JPH11185744A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH11185744A
JPH11185744A JP9356638A JP35663897A JPH11185744A JP H11185744 A JPH11185744 A JP H11185744A JP 9356638 A JP9356638 A JP 9356638A JP 35663897 A JP35663897 A JP 35663897A JP H11185744 A JPH11185744 A JP H11185744A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
lithium
electrode active
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9356638A
Other languages
Japanese (ja)
Other versions
JP4355862B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Takaaki Iguchi
隆明 井口
Takeshi Cho
毅 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP35663897A priority Critical patent/JP4355862B2/en
Publication of JPH11185744A publication Critical patent/JPH11185744A/en
Application granted granted Critical
Publication of JP4355862B2 publication Critical patent/JP4355862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a safe and high output type battery capable of being charged rapidly, showing an excellent charge and discharge cycle characteristics with high voltage and high energy density by using an ultra fine particle active material made of silicon as a main component of a negative electrode active material. SOLUTION: Silicon having the particle diameter of about 0.1-0.01 μm is used as a main component of a negative electrode active material. Preferably, as a main component soluble material of nonaqueous electrolyte, salt containing carbon is used, and as a main component material of a positive electrode active material, a lithium contained transient metal oxide is used. As the salt containing carbon of nonaqueous electrolyte, one represented by a formula of (R1SO2 )(R2SO2 )NLi, where R1, R2 are shown by CnF2n+1 (n is 1-4, R1=R2 or R1≠R2) is desirable. Preferably, R1=R2=CF3 or C2 F5 or R1=CF3 , R2=C4 F9 . The negative electrode active material is turned into ultra fine particles to restrain the fineness of crystal made at the time of absrobing and discharging lithium, resulting in improvement of charge and discharge efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
するもので、さらに詳しくはその負極活物質とその電池
に用いられる電解質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a negative electrode active material and an electrolyte used in the battery.

【0002】[0002]

【従来の技術】従来より非水電解質電池用の負極活物質
として、リチウムを用いることが代表的であったが、充
電時に生成するリチウムの樹枝状析出(デンドライト)
のため、サイクル寿命の点で問題があった。また、この
デンドライトはセパレーターを貫通し内部短絡を引き起
こしたり、発火の原因ともなっている。
2. Description of the Related Art Conventionally, lithium has been typically used as a negative electrode active material for a nonaqueous electrolyte battery. However, dendritic deposition of lithium generated during charging (dendrite)
Therefore, there was a problem in terms of cycle life. In addition, the dendrite penetrates through the separator, causing an internal short circuit and causing ignition.

【0003】また、上記のような充電時に生成するデン
ドライトを防止する目的でアルミニウム−リチウム合金
等も用いられたが、充電量が大きくなると負極の微細粉
化や、負極活物質の脱落などの問題があった。
Also, aluminum-lithium alloys and the like have been used for the purpose of preventing dendrite generated at the time of charging as described above. However, when the charged amount is increased, problems such as fine powdering of the negative electrode and falling off of the negative electrode active material are caused. was there.

【0004】現在、長寿命化及び安全性のために負極に
炭素材料を用いる電池などが注目を集め一部実用化され
ている。しかしながら、負極に用いられる炭素材料は、
急速充電時、内部短絡や充電効率の低下という問題があ
った。これらの炭素材料は一般的に、炭素材料へのリチ
ウムのドープ電位が0Vに近いため、急速充電を行う場
合、電位が0V以下になり電極上にリチウムを析出する
ことがあった。そのため、セルの内部短絡を引き起こし
たり、放電効率を低下させる原因となっていた。また、
このような炭素材料は、サイクル寿命の点でかなりの改
善がなされているが、密度が比較的小さいため、体積当
たりの容量が低くなってしまうことになる。つまり、こ
の炭素材料は高エネルギー密度という点からは未だ不十
分である。その上、炭素上に被膜を形成する必要がある
ものについては初期充放電効率が低下し、この被膜形成
に使われる電気量は不可逆であるため、その電気量分の
容量低下につながる。従って、さらなる高容量、高エネ
ルギー密度で、サイクル寿命が長く、安全な非水電解質
電池用負極材料の開発が望まれている。
At present, batteries using a carbon material for the negative electrode have been attracting attention for their long life and safety, and some of them have been put to practical use. However, the carbon material used for the negative electrode is
At the time of quick charging, there was a problem that an internal short circuit or a reduction in charging efficiency occurred. Since these carbon materials generally have a lithium doping potential of the carbon material close to 0 V, when rapid charging is performed, the potential becomes 0 V or less and lithium may be deposited on the electrode. For this reason, it causes internal short circuit of the cell and lowers the discharge efficiency. Also,
Although such carbon materials have been significantly improved in terms of cycle life, their relatively low density results in low capacity per volume. That is, this carbon material is still insufficient in terms of high energy density. In addition, in the case where a film needs to be formed on carbon, the initial charge / discharge efficiency decreases, and the amount of electricity used for forming the film is irreversible, which leads to a reduction in capacity corresponding to the amount of electricity. Therefore, development of a safe negative electrode material for a non-aqueous electrolyte battery with a higher capacity, a higher energy density, a longer cycle life, and the like is desired.

【0005】[0005]

【発明が解決しようとする課題】既に、リチウムとシリ
コンの合金として、Binary Alloy Pha
se Diagrams(p2465)にあるように、
Li22Si5 までの組成で合金化することが知られてい
る。また、特開平5−74463号公報では、負極にシ
リコンの単結晶を用いることを報告している。シリコン
を電池材料に用いることは、資源的に豊富であり、毒性
も低いことから、安価かつ安全な材料の一つであるとい
える。しかしながら、急速充放電用非水電解質電池の負
極材としてシリコンの単結晶にリチウムのドープを試み
ると、ほとんどドープが起こらずにリチウムが析出して
しまうことが分かった。また、このシリコン単結晶の低
温性能は悪く、さらに溶質としてLiBF4 等のルイス
酸塩を用いた電解質を用いた場合、各サイクルの充放電
効率が低く、サイクル劣化が起こる問題があった。
As an alloy of lithium and silicon, Binary Alloy Pha has already been used.
As in se Diagrams (p2465),
It is known to alloy with compositions up to Li 22 Si 5 . Japanese Patent Application Laid-Open No. Hei 5-74463 reports that a single crystal of silicon is used for a negative electrode. The use of silicon as a battery material is one of inexpensive and safe materials because of its abundant resources and low toxicity. However, when attempting to dope lithium into a single crystal of silicon as a negative electrode material of a nonaqueous electrolyte battery for rapid charge / discharge, it was found that lithium was deposited with almost no doping. Further, the low-temperature performance of this silicon single crystal is poor, and when an electrolyte using a Lewis acid salt such as LiBF 4 is used as a solute, the charge / discharge efficiency of each cycle is low, and cycle deterioration occurs.

