JPH11135115A - Negative electrode material for nonaqueous secondary battery and its manufacture - Google Patents

Negative electrode material for nonaqueous secondary battery and its manufacture

Info

Publication number
JPH11135115A
JPH11135115A JP29389897A JP29389897A JPH11135115A JP H11135115 A JPH11135115 A JP H11135115A JP 29389897 A JP29389897 A JP 29389897A JP 29389897 A JP29389897 A JP 29389897A JP H11135115 A JPH11135115 A JP H11135115A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
negative electrode
secondary battery
method
compound
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29389897A
Other languages
Japanese (ja)
Other versions
JP4453111B2 (en )
Inventor
Ryuichi Akagi
Toru Nishimura
Masayuki Okamoto
昌幸 岡本
徹 西村
赤木  隆一
Original Assignee
Kao Corp
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PROBLEM TO BE SOLVED: To provide a new negative electrode material for a nonaqueous electrolyte secondary battery with high voltage, high capacity, satisfactory charging/ discharging cycle characteristics, and provide its manufacturing method. SOLUTION: A semiconductor thin film of an element or the compound of at least one kind selected from among groups IIIB, IVB, VB of the periodic table, capable of inserting/releasing lithium ions is used as the negative active material of a negative electrode, a metal oxide containing transition metals as the constituting element is used as the positive active material of a positive electrode, and a lithium ion conductive nonaqueous electrolyte prepared by dissolving a lithium compound in an organic solvent, or holding an organic solvent containing a lithium compound as a solid solution or in which a lithium compound is dissolved in a polymer is used as an electrolyte. By assembling these positive electrode, negative electrode and electrolyte, a nonaqueous electrolyte secondary battery with high capacity, high voltage, and satisfactory charging/discharging cycle characteristics is obtained.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、非水系二次電池に関するものであり、さらに詳しくは非水系用二次電池用負極材料に関する。 The present invention relates generally relates to a nonaqueous secondary battery, more particularly to a negative electrode material for a secondary battery for a nonaqueous.

【0002】 [0002]

【従来の技術】3V級の電圧をもつ非水系二次電池においては、負極活物質として、金属リチウム、正極活物質としてCo,Mn,Niに代表される遷移金属の酸化物を用いる方法が代表的である。 BACKGROUND OF THE INVENTION Non-aqueous secondary battery with a 3V class voltage, as a negative electrode active material, Co, Mn, a method of using a transition metal oxide represented by Ni representative metal lithium, as a positive electrode active material is a basis. しかし、負極に金属リチウムを用いると、充放電中に金属リチウムが樹枝状の形態(デンドライト)で成長するため内部でショートしたり、またデンドライトの活性が高く発火の危険性があるなどの問題がある。 However, the use of metallic lithium as a negative electrode, or internally shorted since the metal lithium during charge and discharge is grown dendritic morphology (dendrites), also including at risk for high firing activity of dendrite problems is there. そのため、金属リチウムに代わる活物質としてリチウムイオンを挿入・放出することのできる焼成炭素質材料が負極として実用化されている。 Therefore, calcined carbonaceous materials capable of inserting and releasing lithium ions as an active material in place of metal lithium has been put into practical use as a negative electrode. しかしながら、炭素材料は体積当たりの容量が低いという欠点を持っている。 However, it has the disadvantage that the capacity per volume of the carbon material is low.

【0003】そこで、高い体積当りの容量が期待できる負極活物質として、リチウムイオンを挿入・放出できる1)TiS 2 ,LiTiS 2 (米国特許第398347 [0003] Therefore, as a negative electrode active material can be expected capacity per high volume, 1 can be inserted and releasing lithium ion) TiS 2, LiTiS 2 (U.S. Patent No. 398,347
6)などの遷移金属カルコゲン化合物、2)ルチル構造の遷移金属酸化物、例えば、WO 2 (米国特許第419 6) a transition metal chalcogen compound such as 2) the transition metal oxide of the rutile structure, for example, WO 2 (U.S. Pat. No. 419
8476)、3)LixFe(Fe 2 )O 4などのスピネル化合物(特開昭58−220362号)、4)電気化学的に合成されたFe 23のリチウム化合物(米国特許第4464447)、Fe 23のリチウム化合物(特開平3−112070号)、Nb 25 (特開昭62−59 8476), 3) LixFe (Fe 2) spinels such as O 4 (JP 58-220362), 4) electrochemically synthesized Fe 2 O 3 of a lithium compound (U.S. Patent No. 4464447), Fe lithium compounds 2 O 3 (JP-a-3-112070), Nb 2 O 5 (JP 62-59
412号、特開平2−82447号)、酸化鉄、Fe 412 No., JP-A-2-82447), iron oxide, Fe
O,Fe 23 ,Fe 34 ,酸化コバルト、CoO,Co O, Fe 2 O 3, Fe 3 O 4, cobalt oxide, CoO, Co
23 ,Co 34 (特開平3−291862号)などの遷移金属酸化物が知られている。 Transition metal oxides such as 2 O 3, Co 3 O 4 ( JP-A-3-291862) are known. 一方、5)リチウムと合金を形成することが知られているSn,Cd(Proc On the other hand, 5) Sn which to form an alloy with lithium are known, Cd (Proc
eedings of the Electroche eedings of the Electroche
mical Society,87−1,1987)A mical Society, 87-1,1987) A
l(Solid StateIonics,20,19 l (Solid StateIonics, 20,19
86),Si,Pb,Bi,Sb(Proceedin 86), Si, Pb, Bi, Sb (Proceedin
gs of the Electrochemical gs of the Electrochemical
Society,87−1,1987)及びこれらのリチウムとの合金(例えば特開平7−29602号)を用いることが提案されている。 Society, 87-1,1987) and an alloy (e.g., Japanese Patent Laid-Open No. 7-29602) of these lithium has been proposed.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、通常上記負極活物質は粉末として得られるため、電極を作製する際には、導電助剤を加え結着剤を溶かした有機溶剤に粉末状の負極活物質を加えペースト状とし、集電体上に塗布した後、加熱乾燥し溶媒を除去する方法が採られている。 [SUMMARY OF THE INVENTION However, since the normally the anode active material obtained as a powder, in making the electrodes, the negative electrode active powdered organic solvent by dissolving the binder added conductive additive and substances added paste was applied onto a current collector, dried by heating process for removing the solvent is employed. しかし、塗布法によっては、粉末粒子の凝集体の生成を抑制できず、負極活物質の粉末粒子を1次粒子にまで分散させるのは困難である。 However, depending on the coating method can not suppress the formation of agglomerates of the powder particles, it is difficult to disperse the powder particles of the negative electrode active material until the primary particles. そのため電極の電気抵抗が大きくなり、結果として低い作動電圧しか得られず、また集電が不十分なため大電流が流れる高速充放電時には負極活物質の利用率が低く十分な充放電容量を引き出せていないのが現状である。 Therefore the electrical resistance of the electrode increases, obtained only a low operating voltage as a result, also utilization of the negative electrode active material during high-speed charging and discharging for the collector is insufficient large current flows withdraw a low enough discharge capacity not for at present. そこで本発明の目的は、1)大量のリチウムイオンの可逆的な挿入・放出が可能でかつ負極の電気抵抗を低減できる負極活物質と2)その製造方法を提供し、さらに3)高電圧、高容量で充放電特性の優れた非水系二次電池を提供することである。 It is an object of the present invention, 1) to provide a negative active material and 2) a method for manufacturing the same that can reduce the reversible insertion and electrical resistance of the release possible and the negative electrode of a large amount of lithium ions, and 3) a high voltage, it is to provide novel non-aqueous secondary battery of the charge and discharge characteristics at a high capacity.

【0005】 [0005]

【課題を解決するための手段】上記の第1の目的を達成するため、本発明の負極活物質は、リチウムイオンを挿入・放出する1種又は2種以上の周期律表IIIB、I First to achieve the purpose of the SUMMARY OF THE INVENTION The above negative active material of the present invention, one or more of the Periodic Table IIIB inserting and releasing lithium ions, I
VB、VB族から選ばれた元素の単体又はその化合物からなる半導体薄膜であることを特徴とする。 VB, characterized in that it is a semiconductor thin film made from a single piece or a compound of an element selected from group VB. 第2の目的は、集電体として用いる銅又はステンレス基板上に蒸着法、スパッタリング法、イオンプレーテイング法、CV A second object is an evaporation method in copper or stainless steel substrate is used as the current collector, a sputtering method, ion plating queuing method, CV
D法等の真空薄膜作製法から選ばれたいずれか1つの方法を用いて上記半導体薄膜を作製することにより達成される。 Using any one method selected from a vacuum thin layer manufacturing method of the D method is achieved by making the semiconductor thin film. さらに上記真空薄膜作製法により作製された半導体薄膜を、真空下、熱処理することを特徴とする。 Furthermore the semiconductor thin film manufactured by the above vacuum thin layer manufacturing method, under vacuum, characterized by heat treatment. 第3 Third
の目的は、本発明の半導体薄膜を負極活物質とし、遷移金属を構成元素として含む金属酸化物を正極活物質とし、有機溶媒にリチウム化合物を溶解させた、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させたリチウムイオン導電性の非水電解質を電解質として非水系二次電池を構成することにより達成される。 Purpose, the semiconductor thin film of the present invention as a negative electrode active material, a metal oxide containing a transition metal as an element as the positive electrode active material, was dissolved a lithium compound in an organic solvent, or a solid solution of lithium compound to polymer or it is accomplished by configuring the nonaqueous secondary battery of the nonaqueous electrolyte of the lithium ion conductivity was retained organic solvent obtained by dissolving lithium compound as an electrolyte.

【0006】 [0006]

【発明の実施の形態】以下、本発明を詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
本発明に用いる元素とは、周期律表IIIB族のB、A The element used in the present invention, the Periodic Table Group IIIB B, A
l、Ga、In、Tl、IVB族のC、Si、Ge、S l, Ga, In, Tl, IVB group of C, Si, Ge, S
n、Pb、およびVB族のN、P、As、Sb、Biである。 n, Pb, and Group VB N, which is P, As, Sb, Bi. 単体としては、Si、C、Ge、Snが好ましい。 The simple, Si, C, Ge, Sn is preferable. 化合物としては、リチウムイオンの挿入・放出が可能である半導体が望ましく、III族とV族からなるI The compound semiconductor is preferably a possible insertion and release of lithium ions, Group III and Group V I
nBi、Bi 3 In 5 、BiIn 2 、InSb、InA nBi, Bi 3 In 5, BiIn 2, InSb, InA
s、InP、InN、GaSb、GaAs、GaP、G s, InP, InN, GaSb, GaAs, GaP, G
aN、Tl 5 Sb、Sb 5 Tl 7 、Bi 2 Tl、AlSb等の化合物半導体が挙げられる。 aN, Tl 5 Sb, Sb 5 Tl 7, Bi 2 Tl, include a compound semiconductor such as AlSb.

【0007】集電体として用いる導電性の金属又は合金は、通常非水系二次電池の負極用に用いられているいずれのものも使用できるが、銅又はステンレスが望ましい。 [0007] electrically conductive metal or alloy used as the current collector, can also be used conventional one used in the negative electrode for nonaqueous secondary battery, copper or stainless steel is preferable.

【0008】本発明の負極活物質の製造方法としては、 [0008] As a method for producing the negative electrode active material of the present invention,
下記の方法が上げられるが、これに限定されるものではなく、蒸着法、イオンプレーテイング法、CVD法等の既知の真空成膜法を用いることができる。 The following method can be cited, but is not limited to this, vapor deposition, ion plating queuing method, and a known vacuum deposition method such as CVD. 本発明の望ましい製造方法は、IIIB、IVB、VB族の元素のうちの目的の単体又はその化合物からなる円板状ターゲットを用い、1×10 -2 〜1×10 -3 Torrのアルゴン雰囲気で、高周波(RF)スパッタリングにより、銅箔又はステンレス箔からなる基板上に成膜する方法である。 Preferred method of the present invention, IIIB, IVB, using purpose alone or disc-shaped target made from the compound of one of the elements of Group VB, in an argon atmosphere of 1 × 10 -2 ~1 × 10 -3 Torr by radio frequency (RF) sputtering, a method for forming on a substrate of copper foil or stainless steel foil. さらに、必要に応じて真空下で熱処理を行う。 Further, a heat treatment is carried out under vacuum if desired.

【0009】本発明の正極活物質として用いられる正極材料は、従来公知の何れの材料も使用でき、例えば、L [0009] The positive electrode material for use as a positive electrode active material of the present invention may be used conventionally known any material, eg, L
ixCoO 2 ,LixNiO 2 ,MnO 2 ,LiMnO 2 ixCoO 2, LixNiO 2, MnO 2 , LiMnO 2,
LixMn 24 ,LixMn 2-y4 ,α−V 25 ,Ti LixMn 2 O 4, LixMn 2- y O 4, α-V 2 O 5, Ti
2等が挙げられる。 S 2, and the like.

【0010】本発明に使用される非水電解質は、有機溶媒にリチウム化合物を溶解させた非水電解液、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させた高分子固体電解質を用いることができる。 [0010] non-aqueous electrolyte used in the present invention, a non-aqueous electrolyte prepared by dissolving a lithium compound in an organic solvent, or by holding the organic solvent having dissolved therein a solid solution or lithium compound of lithium compound to the polymer it can be used a polymer solid electrolyte. 非水電解液は、有機溶媒と電解質とを適宜組み合わせて調製されるが、これら有機溶媒や電解質はこの種の電池に用いられるものであればいずれも使用可能である。 The non-aqueous electrolyte, is prepared by combining an organic solvent and an electrolyte as appropriate, the organic solvent and the electrolyte are all usable as long as it is used in the cell of this type. 有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ピニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルエチルカーボネート、 The organic solvent, such as propylene carbonate, ethylene carbonate, Pini alkylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl ethyl carbonate,
1,2−ジメトキシエタン、1,2−ジエトキシエタンメチルフォルメイト、ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1−3ジオキソフラン、4−メチル−1、3−ジオキソフラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、1,2−ジクロロエタン、4 1,2-dimethoxyethane, 1,2-diethoxyethane methyl folder mate, butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1-3 Jiokisofuran, 4-methyl-1,3-Jiokisofuran, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, 4
−メチル−2ーペンタノン、1、4−ジオキサン、アニソール、ジグライム、ジメチルホルムアミド、ジメチルスルホキシド等である。 - methyl-2 Pentanon, 1,4-dioxane, anisole, diglyme, dimethylformamide, dimethyl sulfoxide and the like. これらの溶媒はその1種を単独で使用することができるし、2種以上を併用することもできる。 These solvents may be used one kind thereof alone, it may be used in combination of two or more. 電解質としては、例えばLiClO 4 ,LiA As the electrolyte, for example LiClO 4, LiA
sF 6 ,LiPF 6 ,LiBF4,LiB(C 654 sF 6, LiPF 6, LiBF4, LiB (C 6 H 5) 4,
LiCl,LiBr,LiI,LiCH 3 SO 3 ,LiC LiCl, LiBr, LiI, LiCH 3 SO 3, LiC
3 SO 3 ,LiAlCl 4等が挙げられ、これらの1種を単独で使用することもできるし、2種以上を併用することもできる。 F 3 SO 3, LiAlCl 4 and the like, can either be used these alone, it may be used in combination of two or more.

【0011】本発明に使用される高分子固体電解質は、 [0011] The polymer solid electrolyte used in the present invention,
上記の電解質から選ばれる電解質を以下に述べる高分子に固溶させたものを用いることができる。 An electrolyte selected from the above electrolytes may be used in which a solid solution in a polymer described below. 例えば、ポリエチレンオキサイドやポリプロピレンオキサイドのようなポリエーテル鎖を有する高分子、ポリエチレンサクシネート、ポリ−カプロラクタムのようなポリエステル鎖を有する高分子、ポリエチレンイミンのようなポリアミン鎖を有する高分子、ポリアルキレンスルフィドのようなポリスルフィド鎖を有する高分子が挙げられる。 For example, polymer having a polyether chain such as polyethylene oxide and polypropylene oxide, polyethylene succinate, poly - polymer having a polyester chain, such as caprolactam, polymer having a polyamine chain, such as polyethyleneimine, polyalkylene sulfide include polymer having a polysulfide chain, such as. また、本発明に使用される高分子固体電解質として、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、ポリエチレンオキサイド、ポリアクリロニトリル、ポリプロピレンオキサイド等の高分子に上記非水電解液を保持させ上記高分子を可塑化させたものを用いることもできる。 Further, as a polymer solid electrolyte used in the present invention, polyvinylidene fluoride, vinylidene fluoride - tetrafluoroethylene copolymer, is held polyethylene oxide, polyacrylonitrile, non-aqueous electrolyte solution in a polymer, such as polypropylene oxide It can also be used those obtained by plasticizing the polymer.

【0012】 [0012]

【実施例】以下、実施例を用いて本発明をさらに詳細に説明するが、本発明はかかる実施例に限定されるものではない。 EXAMPLES The following is a more detailed description of the present invention with reference to examples, the present invention is not limited to these examples.

【0013】実施例1. [0013] Example 1. フルウチ化学製の純度99.9 Furuuchi Chemical Co., Ltd. of purity 99.9
9%のケイ素をターゲットとし、厚さ0.1mmで純度99.9%の銅基板上に、RFスパッタリング装置を用いてケイ素の薄膜を成膜した。 9% silicon as a target, a purity of 99.9% copper on the substrate in a thickness of 0.1 mm, was formed a thin film of silicon using an RF sputtering device. スパッタリング中、ベルジャー内を1.7×10 -3 Torrのアルゴン雰囲気とし、成膜時間は45分とした。 During sputtering, the inside of the bell jar an argon atmosphere 1.7 × 10 -3 Torr, the deposition time was 45 minutes. さらに、9.0×10 -6 Further, 9.0 × 10 -6
Torrの真空下、650℃で1時間保持しアニール処理を行った。 Under a vacuum of Torr, it was held for one hour annealing at 650 ° C.. このようにして、膜厚2μmの結晶性ケイ素の薄膜を得、これを負極として用いた。 Thus, to obtain a thin film of crystalline silicon with a thickness of 2 [mu] m, it was used as a negative electrode. 正極は次の様にして作製した。 The positive electrode was prepared in the following manner. 炭酸リチウムLi 23と炭酸コバルトCoCO 3を等モル比で秤量し、イソプロピルアルコールを用いてボールミルで湿式混合した後、溶媒を蒸発させ800℃、1時間で仮焼した。 Lithium carbonate Li 2 O 3 and cobalt carbonate CoCO 3 were weighed in an equimolar ratio, was wet-mixed in a ball mill using isopropyl alcohol, 800 ° C. to evaporate the solvent, and calcined at 1 hour. 仮焼粉を振動ミルで再粉砕した後、成型圧1.3ton/cm 2で直径16m After re-pulverized calcined powder in a vibratory mill, diameter 16m at a molding pressure of 1.3 ton / cm 2
m、厚さ0.5mmのペレットに加圧成型した後、80 m, was pressure-molded to a thickness of 0.5mm pellets 80
0℃で10時間焼成したものを正極とした。 0 which was calcined for 10 hours at ℃ was positive. 電解液はエチレンカーボネートとジメチルカーボネートの体積比1:1の混合溶媒に六フッ化リン酸リチウムLiPF 6 The volume ratio of the electrolyte of ethylene carbonate and dimethyl carbonate 1: mixed solvent and lithium hexafluorophosphate LiPF 6 of 1
を1モル/l溶解したものを用いた。 The was obtained by dissolving 1 mol / l. 以上述べた負極、 Above-mentioned negative electrode,
正極および電解質を用いてコイン電池を作製し、室温で一昼夜放置しエージングした後、1.5mAの定電流で4.2Vから2.5Vの電位範囲で充放電試験を行った。 To prepare a coin battery using a positive electrode and an electrolyte, after aging allowed to stand overnight at room temperature, a charge-discharge test was conducted at a potential range of 2.5V from 4.2V at a constant current of 1.5 mA. 結果を表1に示す。 The results are shown in Table 1.

【0014】比較例1. [0014] Comparative Example 1. (株)高純度化学研究所製のケイ素粉末に導電助剤としてグラファイト、結着剤にテフロンを用い銅基板上に塗布したものを負極とした以外は実施例1と同様にしてコイン電池を作製し、充放電試験を行った。 Co. Kojundo Chemical Laboratory Ltd. of silicon powder to graphite as a conductive additive, except that a material obtained by coating a copper substrate using a Teflon was negative as a binder in the same manner as in Example 1 prepare a coin battery and, a charge-discharge test was conducted. 結果を表1に示す。 The results are shown in Table 1.

【0015】 [0015]

【表1】 [Table 1]

【0016】 [0016]

【発明の効果】以上述べた様に、本発明は非水系二次電池の負極活物質としてリチウムイオンを挿入・放出する周期律表IIIB、IVB、VB族から選ばれた1種又は2種以上の元素の単体又はその化合物からなる半導体薄膜を、正極活物質として遷移金属を構成元素として含む金属酸化物を、有機溶媒リチウム化合物を溶解させた、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させたリチウムイオン導電性の非水電解質を電解質として用いると、粒子状の負極活物質を用いる場合に比べ高容量、高電圧で高電流密度での充放電特性に優れた非水系二次電池が得られる。 As mentioned above, according to the present invention, the present invention is the periodic table IIIB to insert and release lithium ions as a negative electrode active material of nonaqueous secondary batteries, IVB, 1 or 2 or more selected from group VB of elemental or semiconductor thin film made of the compound of an element, a metal oxide containing as a constituent element of the transition metal as a positive electrode active material, was dissolved organic solvent lithium compound, or a solid solution or lithium compound of lithium compound to the polymer when using a non-aqueous electrolyte lithium ion conductivity was retained organic solvent dissolved as electrolyte, high capacity compared with the case of using a particulate anode active material, the charge and discharge characteristics at a high current density at a high voltage nonaqueous secondary battery excellent is obtained.

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 正極と負極とを有する非水系二次電池において、リチウムイオンを挿入・放出する1種又は2種以上の周期律表IIIB、IVB、VB族から選ばれた元素の単体又はその化合物からなる半導体薄膜を負極活物質として用いることを特徴とする非水系二次電池用負極材料。 1. A nonaqueous secondary battery having the positive electrode and the negative electrode, one or more of the Periodic Table IIIB inserting and releasing lithium ions, IVB, single element selected from Group VB or negative electrode material for a nonaqueous secondary battery, which comprises using a semiconductor thin film made of a compound as the negative electrode active material.
  2. 【請求項2】 上記半導体薄膜が周期律表IIIB族元素としてB、Al、Ga、In及びTlからなる群、I Wherein said semiconductor thin film B as the Periodic Table Group IIIB elements, Al, Ga, the group consisting of In and Tl, I
    VB族元素としてC、Si、Ge、Sn及びPbからなる群、VB族元素としてN、P、As、Sb及びBiからなる群から選ばれた1種又は2種以上の元素の単体又はその化合物からなることを特徴とする請求項1記載の非水系二次電池用負極材料。 C as the VB group elements, Si, Ge, a group consisting of Sn and Pb, N as the group VB element, P, As, alone or compounds thereof of one or more elements selected from the group consisting of Sb and Bi negative electrode material for a nonaqueous secondary battery according to claim 1, characterized in that it consists of.
  3. 【請求項3】 周期律表IIIB、IVB、VB族から選ばれた1種又は2種以上の元素の単体又はその化合物からなる半導体薄膜を、集電体基板上に蒸着法、スパッタリング法、イオンプレーテイング法、CVD法から選ばれたいずれか1つの方法で作製することを特徴とする非水系二次電池用負極材料の製造方法。 3. A periodic table IIIB, IVB, the semiconductor thin film made from a single piece or a compound of one or more elements selected from Group VB, deposition on a current collector substrate, a sputtering method, an ion Pureteingu method, a manufacturing method of the negative electrode material for nonaqueous secondary battery, characterized by making at any one method selected from a CVD method.
  4. 【請求項4】 集電体基板上に蒸着法、スパッタリング法、イオンプレーテイング法、CVD法から選ばれたいずれか1つの方法で作製された上記半導体薄膜を、真空下で熱処理することを特徴とする請求項3記載の非水系二次電池用負極材料の製造方法。 4. A vapor deposition collector substrate, a sputtering method, characterized in that ion plating queuing method, the semiconductor thin film fabricated in any one method selected from a CVD method, a heat treatment under vacuum method of preparing a negative electrode material for nonaqueous secondary battery according to claim 3,.
  5. 【請求項5】 周期律表IIIB、IVB、VB族から選ばれた1種又は2種以上の元素の単体又はその化合物からなる半導体薄膜を負極活物質とし、遷移金属を構成元素として含む金属酸化物を正極活物質とし、有機溶媒にリチウム化合物を溶解させた、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させたリチウムイオン導電性の非水電解質を電解質として用いることを特徴とする非水系二次電池。 5. Periodic Table IIIB, IVB, and a semiconductor thin film made from a single piece or a compound of one or more elements selected from Group VB and the negative electrode active material, a metal oxide containing a transition metal as an element things were the positive electrode active material, it was dissolved a lithium compound in an organic solvent, or a lithium compound solute or lithium ion conductive non-aqueous electrolyte obtained by holding the organic solvent obtained by dissolving a lithium compound as an electrolyte in a polymer nonaqueous secondary battery, which comprises using.
JP29389897A 1997-10-27 1997-10-27 Negative electrode material and a manufacturing method thereof, an anode active material, and a nonaqueous secondary battery Expired - Fee Related JP4453111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29389897A JP4453111B2 (en) 1997-10-27 1997-10-27 Negative electrode material and a manufacturing method thereof, an anode active material, and a nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29389897A JP4453111B2 (en) 1997-10-27 1997-10-27 Negative electrode material and a manufacturing method thereof, an anode active material, and a nonaqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH11135115A true true JPH11135115A (en) 1999-05-21
JP4453111B2 JP4453111B2 (en) 2010-04-21

Family

ID=17800590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29389897A Expired - Fee Related JP4453111B2 (en) 1997-10-27 1997-10-27 Negative electrode material and a manufacturing method thereof, an anode active material, and a nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4453111B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071512A1 (en) * 2001-03-06 2002-09-12 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2006511907A (en) * 2002-12-23 2006-04-06 エイ 123 システムズ,インク. High energy density and high power density electrochemical cells
US7105253B2 (en) 2001-06-25 2006-09-12 Sanyo Electric Co., Ltd. Method of and apparatus for manufacturing lithium secondary cell
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2007094311A1 (en) 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
JP2007534177A (en) * 2004-04-22 2007-11-22 カリフォルニア インスティテュート オブ テクノロジー Nanostructures high capacity germanium-containing materials and their lithium alloys
US7311999B2 (en) 2002-11-19 2007-12-25 Sony Corporation Anode for a battery and a battery using an anode
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7459236B2 (en) 2004-10-18 2008-12-02 Sony Corporation Battery
US7459233B2 (en) 2003-11-05 2008-12-02 Sony Corporation Anode and battery
US7476464B2 (en) 2006-08-02 2009-01-13 Sony Corporation Negative electrode and secondary cell
US7482095B2 (en) 2003-05-20 2009-01-27 Sony Corporation Anode and battery using the same
US7494743B2 (en) 2005-09-29 2009-02-24 Sony Corporation Anode and battery
US7655359B2 (en) 2005-12-16 2010-02-02 Sony Corporation Secondary battery
US7682742B2 (en) 2005-07-20 2010-03-23 Sony Corporation Battery
US7700235B2 (en) 2004-11-25 2010-04-20 Sony Corporation Battery and method of manufacturing the same
US7846582B2 (en) 2006-12-19 2010-12-07 Sony Corporation Negative electrode, battery using the same, and method of manufacturing negative electrode
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
JP4662639B2 (en) * 1999-04-01 2011-03-30 スリーエム イノベイティブ プロパティズ カンパニー Lithium-ion batteries with the improved resistance against sustained self-heating
US7943254B2 (en) 2006-03-20 2011-05-17 Sony Corportion Anode and battery
JP2011198756A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Power storage device, its manufacturing method, secondary battery, and capacitor
US8048563B2 (en) 2005-10-25 2011-11-01 Sony Corporation Anode, battery, and methods of manufacturing them
JP4846901B2 (en) * 1998-07-10 2011-12-28 スリーエム カンパニー Electrode materials and compositions comprising the same
US8097365B2 (en) 2006-06-29 2012-01-17 Sony Corporation Electrode current collector and method for inspecting the same, electrode for battery and method for producing the same, and secondary battery and method for producing the same
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
US8169003B2 (en) 2007-03-20 2012-05-01 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
US8507135B2 (en) 2009-04-01 2013-08-13 The Swatch Group Research And Development Ltd Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
US8629525B2 (en) 2005-11-15 2014-01-14 Power Integrations, Inc. Second contact schottky metal layer to improve GaN schottky diode performance
US8633094B2 (en) 2011-12-01 2014-01-21 Power Integrations, Inc. GaN high voltage HFET with passivation plus gate dielectric multilayer structure
US8771874B2 (en) 2007-03-13 2014-07-08 Panasonic Corporation Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same
US8795886B2 (en) 2008-03-28 2014-08-05 Sony Corporation Anode and secondary battery
US8802286B2 (en) 2006-01-30 2014-08-12 Sony Corporation Negative electrode for use with secondary battery and secondary battery using such negative electrode
KR101466405B1 (en) * 2008-09-17 2014-11-27 주식회사 엘지화학 Current collectors for Batteries and Secondary Batteries comprising the same
US8916929B2 (en) 2004-06-10 2014-12-23 Power Integrations, Inc. MOSFET having a JFET embedded as a body diode
US8928037B2 (en) 2013-02-28 2015-01-06 Power Integrations, Inc. Heterostructure power transistor with AlSiN passivation layer
US8940620B2 (en) 2011-12-15 2015-01-27 Power Integrations, Inc. Composite wafer for fabrication of semiconductor devices
US8940441B2 (en) 2006-04-04 2015-01-27 Sony Corporatin Anode and battery
US9048504B2 (en) 2006-12-27 2015-06-02 Sony Corporation Secondary battery electrode, method for manufacturing same, and secondary battery
US9112238B2 (en) 2006-03-20 2015-08-18 Sony Corporation Anode and battery
US9246160B2 (en) * 2002-12-26 2016-01-26 Sony Corporation Anode and battery using the same
US9564640B2 (en) 2006-06-26 2017-02-07 Sony Corporation Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
US9761867B2 (en) 2009-03-12 2017-09-12 Belenos Clean Power Holding Ag Open porous electrically conductive nanocomposite material

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846901B2 (en) * 1998-07-10 2011-12-28 スリーエム カンパニー Electrode materials and compositions comprising the same
JP4662639B2 (en) * 1999-04-01 2011-03-30 スリーエム イノベイティブ プロパティズ カンパニー Lithium-ion batteries with the improved resistance against sustained self-heating
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
KR100766200B1 (en) 1999-10-22 2007-10-10 산요덴키가부시키가이샤 Electrode for lithium secondary cell and lithium secondary cell
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2002071512A1 (en) * 2001-03-06 2002-09-12 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US7160646B2 (en) 2001-03-06 2007-01-09 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
US7105253B2 (en) 2001-06-25 2006-09-12 Sanyo Electric Co., Ltd. Method of and apparatus for manufacturing lithium secondary cell
US7311999B2 (en) 2002-11-19 2007-12-25 Sony Corporation Anode for a battery and a battery using an anode
JP2006511907A (en) * 2002-12-23 2006-04-06 エイ 123 システムズ,インク. High energy density and high power density electrochemical cells
US8003250B2 (en) 2002-12-23 2011-08-23 A123 Systems, Inc. High energy and power density electrochemical cells
US9246160B2 (en) * 2002-12-26 2016-01-26 Sony Corporation Anode and battery using the same
US7482095B2 (en) 2003-05-20 2009-01-27 Sony Corporation Anode and battery using the same
US7459233B2 (en) 2003-11-05 2008-12-02 Sony Corporation Anode and battery
US7625668B2 (en) 2003-11-05 2009-12-01 Sony Corporation Anode and battery
JP2007534177A (en) * 2004-04-22 2007-11-22 カリフォルニア インスティテュート オブ テクノロジー Nanostructures high capacity germanium-containing materials and their lithium alloys
US8916929B2 (en) 2004-06-10 2014-12-23 Power Integrations, Inc. MOSFET having a JFET embedded as a body diode
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
KR100860341B1 (en) 2004-06-15 2008-09-26 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery and negative electrode thereof
US7459236B2 (en) 2004-10-18 2008-12-02 Sony Corporation Battery
US7700235B2 (en) 2004-11-25 2010-04-20 Sony Corporation Battery and method of manufacturing the same
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
US7682742B2 (en) 2005-07-20 2010-03-23 Sony Corporation Battery
JP4648879B2 (en) * 2005-07-21 2011-03-09 株式会社大阪チタニウムテクノロジーズ Method for producing a negative electrode for a rechargeable lithium battery
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
US7494743B2 (en) 2005-09-29 2009-02-24 Sony Corporation Anode and battery
US8048563B2 (en) 2005-10-25 2011-11-01 Sony Corporation Anode, battery, and methods of manufacturing them
US8629525B2 (en) 2005-11-15 2014-01-14 Power Integrations, Inc. Second contact schottky metal layer to improve GaN schottky diode performance
US7655359B2 (en) 2005-12-16 2010-02-02 Sony Corporation Secondary battery
US8802286B2 (en) 2006-01-30 2014-08-12 Sony Corporation Negative electrode for use with secondary battery and secondary battery using such negative electrode
US8268484B2 (en) 2006-02-14 2012-09-18 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
WO2007094311A1 (en) 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US7781101B2 (en) 2006-02-14 2010-08-24 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US9112238B2 (en) 2006-03-20 2015-08-18 Sony Corporation Anode and battery
US8173299B2 (en) 2006-03-20 2012-05-08 Sony Corporation Anode and battery
US7943254B2 (en) 2006-03-20 2011-05-17 Sony Corportion Anode and battery
US9806371B2 (en) 2006-03-20 2017-10-31 Sony Corporation Anode and battery
US8940441B2 (en) 2006-04-04 2015-01-27 Sony Corporatin Anode and battery
US9564640B2 (en) 2006-06-26 2017-02-07 Sony Corporation Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
US8097365B2 (en) 2006-06-29 2012-01-17 Sony Corporation Electrode current collector and method for inspecting the same, electrode for battery and method for producing the same, and secondary battery and method for producing the same
US7476464B2 (en) 2006-08-02 2009-01-13 Sony Corporation Negative electrode and secondary cell
US7846582B2 (en) 2006-12-19 2010-12-07 Sony Corporation Negative electrode, battery using the same, and method of manufacturing negative electrode
US9048504B2 (en) 2006-12-27 2015-06-02 Sony Corporation Secondary battery electrode, method for manufacturing same, and secondary battery
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
US8771874B2 (en) 2007-03-13 2014-07-08 Panasonic Corporation Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same
US8169003B2 (en) 2007-03-20 2012-05-01 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
US9831498B2 (en) 2008-03-28 2017-11-28 Sony Corporation Anode and secondary battery
US8795886B2 (en) 2008-03-28 2014-08-05 Sony Corporation Anode and secondary battery
KR101466405B1 (en) * 2008-09-17 2014-11-27 주식회사 엘지화학 Current collectors for Batteries and Secondary Batteries comprising the same
US9761867B2 (en) 2009-03-12 2017-09-12 Belenos Clean Power Holding Ag Open porous electrically conductive nanocomposite material
US8507135B2 (en) 2009-04-01 2013-08-13 The Swatch Group Research And Development Ltd Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
JP2011198756A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Power storage device, its manufacturing method, secondary battery, and capacitor
JP2015133326A (en) * 2010-02-26 2015-07-23 株式会社半導体エネルギー研究所 Power storage device
US10141120B2 (en) 2010-02-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Power storage system and manufacturing method thereof and secondary battery and capacitor
US8633094B2 (en) 2011-12-01 2014-01-21 Power Integrations, Inc. GaN high voltage HFET with passivation plus gate dielectric multilayer structure
US8940620B2 (en) 2011-12-15 2015-01-27 Power Integrations, Inc. Composite wafer for fabrication of semiconductor devices
US8928037B2 (en) 2013-02-28 2015-01-06 Power Integrations, Inc. Heterostructure power transistor with AlSiN passivation layer

Also Published As

Publication number Publication date Type
JP4453111B2 (en) 2010-04-21 grant

Similar Documents

Publication Publication Date Title
US6878487B2 (en) Active material for battery and method of preparing same
Ehrlich et al. Metallic negative electrode materials for rechargeable nonaqueous batteries
US5506075A (en) Non-aqueous electrolyte secondary battery and method of producing the same
US6555268B1 (en) Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
US6949233B2 (en) Method of preparing positive active material for rechargeable lithium batteries
US5871866A (en) Lithium-containing phosphates, method of preparation, and use thereof
US5418090A (en) Electrodes for rechargeable lithium batteries
US6048645A (en) Method of preparing lithium ion electrochemical cells
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
US6007945A (en) Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
US20060046144A1 (en) Anode composition for lithium ion battery
US20070087268A1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
US6203946B1 (en) Lithium-containing phosphates, method of preparation, and uses thereof
US5620812A (en) Non-aqueous electrolyte secondary battery
EP0875951A1 (en) Composite anode for secondary lithium battery
US20120107680A1 (en) Lithium Ion Batteries with Supplemental Lithium
US20050136330A1 (en) Carbon-coated silicon particle power as the anode material for lithium batteries and the method of making the same
US20020004169A1 (en) Positive electrode and non-aqueous electrolyte cell
US20130045427A1 (en) Prelithiated current collector and secondary lithium cells containing same
US7202000B2 (en) Anode for secondary battery, secondary battery using same and method for fabricating anode
US20030215717A1 (en) Battery
US6447951B1 (en) Lithium based phosphates, method of preparation, and uses thereof
US6203947B1 (en) Long cycle-life alkali metal battery
US20030073000A1 (en) Positive active material and positive active material composition for lithium-sulfur battery and method of preparing positive active material composition
US20100120179A1 (en) Method of producing prelithiated anodes for secondary lithium ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees