発光面とが交わる点に於ける傾斜面の接線と発光
面とがなす角度(α)が劣化と深い関わりがあることが
わかる。すなわち図2に示したように、傾斜面と発光面
とが交わる点に於ける傾斜面の接線と発光面とがなす角
度(α)が110度以上では素子の信頼性が高くなり、
それ以下の角度では応力劣化する確率が角度の減少と伴
に増大した。しかし、αが125度より大きな角度で
は、なだらかな傾斜面を再現性良く形成するのが困難で
あり、また、エピ層を傾斜面に含ませるため大きな面積
が必要となりコストの面でも問題がある。
FIG. 2 is a graph showing the relationship between the number of defective elements, the tangent of the inclined surface at the intersection of the inclined surface and the light emitting surface, and the angle (α) formed by the light emitting surface. From the results shown in FIG. 2, it can be seen that the angle (α) between the tangent of the inclined surface and the light emitting surface at the intersection of the inclined surface and the light emitting surface is closely related to the deterioration. That is, as shown in FIG. 2, when the angle (α) between the tangent of the inclined surface and the light emitting surface at the point where the inclined surface and the light emitting surface intersect is 110 degrees or more, the reliability of the element is increased,
At angles below that, the probability of stress degradation increased with decreasing angle. However, when α is an angle larger than 125 degrees, it is difficult to form a gentle inclined surface with good reproducibility, and a large area is required because the epi layer is included in the inclined surface, which causes a problem in cost. .

【0018】また、図3は素子の不良数と発光面の隅の
曲率半径(R)の関係を示した図である。但し、図3に
示した素子の傾斜面と発光面とが交わる点に於ける傾斜
面の接線と発光面とがなす角度(α)は、110〜12
0度の範囲内にある。図3からわかるように、発光面の
隅の曲率半径(R)が大きい程不良数が少なく、3μm
以上の場合、不良が無かった。これは、発光面の隅の曲
率半径(R)が小さい場合、発光面の隅に応力が集中し
て結晶欠陥が誘発されるものと考えられる。なお、この
3μm以上の曲率半径は、適切なエッチング条件(例え
ば臭素・メタノール混合液など)を選定すれば、傾斜面
の加工と同時に形成できる。
FIG. 3 is a diagram showing the relationship between the number of defective elements and the radius of curvature (R) of the corner of the light emitting surface. However, the angle (α) between the tangent of the inclined surface and the light emitting surface at the point where the inclined surface and the light emitting surface of the device shown in FIG.
It is in the range of 0 degrees. As can be seen from FIG. 3, the larger the radius of curvature (R) at the corner of the light-emitting surface, the smaller the number of defects is 3 μm
In the above cases, there was no defect. It is considered that, when the radius of curvature (R) of the corner of the light emitting surface is small, stress concentrates on the corner of the light emitting surface to induce a crystal defect. The radius of curvature of 3 μm or more can be formed simultaneously with the processing of the inclined surface by selecting appropriate etching conditions (for example, a mixed solution of bromine and methanol).

【0019】また、図4に側面と発光面の端の距離
(d)と不良素子数の関係を示した。但し、図4に示し
た素子の傾斜面と発光面とが交わる点に於ける傾斜面の
接線と発光面とがなす角度(α)は、110〜120度
の範囲内にある。この結果のように、側面と発光面の端
の距離(d)が長いほど不良数が少ない傾向があり15
μm以上で不良が無かった。素子の分離方法は、公知の
スクライブ、ダイシングソー等で機械的な切断を行う。
この時の結晶の切断面が側面となる。側面には切断時
に、欠陥が多数発生し破砕層が形成される。AlGaI
nPを発光層に用いない発光ダイオードではこの破砕層
をエッチングで除去する場合があるが、AlGaInP
発光ダイオードでは、エピタキシャル層が薄いため、エ
ッチング量を多くできない制限があり破砕層を十分エッ
チング除去できないことがある。この様な場合、側面に
結晶欠陥や歪みが残留するため、応力に弱い結晶とな
る。そこで、AlGaInP発光層の端面を化学的エッ
チングにより形成した傾斜面内に位置するようにし、切
断面の残留歪みと発光層との距離が長くすれば、歪の及
ぼす影響を小さくすることができる。図4に示した結果
から、破砕層の除去なしでもdが15μm以上であれ
ば、発光層に対する欠陥や歪みの影響がなくなり応力劣
化がなくなることが明らかになった。またdを15μm
以上とすることは、応力を傾斜面と側面が接続するとこ
ろで受け、エピタキシャル層が受ける応力を軽減する効
果もあると考えられる。
FIG. 4 shows the relationship between the distance (d) between the side surface and the end of the light emitting surface and the number of defective elements. However, the angle (α) between the tangent of the inclined surface and the light emitting surface at the intersection of the inclined surface and the light emitting surface of the device shown in FIG. 4 is in the range of 110 to 120 degrees. As shown in this result, the longer the distance (d) between the side surface and the end of the light emitting surface, the smaller the number of defects.
There was no defect at μm or more. As a method for separating elements, mechanical cutting is performed using a known scribe, dicing saw, or the like.
The cut surface of the crystal at this time becomes the side surface. At the time of cutting, many defects occur on the side surface, and a crushed layer is formed. AlGaI
In a light emitting diode that does not use nP for the light emitting layer, the crushed layer may be removed by etching.
In a light emitting diode, since the epitaxial layer is thin, there is a limitation that the etching amount cannot be increased, and the crushed layer may not be sufficiently removed by etching. In such a case, since a crystal defect or distortion remains on the side surface, the crystal becomes weak against stress. Therefore, if the end face of the AlGaInP light emitting layer is positioned within the inclined plane formed by chemical etching, and the distance between the residual strain on the cut surface and the light emitting layer is increased, the influence of the strain can be reduced. From the results shown in FIG. 4, it was clarified that even if the crushed layer was not removed, if d was 15 μm or more, the effect of defects and strain on the light emitting layer was eliminated and stress deterioration was eliminated. D is 15 μm
The above is considered to have the effect of reducing the stress applied to the epitaxial layer by receiving the stress where the inclined surface and the side surface are connected.

【0020】本発明は、(100)面や(100)面か
ら傾斜したn型またはp型のGaAs単結晶基板などの
公知の基板の上に、MOCVDやMBE法などで成長し
た、発光層にAlGaInP混晶を利用したエピタキシ
ャルウェーハを用いることができる。エピタキシャルウ
ェーハは、ダブルへテロ構造、電流拡散層、電流阻止
層、反射層などを組み合わせた一般的に作製されている
構造が適用でき、発光層の組成は、発光させる波長(緑
〜赤)に応じて公知の条件を選択すれば良い。
The present invention provides a light emitting layer grown by MOCVD or MBE on a known substrate such as a (100) plane or an n-type or p-type GaAs single crystal substrate inclined from the (100) plane. An epitaxial wafer using an AlGaInP mixed crystal can be used. Epitaxial wafers can apply a generally fabricated structure combining a double heterostructure, a current diffusion layer, a current blocking layer, a reflection layer, and the like. The composition of the light emitting layer depends on the wavelength (green to red) to emit light. Known conditions may be selected accordingly.

【0021】応力劣化に対しては、GaAs基板の厚さ
が薄い方が信頼性が高い傾向があるため、薄いGaAs
基板を使用するか基板を成長後に薄く加工して、GaA
s基板の厚さを200μm以下とするのが望ましい。一
方、発光層のAlGaInP層の上にAlGaAs層,
GaP層などの電流拡散層を成長した場合には、熱膨張
係数の差による内部応力を緩和するために、表面に発光
層やクラッド層と同じ材質であるAlGaInP層を成
長させると応力劣化を抑制させる効果があり、これと素
子形状との組み合わせにより、非常に信頼性の高い発光
ダイオードが得られる。
Since the thinner GaAs substrate tends to have higher reliability against stress deterioration, the thinner GaAs substrate tends to be more reliable.
Using a substrate or processing the substrate to make it thin after growth
It is desirable that the thickness of the s substrate be 200 μm or less. On the other hand, an AlGaAs layer on the AlGaInP layer of the light emitting layer,
When a current diffusion layer such as a GaP layer is grown, stress deterioration is suppressed by growing an AlGaInP layer made of the same material as the light emitting layer and the cladding layer on the surface in order to reduce internal stress due to a difference in thermal expansion coefficient. A very reliable light emitting diode can be obtained by combining this with the element shape.

【0022】また、エピタキシャル層は、ヘテロ接合が
多く層厚が薄いほど界面の歪みが蓄積され機械的な強度
が弱くなる傾向がある。この様な点から、本発明は、発
光層にダブルヘテロ構造を有するヘテロ界面が5個以上
存在するエピウェーハに対して効果が大きく、更に、歪
みが蓄積しやすいと考えられる0.1μm以下の半導体
層を多層成長した光学的反射層(DBR)を含みエピタ
キシャル層の層厚が20μm以下の薄いエピ構造に対し
て特に効果が顕著である。
The epitaxial layer tends to accumulate the strain at the interface and decrease the mechanical strength as the heterojunction is large and the layer thickness is small. From this point of view, the present invention is highly effective for epiwafers having five or more heterointerfaces having a double heterostructure in the light-emitting layer, and furthermore, semiconductors of 0.1 μm or less which are considered to easily accumulate strain. The effect is particularly remarkable for a thin epitaxial structure including an optical reflection layer (DBR) in which layers are grown in multiple layers and an epitaxial layer having a thickness of 20 μm or less.

【0023】[0023]

【作用】上記のように本発明は、エピタキシャル層が薄
く、ヘテロ接合が多いAlGaInP発光ダイオードに
対して、応力集中を避けるような素子形状(特にα、
R、d)の最適な範囲で3次元的に形状を制御する事に
より課題を解決した。すなわち本発明は、素子の側面、
発光面、傾斜面の最適な組み合わせにより、AlGaI
nP発光ダイオードに対して、応力劣化に対する信頼性
の改善に最適な3次元的素子形状を見い出したものであ
る。そして、材質やエピ構造に応じた応力集中を避ける
ような素子形状としたことにより、信頼性が向上したと
考えられる。
As described above, according to the present invention, an AlGaInP light emitting diode having a thin epitaxial layer and a large number of heterojunctions has an element shape (especially α,
The problem was solved by controlling the shape three-dimensionally in the optimum range of R and d). That is, the present invention provides an aspect of the device,
The most suitable combination of the light emitting surface and the inclined surface allows AlGaI
With respect to the nP light emitting diode, a three-dimensional element shape optimal for improving reliability against stress deterioration has been found. It is considered that the reliability was improved by adopting an element shape that avoids stress concentration according to the material and the epi structure.

【0024】[0024]

【実施例】(実施例1)以下、本発明を実施例を基に説
明する。本実施例では、まずAlGaInP発光ダイオ
ード用エピタキシャルウェーハを製作した。エピタキシ
ャルウェーハの積層構造図を図7に示す。図7に示した
AlGaInP発光ダイオード用エピタキシャルウェー
ハは、(100)面から4度傾斜した表面を研磨したp
型GaAs単結晶基板1(厚さ170μm)の上にp型
GaAsバッファ層2(厚さ0.5μm、キャリア濃度
1×1018cm-3)、24層からなるp型AlGaAs
反射層3(厚さ1. 1μm、キャリア濃度1×1018
-3)、p型(Al0.7 Ga0.30.5 In0.5 Pクラ
ッド層4(厚さ1.0μm,キャリア濃度1×1017
-3)、アンドープ(Al0.2 Ga0.80.5 In0.5
P発光層5(厚さ0.5μm,キャリア濃度1×1016
cm-3)、n型(Al0.7 Ga0.30.5 In0.5 Pク
ラッド層6(厚さ1.0μm,キャリア濃度1×1018
cm-3)、n型Al0.7 Ga0.3 As電流拡散層7(厚
さ3. 5μm、キャリア濃度1×1018cm-3)、n型
(Al0.7 Ga0.30.5 In0.5 P層8(厚さ0.1
μm,キャリア濃度1×1018cm-3)及びn型GaA
sコンタクト層9(厚さ0.3μm,キャリア濃度1×
1018cm-3)をMOCVD法により順次積層して形成
した。
EXAMPLES (Example 1) Hereinafter, the present invention will be described based on examples. In this example, first, an epitaxial wafer for an AlGaInP light emitting diode was manufactured. FIG. 7 shows a stacked structure diagram of the epitaxial wafer. The epitaxial wafer for an AlGaInP light-emitting diode shown in FIG. 7 has a p-polished surface that is tilted 4 degrees from the (100) plane.
P-type GaAs buffer layer 2 (thickness 0.5 μm, carrier concentration 1 × 10 18 cm −3 ) on p-type GaAs single crystal substrate 1 (thickness 170 μm), p-type AlGaAs consisting of 24 layers
Reflective layer 3 (thickness: 1.1 μm, carrier concentration: 1 × 10 18 c
m -3 ), p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 4 (thickness 1.0 μm, carrier concentration 1 × 10 17 c
m -3 ), undoped (Al 0.2 Ga 0.8 ) 0.5 In 0.5
P light-emitting layer 5 (thickness 0.5 μm, carrier concentration 1 × 10 16
cm −3 ), n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 6 (thickness: 1.0 μm, carrier concentration: 1 × 10 18)
cm −3 ), n-type Al 0.7 Ga 0.3 As current spreading layer 7 (thickness 3.5 μm, carrier concentration 1 × 10 18 cm −3 ), n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P layer 8 (thickness) 0.1
μm, carrier concentration of 1 × 10 18 cm −3 ) and n-type GaAs
s contact layer 9 (thickness 0.3 μm, carrier concentration 1 ×
10 18 cm -3 ) were sequentially laminated by MOCVD.

【0025】このエピウェーハのn型GaAsコンタク
ト層9上に130μmφの円形の電極パターン(300
μmピッチ)を用いてn型電極10、および裏面のp型
GaAs基板1にp型電極11を公知のフォトリソグラ
フィー法を駆使してパターンを形成後、熱処理を行いオ
ーミック電極を形成した。
On the n-type GaAs contact layer 9 of the epitaxial wafer, a circular electrode pattern (300
A pattern was formed on the n-type electrode 10 and the p-type GaAs substrate 1 on the back surface using a known photolithography method, and heat treatment was performed to form an ohmic electrode.

【0026】続いて傾斜面形成の為、上記のようにして
得られた電極形成済みウェーハのn型電極のちょうど中
間に開口部が位置するように、エッチングマスク(30
0μmピッチ、240μm□、隅の曲率半径:R=3μ
m)用のフォトレジストが、公知のフォトリソグラフィ
ー法を用いて電極および発光面上に形成された。また裏
面は、フォトレジストで全面保護した。
Subsequently, in order to form an inclined surface, the etching mask (30) is positioned so that the opening is located exactly in the middle of the n-type electrode of the electrode-formed wafer obtained as described above.
0 μm pitch, 240 μm square, radius of curvature of corner: R = 3 μ
A photoresist for m) was formed on the electrodes and the light emitting surface using a known photolithography method. The entire back surface was protected with a photoresist.

【0027】上記のようにして得られたウェーハを臭素
−メタノール混合液を用いて発光面から深さ10μmエ
ッチングし、傾斜面および発光面の隅の丸みを形成し
た。次に、フォトレジストを除去した後、ウェーハの裏
面を粘着シートに貼り付け、ダイシングソーで傾斜面と
傾斜面の間を切断し、チップ化した。その後、リン酸−
過酸化水素系エッチング液を用いて傾斜面、側面および
表面のコンタクト層を0. 3μmエッチングした。作製
された代表的な素子の形状は図5および図6に示したも
のである。
The wafer obtained as described above was etched from the light emitting surface to a depth of 10 μm using a bromine-methanol mixed solution to form an inclined surface and rounded corners of the light emitting surface. Next, after the photoresist was removed, the back surface of the wafer was attached to an adhesive sheet, and a dicing saw was used to cut between the inclined surfaces to form chips. Then phosphoric acid-
The contact layer on the inclined surface, the side surface and the surface was etched by 0.3 μm using a hydrogen peroxide-based etching solution. The shape of the representative element manufactured is shown in FIGS.

【0028】上記のようにして作製された素子の代表的
な形状は、発光面と傾斜面のなす角度(α)は、110
度〜122度、発光面の隅の曲率半径(R)は、3〜
4.5μm、側面と発光面の端との距離(d)は、16
〜24μmであった。
The typical shape of the device manufactured as described above is such that the angle (α) between the light emitting surface and the inclined surface is 110
Degrees to 122 degrees, the radius of curvature (R) of the corner of the light emitting surface is 3 to
4.5 μm, and the distance (d) between the side surface and the end of the light emitting surface is 16
2424 μm.

【0029】(実施例2)実施例1において傾斜面形成
の為のエッチングマスクを300μmピッチ、240μ
m□、隅の曲率半径:R=1.5μmに変更し形状の異
なる素子を作製した。このようにして作製された素子の
代表的な形状は、発光面と傾斜面のなす角度(α)は、
112度〜122度、発光面の隅の曲率半径(R)は、
1〜2.5μm、側面と発光面の端との距離(d)は、
16〜24μmであった。
(Embodiment 2) In Embodiment 1, an etching mask for forming an inclined surface is formed at a pitch of 300 μm and 240 μm.
m □ and the radius of curvature of the corners were changed to R = 1.5 μm to produce devices having different shapes. A typical shape of the device manufactured in this manner is that an angle (α) between the light emitting surface and the inclined surface is
112 to 122 degrees, the radius of curvature (R) at the corner of the light emitting surface is:
1 to 2.5 μm, the distance (d) between the side surface and the end of the light emitting surface is:
It was 16 to 24 μm.

【0030】(実施例3)実施例1において傾斜面形成
の為のエッチングマスクを300μmピッチ、270μ
m□、隅の曲率半径:R=3μmに変更し、ダイシング
する位置と発光面の端を近づけた素子を作製した。この
ようにして作製された素子の代表的な形状は、発光面と
傾斜面のなす角度(α)は、112度〜122度、発光
面の隅の曲率半径(R)は、3〜5μm、側面と発光面
の端との距離(d)は、6〜13μmであった。
(Embodiment 3) In Embodiment 1, the etching mask for forming the inclined surface is set at 300 μm pitch and 270 μm.
m □, the radius of curvature of the corner: R = 3 μm, and a device in which the dicing position was closer to the edge of the light emitting surface was manufactured. A typical shape of the device manufactured in this manner is such that the angle (α) between the light emitting surface and the inclined surface is 112 to 122 degrees, the radius of curvature (R) of the corner of the light emitting surface is 3 to 5 μm, The distance (d) between the side surface and the end of the light emitting surface was 6 to 13 μm.

【0031】(比較例)実施例1と同様にしてオーミッ
ク電極を形成した後、表面にプラズマCVD装置で酸化
珪素膜を0. 2μm形成し、ダイシングソーで素子に切
断後、臭素−メタノール混合液でエピタキシャル層とG
aAs基板からなる側面を約5μmエッチングした。そ
の後、フッ酸で酸化珪素を除去し、リン酸−過酸化水素
系エッチング液を用いて側面および表面のコンタクト層
を0. 3μmエッチングした。このようにして作製され
た素子の代表的な形状は、発光面と傾斜面のなす角度
(α)は、92度〜105度、発光面の曲率半径(R)
は、6〜8μm、側面と発光面の端との距離(d)は、
0〜5μmであった。
(Comparative Example) After forming an ohmic electrode in the same manner as in Example 1, a silicon oxide film was formed on the surface by a plasma CVD apparatus to a thickness of 0.2 μm, cut into elements using a dicing saw, and then mixed with a bromine-methanol mixture. With epitaxial layer and G
The side surface made of the aAs substrate was etched by about 5 μm. Thereafter, the silicon oxide was removed with hydrofluoric acid, and the contact layer on the side surface and the surface was etched by 0.3 μm using a phosphoric acid-hydrogen peroxide-based etchant. A typical shape of the device manufactured in this manner is such that the angle (α) between the light emitting surface and the inclined surface is 92 ° to 105 °, and the radius of curvature (R) of the light emitting surface.
Is 6 to 8 μm, and the distance (d) between the side surface and the end of the light emitting surface is:
It was 0-5 μm.

【0032】上記の実施例1、2、3および比較例で得
られた発光ダイオードを各々50点抜き取り、リードフ
レームにダイボンドし金線で配線後、エポキシ樹脂で封
止して5mmφのランプを作製した。作製したランプを
−40℃の低温環境で20mA通電を500時間行い、
輝度残存率(通電後の輝度/初期輝度×100%)を評
価した。表1に500時間後の輝度残存率の平均値、最
大値および最小値をまとめた。
Fifty points of the light emitting diodes obtained in Examples 1, 2, and 3 and the comparative example were respectively extracted, die-bonded to a lead frame, wired with gold wires, and sealed with epoxy resin to produce a 5 mmφ lamp. did. The produced lamp was subjected to 20 mA of electric current in a low temperature environment of -40 ° C for 500 hours,
The luminance remaining ratio (luminance after energization / initial luminance × 100%) was evaluated. Table 1 summarizes the average value, the maximum value, and the minimum value of the luminance residual ratio after 500 hours.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より、実施例1、2、3に記載の本発
明に係わる発光ダイオードは、輝度残存率が高く信頼性
が非常に良好であり、特に、実施例1に記載の発光ダイ
オードは、輝度残存率の最小値の値が他より高く非常に
優れている事が判る。また、比較例に記載の従来の発光
ダイオードは、本発明に比較し、信頼性が大幅に劣って
おり、低温環境での使用は困難であると判断できる。
From Table 1, it can be seen that the light emitting diodes according to the present invention described in Examples 1, 2 and 3 have a high luminance remaining ratio and very good reliability. In particular, the light emitting diodes described in Example 1 It can be seen that the value of the minimum value of the luminance remaining ratio is higher than the others and is very excellent. Further, the conventional light-emitting diode described in the comparative example has much lower reliability than the present invention, and it can be determined that it is difficult to use it in a low-temperature environment.

【0035】上述に示した如く樹脂からの応力が大きく
なる低温通電試験結果から、本発明を適用した実施例
1、2、3の発光ダイオードは、比較例の発光ダイオー
ドと比べて、輝度残存率の平均値が高くまたばらつきが
小さい点から、高信頼性の発光ダイオードであることが
明らかとなった。なお、上記実施例1〜3では、エピタ
キシャルウェーハにp型GaAs基板を用いたが、n型
GaAs基板を用い極性を反対にした構造でも同様な効
果が得られた。
From the results of the low-temperature current test in which the stress from the resin is increased as described above, the light emitting diodes of Examples 1, 2, and 3 to which the present invention is applied have a higher luminance remaining ratio than the light emitting diodes of the comparative example. It is clear that the light emitting diode is a highly reliable light emitting diode because of its high average value and small variation. In Examples 1 to 3, the p-type GaAs substrate was used for the epitaxial wafer. However, a similar effect was obtained by using an n-type GaAs substrate with a reversed polarity.

【0036】[0036]

【発明の効果】以上のように本発明者らは、ヘテロ接合
が多くエピタキシャル成長層の膜厚が薄いAlGaIn
Pを発光層とする発光ダイオードが、応力に対し非常に
弱い事に着目した。そして本発明者らは、この発光ダイ
オードに対して、応力集中を避けられ発光層の近傍に結
晶欠陥が入りにくい3次元的に最適な素子形状を見出
し、発光ダイオードの信頼性を大幅に向上した。本発明
の高信頼性の発光ダイオードは、低温に曝される温度環
境の厳しい屋外で使用でき用途の拡大ができると考えら
れる。
As described above, the present inventors have found that AlGaIn has a large number of heterojunctions and a thin epitaxial growth layer.
Attention was paid to the fact that a light emitting diode having P as a light emitting layer is very weak against stress. The present inventors have found a three-dimensionally optimal element shape for the light emitting diode, which avoids stress concentration and hardly causes crystal defects near the light emitting layer, and has greatly improved the reliability of the light emitting diode. . It is considered that the highly reliable light emitting diode of the present invention can be used outdoors where the temperature environment exposed to low temperatures is severe, and the use can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の発光ダイオードの外観図FIG. 1 is an external view of a conventional light emitting diode.

【図2】素子の不良数と角度(α)との関係を示した図FIG. 2 is a diagram showing a relationship between the number of defective elements and an angle (α).

【図3】素子の不良数と曲率半径(R)との関係を示し
た図
FIG. 3 is a diagram showing the relationship between the number of defective elements and the radius of curvature (R).

【図4】素子の不良数と側面と発光面の端の距離(d)
との関係を示した図
FIG. 4 shows the number of defective elements and the distance between the side surface and the end of the light emitting surface (d).
Diagram showing the relationship with

【図5】本発明に係わる発光ダイオードの断面図FIG. 5 is a sectional view of a light emitting diode according to the present invention.

【図6】本発明に係わる発光ダイオードの平面図FIG. 6 is a plan view of a light emitting diode according to the present invention.

【図7】実施例1、2、3および比較例に係わる発光ダ
イオードの積層構造図
FIG. 7 is a diagram showing a stacked structure of light emitting diodes according to Examples 1, 2, and 3 and a comparative example.

【符号の説明】[Explanation of symbols]

1 p型GaAs単結晶基板 2 p型GaAsバッファ層 3 p型AlGaAs反射層 4 p型(Al0.7 Ga0.30.5 In0.5 Pクラッド
層 5 アンドープ(Al0.2 Ga0.80.5 In0.5 P発
光層 5a AlGaInP発光層の端面 6 n型(Al0.7 Ga0.30.5 In0.5 Pクラッド
層 7 n型Al0.7 Ga0.3 As電流拡散層 8 n型(Al0.7 Ga0.30.5 In0.5 P層 9 n型GaAsコンタクト層 10 n型電極 11 p型電極 13 発光面 14 傾斜面 15 側面 α 発光面と傾斜面のなす角度(度) R 発光面の隅の曲率半径(μm) d 発光面の端と側面の距離(μm)
Reference Signs List 1 p-type GaAs single crystal substrate 2 p-type GaAs buffer layer 3 p-type AlGaAs reflection layer 4 p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 5 undoped (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P light-emitting layer 5 a AlGaInP End face of light emitting layer 6 n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 7 n-type Al 0.7 Ga 0.3 As current diffusion layer 8 n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P layer 9 n-type GaAs contact layer Reference Signs List 10 n-type electrode 11 p-type electrode 13 light emitting surface 14 inclined surface 15 side surface α angle between light emitting surface and inclined surface (degree) R radius of curvature of light emitting surface corner (μm) d distance between edge of light emitting surface and side surface (μm) )

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 発光面と側面および発光面から側面に至
る傾斜面を有し、AlGaInPを発光層とする発光ダ
イオードにおいて、前記AlGaInP発光層の端面が
前記傾斜面内に位置し、傾斜面と発光面とが交わる点に
於ける傾斜面の接線と発光面とがなす角度(α)が11
0度以上125度以下であることを特徴とする発光ダイ
オード。
1. A light emitting diode having a light emitting surface, a side surface, and an inclined surface extending from the light emitting surface to the side surface, wherein an end surface of the AlGaInP light emitting layer is located within the inclined surface. The angle (α) between the tangent of the inclined surface at the point where the light emitting surface intersects and the light emitting surface is 11
A light emitting diode having a temperature of 0 degree or more and 125 degrees or less.
【請求項2】 発光面の隅の曲率半径(R)が、3μm
以上であることを特徴とする請求項1に記載の発光ダイ
オード。
2. A curvature radius (R) at a corner of a light emitting surface is 3 μm.
The light emitting diode according to claim 1, wherein:
【請求項3】 発光面の端と側面との距離(d)が15
μm以上であることを特徴とする請求項1乃至2に記載
の発光ダイオード。
3. The distance (d) between the end of the light emitting surface and the side surface is 15
The light emitting diode according to claim 1, wherein the thickness of the light emitting diode is not less than μm.
【請求項4】 発光面の表面が、AlGaInP混晶で
あることを特徴とする請求項1乃至3に記載された発光
ダイオード。
4. The light emitting diode according to claim 1, wherein a surface of the light emitting surface is an AlGaInP mixed crystal.
【請求項5】 厚さ200μm以下のGaAs基板を使
用していることを特徴とする請求項1乃至4に記載され
た発光ダイオード。
5. The light emitting diode according to claim 1, wherein a GaAs substrate having a thickness of 200 μm or less is used.
【請求項6】 発光層の構造がダブルへテロ構造であ
り、エピタキシャル成長層にヘテロ界面が5個以上含む
ことを特徴とする請求項1乃至5に記載の発光ダイオー
ド。
6. The light emitting diode according to claim 1, wherein the structure of the light emitting layer is a double hetero structure, and the epitaxial growth layer includes five or more heterointerfaces.
【請求項7】 エピタキシャル成長層の膜厚が20μm
以下であり、半導体で形成された反射層を含むことを特
徴とする請求項1乃至6に記載の発光ダイオード。
7. The epitaxial growth layer has a thickness of 20 μm.
The light emitting diode according to claim 1, further comprising a reflective layer formed of a semiconductor.
JP35111497A 1997-12-19 1997-12-19 Light emitting diode Expired - Fee Related JP3630212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35111497A JP3630212B2 (en) 1997-12-19 1997-12-19 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35111497A JP3630212B2 (en) 1997-12-19 1997-12-19 Light emitting diode

Publications (2)

Publication Number Publication Date
JPH11186596A true JPH11186596A (en) 1999-07-09
JP3630212B2 JP3630212B2 (en) 2005-03-16

Family

ID=18415150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35111497A Expired - Fee Related JP3630212B2 (en) 1997-12-19 1997-12-19 Light emitting diode

Country Status (1)

Country Link
JP (1) JP3630212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391153B2 (en) 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391153B2 (en) 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
DE102004034166B4 (en) * 2003-07-17 2015-08-20 Toyoda Gosei Co., Ltd. Light-emitting device

Also Published As

Publication number Publication date
JP3630212B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US6593159B1 (en) Semiconductor substrate, semiconductor device and method of manufacturing the same
US8017932B2 (en) Light-emitting device
USRE44215E1 (en) Semiconductor optoelectric device and method of manufacturing the same
US7968897B2 (en) Light-emitting device having a support substrate and inclined sides
JP3436128B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
US7745246B2 (en) Method of fabricating light emitting device
US7153715B2 (en) Semiconductor device and method for fabricating the same
JP3525061B2 (en) Method for manufacturing semiconductor light emitting device
TWI405350B (en) Light emitting element and manufacturing method thereof
US20090045431A1 (en) Semiconductor light-emitting device having a current-blocking layer formed between a semiconductor multilayer film and a metal film and located at the periphery. , method for fabricating the same and method for bonding the same
US7652299B2 (en) Nitride semiconductor light-emitting device and method for fabrication thereof
JP2001085736A (en) Method for manufacturing nitride semiconductor chip
JP3460581B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
US9935428B2 (en) Semiconductor light-emitting element and method for manufacturing the same
JP2953326B2 (en) Method of manufacturing gallium nitride based compound semiconductor laser device
JP2009218495A (en) Semiconductor light-emitting element and semiconductor light-emitting device
WO2020092722A9 (en) Method of obtaining a smooth surface with epitaxial lateral overgrowth
JP4043087B2 (en) Nitride semiconductor device manufacturing method and nitride semiconductor device
JP2003273470A (en) Iii-group nitride semiconductor laser element
US20050079642A1 (en) Manufacturing method of nitride semiconductor device
JP6321013B2 (en) Light emitting device comprising a molded substrate
JP3216118B2 (en) Nitride semiconductor device and method of manufacturing the same
JP2008034862A (en) Growing method for nitride semiconductor
JP3792041B2 (en) Semiconductor device and manufacturing method thereof
JP3630212B2 (en) Light emitting diode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees