JP2009240086A - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP2009240086A
JP2009240086A JP2008084141A JP2008084141A JP2009240086A JP 2009240086 A JP2009240086 A JP 2009240086A JP 2008084141 A JP2008084141 A JP 2008084141A JP 2008084141 A JP2008084141 A JP 2008084141A JP 2009240086 A JP2009240086 A JP 2009240086A
Authority
JP
Japan
Prior art keywords
power generation
electromotive force
generation means
generates
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008084141A
Other languages
Japanese (ja)
Inventor
Haruo Ono
晴夫 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2008084141A priority Critical patent/JP2009240086A/en
Publication of JP2009240086A publication Critical patent/JP2009240086A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a power generator in which the use operation is efficiently converted into electric energy. <P>SOLUTION: The power generator includes: a writing pressure power generating part 30 that generates an electromotive force in response to the writing pressure applied to a pen tip 201 of a stylus pen 10; a thermal power generating part 40 that generates the electromotive force obtained by thermoelectrically converting the body temperature of a user gripping the stylus pen 10; an optical power generating part 50 that generates the photoelectrically converted electromotive force according to the amount of light received under the environment using the stylus pen 10; and a vibration power generating part 60 that generates the electromotive force according to vibration generated when the stylus pen 10 is used. Accordingly, not only mechanical vibration can be converted simply into the electric energy, but also the use operation can be converted efficiently into the electric energy unlike conventional generators. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば電磁結合方式のスタイラスペンに用いて好適な発電装置に関する。   The present invention relates to a power generator suitable for use in, for example, an electromagnetically coupled stylus pen.

コードレスで尚かつ電池交換を必要としない電磁結合方式のスタイラスペンが知られている。例えば特許文献1には、筐体内部に機械的な振動で発電する発電素子と、この発電素子が発生する発電電力を充電する充電池とを備え、当該充電池から電力供給されることによって、タブレット上でのペン操作に応じて電磁界を発生する電磁結合方式のスタイラスペンが開示されている。   An electromagnetically coupled stylus pen that is cordless and does not require battery replacement is known. For example, Patent Document 1 includes a power generation element that generates power by mechanical vibration inside a housing and a rechargeable battery that charges generated power generated by the power generation element, and is supplied with power from the rechargeable battery. An electromagnetically coupled stylus pen that generates an electromagnetic field in response to a pen operation on a tablet is disclosed.

特開平7−72965号公報JP-A-7-72965

ところで、上記特許文献1に開示の装置は、使用操作にかかわる機械的な振動のみを電気エネルギーに変換するだけなので、使用操作を効率よく電気エネルギーに変換し得ることが出来ないという問題がある。   By the way, since the apparatus disclosed in Patent Document 1 only converts mechanical vibration related to the use operation into electric energy, there is a problem that the use operation cannot be efficiently converted into electric energy.

本発明は、このような事情に鑑みてなされたもので、使用操作を効率よく電気エネルギーに変換することができる発電装置を提供することを目的としている。 This invention is made | formed in view of such a situation, and it aims at providing the electric power generating apparatus which can convert use operation into an electrical energy efficiently.

上記目的を達成するため、請求項1に記載の発明では、筆圧に応じた起電力を発生する第1の発電手段と、使用時に把持するユーザの体温に応じて熱電変換した起電力を発生する第2の発電手段と、使用環境下での受光量に応じて光電変換した起電力を発生する第3の発電手段と、使用操作で生じる振動に応じて起電力を発生する第4の発電手段と、前記第1〜第4の発電手段が発生する各起電力を蓄電して充電出力を発生する充電出力発生手段とを具備することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the first power generation means for generating an electromotive force corresponding to the writing pressure and the electromotive force generated by thermoelectric conversion according to the body temperature of the user gripped during use are generated. A second power generation means for generating power, a third power generation means for generating an electromotive force photoelectrically converted according to the amount of received light in a use environment, and a fourth power generation for generating an electromotive force according to vibration generated by a use operation. And a charge output generating means for storing each electromotive force generated by the first to fourth power generation means to generate a charge output.

上記請求項1に従属する請求項2に記載の発明では、前記第1の発電手段は、筆圧に応じて起電力を発生する圧電素子から構成されることを特徴とする。   According to a second aspect of the present invention that is dependent on the first aspect, the first power generation means is composed of a piezoelectric element that generates an electromotive force in accordance with the writing pressure.

上記請求項1に従属する請求項3に記載の発明では、前記第2の発電手段は、ユーザに把持される部位に巻回されるシート状の熱電素子アレイから構成されることを特徴とする。   According to a third aspect of the present invention, which is dependent on the first aspect, the second power generation means is composed of a sheet-like thermoelectric element array wound around a portion held by a user. .

上記請求項1に従属する請求項4に記載の発明では、前記第3の発電手段は、筐体周囲に巻回されるシート状の太陽電池素子アレイから構成されることを特徴とする。   According to a fourth aspect of the present invention, which is dependent on the first aspect, the third power generation means is composed of a sheet-like solar cell element array wound around the casing.

上記請求項1に従属する請求項5に記載の発明では、前記第4の発電手段は、複数の固定子と、使用操作で生じる振動に応じて、これら複数の固定子の間を往復移動する可動子との相互作用で電磁誘導起電力を発生する誘導発電手段と、使用操作で生じる振動により往復移動する可動子が移動端部を押圧するのに応じて起電力を発生する圧電発電手段とを備えることを特徴とする。   In the invention according to claim 5, which is dependent on claim 1, the fourth power generation means reciprocally moves between the plurality of stators and the plurality of stators in accordance with vibrations generated by a use operation. Inductive power generation means for generating electromagnetic induction electromotive force by interaction with the mover, and piezoelectric power generation means for generating electromotive force in response to the mover reciprocating due to vibration generated by use operation pressing the moving end portion; It is characterized by providing.

本発明では、使用操作を効率よく電気エネルギーに変換することができる。   In the present invention, the use operation can be efficiently converted into electric energy.

以下、図面を参照して本発明の実施の形態について説明する。図1は実施の一形態による発電装置を備えたスタイラスペン10の外観を示す斜視図である。図2は、図1に図示する位置A−A′に対応したスタイラスペン10の断面構造を示す断面図である。これら図1および図2に図示するように、スタイラスペン10は、外観視ペンシル状の筐体100を有し、当該筐体100の先端部に設けられるペン先部20と、このペン先部20に係合する筆圧発電部30と、ペン操作時にユーザに把持されるグリップとして機能する部位であって、筐体100周囲に巻回される熱発電部40と、この熱発電部40に続いて筐体100周囲に巻回される光発電部50と、筐体100内部に配設される振動発電部60と、これら各発電部30〜60の発電出力に基づき充電池を充電したり、ペン先部20に電力供給したりする回路部70を備える。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an appearance of a stylus pen 10 including a power generation device according to an embodiment. FIG. 2 is a cross-sectional view showing a cross-sectional structure of the stylus pen 10 corresponding to the position AA ′ shown in FIG. 1. As shown in FIG. 1 and FIG. 2, the stylus pen 10 has a pencil-shaped housing 100 in appearance, a pen tip portion 20 provided at the tip of the housing 100, and the pen tip portion 20. A pressure generating unit 30 that engages with the thermoelectric generator, a part that functions as a grip that is gripped by the user during pen operation, and a thermoelectric generator 40 that is wound around the housing 100, and the thermoelectric generator 40. The photovoltaic power generation unit 50 wound around the casing 100, the vibration power generation unit 60 disposed inside the casing 100, and charging the rechargeable battery based on the power generation output of each of the power generation units 30 to 60, A circuit unit 70 for supplying power to the pen tip unit 20 is provided.

ペン先部20は、図2に図示するように、ペン先201および電磁界発生部202を備える。球状のペン先201は、作用治具301(後述する)の先端に連結されており、筆圧に応じて後方へ摺動する。すなわち、図示されていないタブレットをポインティングする際に、ペン先201をタブレットに押し当てると、それに応じてペン先201が後退する。電磁界発生部202は、その先端部にマイクロスイッチ(不図示)を有し、筆圧に応じて後退するペン先201によって当該マイクロスイッチがオンされるように構成されている。電磁界発生部202は、先端部に設けられたマイクロスイッチがペン先201によりオンされた場合に電磁界を発生する。   The pen tip 20 includes a pen tip 201 and an electromagnetic field generator 202, as shown in FIG. The spherical pen tip 201 is connected to the tip of an action jig 301 (described later), and slides backward according to the writing pressure. In other words, when pointing a tablet (not shown), when the pen tip 201 is pressed against the tablet, the pen tip 201 is retracted accordingly. The electromagnetic field generation unit 202 has a micro switch (not shown) at its tip, and is configured such that the micro switch is turned on by the pen tip 201 that moves backward in accordance with the writing pressure. The electromagnetic field generation unit 202 generates an electromagnetic field when a micro switch provided at the tip is turned on by the pen tip 201.

筆圧発電部30は、ペン先201に加えられる筆圧に応じて後方へ摺動する作用治具301と、この作用治具301によって押圧される圧電素子302とを備える。圧電素子302は、例えば2枚の圧電セラミックを貼り合わせた周知のバイモルフ構造を有し、ペン先201に加えられる筆圧に応じて後方へ摺動する作用治具301により押圧されることで撓みが生じ、これに応じた起電力を発生する。なお、圧電素子302は、後述する振動発電部60の構成要素である可撓性の支持部材600によって支持固定されている。   The writing pressure power generation unit 30 includes an action jig 301 that slides backward according to the writing pressure applied to the pen tip 201, and a piezoelectric element 302 that is pressed by the action jig 301. The piezoelectric element 302 has a known bimorph structure in which, for example, two piezoelectric ceramics are bonded together, and is bent by being pressed by an action jig 301 that slides backward in accordance with the pen pressure applied to the pen tip 201. And an electromotive force corresponding to this is generated. The piezoelectric element 302 is supported and fixed by a flexible support member 600 that is a component of the vibration power generation unit 60 described later.

ペン操作時にユーザに把持されるグリップ部位に設けられる熱発電部40は、筐体100周囲に巻回される熱電素子アレイ400から構成される。熱電素子アレイ400は、図3の断面図に図示する通り、電極401を介してP型半導体402およびN型半導体403をPN接合してなる熱電素子を複数個直並列接続したものである。すなわち、熱電素子アレイ400は、所定の出力電圧を得るのに必要な個数の熱電素子を直列接続したものを、所定の出力電流を得るのに必要な数分並列接続したものである。   The thermoelectric generator 40 provided at a grip portion gripped by the user when operating the pen is composed of a thermoelectric element array 400 wound around the casing 100. As shown in the cross-sectional view of FIG. 3, the thermoelectric element array 400 is a series-parallel connection of a plurality of thermoelectric elements formed by PN junction of a P-type semiconductor 402 and an N-type semiconductor 403 via an electrode 401. That is, in the thermoelectric element array 400, a number of thermoelectric elements necessary for obtaining a predetermined output voltage are connected in series and the number of thermoelectric elements necessary for obtaining a predetermined output current are connected in parallel.

こうした熱電素子アレイ400は、図3の断面図に示すように、内側に設けられ、熱電率の低い低温側シート部材404と、外側に設けられ、熱電率の高い高温側シート部材405とで挟持されて筐体100の外周面に巻回される。このような構造によれば、ペン操作時にユーザに把持されることによって、高温側シート部材405がユーザの体温を効率的に伝導する一方、低温側シート部材404は体温による温度上昇を防ぐ為、熱電素子アレイ400は、外気温と体温との温度差に応じた熱電変換(ゼーベック効果)により熱起電力を発生する。 As shown in the cross-sectional view of FIG. 3, such a thermoelectric element array 400 is sandwiched between a low-temperature side sheet member 404 having a low thermoelectricity provided inside and a high-temperature side sheet member 405 having a low thermoelectricity provided outside. And wound around the outer peripheral surface of the housing 100. According to such a structure, the high temperature side sheet member 405 efficiently conducts the user's body temperature by being held by the user during the pen operation, while the low temperature side sheet member 404 prevents the temperature increase due to the body temperature. The thermoelectric element array 400 generates a thermoelectromotive force by thermoelectric conversion (Seebeck effect) according to the temperature difference between the outside air temperature and the body temperature.

光発電部50は、筐体100周囲に巻回されるシート状の太陽電池素子アレイ500から構成される。太陽電池素子アレイ500は、図4に図示するように、最上層の保護フィルム/集電極501、透明電極502、アモルファスシリコン層(p層503、i層504およびn層505)および裏面電極506からなる太陽電池素子を2次元配列してシート状に形成したものであり、受光量に応じた光起電流を発生する。   The photovoltaic unit 50 includes a sheet-like solar cell element array 500 wound around the casing 100. As shown in FIG. 4, the solar cell element array 500 includes an uppermost protective film / collector electrode 501, a transparent electrode 502, an amorphous silicon layer (p layer 503, i layer 504 and n layer 505), and a back electrode 506. The solar cell elements to be formed are two-dimensionally arranged and formed into a sheet shape, and generate a photovoltaic current corresponding to the amount of received light.

振動発電部60は、筐体100内部に配設される構成要素600〜608から構成される。振動発電部60の構造について図5を参照して説明する。なお、図5(a)は図1に図示する位置A−A′に対応した振動発電部60の断面図(縦断面図)、同図(b)は図1に図示する位置B−B′に対応した振動発電部60の断面図(横断面図)、同図(c)は固定子608の構造を示す正面図である。   The vibration power generation unit 60 includes constituent elements 600 to 608 disposed inside the housing 100. The structure of the vibration power generation unit 60 will be described with reference to FIG. 5A is a sectional view (longitudinal sectional view) of the vibration power generation unit 60 corresponding to the position AA ′ shown in FIG. 1, and FIG. 5B is a position BB ′ shown in FIG. FIG. 7C is a front view showing the structure of the stator 608. FIG.

可撓性の支持部材600は、前述した筆圧発電部30の圧電素子302(図2参照)と圧電素子602とを支持固定し、一方、可撓性の支持部材601は、圧電素子603を支持固定する。圧電素子602、603は、共に前述の圧電素子302と同様のバイモルフ構造を有し、加えられる圧力に応じた起電力を発生する。圧電素子602と圧電素子603との互いに対向する面側には、それぞれ後述の可動子607(永久磁石)に反発する極性の永久磁石604、605が装着される。   The flexible support member 600 supports and fixes the piezoelectric element 302 (see FIG. 2) and the piezoelectric element 602 of the pen pressure power generation unit 30 described above, while the flexible support member 601 supports the piezoelectric element 603. Support and fix. The piezoelectric elements 602 and 603 both have a bimorph structure similar to that of the piezoelectric element 302 described above, and generate an electromotive force according to the applied pressure. On the surfaces of the piezoelectric element 602 and the piezoelectric element 603 facing each other, permanent magnets 604 and 605 having polarities repelling a mover 607 (permanent magnet) described later are mounted.

圧電素子602、603の各面上に装着される永久磁石604、605には、可動子607を移動自在に保持するガイド筒606の各一端が固定される。例えば樹脂材などの非磁性材で形成される円柱状のガイド筒606には、図5(c)に図示するように、可動子607の溝に係合するガイドレール606aが設けられている。可動子607は、略円柱状に形成される永久磁石であり、上記ガイドレール606aに係合する溝が刻設される。   One end of a guide tube 606 that holds the movable element 607 movably is fixed to the permanent magnets 604 and 605 that are mounted on the surfaces of the piezoelectric elements 602 and 603. For example, a guide rail 606a that engages with a groove of the mover 607 is provided on a cylindrical guide cylinder 606 formed of a non-magnetic material such as a resin material, as illustrated in FIG. The mover 607 is a permanent magnet formed in a substantially columnar shape, and a groove that engages with the guide rail 606a is engraved therein.

可動子607は、ユーザがスタイラスペン10を左右に振ったり上下に振ったりすると、それに応じてガイド筒606内を往復自在に移動する。例えば左方へ移動した場合にはガイド筒606の左端部側に配設される永久磁石604と反発し合い、これにより圧電素子602が押圧されて起電力を発生し、一方、右方へ移動した場合にはガイド筒606右端部側に配設される永久磁石605と反発し合い、これにより圧電素子603が押圧されて起電力を発生する。   When the user swings the stylus pen 10 left and right or up and down, the mover 607 moves reciprocally in the guide tube 606 accordingly. For example, when it moves to the left, it repels the permanent magnet 604 disposed on the left end side of the guide cylinder 606, thereby pressing the piezoelectric element 602 to generate an electromotive force, while moving to the right In this case, it repels against the permanent magnet 605 disposed on the right end side of the guide tube 606, thereby pressing the piezoelectric element 603 and generating an electromotive force.

ガイド筒606を同心軸とする6つの固定子608−1〜608−6では、ガイド筒606内を移動する可動子607との電磁誘導による起電力を発生する。1つの固定子は、図5(c)に図示するように、ギャップGを隔ててガイド筒606に把持固定される半円環状の上部/下部フェライトコア608a−1〜608a−2と、これら上部/下部フェライトコア608a−1〜608a−2にそれぞれ巻回される上部/下部コイル608b−1〜608b−2とから構成される。これら固定子608−1〜608−6では、それぞれ上部コイル608b−1同士と下部コイル608b−1同士とを直列接続して起電力を出力する。   In the six stators 608-1 to 608-6 having the guide cylinder 606 as a concentric axis, an electromotive force is generated by electromagnetic induction with the mover 607 moving in the guide cylinder 606. As shown in FIG. 5C, one stator includes semi-annular upper / lower ferrite cores 608 a-1 to 608 a-2 that are gripped and fixed to the guide tube 606 with a gap G therebetween, and upper portions thereof. / Upper / lower coils 608b-1 to 608b-2 wound around the lower ferrite cores 608a-1 to 608a-2, respectively. In these stators 608-1 to 608-6, the upper coils 608 b-1 and the lower coils 608 b-1 are connected in series to output an electromotive force.

このように、振動発電部60では、ペン操作に応じてスタイラスペン10が左右(又は上下)に振動した場合に、その振動に応じて可動子607がガイド筒606内を往復自在に移動することによって固定子608−1〜608−6が電磁誘導による起電力を発生し、さらに可動子607がガイド筒606の左端部(又は右端部)に移動した場合に、永久磁石604(又は永久磁石605)と反発し合い、その押圧で圧電素子602(又は圧電素子603)が起電力を発生するようになっている。   As described above, in the vibration power generation unit 60, when the stylus pen 10 vibrates left and right (or up and down) according to the pen operation, the mover 607 moves reciprocally in the guide tube 606 according to the vibration. When the stators 608-1 to 608-6 generate electromotive force due to electromagnetic induction and the mover 607 moves to the left end (or right end) of the guide cylinder 606, the permanent magnet 604 (or the permanent magnet 605). ), And the piezoelectric element 602 (or the piezoelectric element 603) generates an electromotive force by the pressure.

次に、図6を参照してスタイラスペン10の筐体100の端部に設けられる回路部70の構成を説明する。回路部70は、全波整流回路71、逆流防止回路72、蓄電回路73および充電部74を備える。全波整流回路71は、筆圧発電部30および振動発電部60の各起電力を全波整流して蓄電回路73に供給する。逆流防止回路72は、熱発電部40および光発電部50の起電流の逆流を防止するダイオードを備え、熱発電部40の熱電素子アレイ400から出力される熱起電流と、光発電部50の太陽電池素子アレイ500から出力される光起電流とを蓄電回路73に供給する。   Next, the configuration of the circuit unit 70 provided at the end of the housing 100 of the stylus pen 10 will be described with reference to FIG. The circuit unit 70 includes a full-wave rectifier circuit 71, a backflow prevention circuit 72, a storage circuit 73, and a charging unit 74. The full wave rectification circuit 71 performs full wave rectification on each electromotive force of the pen pressure power generation unit 30 and the vibration power generation unit 60 and supplies the rectified power to the power storage circuit 73. The backflow prevention circuit 72 includes a diode that prevents backflow of electromotive currents of the thermoelectric generator 40 and the photovoltaic unit 50, and the thermoelectromotive current output from the thermoelectric element array 400 of the thermoelectric generator 40 and the photovoltaic unit 50 The photovoltaic current output from the solar cell element array 500 is supplied to the storage circuit 73.

蓄電回路73は、全波整流回路71および逆流防止回路72の各出力を蓄電するキャパシタを備える。充電部74は、蓄電回路73に蓄電された電荷に基づき所定電圧に昇圧した充電出力を発生して自己に内蔵される充電池を充電する一方、この充電池の出力をペン先部20の電磁界発生部202に供給する。電磁界発生部202では、ペン先201(図2参照)が先端部のマイクロスイッチに当接し、当該マイクロスイッチオンされた場合に電磁界を発生する。   The power storage circuit 73 includes a capacitor that stores the outputs of the full-wave rectifier circuit 71 and the backflow prevention circuit 72. The charging unit 74 generates a charging output boosted to a predetermined voltage based on the electric charge stored in the power storage circuit 73 and charges a built-in rechargeable battery. It supplies to the field generation part 202. In the electromagnetic field generation unit 202, the pen tip 201 (see FIG. 2) contacts the micro switch at the tip, and generates an electromagnetic field when the micro switch is turned on.

以上説明したように、本実施形態では、スタイラスペン10のペン先201に加えられる筆圧に応じた起電力を発生する筆圧発電部30と、スタイラスペン10を把持するユーザの体温に基づき熱電変換した起電力を発生する熱発電部40と、スタイラスペン10を使用する環境下での受光量に応じて光電変換した起電力を発生する光発電部50と、スタイラスペン10を使用する際に生じる振動に応じて起電力を発生する振動発電部60とを備えるので、使用操作を効率よく電気エネルギーに変換することが可能になる。   As described above, in this embodiment, the thermoelectric generator 30 generates the electromotive force according to the pen pressure applied to the pen tip 201 of the stylus pen 10, and the thermoelectric power is based on the body temperature of the user holding the stylus pen 10. When using the thermoelectric generator 40 that generates the converted electromotive force, the photovoltaic unit 50 that generates the electromotive force photoelectrically converted according to the amount of received light in the environment where the stylus pen 10 is used, and the stylus pen 10 Since the vibration power generation unit 60 that generates an electromotive force according to the generated vibration is provided, the use operation can be efficiently converted into electric energy.

とりわけ振動発電部60では、スタイラスペン10の振動に応じて可動子607がガイド筒606内を移動することによって固定子608−1〜608−6が電磁誘導による起電力を発生し、さらに可動子607がガイド筒606の左端部(又は右端部)に移動した場合に、永久磁石604(又は永久磁石605)と反発し合い、その押圧で圧電素子602(又は圧電素子603)が起電力を発生するので、ペンの振動を効率良く電気エネルギーに変換することが可能になる。   In particular, in the vibration power generation unit 60, the mover 607 moves in the guide cylinder 606 according to the vibration of the stylus pen 10, so that the stators 608-1 to 608-6 generate electromotive force due to electromagnetic induction, and the mover When 607 moves to the left end (or right end) of the guide tube 606, it repels the permanent magnet 604 (or permanent magnet 605), and the piezoelectric element 602 (or piezoelectric element 603) generates electromotive force by the pressing. Therefore, it becomes possible to efficiently convert the vibration of the pen into electric energy.

なお、上述した実施形態では、本発明による発電装置をスタイラスペン10に適用した一例について言及したが、本発明の要旨はこれに限定されず、例えば携帯電話、携帯電子機器あるいはコードレスマウスなどのように、充電池駆動され、かつユーザの手に把持されて様々な使用操作が為される電子機器全般に適用可能であることは言うまでもない。   In the above-described embodiment, an example in which the power generation device according to the present invention is applied to the stylus pen 10 has been described. However, the gist of the present invention is not limited thereto, and examples thereof include a mobile phone, a portable electronic device, and a cordless mouse. In addition, it goes without saying that the present invention is applicable to all electronic devices that are driven by a rechargeable battery and are held by a user's hand to perform various use operations.

本発明による実施の一形態によるスタイラスペン10の外観構造を示す側面図である。It is a side view which shows the external appearance structure of the stylus pen 10 by one Embodiment by this invention. スタイラスペン10の内部構造を示す断面図である。2 is a cross-sectional view showing an internal structure of a stylus pen 10. FIG. 熱電素子アレイ400の外観および断面構造を示す図である。It is a figure which shows the external appearance and sectional structure of the thermoelectric element array. 太陽電池素子アレイ500の外観および断面構造を示す図である。It is a figure which shows the external appearance and sectional structure of the solar cell element array. 振動発電部60の構造を説明するための図である。4 is a diagram for explaining a structure of a vibration power generation unit 60. FIG. 回路部70の構成を示すブロック図である。3 is a block diagram showing a configuration of a circuit unit 70. FIG.

符号の説明Explanation of symbols

10 スタイラスペン
20 ペン先部
30 筆圧発電部
40 熱発電部
50 光発電部
60 振動発電部
70 回路部
100 筐体
DESCRIPTION OF SYMBOLS 10 Stylus pen 20 Pen tip part 30 Writing pressure power generation part 40 Thermoelectric power generation part 50 Photoelectric power generation part 60 Vibration power generation part 70 Circuit part 100 Case

Claims (5)

筆圧に応じた起電力を発生する第1の発電手段と、
使用時に把持するユーザの体温に応じて熱電変換した起電力を発生する第2の発電手段と、
使用環境下での受光量に応じて光電変換した起電力を発生する第3の発電手段と、
使用操作で生じる振動に応じて起電力を発生する第4の発電手段と、
前記第1〜第4の発電手段が発生する各起電力を蓄電して充電出力を発生する充電出力発生手段と
を具備することを特徴とする発電装置。
First power generation means for generating an electromotive force according to the writing pressure;
A second power generation means for generating an electromotive force that is thermoelectrically converted according to a user's body temperature held during use;
A third power generation means for generating an electromotive force that is photoelectrically converted according to the amount of received light in a use environment;
A fourth power generation means for generating an electromotive force in response to vibration generated by the use operation;
A power generation apparatus comprising: charge output generation means for storing each electromotive force generated by the first to fourth power generation means to generate a charge output.
前記第1の発電手段は、筆圧に応じて起電力を発生する圧電素子から構成されることを特徴とする請求項1記載の発電装置。 The power generation apparatus according to claim 1, wherein the first power generation unit includes a piezoelectric element that generates an electromotive force according to a writing pressure. 前記第2の発電手段は、ユーザに把持される部位に巻回されるシート状の熱電素子アレイから構成されることを特徴とする請求項1記載の発電装置。 The power generation apparatus according to claim 1, wherein the second power generation unit includes a sheet-shaped thermoelectric element array wound around a portion held by a user. 前記第3の発電手段は、筐体周囲に巻回されるシート状の太陽電池素子アレイから構成されることを特徴とする請求項1記載の発電装置。 The power generation apparatus according to claim 1, wherein the third power generation unit includes a sheet-like solar cell element array wound around the casing. 前記第4の発電手段は、
複数の固定子と、使用操作で生じる振動に応じて、これら複数の固定子の間を往復移動する可動子との相互作用で電磁誘導起電力を発生する誘導発電手段と、
使用操作で生じる振動により往復移動する可動子が移動端部を押圧するのに応じて起電力を発生する圧電発電手段と
を備えることを特徴とする請求項1記載の発電装置。
The fourth power generation means includes:
Inductive power generation means for generating electromagnetic induction electromotive force by interaction between a plurality of stators and a movable element that reciprocates between the plurality of stators in response to vibrations generated in use operation;
The generator according to claim 1, further comprising: a piezoelectric generator that generates an electromotive force in response to a mover that reciprocates due to vibration generated by a use operation pressing the moving end.
JP2008084141A 2008-03-27 2008-03-27 Power generator Pending JP2009240086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084141A JP2009240086A (en) 2008-03-27 2008-03-27 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084141A JP2009240086A (en) 2008-03-27 2008-03-27 Power generator

Publications (1)

Publication Number Publication Date
JP2009240086A true JP2009240086A (en) 2009-10-15

Family

ID=41253365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084141A Pending JP2009240086A (en) 2008-03-27 2008-03-27 Power generator

Country Status (1)

Country Link
JP (1) JP2009240086A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166894A (en) * 2010-02-05 2011-08-25 Onkyo Corp Oscillating generator
KR20110101363A (en) * 2010-03-08 2011-09-16 한국표준과학연구원 Body weight scale using thermoelectric element's seebeck effect
JP2013188018A (en) * 2012-03-08 2013-09-19 Ihi Corp Energy harvesting device
KR101389489B1 (en) * 2012-08-14 2014-04-25 민병묵 Stylus pen for mobile device
CN104079024A (en) * 2013-03-29 2014-10-01 上海思立微电子科技有限公司 Active type touch pen and charging method thereof
KR200476111Y1 (en) * 2013-08-23 2015-01-29 헹하오 테크놀로지 씨오. 엘티디 Light-energy stylus
KR20150128353A (en) * 2014-05-09 2015-11-18 엘지이노텍 주식회사 Touch-pen with power generator
KR20150133087A (en) * 2014-05-19 2015-11-27 삼성전자주식회사 Optoelectronic device including ferroelectric material
JP2015536126A (en) * 2012-10-05 2015-12-17 ノキア テクノロジーズ オーユー Apparatus and related method
JP2016528614A (en) * 2013-07-17 2016-09-15 シュタビロ インターナツィオナール ゲーエムベーハーSTABILO International GmbH Energy saving
US9520726B2 (en) 2013-09-27 2016-12-13 Samsung Electronics Co., Ltd. Auxiliary device having energy harvester and electronic device including auxiliary device
JP2017093148A (en) * 2015-11-10 2017-05-25 株式会社東芝 Environmental power generation apparatus
US9780281B2 (en) 2012-01-05 2017-10-03 Fujitsu Limited Power generator
WO2018106551A1 (en) * 2016-12-07 2018-06-14 Microsoft Technology Licensing, Llc Stylus with light energy harvesting
JP2018142318A (en) * 2015-09-08 2018-09-13 アップル インコーポレイテッドApple Inc. Stylus for electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124472A (en) * 1975-04-23 1976-10-29 Seiko Epson Corp Electric wrist watch
JPH0772965A (en) * 1993-09-06 1995-03-17 Toshiba Corp Pen input device
JPH07114437A (en) * 1993-10-19 1995-05-02 Sharp Corp Pen inputting device
JPH11253071A (en) * 1998-03-13 1999-09-21 Yoshihiro Ogura Power generating device and lure using the same
JP2002244812A (en) * 2001-02-15 2002-08-30 Funai Electric Co Ltd Self-power generating mouse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124472A (en) * 1975-04-23 1976-10-29 Seiko Epson Corp Electric wrist watch
JPH0772965A (en) * 1993-09-06 1995-03-17 Toshiba Corp Pen input device
JPH07114437A (en) * 1993-10-19 1995-05-02 Sharp Corp Pen inputting device
JPH11253071A (en) * 1998-03-13 1999-09-21 Yoshihiro Ogura Power generating device and lure using the same
JP2002244812A (en) * 2001-02-15 2002-08-30 Funai Electric Co Ltd Self-power generating mouse

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166894A (en) * 2010-02-05 2011-08-25 Onkyo Corp Oscillating generator
KR20110101363A (en) * 2010-03-08 2011-09-16 한국표준과학연구원 Body weight scale using thermoelectric element's seebeck effect
US9780281B2 (en) 2012-01-05 2017-10-03 Fujitsu Limited Power generator
JP2013188018A (en) * 2012-03-08 2013-09-19 Ihi Corp Energy harvesting device
KR101389489B1 (en) * 2012-08-14 2014-04-25 민병묵 Stylus pen for mobile device
US9887346B2 (en) 2012-10-05 2018-02-06 Nokia Technologies Oy Apparatus and associated methods
JP2015536126A (en) * 2012-10-05 2015-12-17 ノキア テクノロジーズ オーユー Apparatus and related method
CN104079024A (en) * 2013-03-29 2014-10-01 上海思立微电子科技有限公司 Active type touch pen and charging method thereof
JP2016528614A (en) * 2013-07-17 2016-09-15 シュタビロ インターナツィオナール ゲーエムベーハーSTABILO International GmbH Energy saving
KR200476111Y1 (en) * 2013-08-23 2015-01-29 헹하오 테크놀로지 씨오. 엘티디 Light-energy stylus
US9520726B2 (en) 2013-09-27 2016-12-13 Samsung Electronics Co., Ltd. Auxiliary device having energy harvester and electronic device including auxiliary device
KR20150128353A (en) * 2014-05-09 2015-11-18 엘지이노텍 주식회사 Touch-pen with power generator
KR102193797B1 (en) * 2014-05-09 2020-12-22 엘지이노텍 주식회사 Touch-pen with power generator
KR20150133087A (en) * 2014-05-19 2015-11-27 삼성전자주식회사 Optoelectronic device including ferroelectric material
KR102255301B1 (en) 2014-05-19 2021-05-24 삼성전자주식회사 Optoelectronic device including ferroelectric material
JP2018142318A (en) * 2015-09-08 2018-09-13 アップル インコーポレイテッドApple Inc. Stylus for electronic device
US10310639B2 (en) 2015-09-08 2019-06-04 Apple Inc. Stylus for electronic devices
US10684708B2 (en) 2015-09-08 2020-06-16 Apple Inc. Stylus for electronic devices
US11169628B2 (en) 2015-09-08 2021-11-09 Apple Inc. Stylus for electronic devices
US11604523B2 (en) 2015-09-08 2023-03-14 Apple Inc. Stylus for electronic devices
US11972068B2 (en) 2015-09-08 2024-04-30 Apple Inc. Stylus for electronic devices
JP2017093148A (en) * 2015-11-10 2017-05-25 株式会社東芝 Environmental power generation apparatus
WO2018106551A1 (en) * 2016-12-07 2018-06-14 Microsoft Technology Licensing, Llc Stylus with light energy harvesting
US11126278B2 (en) 2016-12-07 2021-09-21 Microsoft Technology Licensing, Llc Stylus with light energy harvesting

Similar Documents

Publication Publication Date Title
JP2009240086A (en) Power generator
JP2010016974A (en) Power generating device
CN101814860B (en) Vibratory drive composite micro-power source based on piezoelectric effect and electromagnetic induction
US11637511B2 (en) Harvesting energy for a smart ring via piezoelectric charging
US20090146508A1 (en) Reciprocating power generating module
US11463025B2 (en) Piezoelectric electromagnetic composite energy harvester based on parallel mechanism
KR101861255B1 (en) electroner energy harvester using magnet spring
JP2012191787A (en) Power generation device
US9525323B1 (en) Energy harvester system
Aljadiri et al. Wind energy harvesting systems: A better understanding of their sustainability
CN202475217U (en) AA and AAA batteries capable of generating electricity by vibration
JP6480626B1 (en) Power generation device for portable terminal
CN110289786A (en) Multi-mode composite formula up-conversion oscillatory type environmental energy collector
KR20110049294A (en) Self-generating mat
KR100622830B1 (en) High efficient small-sized electric generator using piezoelectric devic
Rahman et al. A hybrid energy harvester based on solar radiation and mechanical vibration
KR20170059386A (en) Vibration energy harvesting device and operating method thereof
US8736089B2 (en) Electric generator operated by random motion
CN203434836U (en) Magnetofluid self-generating module
WO2012174318A1 (en) Airflow based microturbine power supply
KR20050099408A (en) Self-generator for transforming tiny kinetic energy into electric energy
Dixit et al. A survey of energy harvesting technologies
TW201201486A (en) Levitation type linear power generation device
Ali et al. Experimental investigation on piezoelectric and electromagnetic hybrid micro-power generator
Rahman A Hybrid Technique of Energy Harvesting from Mechanical Vibration and Ambient Illumination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121107