【0006】つまり、負極としてリチウム金属やリチウ
ムと金属の合金を用いる場合は高電圧や、高容量、高エ
ネルギー密度としての利点はあるものの、サイクル性や
安全性の上で問題があり、一方炭素材料を用いる場合、
高電圧や、安全性の面で有利であるものの、高容量、高
エネルギー密度の面で不十分である。高容量、高エネル
ギー密度が期待されるシリコンを負極活物質として用い
た場合、急速充電や高出力放電が難しいことや、各サイ
クルの充放電効率が低く、サイクル劣化につながること
が問題であった。
That is, when lithium metal or an alloy of lithium and a metal is used as the negative electrode, there are advantages in terms of high voltage, high capacity, and high energy density, but there are problems in cyclability and safety. When using materials,
Although it is advantageous in terms of high voltage and safety, it is insufficient in terms of high capacity and high energy density. When silicon, which is expected to have high capacity and high energy density, is used as the negative electrode active material, it is difficult to rapidly charge and discharge at high output, and the charge / discharge efficiency of each cycle is low, leading to cycle deterioration. .

【0007】このため、高電圧、高エネルギー密度で、
優れた充放電サイクル特性を示し、急速充電が可能で高
出力の、安全性の高い非水電解質電池を得るには、充放
電時のリチウムの吸蔵放出の際に結晶系の変化や体積変
化が少なく、急速充電や高出力放電が可能で、低温特性
にも優れ、かつ可逆的にリチウムを吸蔵放出可能な導電
性のある化合物が望まれている。
For this reason, high voltage, high energy density,
To obtain a non-aqueous electrolyte battery with excellent charge-discharge cycle characteristics, rapid charging, high output, and high safety, changes in the crystal system and volume change during insertion and extraction of lithium during charging and discharging. There is a demand for a conductive compound which is small, capable of rapid charging and high-power discharge, excellent in low-temperature characteristics, and capable of reversibly inserting and extracting lithium.

【0008】[0008]

【課題を解決するための手段】本発明は上記問題点に鑑
みてなされたものであって、非水電解質電池に使用され
る負極活物質の主構成物質として、超微粒子活物質を用
いることを特徴とする。好ましくは、超微粒子活物質が
シリコンであり、該非水電解質電池において、電解質の
主構成溶質として炭素を含む塩を用い、さらに正極活物
質の主構成物質がリチウム含有遷移金属酸化物であるこ
とが望ましい。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to use an ultrafine particle active material as a main component of a negative electrode active material used in a non-aqueous electrolyte battery. Features. Preferably, the ultrafine particle active material is silicon, in the nonaqueous electrolyte battery, a salt containing carbon is used as a main constituent solute of the electrolyte, and the main constituent material of the positive electrode active material is a lithium-containing transition metal oxide. desirable.

【0009】さらに、上記に挙げた炭素を含む塩が、下
記一般式(1) (R1 SO2 )(R2 SO2 )NLi ・・・・ 一般式(1) からなることを特徴とする。好ましくは一般式(1)中
のR1 、R2 がCn 2n+1で表され、nは1から4まで
の数であり、R1 =R2 又はR1 ≠R2 であることが望
ましい。
Furthermore, salts containing carbon listed above, characterized by comprising the following general formula (1) (R1 SO 2) (R2 SO 2) NLi ···· general formula (1). Preferably the general formula (1) R1 in, R2 is represented by C n F 2n + 1, n is a number from 1 to 4, it is desirable that R1 = R2 or R1 ≠ R2.

【0010】ここで、非水電解質電池において、従来一
般的に用いられていたLiBF4 やLiPF6 を電解質
に用いると、そのもののイオン伝導性は優れているもの
の、分解するとフッ化水素等を生じることが分かってい
る。これらの溶質を用いて超微粒子活物質を負極活物質
として用いた場合、溶質から生じる不純物が超微粒子活
物質表面に存在する被膜と反応し、その表面被膜は電気
抵抗が高くイオン伝導性の悪い被膜に変化することが分
かった。そのため、充放電を行う毎に電極抵抗が増大
し、充放電効率を低下させ、よってサイクル劣化につな
がることが考えられる。
Here, in a non-aqueous electrolyte battery, when LiBF 4 or LiPF 6 which has been generally used in the past is used as an electrolyte, it has excellent ionic conductivity, but when decomposed, generates hydrogen fluoride and the like. I know that. When the ultrafine particle active material is used as a negative electrode active material using these solutes, impurities generated from the solute react with the film present on the surface of the ultrafine particle active material, and the surface film has high electric resistance and poor ion conductivity. It turned out to change into a coating. Therefore, it is conceivable that the electrode resistance increases each time charging / discharging is performed, which lowers the charging / discharging efficiency, thereby leading to cycle deterioration.

【0011】一方、炭素を含む塩は分解しにくく、水と
の反応においてもフッ化水素等をほとんど放出しないこ
とが分かった。よって、超微粒子活物質を負極活物質と
して用いた場合、その表面被膜の電気抵抗増大や、イオ
ン伝導性の低下がが抑えられ、充放電効率が向上し、よ
ってサイクル特性が向上することが考えられる。従来、
シリコンとリチウムの合金は知られていたものの、その
リチウムの吸蔵放出に際する体積変化が大きく、活物質
である結晶が微細化するため、活物質の孤立化を生じ、
充放電効率を低下させていた。その結果、サイクル劣化
が大きい原因の一つとなっていた。そこで本発明者ら
は、負極活物質を超微粒子化し、リチウムの吸蔵放出に
際する結晶の微細化を抑制することにより、充放電効率
が向上し、その結果サイクル特性が向上することを見い
出し、本発明に至った。さらに、本発明の超微粒子負極
活物質を用いることで高出力放電が可能となり、低温特
性も優れることも分かった。
On the other hand, it has been found that salts containing carbon are hardly decomposed and hardly release hydrogen fluoride or the like even in the reaction with water. Therefore, when the ultrafine particle active material is used as the negative electrode active material, it is considered that the increase in the electric resistance of the surface coating and the decrease in the ionic conductivity are suppressed, the charge / discharge efficiency is improved, and the cycle characteristics are improved. Can be Conventionally,
Although an alloy of silicon and lithium was known, the volume change upon insertion and extraction of the lithium was large, and the active material crystal became finer, resulting in isolation of the active material.
The charge / discharge efficiency was reduced. As a result, this is one of the causes of large cycle deterioration. Thus, the present inventors have found that the anode active material is made into ultrafine particles, and by suppressing crystal refinement upon insertion and extraction of lithium, charge and discharge efficiency is improved, and as a result, cycle characteristics are improved. The present invention has been reached. Further, it was also found that the use of the ultrafine particle negative electrode active material of the present invention enabled high-power discharge and excellent low-temperature characteristics.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0013】本発明に用いる超微粒子活物質は、リチウ
ムを吸蔵、放出できる物で有れ何れでもかまわない。例
えば、リチウムと合金可能な元素でアルカリ土類金属や
遷移金属、非金属の単体、酸化物、窒化物、硫化物、リ
ン酸塩等が挙げられる。好ましくは、シリコン、ヒ素、
アルミニウム、スズ、アンチモン、鉛、炭素を主成分と
する合金であり、最も好ましくはそのリチウムの吸蔵能
力の大きさからシリコンである。
The ultrafine particle active material used in the present invention may be any material capable of inserting and extracting lithium. For example, an element which can be alloyed with lithium, such as an alkaline earth metal, a transition metal, a nonmetal simple substance, an oxide, a nitride, a sulfide, a phosphate and the like can be mentioned. Preferably, silicon, arsenic,
It is an alloy containing aluminum, tin, antimony, lead, and carbon as main components, and most preferably silicon because of its large lithium storage capacity.

【0014】本発明に用いる超微粒子活物質は、粒径が
0.1〜0.01μmである粒子が望ましい。超微粒子
活物質の製造方法は、蒸着法、アルゴンスパッタ法、イ
オンコーター法、プラズマCVD法、光CVD法、熱C
VD法、急冷法、熱プラズマ法や粉砕や分級が用いられ
る。粉砕方法として例えば、乳鉢、ボールミル、サンド
ミル、振動ボールミル、遊星ボールミル、ジェットミ
ル、カウンタージェトミル、旋回気流型ジェットミルや
篩等が用いられる。粉砕時には水、あるいはヘキサン等
の有機溶剤を共存させた湿式粉砕を用いることもでき
る。分級方法としては、特に限定はなく、篩や風力分級
機などが乾式、湿式ともに必要に応じて用いられる。
The ultrafine particle active material used in the present invention is preferably particles having a particle size of 0.1 to 0.01 μm. The method for producing the ultrafine particle active material includes a vapor deposition method, an argon sputtering method, an ion coater method, a plasma CVD method, a photo CVD method, and a thermal C method.
VD method, quenching method, thermal plasma method, pulverization and classification are used. As a pulverizing method, for example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve and the like are used. At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.

【0015】これらの超微粒子活物質を負極として用い
る場合、例えば集電体上にアルゴンスパッタ法を用い
て、直接超微粒子活物質層を得る方法や、急冷により得
られた超微粒子活物質を粉砕することにより、バインダ
ーや導電材と混練し集電体上にコーティングする方法が
挙げられる。特に、集電体上に直接超微粒子活物質層を
形成する方法は、バインダーや導電材、さらにコーティ
ング作業が必要でないので好ましい。
When these ultrafine particle active materials are used as a negative electrode, for example, a method of directly obtaining an ultrafine particle active material layer by using an argon sputtering method on a current collector, or grinding the ultrafine particle active material obtained by rapid cooling is used. Then, a method of kneading with a binder or a conductive material and coating the current collector on the current collector may be used. In particular, a method of forming an ultrafine particle active material layer directly on a current collector is preferable because a binder, a conductive material, and a coating operation are not required.

【0016】また、超微粒子活物質は、電子伝導性の優
れたものがリチウムとの合金化に適していることも分か
った。特に電子伝導度が常温で10-5Scm-1以上、好ま
しくは、1Scm-1以上あるものが充放電特性に優れてい
ることが分かった。例えばシリコンの場合元来半導体で
あるが、負極活物質の主構成物質として用いる場合、該
活物質と集電体との電子の流れが重要である。つまり、
半導体であるシリコンに不純物をドーピングすることに
より、外来半導体、特にp型半導体、n型半導体、p−
n接合を有する半導体とすることにより、電子伝導性の
良好なものが得られ、負極活物質としてより充放電特性
の優れた特性が得られる。ここで言う不純物とは周期律
表のすべての元素のうち、ドナー原子、アクセプター原
子となり得るものであるが、好ましくはP,Al,A
s,Sb,B,Ga,In等であり、最も好ましくはB
であるが、これらに限定されるものではない。また、格
子欠陥の存在も電子伝導向上に寄与することが考えられ
る。上記不純物のドーピング方法としては、あらかじめ
不純物の混入したシリコンをアルゴンスッパッタのター
ゲットとして用いる方法や、合金法、拡散法、イオン注
入法等が挙げられるが、これらに限定されるものではな
い。不純物添加の濃度については、通常シリコン原子1
7 個から106 個にドナー原子あるいはアクセプター
原子1個の割合であるが、好ましくは高濃度のドーピン
グが適しており、シリコン原子104 個にドナー原子あ
るいはアクセプター原子1個の割合、またはそれ以上の
高濃度であることが望ましい。
It has also been found that an ultrafine particle active material having excellent electron conductivity is suitable for alloying with lithium. In particular electronic conductivity at room temperature 10 -5 Scm -1 or more, preferably, it has been found that some 1Scm -1 or more is excellent in charge and discharge characteristics. For example, silicon is originally a semiconductor, but when it is used as a main component of a negative electrode active material, the flow of electrons between the active material and the current collector is important. That is,
By doping impurities into silicon, which is a semiconductor, a foreign semiconductor, in particular, a p-type semiconductor, an n-type semiconductor,
By using a semiconductor having an n-junction, a semiconductor having good electron conductivity can be obtained, and characteristics with more excellent charge and discharge characteristics can be obtained as a negative electrode active material. The term “impurity” as used herein means any of the elements in the periodic table that can be a donor atom or an acceptor atom, but is preferably P, Al, or A.
s, Sb, B, Ga, In, etc., most preferably B
However, the present invention is not limited to these. Further, it is considered that the presence of lattice defects also contributes to the improvement of electron conduction. Examples of the impurity doping method include, but are not limited to, a method using silicon in which impurities are mixed in advance as a target of an argon sputter, an alloy method, a diffusion method, and an ion implantation method. Regarding the concentration of impurity addition, usually,
0 While the seven to 10 6 is the ratio of one donor atom or acceptor atoms, preferably has a high concentration of doping suitable donor atom or the acceptor atom a rate of one per 10 4 silicon atoms or, It is desirable that the concentration be as high as described above.

【0017】本発明に併せて用いることができる負極材
料としては、リチウム金属、リチウム合金などや、リチ
ウムイオンまたはリチウム金属を吸蔵放出できる焼成炭
素質化合物やカルコゲン化合物、メチルリチウム等のリ
チウムを含有する有機化合物等が挙げられる。また、リ
チウム金属やリチウム合金、リチウムを含有する有機化
合物を併用することによって、本発明に用いる超微粒子
活物質にリチウムを電池内部で挿入することも可能であ
る。
The negative electrode material that can be used in conjunction with the present invention includes lithium metal, lithium alloy, etc., calcined carbonaceous compounds capable of inserting and extracting lithium ions or lithium metal, chalcogen compounds, and lithium such as methyllithium. Organic compounds and the like can be mentioned. In addition, by using lithium metal, a lithium alloy, and an organic compound containing lithium in combination, lithium can be inserted into the ultrafine particle active material used in the present invention inside the battery.

【0018】本発明の超微粒子を粉末として用いる場
合、電極合剤として導電剤や結着剤やフィラー等を添加
することができる。導電剤としては、電池性能に悪影響
を及ぼさない電子伝導性材料であれば何でも良い。通
常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛な
ど)、人造黒鉛、カーボンブラック、アセチレンブラッ
ク、ケッチェンブラック、カーボンウイスカー、炭素繊
維や金属(銅、ニッケル、アルミニウム、銀、金など)
粉、金属繊維、金属の蒸着、導電性セラミックス材料等
の導電性材料を1種またはそれらの混合物として含ませ
ることができる。これらの中で、黒鉛とアセチレンブラ
ックとケッチェンブラックの併用が望ましい。その添加
量は1〜50重量%が好ましく、特に2〜30重量%が
好ましい。
When the ultrafine particles of the present invention are used as a powder, a conductive agent, a binder, a filler or the like can be added as an electrode mixture. Any conductive material may be used as long as it does not adversely affect battery performance. Usually, natural graphite (flaky graphite, flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fibers and metals (copper, nickel, aluminum, silver, gold, etc.)
A conductive material such as powder, metal fiber, metal deposition, and conductive ceramic material can be included as one type or a mixture thereof. Among these, the combined use of graphite, acetylene black and Ketjen black is desirable. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.

【0019】結着剤としては、通常、テトラフルオロエ
チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンジエンターポリマー
(EPDM)、スルホン化EPDM、スチレンブタジエ
ンゴム(SBR)、フッ素ゴム、カルボキシメチルセル
ロース等といった熱可塑性樹脂、ゴム弾性を有するポリ
マー、多糖類等を1種または2種以上の混合物として用
いることができる。また、多糖類の様にリチウムと反応
する官能基を有する結着剤は、例えばメチル化するなど
してその官能基を失活させておくことが望ましい。その
添加量としては、1〜50重量%が好ましく、特に2〜
30重量%が好ましい。
As the binder, usually, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose, etc. Such as a thermoplastic resin, a polymer having rubber elasticity, a polysaccharide and the like can be used alone or as a mixture of two or more. Further, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly 2 to 50% by weight.
30% by weight is preferred.

【0020】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン、ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、ゼオライト、ガラス、炭素等が用いられる。フィラ
ーの添加量は30重量%以下が好ましい。
As the filler, any material may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The added amount of the filler is preferably 30% by weight or less.

【0021】電極活物質の集電体としては、構成された
電池において悪影響を及ぼさない電子伝導体であれば何
でもよい。例えば、正極用集電体材料として、アルミニ
ウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導
電性高分子、導電性ガラス等の他に、接着性、導電性、
耐酸化性向上の目的で、アルミニウムや銅等の表面をカ
ーボン、ニッケル、チタンや銀等で処理したものを用い
ることができる。負極用集電体材料として、銅、ステン
レス鋼、ニッケル、アルミニウム、チタン、焼成炭素、
炭素繊維、導電性高分子、導電性ガラス、Al−Cd合
金等の他に、接着性、導電性、耐酸化性向上の目的で、
銅や炭素繊維群等の表面をカーボン、ニッケル、チタン
や銀等で処理したものを用いることができる。また、ポ
リエチレンやポリプロピレン等のオレフィン系ポリマ
ー、ポリイミド等のフィルム上に、銅、白金、金、銀等
を蒸着によって形成したものを用いることができる。こ
れらの材料については表面を酸化処理することも可能で
ある。これらの形状については、圧延や電解によって製
造されるフォイルの他、フィルム、シート、ネット、パ
ンチ、エキスパンドされたもの、ラス体、多孔質体、発
砲体、繊維群の形成体等が用いられる。厚みは特に限定
はないが、1〜500μmのものが用いられる。
The current collector of the electrode active material may be any current collector that does not adversely affect the battery structure. For example, as a current collector material for the positive electrode, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass and the like, as well as adhesion, conductivity,
For the purpose of improving oxidation resistance, a material obtained by treating the surface of aluminum, copper, or the like with carbon, nickel, titanium, silver, or the like can be used. Copper, stainless steel, nickel, aluminum, titanium, calcined carbon,
In addition to carbon fiber, conductive polymer, conductive glass, Al-Cd alloy, etc., for the purpose of improving adhesion, conductivity, and oxidation resistance,
A material obtained by treating the surface of a group of copper or carbon fibers with carbon, nickel, titanium, silver, or the like can be used. Further, a film formed by depositing copper, platinum, gold, silver, or the like on a film of an olefin polymer such as polyethylene or polypropylene, or a film of polyimide can be used. These materials can be oxidized on the surface. For these shapes, in addition to foils produced by rolling or electrolysis, films, sheets, nets, punches, expanded ones, laths, porous bodies, foamed bodies, formed bodies of fiber groups, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.

【0022】一方、正極活物質としては、MnO2 ,M
oO3 ,V2 5 ,Lix CoO2,Lix NiO2
Lix Mn2 4 等の金属酸化物や、TiS2 ,MoS
2 ,NbSe3 等の金属カルコゲン化物、ポリアセン、
ポリパラフェニレン、ポリピロール、ポリアニリン等の
グラファイト層間化合物、及び導電性高分子等のアルカ
リ金属イオンや、アニオンを吸放出可能な各種の物質を
利用することができる。
On the other hand, MnO 2 , M
oO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 ,
Metal oxides such as Li x Mn 2 O 4 , TiS 2 , MoS
2 , metal chalcogenides such as NbSe 3 , polyacene,
Graphite intercalation compounds such as polyparaphenylene, polypyrrole, and polyaniline, and various substances capable of absorbing and releasing alkali metal ions and anions such as conductive polymers can be used.

【0023】特に本発明の超微粒子活物質を負極活物質
として用いる場合、高エネルギー密度という観点からV
2 5 ,MnO2 ,Lix CoO2 ,Lix NiO2
Lix Mn2 4 等の3〜4Vの電極電位を有するもの
が望ましい。特にLix CoO2 ,Lix NiO2 ,L
x Mn2 4 等のリチウム含有遷移金属酸化物が好ま
しい。
In particular, when the ultrafine particle active material of the present invention is used as a negative electrode active material, V
2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 ,
Those having an electrode potential of 3 to 4 V, such as Li x Mn 2 O 4, are desirable. In particular, Li x CoO 2 , Li x NiO 2 , L
i x Mn lithium-containing transition metal oxides such as 2 O 4 are preferred.

【0024】また、電解質としては、例えば有機電解
液、高分子固体電解質、無機固体電解質、溶融塩等を用
いることができ、この中でも有機電解液を用いることが
好ましい。この有機電解液の有機溶媒として、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート、γ−ブチロラクトン等
のエステル類や、テトラヒドロフラン、2−メチルテト
ラヒドロフラン等の置換テトラヒドロフラン、ジオキソ
ラン、ジエチルエーテル、ジメトキシエタン、ジエトキ
シエタン、メトキシエトキシエタン等のエーテル類、ジ
メチルスルホキシド、スルホラン、メチルスルホラン、
アセトニトリル、ギ酸メチル、酢酸メチル、N−メチル
ピロリドン、ジメチルフォルムアミド等が挙げられ、こ
れらを単独又は混合溶媒として用いることができる。
As the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among them, an organic electrolyte is preferable. As the organic solvent of the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethylsulfoxide, sulfolane, methylsulfolane,
Acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide and the like can be mentioned, and these can be used alone or as a mixed solvent.

【0025】本発明に用いられる電解質の主構成溶質と
しては、炭素を含む塩が好ましい。例えば、特開昭58
−225045号公報で用いられている式:(Cn
2n+1Y)2 - ,M+ で表せるものや、下記一般式
(2)(3): (RSO2 3 - ,M+ ・・・・ 一般式(2) (RSO2 )O- ,M+ ・・・・ 一般式(3) で表せるものが好ましい。さらに好ましくは下記一般式
(1) (R1 SO2 )(R2 SO2 )NLi ・・・・ 一般式(1) で表せるものを用いることである。
As the main constituent solute of the electrolyte used in the present invention, a salt containing carbon is preferable. For example, Japanese Patent Application Laid-Open
Formula used in JP-A-225045: (C n X
2n + 1 Y) 2 N , M + , and the following general formulas (2) and (3): (RSO 2 ) 3 C , M + ... General formula (2) (RSO 2 ) O - , M + ... It is preferable to use a compound represented by the general formula (3). Further preferably be those represented by the following general formula (1) (R1 SO 2) (R2 SO 2) NLi ···· general formula (1).

【0026】上記式中のYはSO2 又はCO、RはCn
2n+1、R1 、R2 はCn 2n+1であり、nは1から4
までの数であり、R1 =R2 又はR1 ≠R2 である。最
も好ましくはR1 =R2 =CF3 、R1 =R2 =C2
5 、あるいはR1 =CF3 、R2 =C4 9 である。
In the above formula, Y is SO 2 or CO, and R is C n
F 2n + 1 , R 1 and R 2 are C n F 2n + 1 , where n is 1 to 4
R1 = R2 or R11R2. Most preferably R1 = R2 = CF 3, R1 = R2 = C 2 F
5, or R1 = CF 3, R2 = a C 4 F 9.

【0027】一方、固体電解質として、例えば無機固体
電解質、有機固体電解質、無機有機固体電解質、溶融塩
等を用いることができる。無機固体電解質には、リチウ
ムの窒化物、ハロゲン化物、酸素酸塩、硫化リン化合物
などがよく知られており、これらの1種または2種以上
を混合して用いることができる。なかでも、Li3 N,
LiI,Li5 NI2 ,Li3 N−LiI−LiOH,
Li4 SiO4 ,Li4 SiO4 −LiI−LiOH,
xLi3 PO4-(1-x) Li4 SiO4 ,Li2SiS3
等が有効である。一方、有機固体電解質では、ポリエチ
レンオキサイド誘導体か、少なくとも該誘導体を含むポ
リマー、ポリプロピレンオキサイド誘導体か、少なくと
も該誘導体を含むポリマー、ポリフォスファゼンや該誘
導体、イオン解離基を含むポリマー、リン酸エステルポ
リマー誘導体、さらにポリビニルピリジン誘導体、ビス
フェノールA誘導体、ポリアクリロニトリル、ポリビニ
リデンフルオライド、フッ素ゴム等に非水電解液を含有
させた高分子マトリックス材料(ゲル電解質)等が有効
である。
On the other hand, as the solid electrolyte, for example, an inorganic solid electrolyte, an organic solid electrolyte, an inorganic organic solid electrolyte, a molten salt and the like can be used. Well known inorganic solid electrolytes include lithium nitrides, halides, oxyacid salts, phosphorus sulfide compounds, and the like, and one or more of these can be used in combination. Among them, Li 3 N,
LiI, Li 5 NI 2, Li 3 N-LiI-LiOH,
Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH,
xLi 3 PO 4- (1-x) Li 4 SiO 4 , Li 2 SiS 3
Etc. are effective. On the other hand, in an organic solid electrolyte, a polyethylene oxide derivative, a polymer containing at least the derivative, a polypropylene oxide derivative, a polymer containing at least the derivative, polyphosphazene or the derivative, a polymer containing an ion dissociating group, a phosphate ester polymer derivative Further, a polymer matrix material (gel electrolyte) in which a non-aqueous electrolyte is contained in a polyvinyl pyridine derivative, a bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, fluorine rubber, or the like is effective.

【0028】セパレーターとしては、イオンの透過度が
優れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性からポリプロピレンやポリエ
チレンといったオレフィン系のポリマー、ガラス繊維、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
からつくられたシート、微孔膜、不織布、布等が用いら
れる。セパレーターの孔径は、一般に電池に用いられる
範囲のものであり、例えば0.01〜10μmである。
またその厚みについても同様で、一般に電池に用いられ
る範囲のものであり、例えば5〜300μmである。
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene, glass fiber, and organic solvent resistant and hydrophobic
Sheets, microporous membranes, nonwoven fabrics, cloths, and the like made of polyvinylidene fluoride, polytetrafluoroethylene, and the like are used. The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 10 μm.
The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 300 μm.

【0029】本発明の超微粒子活物質において、集電を
とる目的で集電体と活物質の間に導電性接着層を設ける
こともできる。導電性接着剤として通常、銀ペースト、
カーボンペーストが用いられる。また、結晶の一部をニ
ッケルメッキすることによって、はんだや銀ロウのよう
な溶融した金属による接合も可能である。
In the ultrafine particle active material of the present invention, a conductive adhesive layer may be provided between the current collector and the active material for the purpose of collecting current. Usually silver paste as conductive adhesive,
Carbon paste is used. Further, by plating a part of the crystal with nickel, it is possible to join with a molten metal such as solder or silver brazing.

【0030】この様に本発明は、非水電解質電池におい
て負極活物質の主構成物質として、超微粒子活物質を用
いることにより、金属リチウムに対し少なくとも0〜2
Vの範囲でリチウムイオンを吸蔵放出することができ、
また負極活物質が超微粒子であることから、通常の合金
に見られる充放電時の微細粉化や負極活物質の部分的な
孤立化が抑えられ低温特性も向上する。さらに、電解質
の主構成溶質として炭素を含む塩を用いることにより、
充放電効率に優れ、サイクル特性が良好な充放電特性の
優れた非水電解質電池の負極として用いることができ
る。特に、負極活物質がシリコンの様な半導体の場合に
高濃度の不純物をドープすることにより、電極内部での
電子伝導性を向上させ、超微粒子活物質とリチウムの合
金化をスムーズにし、充放電のレート特性が向上する。
さらに正極活物質の主構成物質としてリチウム含有遷移
金属酸化物を用いることにより、正極の電位が高いた
め、電池としての電圧が高電圧となり、またその容量が
大きいことから高エネルギー密度が達成される。
As described above, the present invention provides a non-aqueous electrolyte battery using at least 0 to 2 with respect to metallic lithium by using an ultrafine particle active material as a main constituent material of a negative electrode active material.
Can absorb and release lithium ions in the range of V,
In addition, since the negative electrode active material is ultrafine particles, fine powdering at the time of charge and discharge and partial isolation of the negative electrode active material, which are observed in ordinary alloys, are suppressed, and low-temperature characteristics are improved. Furthermore, by using a salt containing carbon as the main constituent solute of the electrolyte,
It can be used as a negative electrode of a non-aqueous electrolyte battery having excellent charge / discharge efficiency, excellent cycle characteristics, and excellent charge / discharge characteristics. In particular, when the negative electrode active material is a semiconductor such as silicon, doping with a high concentration of impurities improves the electron conductivity inside the electrode, smoothes the alloying of the ultrafine particle active material and lithium, and performs charge / discharge. The rate characteristics of the device are improved.
Furthermore, by using a lithium-containing transition metal oxide as a main constituent material of the positive electrode active material, the potential of the positive electrode is high, so that the voltage of the battery becomes high, and the high energy density is achieved because of its large capacity. .

【0031】[0031]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0032】(実施例1)シリコン原子104 個にB原
子1個の割合でドープしたp型半導体であるシリコン単
結晶をターゲットに用い、真空中、200W、2時間の
条件で10μmの電解銅箔上にアルゴンスパッタを行い
約3μmのシリコン層を得た。このシリコン層のSEM
像を観察したところ、このシリコン層は粒径が0.1〜
0.01μmである超微粒子であることを確認した。
EXAMPLE 1 A silicon single crystal, which is a p-type semiconductor doped with 10 4 silicon atoms at a ratio of 1 B atom, was used as a target, and 200 μW in vacuum, 10 μm electrolytic copper under conditions of 2 hours. Argon sputtering was performed on the foil to obtain a silicon layer of about 3 μm. SEM of this silicon layer
When the image was observed, the particle size of this silicon layer was 0.1 to
It was confirmed that the particles were ultrafine particles having a size of 0.01 μm.

【0033】この超微粒子シリコン負極を5×5mmの
大きさに切り出し、重量を測定し負極とした。次に、1
0×10mmのニッケル板にスポット溶接し、ワイヤー
を取り付け試験電極とした。以下の操作は乾燥空気中で
行い、材料はすべてあらかじめ十分に乾燥を行った後に
用いた。適当な大きさの金属リチウムをニッケル板上に
圧着したものを2個作製し、対極及び電位参照極とし
た。ビーカー中でエチレンカーボネートとジエチルカー
ボネートとの体積比1:1の混合溶剤に(C2 5 SO
2 2 NLiを1mol/リットル溶解した電解液を用
い、上記で作製した3個の電極、即ち試験電極、対極、
電位参照極を電解液中に浸漬し、三端子セルとした。こ
の単極性能試験セルを(a)とする。
This ultrafine silicon negative electrode was cut into a size of 5 × 5 mm, and the weight was measured to obtain a negative electrode. Then, 1
A spot welding was performed on a nickel plate of 0 × 10 mm, and a wire was attached as a test electrode. The following operations were performed in dry air, and all the materials were used after sufficiently drying in advance. Two pieces of metal lithium having an appropriate size were pressed on a nickel plate to prepare two pieces, which were used as a counter electrode and a potential reference electrode. In a beaker, a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 (C 2 F 5 SO
2) 2 NLi using an electrolyte prepared by dissolving 1mol / liter, three electrodes produced above, i.e. the test electrode, a counter electrode,
The potential reference electrode was immersed in the electrolytic solution to form a three-terminal cell. This single-pole performance test cell is referred to as (a).

【0034】(比較例1)超微粒子以外のシリコンとし
てシリコン単結晶を0.3×5×5mmの大きさに切り
出し、重量を測定した。このシリコン単結晶をニッケル
メッシュで挟み込み、負極として用いること以外は上記
実施例1と同様にして単極性能試験セルを作製し同様の
容量試験を行った。この単極性能試験セルを(b)とす
る。
Comparative Example 1 A silicon single crystal was cut out into a size of 0.3 × 5 × 5 mm as silicon other than ultrafine particles, and the weight was measured. A single-electrode performance test cell was prepared in the same manner as in Example 1 except that this silicon single crystal was sandwiched between nickel meshes and used as a negative electrode, and a similar capacity test was performed. This single-pole performance test cell is referred to as (b).

【0035】これらの単極性能試験セルを用いて充放電
試験を行った。このセルに1mA電流を流し、電位参照
極に対する試験極の電位が0.00〜2.00Vの範囲
について容量試験を行った。この様に作製した単極性能
試験セルの容量試験結果を表1に示す。
A charge / discharge test was performed using these unipolar performance test cells. A 1 mA current was passed through the cell, and a capacity test was performed for a potential of the test electrode with respect to the potential reference electrode in the range of 0.00 to 2.00 V. Table 1 shows the capacity test results of the monopolar performance test cell manufactured in this manner.

【0036】[0036]

【表1】 [Table 1]

【0037】超微粒子シリコンを用いた単極性能試験セ
ル(a)に関してはリチウムの吸蔵放出が確認された
が、セル(b)についてはほとんどリチウムの吸蔵放出
ができずリチウムの析出が観察された。さらに、この単
極性能評価セル(a)を用いて10mAでの高率放電を
行ったところ1mAにおける放電容量の約85%が得ら
れた。また、−20℃における1mAでの低温放電を行
ったところ、20℃での放電容量の約70%が得られ
た。
With respect to the unipolar performance test cell (a) using ultrafine silicon particles, insertion and extraction of lithium was confirmed, but in cell (b), almost no insertion and extraction of lithium was observed, and lithium was observed. . Further, when a high-rate discharge at 10 mA was performed using this single-electrode performance evaluation cell (a), about 85% of the discharge capacity at 1 mA was obtained. When low-temperature discharge at -20 ° C and 1 mA was performed, about 70% of the discharge capacity at 20 ° C was obtained.

【0038】この結果から明らかなように、本発明であ
る超微粒子シリコンを用いた負極については、充放電サ
イクル性に優れ、高容量であり、高率放電や低温放電が
可能であることが分かる。この理由については明確では
ないが、次のように考えられる。即ち、粒子の大きなシ
リコンは、規則的な結晶配列を持っているため、リチウ
ムが存在できる場が決められており、シリコン表面での
反応は瞬時に進行するものの、内部への合金化反応が律
速となり、急速な充電を行うとリチウムの析出が起こる
ことが考えられる。それに比べて、超微粒子シリコンは
粒子が細かいため反応する表面積が大きく、リチウムの
吸着、合金化といった反応が同時進行し、急速充電や高
率放電、低温放電時においても良好な特性が得られるこ
とが考えられる。また、リチウムの吸蔵放出の際に体積
変化が生じても、超微粒子であるため結晶の崩壊が少な
く、サイクル特性が向上することが考えられる。
As is evident from the results, the negative electrode using the ultrafine silicon particles of the present invention has excellent charge / discharge cycle characteristics, high capacity, and is capable of high-rate discharge and low-temperature discharge. . The reason for this is not clear, but is considered as follows. In other words, since silicon with large particles has a regular crystal arrangement, the field where lithium can exist is determined, and the reaction on the silicon surface proceeds instantaneously, but the alloying reaction to the inside is rate-limiting. It is considered that when rapid charging is performed, lithium is deposited. In comparison, ultrafine silicon particles have a large surface area to react due to their fine particles, and reactions such as lithium adsorption and alloying proceed simultaneously, and good characteristics can be obtained even during rapid charging, high-rate discharge, and low-temperature discharge. Can be considered. Further, even if the volume changes during the insertion and extraction of lithium, it is considered that the crystal is hardly disintegrated due to the ultrafine particles, and the cycle characteristics are improved.

【0039】(実施例2)実施例1で用いた負極を用い
て次のようにしてコイン型非水電解質電池を試作した。
この実施例1で用いた負極を直径16mmの円形に打ち
抜き、減圧下200℃で15時間乾燥して負極2を得
た。負極2は、アルゴンスパッタの際に基板として用い
た10μmの電解銅箔である負極集電体7の面を負極缶
5に装着して用いた。正極1は、正極活物質としてLi
CoO2 とアセチレンブラック及びポリテトラフルオロ
エチレン粉末とを重量比85:10:5で混合し、トル
エンを加えて十分混練した。これをローラープレスによ
り厚み0.8mmのシート状に成形した。次にこれを直
径16mmの円形に打ち抜き、減圧下200℃で15時
間乾燥して正極1を得た。正極1は正極集電体6の付い
た正極缶4に圧着して用いた。エチレンカーボネートと
ジエチルカーボネートとの体積比1:1の混合溶剤に
(C2 5 SO2 2 NLiを1mol/リットル溶解
した電解液を用い、セパレータ3にはポリプロピレン製
微多孔膜を用いた。上記正極、負極、電解液及びセパレ
ータを用いて直径20mm、厚さ1.6mmのコイン型
リチウム電池を作製した。この電池を電池(A1)とす
る。
Example 2 Using the negative electrode used in Example 1, a coin-type non-aqueous electrolyte battery was prototyped as follows.
The negative electrode used in Example 1 was punched into a circle having a diameter of 16 mm, and dried at 200 ° C. under reduced pressure for 15 hours to obtain a negative electrode 2. The negative electrode 2 was used by attaching the surface of a negative electrode current collector 7, which is a 10 μm electrolytic copper foil used as a substrate during argon sputtering, to a negative electrode can 5. The positive electrode 1 uses Li as a positive electrode active material.
CoO 2 and acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a 0.8 mm thick sheet by a roller press. Next, this was punched out into a circle having a diameter of 16 mm and dried under reduced pressure at 200 ° C. for 15 hours to obtain a positive electrode 1. The positive electrode 1 was used by being pressed against a positive electrode can 4 provided with a positive electrode current collector 6. An electrolytic solution in which (C 2 F 5 SO 2 ) 2 NLi was dissolved at 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used, and a microporous polypropylene membrane was used as the separator 3. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the above-mentioned positive electrode, negative electrode, electrolyte and separator. This battery is referred to as battery (A1).

【0040】(実施例3)電解液の溶質として、(C2
5 SO2 2 NLiの代わりにLiBF4 を用い、そ
れ以外は本発明と同様にして電池を作製した。得られた
電池を電池(A2)とする。
Example 3 As a solute of an electrolytic solution, (C 2
A battery was fabricated in the same manner as in the present invention except that LiBF 4 was used instead of F 5 SO 2 ) 2 NLi. The obtained battery is referred to as a battery (A2).

【0041】このようにして作製した本発明電池(A
1)、(A2)を用いて充放電サイクル試験を行った。
試験条件は、充電電流3mA、充電終止電圧4.1V、
放電電流3mA、放電終止電圧3.0Vとした。これら
作製した電池の充放電試験の結果を表2に示す。
The battery of the present invention (A
A charge / discharge cycle test was performed using 1) and (A2).
The test conditions were a charging current of 3 mA, a charging end voltage of 4.1 V,
The discharge current was 3 mA, and the discharge end voltage was 3.0 V. Table 2 shows the results of the charge / discharge test of these batteries.

【0042】[0042]

【表2】 [Table 2]

【0043】表2から分かるように、炭素を含む塩を用
いた電池(A1)は、電解液の溶質にLiBF4 を用い
た電池(A2)に比べて充放電特性に優れており、10
サイクル後の減少が小さかった。この理由については明
確ではないが、次のように考えられる。即ち、実施例3
のようにLiBF4 を電解質に用いると、そのもののイ
オン伝導性は優れているものの、その溶質の分解等によ
り電解液中にフッ化水素等の不純物が存在していること
が考えられる。このような電解液を用いて超微粒子シリ
コンへのリチウムの吸蔵放出を行った場合、溶質から生
じる不純物が超微粒子シリコン表面に存在する被膜と反
応し、その表面被膜は電気抵抗が高くイオン伝導性の悪
い被膜に変化することが考えられる。そのため、充放電
を行う毎に電極抵抗が増大し、充放電効率を低下させ、
よってサイクル劣化につながることが考えられる。一
方、炭素を含む塩は分解しにくく、水との反応において
もフッ化水素等をほとんど放出しないため、超微粒子シ
リコンへのリチウムの吸蔵放出を行った場合、その表面
での電気抵抗増大や、イオン伝導性の低下がが抑えら
れ、充放電効率が向上し、よってサイクル特性が向上す
ることが考えられる。上記においては、超微粒子活物質
としてシリコンを、電解液の溶質として(C2 5 SO
2 2 NLiについて挙げたが、同様の効果が超微粒子
活物質として他の元素や化合物、また電解液として他の
炭素を含む塩についても確認された。なお、本発明は上
記実施例に記載された活物質の出発原料、製造方法、正
極、負極、電解質、セパレータ及び電池形状などに限定
されるものではない。
As can be seen from Table 2, the battery (A1) using the salt containing carbon has better charge / discharge characteristics than the battery (A2) using LiBF 4 as the solute of the electrolytic solution.
The decrease after cycling was small. The reason for this is not clear, but is considered as follows. That is, the third embodiment
When LiBF 4 is used for the electrolyte as described above, it is considered that although the ion conductivity of the electrolyte itself is excellent, impurities such as hydrogen fluoride are present in the electrolyte due to decomposition of the solute. When lithium is absorbed and released into ultrafine silicon using such an electrolytic solution, impurities generated from the solute react with the coating existing on the surface of the ultrafine silicon, and the surface coating has high electric resistance and high ion conductivity. It is conceivable that the film changes to a film having poor quality. Therefore, the electrode resistance increases each time charging / discharging is performed, lowering the charging / discharging efficiency,
Therefore, it is considered that this leads to cycle deterioration. On the other hand, salts containing carbon are hardly decomposed and hardly release hydrogen fluoride or the like even in the reaction with water.Therefore, when occlusion and release of lithium into ultrafine silicon particles, increase in electric resistance on the surface, It is conceivable that the decrease in ion conductivity is suppressed, the charge / discharge efficiency is improved, and the cycle characteristics are improved. In the above, silicon is used as the ultrafine particle active material, and (C 2 F 5 SO
2) given for 2 NLi, other elements or compounds similar effects as ultrafine active material, also was confirmed also salts containing other carbon as an electrolytic solution. The present invention is not limited to the starting materials, the production method, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery, and the like of the active material described in the above-described embodiment.

【0044】[0044]

【発明の効果】本発明は上述の如く構成されているの
で、高電圧、高容量、高エネルギー密度で、優れた充放
電サイクル特性を示し、急速充電特性、高率放電特性、
低温放電特性に優れ、高出力で安全性の高い非水電解質
電池を提供できる。
Since the present invention is constructed as described above, it exhibits excellent charge / discharge cycle characteristics at high voltage, high capacity, and high energy density, and has rapid charge characteristics, high rate discharge characteristics,
A non-aqueous electrolyte battery having excellent low-temperature discharge characteristics, high output, and high safety can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るコイン型非水電解質電池の断面図
である。
FIG. 1 is a sectional view of a coin-type nonaqueous electrolyte battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング REFERENCE SIGNS LIST 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector 8 insulating packing

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質の主構成物質が、超微粒子で
あることを特徴とする非水電解質電池。
1. A non-aqueous electrolyte battery, wherein the main constituent material of the negative electrode active material is ultrafine particles.
【請求項2】 前記超微粒子が、0.1〜0.01μm
の粒径であることを特徴とする請求項1記載の非水電解
質電池。
2. The method according to claim 1, wherein the ultrafine particles have a particle size of 0.1 to 0.01 μm.
2. The non-aqueous electrolyte battery according to claim 1, wherein the particle size is:
【請求項3】 前記超微粒子が、シリコンであることを
特徴とする請求項1又は2記載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the ultrafine particles are silicon.
【請求項4】 非水電解質の主構成溶質が、炭素を含む
塩であることを特徴とする請求項1、2又は3記載の非
水電解質電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the main constituent solute of the non-aqueous electrolyte is a salt containing carbon.
【請求項5】 前記炭素を含む塩が、下記一般式(1) (R1 SO2 )(R2 SO2 )NLi ・・・・ 一般式(1) からなることを特徴とする請求項4記載の非水電解質電
池。
5. A salt containing the carbon, the following general formula (1) (R1 SO 2) (R2 SO 2) NLi ···· general formula (1) becomes possible according to claim 4, wherein Non-aqueous electrolyte battery.
【請求項6】 前記炭素を含む塩の一般式(1)中のR
1 、R2 がCn 2n+1で表され、nは1から4までの数
であり、R1 =R2 又はR1 ≠R2 であることを特徴と
する請求項5記載の非水電解質電池。
6. R in the general formula (1) of the salt containing carbon
1, R2 is represented by C n F 2n + 1, n is a number from 1 to 4, the non-aqueous electrolyte battery according to claim 5, wherein it is R1 = R2 or R1 ≠ R2.
【請求項7】 負極活物質の主構成物質が、超微粒子シ
リコンであり、正極活物質の主構成物質が、リチウム含
有遷移金属酸化物であることを特徴とする非水電解質電
池。
7. A non-aqueous electrolyte battery, wherein the main constituent of the negative electrode active material is ultrafine silicon, and the main constituent of the positive electrode active material is a lithium-containing transition metal oxide.
JP35663897A 1997-12-25 1997-12-25 Non-aqueous electrolyte battery Expired - Fee Related JP4355862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35663897A JP4355862B2 (en) 1997-12-25 1997-12-25 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35663897A JP4355862B2 (en) 1997-12-25 1997-12-25 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11185744A true JPH11185744A (en) 1999-07-09
JP4355862B2 JP4355862B2 (en) 2009-11-04

Family

ID=18450034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35663897A Expired - Fee Related JP4355862B2 (en) 1997-12-25 1997-12-25 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4355862B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541637A (en) * 1999-04-01 2002-12-03 スリーエム イノベイティブ プロパティズ カンパニー Lithium-ion battery with improved resistance to sustained self-heating
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283086A (en) * 1992-03-31 1993-10-29 Hitachi Maxell Ltd Organic electrolyte battery
JPH06231754A (en) * 1993-02-05 1994-08-19 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JPH08222222A (en) * 1995-02-10 1996-08-30 Ricoh Co Ltd Secondary battery
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JPH103920A (en) * 1996-06-17 1998-01-06 Toshiba Corp Lithium secondary battery, and manufacture of the same
JPH11135115A (en) * 1997-10-27 1999-05-21 Kao Corp Negative electrode material for nonaqueous secondary battery and its manufacture
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283086A (en) * 1992-03-31 1993-10-29 Hitachi Maxell Ltd Organic electrolyte battery
JPH06231754A (en) * 1993-02-05 1994-08-19 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JPH08222222A (en) * 1995-02-10 1996-08-30 Ricoh Co Ltd Secondary battery
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JPH103920A (en) * 1996-06-17 1998-01-06 Toshiba Corp Lithium secondary battery, and manufacture of the same
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JPH11135115A (en) * 1997-10-27 1999-05-21 Kao Corp Negative electrode material for nonaqueous secondary battery and its manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541637A (en) * 1999-04-01 2002-12-03 スリーエム イノベイティブ プロパティズ カンパニー Lithium-ion battery with improved resistance to sustained self-heating
JP4662639B2 (en) * 1999-04-01 2011-03-30 スリーエム イノベイティブ プロパティズ カンパニー Lithium ion battery with improved resistance to sustained self-heating
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery

Also Published As

Publication number Publication date
JP4355862B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP3620559B2 (en) Non-aqueous electrolyte battery
JP4680637B2 (en) Lithium secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP3596578B2 (en) Non-aqueous electrolyte secondary battery
JP5489353B2 (en) Non-aqueous electrolyte secondary battery
JP2008059765A (en) Nonaqueous secondary battery
JP3906944B2 (en) Non-aqueous solid electrolyte battery
JP2003297353A (en) Negative electrode for secondary battery, secondary battery using such negative electrode, and manufacturing method for negative electrode
JP3653717B2 (en) Non-aqueous electrolyte battery
JP4029224B2 (en) Non-aqueous electrolyte battery
JPH11204145A (en) Lithium secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4355862B2 (en) Non-aqueous electrolyte battery
JP3824111B2 (en) Non-aqueous electrolyte battery
JP4193008B2 (en) Lithium secondary battery
JP4624500B2 (en) Non-aqueous electrolyte battery
JP4161383B2 (en) Nonaqueous electrolyte secondary battery
JP2002260636A (en) Electrode for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JP4110562B2 (en) battery
JP3972454B2 (en) Lithium secondary battery
JP2002279998A (en) Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same
JP5375482B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH11307122A (en) Lithium secondary battery
JP3821180B2 (en) Lithium secondary battery
CN116404102A (en) Negative electrode for secondary battery and secondary battery comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees