JPH11177154A - Thermoelectric conversion substrate and electric circuit device using the substrate - Google Patents

Thermoelectric conversion substrate and electric circuit device using the substrate

Info

Publication number
JPH11177154A
JPH11177154A JP9361931A JP36193197A JPH11177154A JP H11177154 A JPH11177154 A JP H11177154A JP 9361931 A JP9361931 A JP 9361931A JP 36193197 A JP36193197 A JP 36193197A JP H11177154 A JPH11177154 A JP H11177154A
Authority
JP
Japan
Prior art keywords
substrate
thermoelectric conversion
electric circuit
heat
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9361931A
Other languages
Japanese (ja)
Inventor
Shinichi Osada
慎一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP9361931A priority Critical patent/JPH11177154A/en
Publication of JPH11177154A publication Critical patent/JPH11177154A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To convert thermal energy into electric energy with no increase in size of an electric circuit device, by efficiently transferring heat generated at a power source, an electric circuit element, etc., to a thermoelectric conversion function before converting into electric energy. SOLUTION: Between voltage tap terminals 2a and 2b, a Cu conductive pattern 4a and an Ni conductive pattern 4B are alternately arrayed on the surface of a substrate 3, the end parts of both conductive patterns 4a and 4b are jointed together to form a thermo-couple 5 and a connection point 6, and the thermo-couples 5 are gathered at one end part of the substrate 3, while the connection points 6 are gathered at the other end part of the substrate 3. A thermoelectric conversion substrate 1 is integrated into a circuit board, while an electric circuit element with large heat generation is allocated so as to correspond to the region of the thermo-couple 5, and the heat of element is converted into electric energy by the thermoelectric conversion substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電変換基板及び
当該熱電変換基板を用いた電気回路装置に関する。
The present invention relates to a thermoelectric conversion board and an electric circuit device using the thermoelectric conversion board.

【0002】[0002]

【従来の技術】現在の電子機器においてエネルギーロス
の原因となっているのは、パワートランジスタのコレク
タ損失、高速動作を扱うスイッチング素子(CPUな
ど)、電力用抵抗器等の素子からの発熱である。これら
素子の発熱によるエネルギー損失には、その削減に努力
が払われているものの、一般的には、素子発熱は動作原
理上許容せざるを得ないとの立場がとられている。すな
わち、素子発熱の低減よりは、ヒートシンクや空冷ファ
ンにより、素子で発生した熱をいかに機器外部へ逃が
し、熱による素子の損傷を防止するかに重点がおかれて
いる。
2. Description of the Related Art Energy loss in current electronic devices is caused by collector loss of a power transistor, switching elements (such as a CPU) for high-speed operation, and heat generated from elements such as a power resistor. . Efforts have been made to reduce the energy loss due to the heat generated by these elements, but it is generally held that the heat generated by the elements must be allowed in terms of the operation principle. In other words, the emphasis is on how the heat generated by the element is released to the outside of the device by the heat sink or the air-cooling fan and the damage of the element due to the heat is prevented rather than the reduction of the heat generated by the element.

【0003】一方、熱電変換素子は、熱エネルギーを直
接電気エネルギーに変換できる方法として、ごみ焼却炉
の排熱利用を含め、実用化が検討されている(特開平8
−306965号公報等)。また、人体の体温を利用し
て、微小電力の発電を行い、これを腕時計の電源として
利用するなど、微小熱起電力の利用法に関しても検討さ
れている(実願平5−63264号)。
On the other hand, thermoelectric conversion elements are being studied for practical use as a method capable of directly converting heat energy into electric energy, including the use of waste heat from a refuse incinerator (Japanese Patent Laid-Open No. Hei 8 (1996)).
No. 306965). In addition, studies have been made on a method of using micro thermoelectromotive force, such as using a human body temperature to generate micro electric power and using the generated power as a power source for a wristwatch (Japanese Utility Model Application No. 5-63264).

【0004】さらには、電源や電気回路素子で発生する
熱エネルギーを熱電変換素子を用いて電気エネルギーに
変換し、その電気エネルギーを電源に戻して最利用する
ことも提案されている(特開平7−240538号公
報)。
Further, it has been proposed to convert thermal energy generated in a power supply or an electric circuit element into electric energy by using a thermoelectric conversion element, and to return the electric energy to a power supply for the most use (Japanese Patent Application Laid-Open No. Hei 7-1995). -240538).

【0005】[0005]

【発明が解決しようとする課題】しかし、これまでのと
ころ電気回路装置における熱電変換素子の利用は概念的
なものに過ぎず、どのように熱電変換素子を配置し、電
気回路素子等で生じた熱エネルギーをどのようにして熱
電変換素子に集めて電気エネルギーに変換するかといっ
た具体的なレベルまでは考えられていなかった。特に、
電子回路が小型集積化されるにつれ、ますます熱電変換
素子を配置するスペースを確保するのが困難になり、ひ
いては熱電変換素子の利用が困難になっている。
However, so far, the use of thermoelectric conversion elements in electric circuit devices is only conceptual, and how thermoelectric conversion elements are arranged and generated in electric circuit elements and the like. No specific level of how to collect heat energy in the thermoelectric conversion element and convert it to electric energy has been considered. Especially,
As electronic circuits are miniaturized and integrated, it becomes more difficult to secure a space for arranging thermoelectric conversion elements, and it becomes more difficult to use thermoelectric conversion elements.

【0006】本発明は叙上の従来例の欠点に鑑みてなさ
れたものであり、その目的とするところは、電源や電気
回路素子等で発生した熱を効率的に熱電変換機能へ伝え
て電気エネルギーに変換することができ、しかも電気回
路装置を大きくすることなく熱エネルギーを電気エネル
ギーに変換することができる熱電変換基板及び電気回路
装置を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has as its object to efficiently transmit heat generated by a power supply, an electric circuit element, and the like to a thermoelectric conversion function. An object of the present invention is to provide a thermoelectric conversion board and an electric circuit device that can convert heat energy into electric energy without increasing the size of the electric circuit device.

【0007】[0007]

【発明の開示】本発明にかかる熱電変換基板は、2種以
上の異種金属材料による導電パターンが基板上に形成さ
れた熱電変換基板であって、前記導電パターンは異種金
属材料どうしの接合部を複数箇所有し、各接合部に生じ
る熱起電力の総和が取り出されるように前記導電パター
ンが形成されていることを特徴としている。
DISCLOSURE OF THE INVENTION A thermoelectric conversion substrate according to the present invention is a thermoelectric conversion substrate in which a conductive pattern of two or more different metal materials is formed on the substrate, wherein the conductive pattern forms a joint between different metal materials. It is characterized in that the conductive pattern is provided at a plurality of locations and the conductive pattern is formed so that the total sum of the thermoelectromotive forces generated at the respective junctions is taken out.

【0008】このような熱電変換基板を用いれば、電源
や電気回路素子等で発生した熱を電気エネルギーに変換
することができる。従って、電源や電気回路素子等から
放散され浪費されていた熱を電気エネルギーに変換して
回収することができる。そして、変換した電気エネルギ
ーを補助電源として電気回路等へ供給し、あるいは2次
電池等へ充電するなどして再利用することができ、省エ
ネルギー化を図ることができる。
By using such a thermoelectric conversion board, heat generated by a power supply, an electric circuit element, or the like can be converted into electric energy. Therefore, the heat dissipated and wasted from a power supply, an electric circuit element, or the like can be converted into electric energy and recovered. Then, the converted electric energy can be supplied to an electric circuit or the like as an auxiliary power supply, or can be reused by charging a secondary battery or the like, so that energy can be saved.

【0009】また、熱電変換基板は、熱を電気エネルギ
ーに変換するので、ヒートシンクの機能を有し、電源や
電気回路素子の温度上昇を抑制することができる。
Further, the thermoelectric conversion board converts heat into electric energy, so that it has a heat sink function and can suppress a rise in temperature of a power supply or an electric circuit element.

【0010】しかも、本発明の熱電変換基板は、その上
に電気回路素子や電源等を実装したり、電気回路素子等
を実装する回路基板と積層一体化したりできるので、電
気回路素子や電源等で発生した熱を効率よく熱電変換基
板へ伝え、効率的に電気エネルギーに変換することがで
きる。しかも、電気回路素子等を実装する回路基板を兼
ねたり、回路基板と一体化することにより、電気回路装
置を大きくすることなく電気エネルギーの利用効率を向
上させることができる。
In addition, the thermoelectric conversion board of the present invention can mount an electric circuit element, a power supply, and the like thereon, or can be laminated and integrated with a circuit board on which the electric circuit element and the like are mounted. The heat generated in the above can be efficiently transmitted to the thermoelectric conversion substrate, and can be efficiently converted into electric energy. In addition, by also serving as a circuit board on which the electric circuit elements and the like are mounted, or by being integrated with the circuit board, it is possible to improve the use efficiency of electric energy without increasing the size of the electric circuit device.

【0011】具体的には、前記熱起電力取出し方向に対
して熱起電力が正となる接合部を前記基板に集合的に配
置し、前記熱起電力取出し方向に対して熱起電力が負と
なる接合部を別な領域に集合的に配置すれば、回路基板
上に実装された電気回路素子のうち発熱を伴う素子を熱
起電力が正の接合部領域又はその近傍に配置することに
より、電気回路等の熱を効率良く電気エネルギーに変換
することができる。一方、熱起電力が負となる接合部領
域には、発熱の少ない素子やヒートシンク等を配置した
り、空中に露出させたりすることにより、正の接合部領
域における電気エネルギーへの変換効率を良好にするこ
とができる。
Specifically, joints having a positive thermoelectromotive force in the direction of taking out the thermoelectromotive force are collectively arranged on the substrate, and the thermoelectromotive force is negative in the direction of taking out the thermoelectromotive force. If the joints are collectively arranged in another area, the elements with heat generation among the electric circuit elements mounted on the circuit board can be arranged in or near the positive joint area where the thermoelectromotive force is positive. , Heat of an electric circuit or the like can be efficiently converted into electric energy. On the other hand, in the junction region where the thermoelectromotive force is negative, an element or a heat sink that generates less heat is arranged or exposed in the air, thereby improving the conversion efficiency to electric energy in the positive junction region. Can be

【0012】また、1枚の基板に形成された熱電変換基
板では十分な起電力が得られない場合には、熱起電力が
正となる接合部を形成された領域どうしが互いに重なり
合うように前記基板どうしを積層し、各基板の導電パタ
ーンどうしを直列に接続すれば、熱電変換基板を大型化
することなく、起電力を大きくすることができる。
When a sufficient electromotive force cannot be obtained with a thermoelectric conversion substrate formed on a single substrate, the thermoelectric conversion substrate is formed so that the regions where the junctions having positive thermoelectromotive forces are formed overlap each other. When the substrates are stacked and the conductive patterns of each substrate are connected in series, the electromotive force can be increased without increasing the size of the thermoelectric conversion substrate.

【0013】さらに、回路基板上の発熱素子と熱起電力
が負の接合部領域との中間において、回路基板に熱分離
手段を設ければ、発熱素子の熱が熱起電力が負の接合部
領域へ漏れて変換効率が低下するのを抑制することがで
きる。
Further, if a heat separating means is provided on the circuit board between the heat-generating element on the circuit board and the junction region where the thermo-electromotive force is negative, the heat of the heat-generating element is converted into the junction where the thermo-electromotive force is negative. It is possible to prevent the conversion efficiency from lowering due to leakage into the region.

【0014】[0014]

【発明の実施の形態】(第1の実施形態)図1は本発明
の一実施形態による熱電変換基板1を示す平面図であ
る。この熱電変換基板1は、電圧取出し用の端子2a,
2b間において、基板3の表面に異種金属からなる導電
パターン4a,4bを蛇行状に形成したものである。す
なわち、ストライプ状をした一方の導電パターン4aと
他方の導電パターン4bとが交互に配列され、両導電パ
ターン4a,4bの端部どうしが接合され、両導電パタ
ーン4a,4bが電気的に直列に接合されている。そし
て、電圧(熱起電力)取出し方向に対して正の熱起電力
となる接合部(つまり、高温となったとき、電圧取出し
方向に対して電圧取出し端子2a,2b間に正の熱起電
力を生じる接合部;以下、熱電対という)5が基板3の
一方端部に配列され、電圧(熱起電力)取出し方向に対
して負の熱起電力となる接合部(つまり、高温となった
とき、電圧取出し方向に対して電圧取出し端子2a,2
b間に負の熱起電力を生じる接合部;以下、接続点とい
う)6が基板3の他方端部に配列されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a plan view showing a thermoelectric conversion substrate 1 according to one embodiment of the present invention. The thermoelectric conversion board 1 has terminals 2a for taking out voltage,
Between 2b, conductive patterns 4a and 4b made of dissimilar metals are formed on the surface of the substrate 3 in a meandering manner. That is, one conductive pattern 4a and the other conductive pattern 4b having a stripe shape are alternately arranged, the ends of both conductive patterns 4a and 4b are joined, and both conductive patterns 4a and 4b are electrically connected in series. Are joined. Then, a junction having a positive thermoelectromotive force with respect to the voltage (thermal electromotive force) extraction direction (that is, a positive thermoelectromotive force between the voltage extraction terminals 2a and 2b with respect to the voltage extraction direction when the temperature becomes high) (Hereinafter, referred to as a thermocouple) 5 is arranged at one end of the substrate 3, and a junction (that is, a high temperature) having a negative thermoelectromotive force in a voltage (thermoelectromotive force) extraction direction is provided. At this time, the voltage extracting terminals 2a, 2
A junction 6 that generates a negative thermoelectromotive force between b; hereinafter, referred to as a connection point) 6 is arranged at the other end of the substrate 3.

【0015】ここで、基板材料としては、熱伝導率の小
さなセラミック基板、例えばバリウム、アルミナおよび
シリカを主成分とするセラミック基板(BAS)、ある
いは耐熱性の優れた樹脂基板(例えばテフロンシート)
等が望ましい。また、導電パターン4a,4bを形成す
る異種金属としては、熱起電力の大きな異種金属(合金
でもよい)の組み合わせが好ましく、例えばCuとN
i、あるいはCuとNi合金の組み合わせを用いること
ができる。CuとNiの組み合わせは、量産性、汎用
性、コストメリットが高い。
Here, as the substrate material, a ceramic substrate having a small thermal conductivity, for example, a ceramic substrate (BAS) mainly containing barium, alumina and silica, or a resin substrate having excellent heat resistance (for example, a Teflon sheet)
Is desirable. Further, as a dissimilar metal forming the conductive patterns 4a and 4b, a combination of dissimilar metals (or alloys) having a large thermoelectromotive force is preferable.
i or a combination of Cu and a Ni alloy can be used. The combination of Cu and Ni has high mass productivity, versatility, and cost advantages.

【0016】しかして、熱電対5が形成されている領域
を高温領域とする。すなわち、熱電対5の領域を、電源
や発熱の大きな電気回路素子等から発生した熱が伝わり
易い位置に置く。また、接続点6が形成されている領域
は、できるだけ低温領域とする。例えば、電源や発熱の
大きな電気回路素子から離れた位置に置いたり、ヒート
シンクなどに接触させたりしてできるだけ常温に近づけ
る。こうして電源や発熱の大きな電気回路素子の熱によ
って熱電対5の領域が高温になると、各熱電対5には熱
起電力が発生し、これらの総和の熱起電力が電圧取出し
端子2a,2b間から取り出される。
The region where the thermocouple 5 is formed is defined as a high-temperature region. That is, the area of the thermocouple 5 is located at a position where heat generated from a power supply or an electric circuit element generating a large amount of heat is easily transmitted. The region where the connection point 6 is formed is a low temperature region as much as possible. For example, the temperature is set as close as possible to room temperature by placing the device away from a power source or an electric circuit element generating a large amount of heat, or by contacting a heat sink or the like. When the temperature of the region of the thermocouple 5 becomes high due to the heat of the power supply or the electric circuit element generating a large amount of heat, a thermoelectromotive force is generated in each thermocouple 5, and the sum of the thermoelectromotive forces is applied between the voltage extraction terminals 2a and 2b. Taken out of

【0017】いま、基板3上においてCuの導電パター
ン4a及びNiの導電パターン4bによりn個の熱電対
5が直列に接続されており、各熱電対5における変換効
率すなわちゼーベック係数(熱電対5が単位温度上昇し
たときの熱起電力)をαとし、各熱電対5と接続点6と
の温度差(平均傾斜温度)をΔT1、ΔT2、…、ΔTn
とすると、電圧取出し端子2a,2b間に生じる電圧
(トータルの熱起電力)Vsは、 Vs=α(ΔT1+ΔT2+…+ΔTn) となる。
Now, n thermocouples 5 are connected in series on the substrate 3 by a Cu conductive pattern 4a and a Ni conductive pattern 4b, and the conversion efficiency of each thermocouple 5, that is, the Seebeck coefficient (the thermocouple 5 is .Alpha. Is the thermoelectromotive force when the unit temperature is increased, and .DELTA.T1, .DELTA.T2,...
Then, the voltage (total thermal electromotive force) Vs generated between the voltage extraction terminals 2a and 2b is as follows: Vs = α (ΔT1 + ΔT2 +... + ΔTn).

【0018】実験では、CuとNiからなる導電パター
ン4a,4bの場合には、ゼーベック係数αは約30μ
V/℃であり、Cuとコンスタンタン(Cu55%、N
i45%の合金)からなる導電パターン4a,4bの場
合には、ゼーベック係数αは約60μV/℃である。従
って、CuとNiからなる導電パターン4a,4bの場
合、各熱電対5の平均傾斜温度ΔTを50℃とすると、
実用的な起電力(3V程度)を得るためには、次式より
分かるように、約2000個の熱電対5が必要となる。 n=Vs/(αΔT) =3000/(0.03×50)=2000個
In experiments, in the case of the conductive patterns 4a and 4b made of Cu and Ni, the Seebeck coefficient α is about 30 μm.
V / ° C, Cu and constantan (Cu 55%, N
In the case of the conductive patterns 4a and 4b made of (i45% alloy), the Seebeck coefficient α is about 60 μV / ° C. Therefore, in the case of the conductive patterns 4a and 4b made of Cu and Ni, if the average gradient temperature ΔT of each thermocouple 5 is 50 ° C.
In order to obtain a practical electromotive force (about 3 V), about 2000 thermocouples 5 are required as can be understood from the following equation. n = Vs / (αΔT) = 3000 / (0.03 × 50) = 2000

【0019】ここでは、CuとNiの組み合わせの場合
について計算例を示したが、導電パターン材料の組み合
わせはこれに限らない。例えば、Cuとコンスタンタン
の場合には、前述のように変換効率が約2倍となるの
で、熱電変換基板1の小型化に有効である。
Here, a calculation example is shown for a combination of Cu and Ni, but the combination of conductive pattern materials is not limited to this. For example, in the case of Cu and constantan, the conversion efficiency is approximately doubled as described above, which is effective for downsizing the thermoelectric conversion substrate 1.

【0020】(第2の実施形態)実用的な電圧(3V程
度)を得るためには、例えばCuとNiからなる導電パ
ターン4a,4bの場合では約2000個の熱電対5が
必要となるが、その小型集積化のためには、図2に示す
ように熱電変換基板1を積層化することが有効である。
(Second Embodiment) In order to obtain a practical voltage (about 3 V), for example, in the case of the conductive patterns 4a and 4b made of Cu and Ni, about 2000 thermocouples 5 are required. For miniaturization, it is effective to stack the thermoelectric conversion substrates 1 as shown in FIG.

【0021】この熱電変換基板1にあっては、異種金属
からなる導電パターン4a,4bにより熱電対5及び接
続点6を形成された複数枚の基板3a,3b,…を積層
し、各基板3a,3b,…の導電パターン4a,4bの
両端にスルーホール7a,8a,7b,8b,…を形成
している。各基板3a,3b,…は、図3に示すよう
に、第1の実施形態と同様な導電パターン4a,4bを
有しており、一方端部に熱電対5が配列され、他方端部
に接続点6が配列されている。さらに、上下の各基板3
a,3b,…でスルーホール7a,8a,7b,8b,
…の位置が異なっており、下層の基板に設けられている
高電圧側のスルーホールと上層の基板に設けられている
低電圧側のスルーホールが同じ位置に設けられ、当該ス
ルーホール7a,8a,7b,8b,…を介して上下の
基板3a,3b,…に設けられた導電パターン4a,4
b及び熱電対5が直列に接続されている。また、上下に
積層された各基板3a,3b,…どうしで、熱電対5の
形成されている領域は互いに上下に重なりあっており、
接続点6の集められている領域も互いに上下に重なりあ
っている。
In this thermoelectric conversion substrate 1, a plurality of substrates 3a, 3b,... Having thermocouples 5 and connection points 6 formed by conductive patterns 4a, 4b made of dissimilar metals are laminated, and each substrate 3a , 3b,... Are formed at both ends of the conductive patterns 4a, 4b with through holes 7a, 8a, 7b, 8b,. As shown in FIG. 3, each of the substrates 3a, 3b,... Has the same conductive patterns 4a, 4b as in the first embodiment, and a thermocouple 5 is arranged at one end, and at the other end. The connection points 6 are arranged. Furthermore, the upper and lower substrates 3
a, 3b, ..., through holes 7a, 8a, 7b, 8b,
Are different from each other, and the high-voltage side through-hole provided in the lower layer substrate and the low-voltage side through hole provided in the upper layer substrate are provided at the same position, and the through holes 7a and 8a are provided. , 7b, 8b,... Provided on the upper and lower substrates 3a, 3b,.
b and the thermocouple 5 are connected in series. Also, in each of the vertically stacked substrates 3a, 3b,..., The regions where the thermocouples 5 are formed are vertically overlapped with each other.
The area where the connection points 6 are gathered also overlaps each other vertically.

【0022】上記のような多層構造を有する熱電変換基
板1の上には、電気回路素子9,9Aを実装した回路基
板10が重ねられ、最上層の基板3aのスルーホール7
aと最下層の基板3dのスルーホール8dは回路基板1
0のスルーホール11a,11bに接続され、電気回路
装置12が構成される。パワートランジスタのように発
熱の大きな電気回路素子9Aは、熱電変換基板1の熱電
対5を形成された領域の上方に重なるように配置され
る。
The circuit board 10 on which the electric circuit elements 9 and 9A are mounted is superimposed on the thermoelectric conversion board 1 having the above-mentioned multilayer structure, and the through holes 7 of the uppermost board 3a are formed.
a and the through hole 8d of the lowermost substrate 3d
The electric circuit device 12 is connected to the through holes 11a and 11b. An electric circuit element 9A that generates a large amount of heat, such as a power transistor, is arranged so as to overlap above a region of the thermoelectric conversion substrate 1 where the thermocouple 5 is formed.

【0023】(製造方法)つぎに、上記熱電変換基板1
の製造方法を説明する。基板3がバリウム、アルミナ、
石英を主原料とするセラミックで形成されている場合を
説明する。厚み50μmのセラミックグリーンシート
に、スクリーン印刷により、ペースト状のNi導電パタ
ーン4bを印刷し乾燥させる。Ni導電パターン4bの
ライン幅Wは150μm、印刷膜厚は20μm前後が望
ましい。つぎに、Ni導電パターン4bの端部間をつな
ぐようにして、セラミックグリーンシートにペースト状
のCu導電パターン4aを印刷し乾燥させる。Cu導電
パターン4aも、Ni導電パターン4bと同様にライン
幅Wは150μm、印刷膜厚20μm前後とするのが望
ましい。また、導電パターン4a,4b間の間隔Sは1
00μmとした。このような構成によれば、10cm
(=L1)×20cm(=L2)サイズの基板3aで
は、1枚につき200個の熱電対5を得ることができる
ので、全体としての変換効率(ゼーベック係数:nα)
は6mV/℃となる。
(Manufacturing method) Next, the thermoelectric conversion substrate 1
Will be described. The substrate 3 is made of barium, alumina,
A case where the material is formed of a ceramic mainly made of quartz will be described. A paste-like Ni conductive pattern 4b is printed on a ceramic green sheet having a thickness of 50 μm by screen printing and dried. The line width W of the Ni conductive pattern 4b is desirably 150 μm, and the print film thickness is desirably about 20 μm. Next, the paste Cu conductive pattern 4a is printed and dried on the ceramic green sheet so as to connect the ends of the Ni conductive pattern 4b. The line width W of the Cu conductive pattern 4a is desirably 150 μm and the printed film thickness is about 20 μm, similarly to the Ni conductive pattern 4b. The distance S between the conductive patterns 4a and 4b is 1
It was set to 00 μm. According to such a configuration, 10 cm
With the substrate 3a having a size of (= L1) × 20 cm (= L2), 200 thermocouples 5 can be obtained for each substrate, and therefore, the overall conversion efficiency (Seebeck coefficient: nα)
Is 6 mV / ° C.

【0024】基板3aの導電パターン4a,4bの両端
に設けるスルーホール7a,8aは、直径0.2mmの
通孔とし、導電パターン4a,4bをスクリーン印刷す
る際、同時にCu又はNiペーストを埋め込み、基板3
aの両面で導通を得る。
The through holes 7a, 8a provided at both ends of the conductive patterns 4a, 4b of the substrate 3a are through holes having a diameter of 0.2 mm, and when the conductive patterns 4a, 4b are screen-printed, Cu or Ni paste is embedded at the same time. Substrate 3
Conduction is obtained on both sides of a.

【0025】2層目以降の基板3b,…にも、同様の方
法で導電パターン4a,4b及びスルーホール7b,8
b,…を形成する。なお、各基板3a,3b,…の導電
パターン4a,4bの接続が直列となるよう、図2に示
すようにスルーホール8a,7b,…,7dの位置合わ
せを行って各基板3a,3b,…を積層一体化する。最
後に、配線パターンが形成された回路基板10を熱電変
換基板1の上に積層し、加圧プレス後、窒素雰囲気中に
おいて1000℃で1時間の焼成を行なう。なお、電気
回路素子9,9Aは、こうして熱電変換基板1の上に形
成された回路基板10の上に、通常の回路基板と同様に
して表面実装する。
The conductive patterns 4a, 4b and the through holes 7b, 8 are formed in the same manner on the substrates 3b,.
b, ... are formed. In addition, as shown in FIG. 2, the through holes 8a, 7b,..., 7d are aligned so that the connection of the conductive patterns 4a, 4b of the substrates 3a, 3b,. Are laminated and integrated. Finally, the circuit board 10 on which the wiring pattern is formed is stacked on the thermoelectric conversion board 1, and after pressing under pressure, baking is performed at 1000 ° C. for 1 hour in a nitrogen atmosphere. The electric circuit elements 9 and 9A are surface-mounted on the circuit board 10 thus formed on the thermoelectric conversion board 1 in the same manner as a normal circuit board.

【0026】発熱の大きな電気回路素子9Aが実装され
た基板3a,3b,…の、接続点6と熱電対5の間の平
均傾斜温度ΔTが約50℃であるとすると、1枚の熱電
変換基板1により6mV/℃の熱起電力(変換効率)が
得られ、このような熱電変換基板1を10枚積層一体化
すると、得られる出力電圧Vabはつぎのようになる。 Vab=6〔mV/℃〕・50〔℃〕・10〔枚〕=3
〔V〕 すなわち、Vab=3Vで1〜100mA程度の実用的な
電源が得られる。
If the average gradient temperature ΔT between the connection point 6 and the thermocouple 5 of the substrates 3a, 3b,... On which the large heat-generating electric circuit elements 9A are mounted is about 50 ° C., one thermoelectric conversion A thermoelectromotive force (conversion efficiency) of 6 mV / ° C. is obtained by the substrate 1. When ten such thermoelectric conversion substrates 1 are stacked and integrated, the output voltage Vab obtained is as follows. Vab = 6 [mV / ° C.] · 50 ° C. · 10 [sheets] = 3
[V] That is, a practical power supply of about 1 to 100 mA can be obtained at Vab = 3 V.

【0027】図4は、このような熱電変換基板1の利用
方法を説明する図であって、熱電変換基板1で発生する
電圧の順方向に向けてダイオード14を熱電変換基板1
に接続し、これを2次電池13と並列に接続している。
FIG. 4 is a diagram for explaining a method of using such a thermoelectric conversion board 1, in which a diode 14 is connected to the thermoelectric conversion board 1 in the forward direction of the voltage generated in the thermoelectric conversion board 1.
And this is connected in parallel with the secondary battery 13.

【0028】しかして、2次電池13や回路基板10上
の発熱の大きな電気回路素子9A等からの放熱により熱
電変換基板1の熱電対5が加熱されると、熱電変換基板
1の電圧取出し端子2a,2b間には起電力(電圧)が
発生する。2次電池13が通常の出力電圧を保っている
場合には、ダイオード14のため熱電変換基板1から電
流が流れ出さないが、2次電池13の出力が熱電変換基
板1の両端電圧よりも低下すると、熱電変換基板1から
2次電池13へチャージすることができる。よって、省
エネルギー化を図ることができ、2次電池13を再充電
するまでの期間を延ばすことができる。
When the thermocouple 5 of the thermoelectric conversion board 1 is heated by heat radiation from the secondary battery 13 or the electric circuit element 9A that generates a large amount of heat on the circuit board 10, the voltage output terminal of the thermoelectric conversion board 1 is heated. An electromotive force (voltage) is generated between 2a and 2b. When the secondary battery 13 maintains the normal output voltage, no current flows out of the thermoelectric conversion board 1 due to the diode 14, but the output of the secondary battery 13 is lower than the voltage across the thermoelectric conversion board 1. Then, the secondary battery 13 can be charged from the thermoelectric conversion substrate 1. Therefore, energy can be saved, and the period until the secondary battery 13 is recharged can be extended.

【0029】あるいは、主電気回路15が交流電源を用
いるものである場合には、図5に示すように、主電気回
路15から得た熱で起電力を発生させ、LED、LCD
等のディスプレイ、ブザー、あるいはアクチュエータ等
の付属的な直流機器16に熱電変換基板1から電気エネ
ルギーを供給し、節電することができる。このとき、交
流電源の整流が不要になる。
Alternatively, when the main electric circuit 15 uses an AC power supply, an electromotive force is generated by heat obtained from the main electric circuit 15 as shown in FIG.
The electric energy can be supplied from the thermoelectric conversion board 1 to the auxiliary DC device 16 such as a display, a buzzer, an actuator, or the like to save power. At this time, rectification of the AC power supply becomes unnecessary.

【0030】また、熱電変換基板1(補助電源)は、蓄
熱作用により電源をオフにした後も、余熱によって電流
供給を継続することができるので、電源をオフにした後
の各種監視機能など新たな応用が広がる。例えば、誤っ
てメインスイッチをオフしてしまったり、突然停電が発
生した場合、揮発性メモリのデータや記憶媒体へ保存す
る前のデータが失われてしまう不具合を回避することが
できる。従って、バックアップ用電池やコンデンサの代
用としたり、その機能強化に用いることができる。
Further, the thermoelectric conversion board 1 (auxiliary power supply) can continue to supply current by residual heat even after the power is turned off by the heat storage function, so that a new monitoring function such as various monitoring functions after the power is turned off is provided. Application spreads. For example, if the main switch is turned off by mistake or a power failure occurs suddenly, it is possible to avoid a problem that data in the volatile memory or data before being stored in the storage medium is lost. Therefore, it can be used as a substitute for a backup battery or a capacitor, or used for enhancing its functions.

【0031】さらに、電気回路素子9,9Aで発生した
熱が電気エネルギーに変換されるので、エネルギー保存
則によって熱による電気回路素子9,9Aの温度上昇を
抑制することができ、電気回路素子9,9Aを温度上昇
から保護する効果もある。
Further, since the heat generated in the electric circuit elements 9 and 9A is converted into electric energy, a rise in temperature of the electric circuit elements 9 and 9A due to heat can be suppressed according to the law of conservation of energy. , 9A from temperature rise.

【0032】(第3の実施形態)図6(a)(b)は本
発明のさらに別な実施形態による電気回路装置21を示
す表面側及び裏面側からの斜視図である。この電気回路
装置21にあっては、基板3の裏面に異種金属からなる
導電パターン4a,4bを配線し、一方端部に熱電対5
を配列し、他方端部に接続点6を配列して熱電変換基板
1を構成している。また、基板3の表面には配線パター
ン(図示せず)を形成して回路基板10を構成してあ
る。配線パターンの上に実装された電気回路素子9,9
Aのうち、発熱の大きな電気回路素子9Aは熱電対5の
配列されている領域に対向させてを配置され、発熱の小
さな電気回路素子9は接続点6の配列されている領域に
対向させて配置される。
(Third Embodiment) FIGS. 6A and 6B are perspective views showing an electric circuit device 21 according to still another embodiment of the present invention from the front side and the back side. In this electric circuit device 21, conductive patterns 4a and 4b made of dissimilar metals are wired on the back surface of the substrate 3, and a thermocouple 5 is provided at one end.
Are arranged, and the connection points 6 are arranged at the other end to constitute the thermoelectric conversion board 1. Further, a wiring pattern (not shown) is formed on the surface of the substrate 3 to constitute the circuit board 10. Electric circuit elements 9, 9 mounted on the wiring pattern
Among A, the electric circuit element 9A that generates a large amount of heat is arranged to face the region where the thermocouples 5 are arranged, and the electric circuit element 9 that generates a small amount of heat is opposed to the region where the connection points 6 are arranged. Be placed.

【0033】平均傾斜温度ΔTが大きい場合、熱電対5
の形成密度を高めた場合、あるいは導電パターン材料と
してより変換効率(ゼーベック係数)の高い材料を使用
した場合などには、第2の実施形態のように積層構造に
しなくても、実用的な電圧を得ることができる。
When the average inclination temperature ΔT is large, the thermocouple 5
When the formation density is increased, or when a material having a higher conversion efficiency (Seebeck coefficient) is used as the conductive pattern material, a practical voltage can be obtained without using a laminated structure as in the second embodiment. Can be obtained.

【0034】例えば、基板3としてサイズ100mm
(=L1)×200mm(=L2)、厚み0.6mmの
テフロン基板を用い、電気回路素子9,9Aを実装する
ための配線パターンは素子実装面(表面)に設け、裏面
には異種金属からなる導電パターン4a,4bを微細に
形成する。Cu及びNiの導電パターン4a,4bのラ
イン幅Wはいずれも15μmとなっており、導電パター
ン4a,4b間の間隔Sは10μmとなっている。この
ような構成によれば、1枚の基板3で2000個の熱電
対5を形成することができ、実用レベルの出力電圧(3
V程度)を得ることができる。
For example, the size of the substrate 3 is 100 mm.
(= L1) × 200 mm (= L2), a 0.6 mm thick Teflon substrate, wiring patterns for mounting the electric circuit elements 9 and 9A are provided on the element mounting surface (front surface), and the back surface is made of dissimilar metal. Conductive patterns 4a and 4b are formed finely. The line width W of each of the Cu and Ni conductive patterns 4a and 4b is 15 μm, and the interval S between the conductive patterns 4a and 4b is 10 μm. According to such a configuration, 2,000 thermocouples 5 can be formed on one substrate 3, and the output voltage (3
V).

【0035】(第4の実施形態)図7は本発明のさらに
別な実施形態による電気回路装置22を示す斜視図であ
る。ここで用いられている熱電変換基板1は、ポリイミ
ド等のフレキシブルな基板3の上に異種金属からなる導
電パターン4a,4bを形成したものである。このフレ
キシブルな熱電変換基板1は、シリコーングリースなど
を介して回路基板10の上に貼りつけられている。熱電
変換基板1の熱電対5は、回路基板10上の発熱の大き
な電気回路素子9Aの位置と対応するように配置されて
おり、この熱電対5の形成されている領域を発熱の大き
な電気回路素子9Aへ直接付着させるように重ねてい
る。
(Fourth Embodiment) FIG. 7 is a perspective view showing an electric circuit device 22 according to still another embodiment of the present invention. The thermoelectric conversion substrate 1 used here is formed by forming conductive patterns 4a and 4b made of different metals on a flexible substrate 3 such as polyimide. This flexible thermoelectric conversion board 1 is adhered on the circuit board 10 via silicone grease or the like. The thermocouple 5 of the thermoelectric conversion board 1 is arranged so as to correspond to the position of the electric circuit element 9A that generates a large amount of heat on the circuit board 10, and the area where the thermocouple 5 is formed is an electric circuit that generates a large amount of heat. It overlaps so that it may be directly attached to the element 9A.

【0036】(第5の実施形態)導電パターン4a,4
bの接続点6の温度が上昇すると、平均傾斜温度ΔTが
小さくなるので、出力できる電圧が小さくなる。そのた
め、発熱の大きな電気回路素子9Aの熱はできるだけ接
続点6側には伝わらないようにするのが望ましい。
(Fifth Embodiment) Conductive patterns 4a, 4
When the temperature at the connection point 6 of b rises, the average slope temperature ΔT decreases, and the output voltage decreases. Therefore, it is desirable that the heat of the electric circuit element 9A, which generates a large amount of heat, is not transmitted to the connection point 6 as much as possible.

【0037】そのためには、発熱の大きな電気回路素子
9Aが実装されている箇所と熱電変換基板1の接続点6
が配置されている領域との中間において、回路基板10
に開口、溝、ホール、切り欠き、窓などの熱伝達を阻止
する熱分離手段を設け、発熱の大きな電気回路素子9A
と接続点6との熱的な分離を図ればよい。例えば、図8
に示す電気回路装置23では、回路基板10に熱分離の
ための長孔状をした開口24を設けている。あるいは、
接続点6の形成されている領域を回路基板10から突出
するようにしたり、放熱用のヒートシンクと接触させた
りしてもよい。
For this purpose, the connection point 6 between the place where the electric circuit element 9A generating a large amount of heat is mounted and the thermoelectric conversion board 1
Between the circuit board 10 and the area where
Is provided with a heat separating means such as an opening, a groove, a hole, a notch, and a window for preventing heat transfer, and the electric circuit element 9A which generates a large amount of heat
What is necessary is just to achieve the thermal separation of the connection point 6 from the connection point 6. For example, FIG.
In the electric circuit device 23 shown in FIG. 1, a long hole-shaped opening 24 for thermal separation is provided in the circuit board 10. Or,
The area where the connection points 6 are formed may be made to protrude from the circuit board 10 or may be brought into contact with a heat sink for heat radiation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による熱電変換基板を示す
平面図である。
FIG. 1 is a plan view showing a thermoelectric conversion substrate according to an embodiment of the present invention.

【図2】本発明の別な実施形態による電気回路装置を示
す分解斜視図である。
FIG. 2 is an exploded perspective view showing an electric circuit device according to another embodiment of the present invention.

【図3】同上の基板のうち1枚を示す斜視図である。FIG. 3 is a perspective view showing one of the substrates.

【図4】同上の熱電変換基板の利用方法を説明する回路
図である。
FIG. 4 is a circuit diagram illustrating a method of using the thermoelectric conversion board according to the first embodiment.

【図5】同上の熱電変換基板の別な利用方法を説明する
回路図である。
FIG. 5 is a circuit diagram illustrating another method of using the thermoelectric conversion board of the above.

【図6】(a)(b)は本発明のさらに別な実施形態に
よる電気回路装置を示す斜視図である。
FIGS. 6A and 6B are perspective views showing an electric circuit device according to still another embodiment of the present invention.

【図7】本発明のさらに別な実施形態による電気回路装
置を示す斜視図である。
FIG. 7 is a perspective view showing an electric circuit device according to still another embodiment of the present invention.

【図8】本発明のさらに別な実施形態による電気回路装
置を示す斜視図である。
FIG. 8 is a perspective view showing an electric circuit device according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 熱電変換基板 3 基板 4a,4b 導電パターン 5 熱電対 6 接続点 DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion board 3 Substrate 4a, 4b Conductive pattern 5 Thermocouple 6 Connection point

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2種以上の異種金属材料による導電パタ
ーンが基板上に形成された熱電変換基板であって、 前記導電パターンは異種金属材料どうしの接合部を複数
箇所有し、各接合部に生じる熱起電力の総和が取り出さ
れるように前記導電パターンが形成されていることを特
徴とする熱電変換基板。
1. A thermoelectric conversion substrate having a conductive pattern made of two or more different metal materials formed on a substrate, wherein the conductive pattern has a plurality of junctions between different metal materials, and each junction has A thermoelectric conversion substrate, wherein the conductive pattern is formed so as to extract a total of generated thermoelectromotive forces.
【請求項2】 前記熱起電力取出し方向に対して熱起電
力が正となる接合部が前記基板に集合的に配置され、前
記熱起電力取出し方向に対して熱起電力が負となる接合
部が、前記基板の別な領域に集合的に配置されているこ
とを特徴とする、請求項1に記載の熱電変換基板。
2. A junction where a thermoelectromotive force is positive in the direction of taking out the thermoelectromotive force is collectively arranged on the substrate, and a junction in which the thermoelectromotive force is negative in the direction of taking out the thermoelectromotive force is provided. The thermoelectric conversion board according to claim 1, wherein the portions are collectively arranged in another area of the board.
【請求項3】 異種金属材料による導電パターンを形成
した基板が複数枚積層された熱電変換基板であって、 熱起電力が正となる接合部を形成された領域どうしが互
いに重なり合うように前記基板どうしを積層し、各基板
の導電パターンどうしを直列に接続したことを特徴とす
る、請求項1に記載の熱電変換基板。
3. A thermoelectric conversion substrate in which a plurality of substrates on each of which a conductive pattern made of a dissimilar metal material is formed are stacked, and the substrate is formed such that regions where bonding portions having a positive thermoelectromotive force are formed overlap each other. The thermoelectric conversion board according to claim 1, wherein the boards are stacked and the conductive patterns of each board are connected in series.
【請求項4】 電気回路素子を実装した回路基板を、請
求項2又は3に記載の熱電変換基板と積層し、前記電気
回路素子のうち発熱を伴う素子を前記熱電変換基板にお
ける熱起電力が正となる接合部を形成された領域もしく
はその近傍と対向するように配置したことを特徴とする
電気回路装置。
4. A circuit board on which an electric circuit element is mounted is laminated with the thermoelectric conversion board according to claim 2 or 3, and an element of the electric circuit element that generates heat has a thermoelectromotive force in the thermoelectric conversion board. An electric circuit device, wherein a positive junction is arranged so as to face a region where the junction is formed or its vicinity.
【請求項5】 前記回路基板上に形成された発熱を伴う
素子と、前記熱起電力が負となる接合部を形成された領
域との中間において、前記回路基板に熱分離手段を設け
たことを特徴とする、請求項4に記載の電気回路装置。
5. A heat separating means is provided on the circuit board, between the element having heat generation formed on the circuit board and a region where a junction where the thermoelectromotive force is negative is formed. The electric circuit device according to claim 4, characterized in that:
JP9361931A 1997-12-09 1997-12-09 Thermoelectric conversion substrate and electric circuit device using the substrate Pending JPH11177154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9361931A JPH11177154A (en) 1997-12-09 1997-12-09 Thermoelectric conversion substrate and electric circuit device using the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9361931A JPH11177154A (en) 1997-12-09 1997-12-09 Thermoelectric conversion substrate and electric circuit device using the substrate

Publications (1)

Publication Number Publication Date
JPH11177154A true JPH11177154A (en) 1999-07-02

Family

ID=18475339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9361931A Pending JPH11177154A (en) 1997-12-09 1997-12-09 Thermoelectric conversion substrate and electric circuit device using the substrate

Country Status (1)

Country Link
JP (1) JPH11177154A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184810A (en) * 2004-12-28 2006-07-13 Casio Comput Co Ltd Electronic device and cooling method for electronic device
JP2007180455A (en) * 2005-12-28 2007-07-12 Ritsumeikan Thermoelectric conversion device and thermoelectric conversion device manufacturing method
JP2007214435A (en) * 2006-02-10 2007-08-23 Sharp Corp Electronic device, and liquid crystal display
WO2007141890A1 (en) * 2006-06-09 2007-12-13 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and method for manufacturing the same
WO2009011430A1 (en) * 2007-07-19 2009-01-22 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and thermoelectric conversion module manufacturing method
WO2009028337A1 (en) * 2007-08-27 2009-03-05 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and method for manufacturing the same
JP2009105324A (en) * 2007-10-25 2009-05-14 Ritsumeikan Manufacturing method of electronic device, and electronic device
WO2009063805A1 (en) * 2007-11-13 2009-05-22 Murata Manufacturing Co., Ltd. Thermoelectric generation device having condensing function
WO2009063911A1 (en) * 2007-11-14 2009-05-22 Murata Manufacturing Co., Ltd. Thermoelectric conversion module piece, thermoelectric conversion module, and method for manufacturing the same
US7626114B2 (en) 2006-06-16 2009-12-01 Digital Angel Corporation Thermoelectric power supply
US7629531B2 (en) 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator
JP2010225610A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element, and method of manufacturing the same
JP2013188018A (en) * 2012-03-08 2013-09-19 Ihi Corp Energy harvesting device
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
JP2014520499A (en) * 2011-05-18 2014-08-21 ザ・ボーイング・カンパニー Thermoelectric energy harvesting system
WO2018180131A1 (en) * 2017-03-28 2018-10-04 国立研究開発法人物質・材料研究機構 Thermoelectric power generation cell and thermoelectric power generation module
CN112219311A (en) * 2018-07-09 2021-01-12 喜利得股份公司 Rechargeable battery protection device
WO2021085039A1 (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device provided with same
JP2023058789A (en) * 2021-10-14 2023-04-26 恭胤 高藤 Air conditioner

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269096B2 (en) 2003-05-19 2012-09-18 Ingo Stark Low power thermoelectric generator
US7629531B2 (en) 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator
JP2006184810A (en) * 2004-12-28 2006-07-13 Casio Comput Co Ltd Electronic device and cooling method for electronic device
JP2007180455A (en) * 2005-12-28 2007-07-12 Ritsumeikan Thermoelectric conversion device and thermoelectric conversion device manufacturing method
JP2007214435A (en) * 2006-02-10 2007-08-23 Sharp Corp Electronic device, and liquid crystal display
WO2007141890A1 (en) * 2006-06-09 2007-12-13 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and method for manufacturing the same
US7626114B2 (en) 2006-06-16 2009-12-01 Digital Angel Corporation Thermoelectric power supply
JP5007748B2 (en) * 2007-07-19 2012-08-22 株式会社村田製作所 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2009011430A1 (en) * 2007-07-19 2009-01-22 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and thermoelectric conversion module manufacturing method
WO2009028337A1 (en) * 2007-08-27 2009-03-05 Murata Manufacturing Co., Ltd. Thermoelectric conversion module and method for manufacturing the same
JP2009105324A (en) * 2007-10-25 2009-05-14 Ritsumeikan Manufacturing method of electronic device, and electronic device
WO2009063805A1 (en) * 2007-11-13 2009-05-22 Murata Manufacturing Co., Ltd. Thermoelectric generation device having condensing function
JPWO2009063805A1 (en) * 2007-11-13 2011-03-31 株式会社村田製作所 Thermoelectric generator with power storage function
WO2009063911A1 (en) * 2007-11-14 2009-05-22 Murata Manufacturing Co., Ltd. Thermoelectric conversion module piece, thermoelectric conversion module, and method for manufacturing the same
JP5104875B2 (en) * 2007-11-14 2012-12-19 株式会社村田製作所 Thermoelectric conversion module piece, thermoelectric conversion module, and methods for producing the same
JP2010225610A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element, and method of manufacturing the same
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
US9322580B2 (en) 2011-02-05 2016-04-26 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
JP2014520499A (en) * 2011-05-18 2014-08-21 ザ・ボーイング・カンパニー Thermoelectric energy harvesting system
JP2013188018A (en) * 2012-03-08 2013-09-19 Ihi Corp Energy harvesting device
WO2018180131A1 (en) * 2017-03-28 2018-10-04 国立研究開発法人物質・材料研究機構 Thermoelectric power generation cell and thermoelectric power generation module
JPWO2018180131A1 (en) * 2017-03-28 2019-11-07 国立研究開発法人物質・材料研究機構 Thermoelectric generation cell and thermoelectric generation module
US11393969B2 (en) 2017-03-28 2022-07-19 National Institute For Materials Science Thermoelectric generation cell and thermoelectric generation module
CN112219311A (en) * 2018-07-09 2021-01-12 喜利得股份公司 Rechargeable battery protection device
WO2021085039A1 (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device provided with same
JP2021072382A (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same
US11963449B2 (en) 2019-10-31 2024-04-16 Tdk Corporation Thermoelectric conversion element and thermoelectric conversion device having the same
JP2023058789A (en) * 2021-10-14 2023-04-26 恭胤 高藤 Air conditioner

Similar Documents

Publication Publication Date Title
JPH11177154A (en) Thermoelectric conversion substrate and electric circuit device using the substrate
EP1594173B1 (en) Cooling device for electronic component using thermo-electric conversion material
RU2173007C2 (en) Thermoelectric device
JP4796868B2 (en) ELECTRONIC CIRCUIT STRUCTURE, ELECTRONIC DEVICE EQUIPPED WITH THE STRUCTURE, THERMAL ELECTRIC POWER GENERATION METHOD, SUPPORT POWER GENERATION METHOD, AND SEMICONDUCTOR BARE CHIP
WO2002017471A1 (en) Portable electronic device with enhanced battery life and cooling
EP1612870A1 (en) Method of manufacturing a thermoelectric generator and thermoelectric generator thus obtained
JP2009526401A (en) Improved low-power thermoelectric generator
JP2004140356A (en) Power semiconductor module
JP3054932B2 (en) Electronic clock using thermoelectric elements
JP2000058930A (en) Thermoelement, and its manufacture
TW525310B (en) Thermoelectric element
JP5653455B2 (en) Thermoelectric conversion member
JP2004253426A (en) Thermoelectric conversion device, its manufacturing method and energy conversion device
JP4147800B2 (en) Method for manufacturing thermoelectric conversion device
WO2003088317A3 (en) Thermal electric generator
JP7313660B2 (en) Thermoelectric conversion module
JP2002050727A (en) Electronic apparatus
JPS6267888A (en) Thermoelectric power generation device
JP3512691B2 (en) Thermoelectric element and method of manufacturing the same
JP4578455B2 (en) Charger
JPH09321353A (en) Thermoelectric module
JP2003318455A (en) Peltier element and its manufacturing method
CN217985816U (en) Electronic device
JP3007904U (en) Thermal battery
JP2007180267A (en) Hybrid integrated circuit device