JP2013188018A - Energy harvesting device - Google Patents

Energy harvesting device Download PDF

Info

Publication number
JP2013188018A
JP2013188018A JP2012051590A JP2012051590A JP2013188018A JP 2013188018 A JP2013188018 A JP 2013188018A JP 2012051590 A JP2012051590 A JP 2012051590A JP 2012051590 A JP2012051590 A JP 2012051590A JP 2013188018 A JP2013188018 A JP 2013188018A
Authority
JP
Japan
Prior art keywords
power
power generation
generation unit
energy
thermocouples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012051590A
Other languages
Japanese (ja)
Other versions
JP5888008B2 (en
Inventor
Ikuo Iwasaki
郁夫 岩崎
Masaru Shizume
大 鎮目
Hiroki Saito
広樹 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012051590A priority Critical patent/JP5888008B2/en
Publication of JP2013188018A publication Critical patent/JP2013188018A/en
Application granted granted Critical
Publication of JP5888008B2 publication Critical patent/JP5888008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To supply stable power to a load even when environmental energy varies.SOLUTION: An energy harvesting device includes: a first power generation part which captures environmental energy other than heat to generate first power; a second power generation part which captures heat as environmental energy to generate second power; a secondary battery for storing the first power and the second power; and a processing unit for performing predetermined processing on the basis of power supplied from the secondary battery.

Description

本発明は、エネルギーハーベスト装置に関する。   The present invention relates to an energy harvesting apparatus.

下記特許文献1には、環境エネルギーの一種であるRFエネルギーを捉えることにより発電し、当該発電による電力をコアデバイス(負荷)に供給するパワーハーベスタを備えるアプリケーション装置が開示されている。このアプリケーション装置は、電池やキャパシタ等の電力貯蔵部に電力を一旦貯蔵した後に、アプリケーション用集積回路を有するコアデバイスに供給する。   The following Patent Document 1 discloses an application device including a power harvester that generates power by capturing RF energy, which is a kind of environmental energy, and supplies power generated by the power generation to a core device (load). The application device temporarily stores power in a power storage unit such as a battery or a capacitor, and then supplies the power to a core device having an application integrated circuit.

特表2008−544730号公報Special table 2008-544730 gazette

ところで、上記アプリケーション装置では、エネルギー源であるRFエネルギーが減衰した場合に、負荷であるコアデバイスに十分な電力を供給することができないう問題がある。このような問題点は、パワーハーベスト装置の本質的な欠点であり、パワーハーベスト装置を実用化する上で解決しなければならない重要な課題である。   By the way, in the said application apparatus, when RF energy which is an energy source attenuate | damps, there exists a problem that sufficient electric power cannot be supplied to the core device which is load. Such a problem is an essential drawback of the power harvesting device, and is an important issue that must be solved in order to put the power harvesting device into practical use.

本発明は、上述した事情に鑑みてなされたものであり、環境エネルギーが変動しても安定した電力を負荷に供給することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to supply stable power to a load even when environmental energy fluctuates.

上記目的を達成するために、本発明では、第1の解決手段として、環境エネルギーとしての熱を捉えて第1の電力を発電する第1の発電部と、熱以外の環境エネルギーを捉えて第2の電力を発電する第2の発電部と、第1の電力及び第2の電力を蓄える二次電池と、当該二次電池から供給される電力に基づいて所定の処理を行う処理部とを備える、という手段を採用する。   In order to achieve the above object, in the present invention, as a first solution, a first power generation unit that generates heat by capturing heat as environmental energy, and environmental energy other than heat is captured. A second power generation unit that generates the second power, a secondary battery that stores the first power and the second power, and a processing unit that performs a predetermined process based on the power supplied from the secondary battery. The means of preparing is adopted.

本発明では、第2の解決手段として、上記第1の解決手段において、第1の発電部は互いに直列接続された複数の熱電対である、という手段を採用する。   In the present invention, as the second solving means, in the first solving means, a means is adopted in which the first power generation unit is a plurality of thermocouples connected in series with each other.

本発明では、第3の解決手段として、上記第2の解決手段において、処理部は、複数の熱電対の1つから得られる温度検出信号に信号処理を施す、という手段を採用する。   In the present invention, as the third solving means, in the second solving means, a means is adopted in which the processing section performs signal processing on the temperature detection signal obtained from one of the plurality of thermocouples.

本発明では、第4の解決手段として、上記第3の解決手段において、処理部は、信号処理を施した検出信号を外部に無線送信する、という手段を採用する。   In the present invention, as the fourth solving means, in the third solving means, a means is adopted in which the processing unit wirelessly transmits a detection signal subjected to signal processing to the outside.

本発明では、第5の解決手段として、上記第1〜第4のいずれかの解決手段において、第2の発電部は、光あるいは振動を環境エネルギーとして捉えて第2の電力を発電する、という手段を採用する。   In the present invention, as the fifth solution means, in any one of the first to fourth solution means, the second power generation unit generates the second power by capturing light or vibration as environmental energy. Adopt means.

本発明によれば、第2の電力のエネルギー源である熱以外の環境エネルギーが変動しても、熱をエネルギー源とする第1の電力を処理部(負荷)に供給することが可能なので、安定した電力を負荷に供給することができる。   According to the present invention, even if environmental energy other than heat, which is the energy source of the second power, fluctuates, the first power using heat as the energy source can be supplied to the processing unit (load). Stable power can be supplied to the load.

本発明の一実施形態に係る温度検出装置Aの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the temperature detection apparatus A which concerns on one Embodiment of this invention. 本発明の一実施形態の変形例に係る温度検出装置Bを示すブロック図である。It is a block diagram which shows the temperature detection apparatus B which concerns on the modification of one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態に係る温度検出装置A(エネルギーハーベスト装置)について説明する。本温度検出装置Aは、図1に示すように、n個の熱電対T1〜Tn(第1の発電部)、太陽電池1(第2の発電部)、蓄電池2(二次電池)、センサ回路3及び監視伝送部4によって構成されている。これら構成要件のうち、センサ回路3及び監視伝送部4は、本実施形態における処理部を構成している。   Hereinafter, a temperature detection apparatus A (energy harvesting apparatus) according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the present temperature detection apparatus A includes n thermocouples T1 to Tn (first power generation unit), solar cell 1 (second power generation unit), storage battery 2 (secondary battery), sensor. The circuit 3 and the monitoring transmission unit 4 are configured. Among these constituent elements, the sensor circuit 3 and the monitor transmission unit 4 constitute a processing unit in the present embodiment.

n個の熱電対T1〜Tnは、各々に環境温度(周囲温度)に応じた起電圧Vsをそれぞれ発生する温度センサーであり、図示するように互いに直列接続されている。すなわち、当該n個の熱電対T1〜Tnは、環境エネルギーとしての熱を捉えて電圧Vp(=n×Vs)の第1の電力を発電する一種の発電素子である。   Each of the n thermocouples T1 to Tn is a temperature sensor that generates an electromotive voltage Vs corresponding to the environmental temperature (ambient temperature), and is connected in series to each other as illustrated. That is, the n thermocouples T1 to Tn are a kind of power generation element that captures heat as environmental energy and generates first power of voltage Vp (= n × Vs).

このような熱電対T1〜Tnのうち、第1番目の熱電対T1の一端は蓄電池2の一方の入力端に接続され、第n番目の熱電対Tnの一端はセンサ回路3の一方の入力端に接続され、また第n番目の熱電対Tnの他端は蓄電池2の他方の入力端及びセンサ回路3の他方の入力端にそれぞれ接続されている。すなわち、n個の熱電対T1〜Tnの合計起電圧Vpは第1の電力として蓄電池2に出力され、一方、第n番目(1個)の熱電対Tnの起電圧Vsは、温度検出信号としてセンサ回路3に出力される。   Among such thermocouples T1 to Tn, one end of the first thermocouple T1 is connected to one input end of the storage battery 2, and one end of the nth thermocouple Tn is one input end of the sensor circuit 3. The other end of the nth thermocouple Tn is connected to the other input end of the storage battery 2 and the other input end of the sensor circuit 3, respectively. That is, the total electromotive voltage Vp of the n thermocouples T1 to Tn is output to the storage battery 2 as the first power, while the electromotive voltage Vs of the nth (one) thermocouple Tn is used as the temperature detection signal. It is output to the sensor circuit 3.

太陽電池1は、光をエネルギー源として発電する発電素子である。すなわち、太陽電池1は、熱以外の環境エネルギーである光を捉えて電力を発電し、当該電力を第2の電力として蓄電池2に出力する。蓄電池2は、上記熱電対T1〜Tnから入力される第1の電力及び太陽電池1から入力される第2の電力を蓄える二次電池である。この蓄電池2は、自らが蓄えた電力(直流電力)を負荷であるセンサ回路3及び監視伝送部4に供給する。   The solar cell 1 is a power generation element that generates power using light as an energy source. That is, the solar cell 1 captures light that is environmental energy other than heat to generate electric power, and outputs the electric power to the storage battery 2 as second electric power. The storage battery 2 is a secondary battery that stores the first power input from the thermocouples T1 to Tn and the second power input from the solar battery 1. The storage battery 2 supplies power (DC power) stored by itself to the sensor circuit 3 and the monitoring transmission unit 4 that are loads.

ここで、このような本温度検出装置Aでは、n個の熱電対T1〜Tnが第1の発電部として機能し、太陽電池1が第2の発電部として機能する。すなわち、本温度検出装置Aには、2つの発電機能部が設けられている。これら2つの発電機能部のうち、太陽電池1(第2の発電部)は、n個の熱電対T1〜Tn(第1の発電部)よりも発電電力が大きく、よって蓄電池2が蓄える直流電力の殆どは太陽電池1(第2の発電部)が発電したものである。太陽電池1(第2の発電部)は本温度検出装置Aの主発電機能部であり、一方、n個の熱電対T1〜Tnは本温度検出装置Aの補助発電機能部である。このようなn個の熱電対T1〜Tn、太陽電池1及び蓄電池2は、環境エネルギーをエネルギー源として捉えて発電するエネルギーハーベスト発電部を構成している。   Here, in this temperature detection apparatus A, n thermocouples T1 to Tn function as the first power generation unit, and the solar cell 1 functions as the second power generation unit. That is, the temperature detection apparatus A is provided with two power generation function units. Of these two power generation function units, the solar cell 1 (second power generation unit) has a larger generated power than n thermocouples T1 to Tn (first power generation unit), and thus the DC power stored in the storage battery 2 Most of the power is generated by the solar cell 1 (second power generation unit). The solar cell 1 (second power generation unit) is a main power generation function unit of the temperature detection device A, while the n thermocouples T1 to Tn are auxiliary power generation function units of the temperature detection device A. The n thermocouples T1 to Tn, the solar cell 1, and the storage battery 2 constitute an energy harvesting power generation unit that generates power by capturing environmental energy as an energy source.

センサ回路3は、上記蓄電池2から入力される直流電源によって動作する電子回路であり、第n番目の熱電対Tnから入力される温度検出信号を増幅して監視伝送部4に出力する。監視伝送部4は、センサ回路3から入力された温度検出信号を外部に無線送信すると共に、蓄電池2及びセンサ回路3の動作状態を監視する。この監視伝送部4の無線通信機能は、近距離用の無線通信機能であり、よって電波の出力が比較的小さい。なお、これらセンサ回路3及び監視伝送部4は、本実施形態における処理部を構成している。   The sensor circuit 3 is an electronic circuit that is operated by a DC power source input from the storage battery 2, and amplifies the temperature detection signal input from the nth thermocouple Tn and outputs the amplified signal to the monitoring transmission unit 4. The monitoring transmission unit 4 wirelessly transmits the temperature detection signal input from the sensor circuit 3 to the outside, and monitors the operation states of the storage battery 2 and the sensor circuit 3. The wireless communication function of the monitoring transmission unit 4 is a short-distance wireless communication function, and therefore the output of radio waves is relatively small. The sensor circuit 3 and the monitoring transmission unit 4 constitute a processing unit in the present embodiment.

次に、このように構成された温度検出装置Aの動作について詳しく説明する。
本温度検出装置Aでは、通常動作として、太陽電池1(第2の発電部)が発電した直流電力の一部でセンサ回路3及び監視伝送部4を作動させると共に、上記直流電力の残りを蓄電池2に充電する。
Next, the operation of the temperature detection device A configured as described above will be described in detail.
In the temperature detection device A, as a normal operation, the sensor circuit 3 and the monitoring transmission unit 4 are operated by a part of the DC power generated by the solar cell 1 (second power generation unit), and the remaining DC power is stored in the storage battery. 2 is charged.

しかしながら、太陽電池1では、十分な日照量が得られず発電量が低下する事態が生じ得る。このような事態が発生して蓄電池2の充電量が所定の下限値まで低下すると、蓄電池2は、太陽電池1の直流電力に代えて、n個の熱電対T1〜Tn(第1の発電部)が発電した直流電力を充電する。すなわち、n個の熱電対T1〜Tn(第1の発電部)は、太陽電池1がエネルギー源としている光とは異なる熱を捉えて発電を行うので、太陽電池1の発電量の低下に伴って発電量が低下することはない。   However, in the solar cell 1, a sufficient amount of sunlight can not be obtained, and a situation where the power generation amount is reduced may occur. When such a situation occurs and the charge amount of the storage battery 2 decreases to a predetermined lower limit value, the storage battery 2 replaces the direct-current power of the solar battery 1 with n thermocouples T1 to Tn (first power generation unit). ) Will charge the generated DC power. In other words, the n thermocouples T1 to Tn (first power generation unit) generate power by capturing heat different from the light that the solar cell 1 uses as an energy source, so that the power generation amount of the solar cell 1 decreases. As a result, the power generation will not decrease.

したがって、本実施形態によれば、太陽電池1(第2の発電部)の発電量の低下をn個の熱電対T1〜Tn(第1の発電部)が補うので、エネルギーハーベスト発電部の負荷であるセンサ回路3及び監視伝送部4に安定した直流電力を供給することができる。   Therefore, according to the present embodiment, since the n thermocouples T1 to Tn (first power generation unit) compensate for the decrease in the power generation amount of the solar cell 1 (second power generation unit), the load of the energy harvest power generation unit Stable DC power can be supplied to the sensor circuit 3 and the monitoring transmission unit 4.

センサ回路3は、このようなエネルギーハーベスト発電部から供給される直流電力を電源として第n番目の熱電対Tnから入力される温度検出信号を増幅して監視伝送部4に出力する。センサ回路3には第n番目の熱電対Tnから常時連続して温度検出信号が入力されるので、センサ回路3は温度検出信号を連続的に増幅して監視伝送部4に出力する。   The sensor circuit 3 amplifies the temperature detection signal input from the nth thermocouple Tn using the DC power supplied from the energy harvesting power generation unit as a power source and outputs the amplified temperature detection signal to the monitoring transmission unit 4. Since the temperature detection signal is always continuously input from the n-th thermocouple Tn to the sensor circuit 3, the sensor circuit 3 continuously amplifies the temperature detection signal and outputs it to the monitoring transmission unit 4.

そして、監視伝送部4は、センサ回路3から入力された温度検出信号を電波として外部に送信する。監視伝送部4は、例えばセンサ回路3から連続的に入力される温度検出信号を所定のタイムインターバルでサンプリングすることにより離散的な温度検出データに変換し、この温度検出データを電波に順次乗せて発信する。   Then, the monitoring transmission unit 4 transmits the temperature detection signal input from the sensor circuit 3 to the outside as a radio wave. The monitor transmission unit 4 converts, for example, temperature detection signals continuously input from the sensor circuit 3 into discrete temperature detection data by sampling at predetermined time intervals, and sequentially puts the temperature detection data on radio waves. send.

なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、n個の熱電対T1〜Tnの合計起電圧Vpを蓄電池2に充電する構成を採用したが、本発明はこれに限定されない。例えば、図2に示すように(n−1)個の熱電対T1〜Tn-1の合計起電圧Vqを蓄電池2に充電してもよい。すなわち、図2に示す温度検出装置Bは、第n番目の熱電対Tnの他端を蓄電池2の他方の入力端に接続することに代えて、第n番目の熱電対Tnの一端を蓄電池2の他方の入力端に接続することにより、n個の熱電対T1〜Tnの合計起電圧Vpに代えて、(n−1)個の熱電対T1〜Tn-1の合計起電圧Vqを蓄電池2に入力するものである。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the above embodiment, the configuration in which the storage battery 2 is charged with the total electromotive voltage Vp of the n thermocouples T1 to Tn is adopted, but the present invention is not limited to this. For example, the storage battery 2 may be charged with the total electromotive voltage Vq of (n-1) thermocouples T1 to Tn-1 as shown in FIG. That is, the temperature detection device B shown in FIG. 2 replaces the other end of the nth thermocouple Tn with the other input end of the storage battery 2 and replaces one end of the nth thermocouple Tn with the storage battery 2. Is connected to the other input terminal of the battery 2 to replace the total electromotive voltage Vp of (n-1) thermocouples T1 to Tn-1 with the storage battery 2 instead of the total electromotive voltage Vp of n thermocouples T1 to Tn. To enter.

(2)上記実施形態では、第2の発電部として太陽電池1を採用したが、本発明はこれに限定されない。例えば、振動を環境エネルギーとして捉えて発電を行う圧電素子を採用してもよい。また、風(気流)を環境エネルギーとして捉えて発電を行う一種の風力発電装置を第2の発電部として採用してもよい。 (2) In the said embodiment, although the solar cell 1 was employ | adopted as a 2nd electric power generation part, this invention is not limited to this. For example, a piezoelectric element that generates power by capturing vibration as environmental energy may be employed. In addition, a kind of wind power generation apparatus that generates power by capturing wind (airflow) as environmental energy may be employed as the second power generation unit.

(3)上記実施形態では、センサ回路3及び監視伝送部4から処理部を構成したが、本発明はこれに限定されない。例えば処理部をセンサ回路3のみから構成し、センサ回路3の出力を信号線(電線)を介して外部に送信してもよい。 (3) In the above embodiment, the processing unit is configured by the sensor circuit 3 and the monitoring transmission unit 4, but the present invention is not limited to this. For example, the processing unit may be configured by only the sensor circuit 3, and the output of the sensor circuit 3 may be transmitted to the outside via a signal line (electric wire).

(4)上記実施形態では、n個の熱電対T1〜Tnを第1の発電部としたが、本発明はこれに限定されない。例えば、n個の熱電対T1〜Tnに代えて、ゼーベック効果を利用した熱電素子(半導体素子)を用いてもよい。この熱電素子は、n個の熱電対T1〜Tnと同様に熱を環境エネルギーとして捉えて発電を行う一種の発電素子である。 (4) In the above embodiment, the n thermocouples T1 to Tn are the first power generation unit, but the present invention is not limited to this. For example, instead of n thermocouples T1 to Tn, thermoelectric elements (semiconductor elements) using the Seebeck effect may be used. This thermoelectric element is a kind of power generation element that generates power by capturing heat as environmental energy in the same manner as the n thermocouples T1 to Tn.

A,B…温度検出装置(エネルギーハーベスト装置)、T1〜Tn…熱電対(第1の発電部)、1…太陽電池(第2の発電部)、2…蓄電池(二次電池)、3…センサ回路、4…監視伝送部   A, B ... temperature detection device (energy harvesting device), T1 to Tn ... thermocouple (first power generation unit), 1 ... solar cell (second power generation unit), 2 ... storage battery (secondary battery), 3 ... Sensor circuit, 4 ... Monitoring transmission unit

Claims (5)

環境エネルギーとしての熱を捉えて第1の電力を発電する第1の発電部と、
熱以外の環境エネルギーを捉えて第2の電力を発電する第2の発電部と、
前記第1の電力及び前記第2の電力を蓄える二次電池と、
当該二次電池から供給される電力に基づいて所定の処理を行う処理部と
を備えるエネルギーハーベスト装置。
A first power generation unit that captures heat as environmental energy and generates first power;
A second power generation unit that captures environmental energy other than heat and generates second power;
A secondary battery for storing the first power and the second power;
An energy harvesting device comprising: a processing unit that performs predetermined processing based on electric power supplied from the secondary battery.
前記第1の発電部は互いに直列接続された複数の熱電対である請求項1記載のエネルギーハーベスト装置。   The energy harvesting device according to claim 1, wherein the first power generation unit is a plurality of thermocouples connected in series. 前記処理部は、前記複数の熱電対の1つから得られる温度検出信号に信号処理を施す請求項2記載のエネルギーハーベスト装置。   The energy harvesting apparatus according to claim 2, wherein the processing unit performs signal processing on a temperature detection signal obtained from one of the plurality of thermocouples. 前記処理部は、信号処理を施した前記検出信号を外部に無線送信する請求項3記載のエネルギーハーベスト装置。   The energy harvesting apparatus according to claim 3, wherein the processing unit wirelessly transmits the detection signal subjected to signal processing to the outside. 前記第2の発電部は、光あるいは振動を環境エネルギーとして捉えて第2の電力を発電する請求項1〜4のいずれか一項に記載のエネルギーハーベスト装置。
The energy harvesting device according to any one of claims 1 to 4, wherein the second power generation unit generates second power by capturing light or vibration as environmental energy.
JP2012051590A 2012-03-08 2012-03-08 Energy harvesting equipment Active JP5888008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051590A JP5888008B2 (en) 2012-03-08 2012-03-08 Energy harvesting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051590A JP5888008B2 (en) 2012-03-08 2012-03-08 Energy harvesting equipment

Publications (2)

Publication Number Publication Date
JP2013188018A true JP2013188018A (en) 2013-09-19
JP5888008B2 JP5888008B2 (en) 2016-03-16

Family

ID=49389019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051590A Active JP5888008B2 (en) 2012-03-08 2012-03-08 Energy harvesting equipment

Country Status (1)

Country Link
JP (1) JP5888008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878020A (en) * 2022-05-09 2022-08-09 湖北鑫英泰系统技术股份有限公司 Passive temperature measurement system based on photovoltaic power generation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177154A (en) * 1997-12-09 1999-07-02 Murata Mfg Co Ltd Thermoelectric conversion substrate and electric circuit device using the substrate
JP2002244812A (en) * 2001-02-15 2002-08-30 Funai Electric Co Ltd Self-power generating mouse
JP2009240086A (en) * 2008-03-27 2009-10-15 Casio Comput Co Ltd Power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177154A (en) * 1997-12-09 1999-07-02 Murata Mfg Co Ltd Thermoelectric conversion substrate and electric circuit device using the substrate
JP2002244812A (en) * 2001-02-15 2002-08-30 Funai Electric Co Ltd Self-power generating mouse
JP2009240086A (en) * 2008-03-27 2009-10-15 Casio Comput Co Ltd Power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878020A (en) * 2022-05-09 2022-08-09 湖北鑫英泰系统技术股份有限公司 Passive temperature measurement system based on photovoltaic power generation

Also Published As

Publication number Publication date
JP5888008B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP2013188019A (en) Energy harvesting device and environmental energy supply method
JP2020091978A5 (en)
US20170147021A1 (en) Internet-of-things System Having Single-mode or Multi-mode Energy Harvesting Function
JP2012047516A5 (en)
WO2012041825A3 (en) Presence and operability test of a decoupling capacitor
EP2345879A3 (en) Detection circuit, sensor device, and electronic instrument
US20140148103A1 (en) Wireless sensor module, method for processing measurement data thereby, and recording medium
KR101818036B1 (en) Energy Storage System with Wire and Wireless Energy Transfer Function
Rodriguez et al. Powering wireless sensor nodes for industrial IoT applications using vibration energy harvesting
JP5888008B2 (en) Energy harvesting equipment
Kim RF energy harvesting techniques for wirelessly powered devices
Chew et al. Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting
Wahbah et al. An AC–DC converter for human body-based vibration energy harvesting
US20190006857A1 (en) Electronic circuit for harvesting energy from ultra-low power sources
JP2013102571A5 (en)
Sharma Piezoelectric energy harvesting and management in WSN using MPPT algorithm
Zhao et al. An adaptive boost converter for low voltage piezoelectric energy harvesting
Vaish et al. Capacitor and battery charging from hot/cold air using pyroelectric ceramics
Wang et al. Bulk material based thermoelectric energy harvesting for wireless sensor applications
Yamawaki et al. A sensor node architecture with zero standby power on wireless sensor network
KR101683248B1 (en) Cctv system to using wireless power transmission and reception
Ferrero et al. Multi-harvesting solution for autonomous sensing node based on LoRa technology
Somov et al. Piezoelectric energy harvesting powered WSN for aircraft structural health monitoring
Sharma et al. Indoor light energy harvesting using infrared LED
Hörmann et al. Designing of efficient energy harvesting systems for autonomous WSNs using a tier model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R151 Written notification of patent or utility model registration

Ref document number: 5888008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250