JPH11176431A - Manufacture of paste-type nickel electrode, the paste type nickel electrode, and alkaline secondary battery - Google Patents

Manufacture of paste-type nickel electrode, the paste type nickel electrode, and alkaline secondary battery

Info

Publication number
JPH11176431A
JPH11176431A JP9362028A JP36202897A JPH11176431A JP H11176431 A JPH11176431 A JP H11176431A JP 9362028 A JP9362028 A JP 9362028A JP 36202897 A JP36202897 A JP 36202897A JP H11176431 A JPH11176431 A JP H11176431A
Authority
JP
Japan
Prior art keywords
paste
cobalt
nickel
electrode
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9362028A
Other languages
Japanese (ja)
Inventor
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP9362028A priority Critical patent/JPH11176431A/en
Publication of JPH11176431A publication Critical patent/JPH11176431A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a paste-type nickel electrode of an improved utilization factor and high-temperature charge acceptability. SOLUTION: Powder comprising nickel hydroxide grains coated with β-cobalt hydroxide charged in a three-dimensional porous collector is thermally oxidized in air, and β-cobalt hydroxide coating becomes coating comprising cobalt oxyhydroxide and tricobalt tetraoxide. An alkaline secondary battery chargeable at high temperature in a short time is also provided by executing initial charge at 35 deg.C or higher to an alkaline secondary battery provided with a paste-type nickel electrode as a positive electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ペースト式ニッケ
ル極の製造法、ペースト式ニッケル極並びにアルカリ二
次電池に関する。
The present invention relates to a method for producing a paste-type nickel electrode, a paste-type nickel electrode, and an alkaline secondary battery.

【0002】[0002]

【従来の技術】従来、ペースト式ニッケル極は、ニッケ
ル−カドミウム電池、ニッケル−水素化物電池、ニッケ
ル−亜鉛電池、ニッケル−鉄電池などのアルカリ二次電
池の正極として用いられているが、そのペースト式ニッ
ケル極として利用率を高めるため、コバルト化合物を添
加したものが知られている。そのペースト式ニッケル極
は次のように製造される。即ち、コバルトや亜鉛を固溶
体として含有した球状又は楕円形の水酸化ニッケル粉末
に金属コバルト、水酸化コバルト、一酸化コバルトなど
のコバルト系添加物の少なくとも1種を添加し、その混
合物をカルボキシメチルセルロース(CMC)などの増
粘剤の水溶液で混練してペースト状とし、これを発泡ニ
ッケルやニッケルフェルトなどの三次元に連続する微空
孔をもつ三次元多孔集電体に充填し、乾燥、加圧して製
造される。これをアルカリ二次電池の正極として使用す
るとき、添加されたコバルト添加物は、アルカリ電解液
中の水酸イオンと反応して水溶性のコバルト錯イオンを
形成して拡散し、充電により酸化されてニッケル極内に
導電性のオキシ水酸化コバルトとして析出し、いわゆる
コバルト導電マトリックスを形成して活物質である水酸
化ニッケル粒子間並びに活物質と集電体間の導電性を高
めて、活物質の利用率を向上することができるようにし
たものである。また、ニッケル極中に、コバルト導電マ
トリックスを確実に得るために、水酸化コバルトの粉末
を被覆した水酸化ニッケル粒子から成る粉末を高温のア
ルカリ水溶液中に投入し、アルカリ水溶液中に空気を吹
き込んで水酸化コバルトをオキシ水酸化コバルトに酸化
処理したものを増粘剤水溶液と共にペーストとし、これ
を充填、乾燥、加圧してペースト式ニッケル極を製造し
ている。更に、近年、電子機器の電源としてアルカリ二
次電池が機器に内蔵されたり、電池パックとして使用さ
れたり、また、急速充電されたりして熱を受け易い環境
下で使用されるようになった。高温での充電において
は、ニッケル極は酸素過電圧が低下して活物質の充電電
位と接近するので、充電反応と酸素発生反応が競合して
充電効率が低下し、その結果、取り出せる電池容量が減
少して設計通りに電子機器が使用できなくなる問題があ
ったが、これを解消するため、酸素発生電位を貴にする
効果のあるイッテルビウム、エルビウムの酸化物、酸化
カドミウムやフッ化カルシウムなどの酸素発生抑制剤を
水酸化ニッケル活物質に添加し、増粘剤水溶液と共にペ
ーストとし、これを三次元多孔集電体に充填したペース
ト式ニッケル極が提案され、これをアルカリ二次電池の
正極として使用したとき、高温の充電でも酸素過電圧の
低下を防止することができるようにしたものが提案され
た。
2. Description of the Related Art Conventionally, a paste-type nickel electrode has been used as a positive electrode of an alkaline secondary battery such as a nickel-cadmium battery, a nickel-hydride battery, a nickel-zinc battery, and a nickel-iron battery. It is known that a nickel compound is added with a cobalt compound in order to increase the utilization factor. The paste-type nickel electrode is manufactured as follows. That is, at least one of cobalt-based additives such as metal cobalt, cobalt hydroxide, and cobalt monoxide is added to spherical or elliptical nickel hydroxide powder containing cobalt or zinc as a solid solution, and the mixture is treated with carboxymethyl cellulose ( CMC) or the like and kneaded with an aqueous solution of a thickener to form a paste. The paste is filled into a three-dimensional porous current collector having three-dimensionally continuous fine pores such as foamed nickel or nickel felt, and dried and pressed. Manufactured. When this is used as a positive electrode of an alkaline secondary battery, the added cobalt additive reacts with hydroxyl ions in the alkaline electrolyte to form a water-soluble cobalt complex ion, diffuses, and is oxidized by charging. Deposited in the nickel electrode as conductive cobalt oxyhydroxide, forming a so-called cobalt conductive matrix to increase the conductivity between the active material nickel hydroxide particles and between the active material and the current collector, It is possible to improve the utilization rate of the information. In addition, in order to reliably obtain a cobalt conductive matrix in the nickel electrode, a powder composed of nickel hydroxide particles coated with cobalt hydroxide powder is poured into a high-temperature alkaline aqueous solution, and air is blown into the alkaline aqueous solution. A paste obtained by oxidizing cobalt hydroxide to cobalt oxyhydroxide together with a thickener aqueous solution is filled, dried and pressed to produce a paste-type nickel electrode. Furthermore, in recent years, alkaline secondary batteries have been built in devices as power sources for electronic devices, have been used as battery packs, and have been used in environments that are rapidly charged and easily exposed to heat. In high temperature charging, the nickel electrode has a reduced oxygen overvoltage and approaches the charging potential of the active material, so the charging reaction and the oxygen generation reaction compete to lower the charging efficiency, and as a result, the battery capacity that can be taken out decreases. The problem was that the electronic equipment could not be used as designed, but in order to solve this, oxygen generation such as ytterbium, erbium oxide, cadmium oxide and calcium fluoride, which had the effect of making the oxygen generation potential noble, was A paste type nickel electrode in which a suppressor is added to a nickel hydroxide active material, and a paste is formed together with an aqueous solution of a thickener, and this is filled in a three-dimensional porous current collector, was used as a positive electrode of an alkaline secondary battery. At times, there has been proposed a device capable of preventing a decrease in oxygen overvoltage even at high temperature charging.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、コバルト
系添加剤は、次のような問題を生ずる。即ち、水酸化コ
バルトの場合は、それ自体に導電性が乏しく、これが水
酸化ニッケル活物質粒子間及び活物質粒子と集電体間に
介在しているため、初充電時の分極が大きくなり、ガス
発生による悪影響が懸念されるので、ニッケル極に規定
の充電量を得るためには、小さな電流で長時間の充電時
間が必要である。また、水酸化コバルトは、アルカリ電
解液との反応性が低いので、所定のコバルト導電マトリ
ックスを得るには、高価な水酸化コバルトを多量に添加
するか、初充電の充電条件を穏やかにしなければなら
ず、充電時間に長時間を要する不都合があった。また、
酸化コバルトの場合は、空気中や溶存酸素が存在するペ
ースト中や極板製造過程の乾燥工程などで、表面が酸化
されて不活性な四三酸化コバルトが多量に形成され、導
電性の乏しいペースト式ニッケル極となる傾向がある。
金属コバルトも酸化し易いため、上記のコバルト系添加
剤と同様の不都合を生じ、また、添加効果を出すために
多量の添加をした場合には、それだけ、水酸化ニッケル
の含有量が少なくなり、電池容量が低下する不都合があ
る。また、水酸化コバルトを被覆した水酸化ニッケル粒
子から成る粉末をアルカリ水溶液中で加熱したものは水
洗が必要で、また、処理中に溶出したコバルト錯イオン
は酸化し、目的とする良導体のオキシ水酸化コバルトが
多量の四三酸化コバルトに変化するので、ニッケル極の
導電性が減少するなど不安定で良好なペースト式極板と
して維持できない不都合を有する。一方、その処理済み
のアルカリ水溶液の廃棄処理の問題を伴い、また、コス
ト高となる傾向がある。また、高温充電受入性を改善す
るために添加される上記の種々の酸化防止剤の使用は、
これを添加するだけ高容量化の妨げになり、また、ペー
スト調製時に使用するCMC増粘剤水溶液のCMCを凝
集させるなどの問題があった。
However, the cobalt-based additive causes the following problems. That is, in the case of cobalt hydroxide, the conductivity itself is poor, and since this is interposed between the nickel hydroxide active material particles and between the active material particles and the current collector, the polarization at the time of the first charge increases, Since adverse effects due to gas generation are feared, a long charging time with a small current is required in order to obtain a specified charge amount in the nickel electrode. In addition, since cobalt hydroxide has low reactivity with an alkaline electrolyte, in order to obtain a predetermined cobalt conductive matrix, a large amount of expensive cobalt hydroxide must be added or the charging conditions for initial charging must be moderated. In addition, there was an inconvenience of requiring a long charging time. Also,
In the case of cobalt oxide, the paste is poorly conductive because the surface is oxidized and a large amount of inactive cobalt tetroxide is formed in the air or in a paste containing dissolved oxygen or in the drying process of the electrode plate manufacturing process. Formulas tend to be nickel electrodes.
Since metal cobalt is also easily oxidized, it causes the same disadvantages as the above-mentioned cobalt-based additive, and when a large amount is added in order to obtain the effect of addition, the content of nickel hydroxide is reduced accordingly, There is a disadvantage that the battery capacity is reduced. Heating a powder composed of nickel hydroxide particles coated with cobalt hydroxide in an aqueous alkaline solution requires washing with water, and the cobalt complex ions eluted during the treatment are oxidized, and the desired good conductor oxywater Since the cobalt oxide is changed into a large amount of cobalt trioxide, there is a disadvantage that the conductivity of the nickel electrode is reduced and the paste cannot be maintained as a stable and good paste type electrode plate. On the other hand, there is a problem of disposal of the treated alkaline aqueous solution, and the cost tends to be high. Also, the use of the various antioxidants described above added to improve high temperature charge acceptance,
There is a problem in that the addition of such a substance hinders an increase in capacity, and also causes agglomeration of CMC of a CMC thickener aqueous solution used during paste preparation.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決し、利用率を向上し、コバルトの添加量を少なくで
き、高容量化をもたらし、初充電を高能率に行うことが
でき、また、酸化発生抑制剤を添加することなしに高温
充電受入性の向上したペースト式ニッケル極の製造法を
提供するもので、β−水酸化コバルトを被覆した水酸化
ニッケル粒子から成る粉末のペーストを三次元多孔集電
体に充填して成るニッケル極を、空気中で加熱して被覆
されたβ−水酸化コバルトの一部又は全部をオキシ水酸
化コバルトと四三酸化コバルトに酸化処理することを特
徴とする。更に本発明は、室温で酸化されることなく安
定であり、長期保存が可能なペースト式ニッケル極を提
供するもので、オキシ水酸化コバルトと四三酸化コバル
トを被覆した水酸化ニッケルから成る活物質が充填され
た三次元集電体から成るペースト式ニッケル極が得られ
る。また、本発明は、高温充電を短時間に行うことがで
きるアルカリ二次電池を提供するもので、上記により得
た本発明のペースト式ニッケル極を正極として具備する
アルカリ二次電池を、35℃以上の温度下で初充電を実
施することを特徴とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, improves the utilization factor, reduces the amount of cobalt to be added, increases the capacity, and enables the first charge to be performed efficiently. Further, the present invention provides a method for producing a paste-type nickel electrode having improved high-temperature charge acceptability without adding an oxidation generation inhibitor, and a paste of powder comprising nickel hydroxide particles coated with β-cobalt hydroxide. Is heated in air to oxidize a part or all of the coated β-cobalt hydroxide to cobalt oxyhydroxide and cobalt tetroxide. It is characterized by. Furthermore, the present invention provides a paste-type nickel electrode which is stable at room temperature without being oxidized and can be stored for a long period of time. The active material comprises nickel hydroxide coated with cobalt oxyhydroxide and cobalt tetroxide. Thus, a paste-type nickel electrode composed of a three-dimensional current collector filled with is obtained. Further, the present invention provides an alkaline secondary battery capable of performing high-temperature charging in a short time. The alkaline secondary battery having the paste-type nickel electrode of the present invention obtained as described above as a positive electrode is heated at 35 ° C. The first charge is performed at the above temperature.

【0005】[0005]

【発明の実施の形態】本発明によれば、第一工程とし
て、例えば、市販の球状又は卵状のβ−水酸化コバルト
を被覆した水酸化ニッケル粒子から成る粉末を使用し、
これを増粘剤水溶液で混練しペーストを調製し、発泡ニ
ッケル集電体などの三次元多孔集電体に充填し、乾燥、
加圧する。市販のβ−水酸化コバルトを被覆した水酸化
ニッケル粒子から成る粉末を使用する代わりに、硫酸コ
バルトなどのコバルト水溶液中に水酸化ニッケル粉末を
投入し、撹拌し乍らこれに水酸化ナトリウムを添加する
ことにより、水酸化コバルトが生成し、生成した水酸化
コバルトで水酸化ニッケル粒子の表面を被覆したものが
沈殿物として得られるので、これを濾過、水洗、乾燥し
て得られたものを使用するようにしてもよい。
According to the present invention, as the first step, for example, a commercially available powder comprising nickel hydroxide particles coated with spherical or ovoid β-cobalt hydroxide is used,
This is kneaded with a thickener aqueous solution to prepare a paste, filled in a three-dimensional porous current collector such as a foamed nickel current collector, dried,
Apply pressure. Instead of using commercially available powders of nickel hydroxide particles coated with β-cobalt hydroxide, put nickel hydroxide powder into an aqueous solution of cobalt such as cobalt sulfate and add sodium hydroxide to this while stirring. By doing so, cobalt hydroxide is produced, and the product obtained by coating the surface of the nickel hydroxide particles with the produced cobalt hydroxide is obtained as a precipitate, which is obtained by filtering, washing and drying. You may make it.

【0006】上記のようにペースト式ニッケル極を製造
した後、第二工程として、これを加熱炉に入れて空気中
で加熱昇温し、好ましくは140〜200℃の温度で所
望時間、好ましくは15〜20分加熱し、被覆物である
水酸化コバルトβ−Co(OH)2 を、その一部又は全
部を比較的結晶性が高いオキシ水酸化コバルトCoOO
Hと四三酸化コバルトCo3 4 に酸化処理する。この
酸化処理により、多量のオキシ水酸化コバルトと程良い
少量の四三酸化コバルトが生成される。かくして、本発
明のペースト式ニッケル極を製造した。このようにして
製造されたペースト式ニッケル極の水酸化ニッケル粒子
の表面に生成された酸化物を分析した結果、図1(a)
に示すX線回折パターンから明らかなように、比較的結
晶性が高いオキシ水酸化コバルトCoOOH(又はCO
HO2 )と四三酸化コバルトCo3 4 とから成る被膜
となることが判った。尚、図示の酸化処理物の例は、水
酸化コバルトの一部が未酸化のまゝ一部残っているもの
を示す。而して、水酸化ニッケル粒子の表面は、既に酸
化されているので室温で安定であり、長期保存しても良
降な導電性などの電池特性を維持できるペースト式ニッ
ケル極として得られる。
After the paste-type nickel electrode is manufactured as described above, as a second step, the paste-type nickel electrode is placed in a heating furnace and heated in air, and preferably at a temperature of 140 to 200 ° C. for a desired time, preferably After heating for 15 to 20 minutes, the coating material, cobalt hydroxide β-Co (OH) 2, was partially or entirely replaced with cobalt oxyhydroxide CoOO having relatively high crystallinity.
Oxidation treatment is performed on H and cobalt trioxide Co 3 O 4 . By this oxidation treatment, a large amount of cobalt oxyhydroxide and a moderately small amount of cobalt tetroxide are generated. Thus, the paste-type nickel electrode of the present invention was manufactured. As a result of analyzing the oxide formed on the surface of the nickel hydroxide particles of the paste-type nickel electrode manufactured as described above, FIG.
As is clear from the X-ray diffraction pattern shown in FIG. 3, cobalt oxyhydroxide CoOOH (or CO 2
HO 2 ) and cobalt tetroxide Co 3 O 4 . Incidentally, the illustrated example of the oxidized product shows that a part of the cobalt hydroxide is not oxidized and a part remains. Thus, since the surface of the nickel hydroxide particles is already oxidized, it is stable at room temperature and can be obtained as a paste-type nickel electrode capable of maintaining battery characteristics such as good conductivity even after long-term storage.

【0007】次に、このペースト式ニッケル極をアルカ
リ電解液に浸漬した所、上記の結晶性の高いオキシ水酸
化コバルトは、電解液と接触して図2に示すX線回折パ
ターンから明らかなように、回折ピークが低くブロード
な結晶性の低いオキシ水酸化コバルトへ変化することが
判った。この変化は、加熱温度が高いほど円滑に進行す
る。また、この結晶性の低いオキシ水酸化コバルトは、
高導電性を有することが判った。かくして、このニッケ
ル極を正極とし、アルカリ電解液を注入し、アルカリ二
次電池を製造するときは、上記の反応により、水酸化ニ
ッケル粒子の表面に高導電性の結晶性が低いオキシ水酸
化コバルトの被膜が生成され、水酸化ニッケル活物質粒
子間及び活物質粒子と集電体との間の導電性を向上し、
活物質の利用率を向上せしめることができる。従って、
水酸化コバルトの添加量が、従来の添加量より少なくし
ても従来と同じ利用率が得られると共に、その減少分だ
け水酸化ニッケル活物質の添加量を増大できる。従来と
同じ添加量であれば、利用率の向上をもたらす。このよ
うに、添加コバルト量の省資源化と容量の増大をもたら
す。一方、四三酸化コバルトは、上記の高温での加熱酸
化処理により水酸化コバルトからオキシ水酸化コバルト
と共に競争的に形成されるが、酸素分圧、温度、時間に
よりその生成量が決まると考えられる。四三酸化コバル
トは、従来、不活性物質としてその生成は忌避されてい
たが、意外にも、水酸化ニッケル活物質粒子の表面に形
成されても、多量のCoOOHが共存すれば、十分な導
電性が確保でき、更に酸素過電圧を大きくする効果をも
たらすことが判った。従って、高温における正極の充電
受入性向上やニッケルの酸化数を増大させることができ
るので、従来のような酸素ガス発生抑制剤を添加するこ
とを省くことができる。而して、上記の水酸化コバルト
被膜の加熱酸化処理は、従来のペースト式ニッケル極製
造におけるペースト充填、乾燥、圧延の工程の後に電気
炉を設置するだけで良いので、本発明のペースト式ニッ
ケル極を簡単且つ高能率に製造することができ、また、
従来の水酸化コバルト被覆水酸化ニッケル粉末を加熱し
たアルカリ水溶液中で空気を吹き込み、酸化処理した場
合に見られる強アルカリ廃液を出さないので、排液処理
作業が省け、製造コストを低下させ、環境問題もなく有
利である。
Next, when the paste-type nickel electrode is immersed in an alkaline electrolyte, the above-mentioned cobalt oxyhydroxide having high crystallinity comes into contact with the electrolyte and becomes apparent from the X-ray diffraction pattern shown in FIG. Further, it was found that the diffraction peak changed to cobalt oxyhydroxide having a low crystallinity and a low broad crystallinity. This change proceeds more smoothly as the heating temperature is higher. Also, this low crystallinity cobalt oxyhydroxide,
It was found to have high conductivity. Thus, when the nickel electrode is used as a positive electrode, an alkaline electrolyte is injected, and an alkaline secondary battery is manufactured, the above reaction causes the surface of the nickel hydroxide particles to have high conductivity and low crystallinity of cobalt oxyhydroxide. A film of is generated, the conductivity between the nickel hydroxide active material particles and between the active material particles and the current collector is improved,
The utilization rate of the active material can be improved. Therefore,
Even if the addition amount of cobalt hydroxide is smaller than the conventional addition amount, the same utilization as the conventional one can be obtained, and the addition amount of the nickel hydroxide active material can be increased by the reduced amount. If the addition amount is the same as the conventional one, the utilization factor is improved. Thus, the resource saving of the added cobalt amount and the increase of the capacity are brought about. On the other hand, cobalt trioxide is formed competitively from cobalt hydroxide together with cobalt oxyhydroxide by the above-described heat oxidation treatment at a high temperature, and it is considered that the production amount is determined by the oxygen partial pressure, temperature, and time. . Conventionally, the formation of cobalt trioxide as an inert substance has been avoided, but surprisingly, even if it is formed on the surface of nickel hydroxide active material particles, if a large amount of CoOOH coexists, sufficient conductivity is obtained. It has been found that the properties can be ensured and the effect of further increasing the oxygen overvoltage is brought about. Accordingly, it is possible to improve the charge acceptability of the positive electrode at a high temperature and to increase the oxidation number of nickel, so that it is possible to omit the addition of the oxygen gas generation inhibitor as in the related art. Thus, the heat oxidation treatment of the above-mentioned cobalt hydroxide coating can be performed only by installing an electric furnace after the paste filling, drying, and rolling steps in the conventional paste-type nickel electrode production. The poles can be manufactured easily and efficiently, and
Air is blown into an alkaline aqueous solution that heats conventional cobalt hydroxide-coated nickel hydroxide powder, and the strong alkaline waste liquid seen when oxidized is not discharged.This eliminates the need for wastewater treatment, reduces manufacturing costs, and reduces environmental impact. Advantageous without problems.

【0008】[0008]

【実施例】次に、本発明の実施例を比較例、従来例と共
に詳述する。各種水酸化ニッケルの用意 市販の水酸化ニッケル粒子の表面に金属コバルト換算で
4%のβ−水酸化コバルトを被覆した球状の形状を有
し、Co1.5%及びZn5.0%を固溶した水酸化ニ
ッケルから成る粉末を用意した。以下これを水酸化ニッ
ケルaと称する。球状の形状を有し、Co1.5%及び
Zn5.0%を固溶した水酸化ニッケル粒子から成る粉
末を用意した。以下これを水酸化ニッケルbと称する。
上記の市販の粒子から成る水酸化ニッケルの粉末を30
%NaOH水溶液に投入撹拌し、該アルカリ水溶液を加
熱し60℃に保ちつゝこれに空気を吹き込み乍ら1時間
反応させた後、濾過、水洗、乾燥して表面をオキシ水酸
化コバルトで被覆した水酸化ニッケル粉末を得た。以下
これを水酸化ニッケルcと称する。水酸化ニッケルaを用いたペースト式ニッケル極の製造 上記の水酸化コバルトa100重量部に対して1.2%
CMC水溶液38重量部を投入撹拌し、活物質ペースト
を調製し、これを長尺の発泡ニッケル基板に充填し、乾
燥、プレスしペースト式ニッケル極を製造し規定の所定
寸法に裁断し、その多数枚を製造した。このようにして
製造したペースト式ニッケル極のうち、恒温槽に入れな
い未加熱のものをペースト式ニッケル極Aとして用意す
る一方、残るペースト式ニッケル極について、恒温槽中
に入れ、加熱温度170℃の恒温で夫々空気中で5分、
15分、30分夫々加熱時間を異にして加熱処理したも
のを取り出し放冷し室温に戻してペースト式ニッケル極
を作製した。このように夫々5分、15分、30分加熱
酸化処理して得た本発明のペースト式ニッケル極を夫々
ニッケル極B,C,Dと称する。これらのニッケル極板
の厚み及び充填量は実質上同一とした。水酸化ニッケルbを用いたペースト式ニッケル極の製造 上記の水酸化ニッケルb94重量部と水酸化コバルト6
重量部との混合粉末に、1.2%CMC水溶液を該混合
粉末に対し36重量%に相当する量を投入し、混合撹拌
して活物質ペーストを調製した。これを長尺の発泡ニッ
ケル基板に充填し、乾燥、プレスした後、上記と同じ寸
法に裁断して従来のペースト式ニッケル極を多数枚製造
した。これをニッケル極Eと称する。この極板の厚み及
び充填量は上記と実質上同一とした。水酸化ニッケルcを用いたペースト式ニッケル極の製造 上記の水酸化ニッケルc100重量部に対して1.2%
CMC水溶液36重量部投入し、撹拌し、活物質ペース
トを調製した。これを長尺の発泡ニッケル基板に充填
し、乾燥、プレスした後、上記と同じ寸法に裁断して従
来のペースト式ニッケル極を製造した。これをニッケル
極Fと称する。
Next, examples of the present invention will be described in detail along with comparative examples and conventional examples. Preparation of Various Nickel Hydroxides The surface of commercially available nickel hydroxide particles was coated with 4% β-cobalt hydroxide in terms of metallic cobalt, and had a spherical shape, and 1.5% Co and 5.0% Zn were dissolved. A powder composed of nickel hydroxide was prepared. Hereinafter, this is referred to as nickel hydroxide a. A powder having a spherical shape and comprising nickel hydroxide particles in which 1.5% of Co and 5.0% of Zn were dissolved was prepared. Hereinafter, this is referred to as nickel hydroxide b.
30 powders of nickel hydroxide consisting of the above commercially available particles
% Aqueous NaOH and stirred, the alkali aqueous solution was heated and maintained at 60 ° C., and allowed to react for 1 hour while blowing air thereinto, followed by filtration, washing and drying to coat the surface with cobalt oxyhydroxide. A nickel hydroxide powder was obtained. Hereinafter, this is referred to as nickel hydroxide c. Production of paste-type nickel electrode using nickel hydroxide a 1.2% by weight based on 100 parts by weight of the above-mentioned cobalt hydroxide a
38 parts by weight of a CMC aqueous solution is charged and stirred to prepare an active material paste, which is filled into a long nickel foam substrate, dried and pressed to produce a paste-type nickel electrode, cut into prescribed prescribed dimensions, and cut into many pieces. Sheets were manufactured. Among the paste-type nickel electrodes thus manufactured, an unheated paste-type nickel electrode that cannot be put in a thermostat is prepared as paste-type nickel electrode A, and the remaining paste-type nickel electrode is put in a thermostat and heated at 170 ° C. 5 minutes each in the air at constant temperature,
Heat-treated pieces with different heating times for 15 minutes and 30 minutes were taken out, allowed to cool, and returned to room temperature to produce a paste-type nickel electrode. The paste-type nickel electrodes of the present invention obtained by performing the heat oxidation treatment for 5 minutes, 15 minutes, and 30 minutes, respectively, are referred to as nickel electrodes B, C, and D, respectively. The thickness and filling amount of these nickel plates were substantially the same. Production of paste-type nickel electrode using nickel hydroxide b 94 parts by weight of nickel hydroxide b and cobalt hydroxide 6
A 1.2% CMC aqueous solution was added to the mixed powder in an amount corresponding to 36% by weight based on the mixed powder, and mixed and stirred to prepare an active material paste. This was filled in a long nickel foam substrate, dried and pressed, and then cut into the same dimensions as above to produce a number of conventional paste-type nickel electrodes. This is called nickel electrode E. The thickness and filling amount of this electrode plate were substantially the same as above. Production of paste-type nickel electrode using nickel hydroxide c 1.2% based on 100 parts by weight of the above nickel hydroxide c
36 parts by weight of a CMC aqueous solution was charged and stirred to prepare an active material paste. This was filled in a long nickel foam substrate, dried and pressed, and then cut into the same dimensions as above to produce a conventional paste-type nickel electrode. This is called nickel electrode F.

【0009】半電池試験 次に、上記の製造したニッケル極A,B,C,D,E,
Fを夫々一定加圧に加わるホルダーで固定し作用極と
し、これとHg/HgOの参照極、発泡ニッケルを対極
とし、KOHを主成分とする比重1.30のアルカリ電
解液を電槽に注入して半電池を構成した。該電解液を注
入後、45℃で5時間放置後、45℃で0.2Cの電流
で初充電を実施した。初充電1時間の電位変化を図3に
示す。図3において、ニッケル極A〜Dの充電曲線に着
目し明らかなように、前記の加熱酸化処理時間が長いほ
ど初充電初期の分極が小さく、コバルトの+2価から+
3価に酸化されるプラトー領域が短くなることが判る。
これは、加熱処理時間が長いほど+2価の水酸化コバル
トの量が少なくなるためと考えられる。即ち、加熱酸化
処理でオキシ水酸化コバルトに変化する量が多くなるこ
とが考えられる。また、ニッケル極Eは、ニッケル極D
よりも少し分極が大きいが、これはニッケル極Dと同じ
くコバルトの+2価から+3価に酸化されるプラトー領
域が殆どないからであり、これはアルカリ水溶液中での
空気酸化により、化学的に水酸化コバルトがオキシ水酸
化コバルトに酸化されたことを裏付けている。ニッケル
極Fは、未加熱処理のニッケル極Aよりも分極が大き
い。これは水酸化コバルトの被覆の有無の差によると考
えられる。
Half battery test Next, the nickel electrodes A, B, C, D, E, and
F is fixed with a holder which is applied to a constant pressurization, and is used as a working electrode. A reference electrode of Hg / HgO, nickel foam is used as a counter electrode, and an alkaline electrolyte having a specific gravity of 1.30 and containing KOH as a main component is injected into the battery case. To form a half-cell. After injecting the electrolytic solution, the battery was left at 45 ° C. for 5 hours, and then initially charged at 45 ° C. with a current of 0.2 C. FIG. 3 shows the potential change during the first hour of the first charge. In FIG. 3, as is apparent from the charge curves of the nickel electrodes A to D, the longer the heating and oxidizing treatment time, the smaller the polarization at the beginning of the first charge, and changes from +2 valence of cobalt to +2 valence.
It can be seen that the plateau region oxidized to trivalence becomes shorter.
This is presumably because the longer the heat treatment time, the smaller the amount of +2 valent cobalt hydroxide. That is, it is conceivable that the amount changed to cobalt oxyhydroxide by the heat oxidation treatment increases. The nickel pole E is the nickel pole D
This is because polarization is slightly larger than that of nickel electrode D because there is almost no plateau region where cobalt is oxidized from +2 valence to +3 valence, as in nickel electrode D. This confirms that cobalt oxide was oxidized to cobalt oxyhydroxide. The nickel electrode F has a larger polarization than the unheated nickel electrode A. This is thought to be due to the difference in the presence or absence of the coating with cobalt hydroxide.

【0010】容量試験 次に、各半電池を25℃にして、0.2Cの電流で7.
5時間の充電と0.2Cの電流で電位がHg/HgO参
照極に対して0.1Vまでの放電を実施し、3サイクル
目の容量を測定した。また、この時、酸素の発生し易さ
を便宜的に求めるために、充電最大電位と充電平均電位
の差ΔE(mV)を算術平均で求めた。また、放電では
純水酸化ニッケルの一電子反応に基づく理論容量を10
0%として利用率(%)を求めた。その結果を下記表1
に示す。
Capacity Test Next, each half-cell was heated to 25 ° C. and a current of 0.2 C was used for 7.
The battery was charged for 5 hours and discharged at a potential of 0.1 V with respect to the Hg / HgO reference electrode at a current of 0.2 C, and the capacity at the third cycle was measured. At this time, in order to conveniently determine the ease of generation of oxygen, the difference ΔE (mV) between the maximum charging potential and the average charging potential was determined by arithmetic mean. In addition, the theoretical capacity of the discharge based on the one-electron reaction of pure nickel hydroxide is 10
The utilization rate (%) was determined as 0%. The results are shown in Table 1 below.
Shown in

【0011】[0011]

【表1】 [Table 1]

【0012】表1から明らかなように、ΔEの値は、ニ
ッケル極A,B,C,Dが示すように、加熱処理時間が
長いほど大きく、酸素発生し難いニッケル極が得られる
ことが判る。水酸化ニッケル利用率は、加熱酸化処理さ
れたニッケル極B,C,Dが他のニッケル極A,E,F
に比し向上することが判る。また、その利用率は、加熱
酸化処理時間が15分のニッケル極Cが最大であった。
このことは、170℃で15分間の加熱酸化処理で、水
酸化コバルトの被膜が酸化し生成する導電性を向上する
オキシ水酸化コバルトと酸素過電圧を上昇させる四三酸
化コバルトとの比率が最適となることが推察される。
As is apparent from Table 1, the value of ΔE is larger as the heat treatment time is longer, as shown by the nickel electrodes A, B, C, and D, and a nickel electrode with less oxygen generation can be obtained. . The nickel hydroxide utilization rate is such that the heat-oxidized nickel electrodes B, C, and D are different from the other nickel electrodes A, E, and F.
It can be seen that it is improved as compared with. The maximum utilization rate of the nickel electrode C was 15 minutes when the heat oxidation treatment time was 15 minutes.
This means that the ratio of cobalt oxyhydroxide, which improves the conductivity generated by oxidation of the cobalt hydroxide film by heating oxidation treatment at 170 ° C. for 15 minutes, and cobalt tetroxide, which increases the oxygen overvoltage, is optimal. It is presumed that it becomes.

【0013】次に、初充電時の環境温度による影響を調
べるため、上記と同構成のニッケル極AからFを用いて
半電池を作製し、その各半電池について、初充電温度を
25℃、35℃、45℃、55℃として、上記と同じ条
件で容量試験を行った。その結果を下記表2、表3に示
す。
Next, in order to investigate the influence of the environmental temperature at the time of the first charge, half-cells are manufactured using nickel electrodes A to F having the same configuration as above, and the initial charge temperature of each half-cell is set at 25 ° C. A capacity test was performed at 35 ° C., 45 ° C., and 55 ° C. under the same conditions as described above. The results are shown in Tables 2 and 3 below.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】表2、表3から明らかなように、25℃、
35℃、45℃、55℃と温度変化しても、各温度にお
いて、本発明に従って製造したニッケル極B,C,Dを
用いた場合は、ニッケル極A,E,Fを用いた場合に比
し、利用率はいずれも向上することが認められた。ま
た、ニッケル極B,C,Dは、初充電温度が上昇するに
伴い利用率及びΔE値が向上し、35℃以上で100%
を超え、45℃以上で著しく向上し、55℃でその上昇
が飽和となることが認められた。また、ΔE値について
は、ニッケル極Dが最も向上していることが認められ
た。
As is apparent from Tables 2 and 3, 25 ° C.
Even when the temperature changes to 35 ° C., 45 ° C., and 55 ° C., at each temperature, the nickel electrodes B, C, and D manufactured according to the present invention are compared with the nickel electrodes A, E, and F at each temperature. However, it was recognized that the utilization rate improved in all cases. Further, the nickel electrodes B, C, and D have improved utilization rates and ΔE values with an increase in the initial charging temperature.
, The temperature was significantly improved at 45 ° C. or higher, and the increase became saturated at 55 ° C. Further, regarding the ΔE value, it was recognized that the nickel electrode D was most improved.

【0017】恒温槽での加熱酸化処理温度の変化による
影響 次に、各ニッケル極Aを恒温槽中に入れ、温度を120
℃、140℃、170℃、200℃、220℃の温度で
夫々15分間加熱した後取り出し、放冷し室温に戻して
ペースト式ニッケル極を製造した。その夫々をニッケル
極G,H,C,I,Jと称する。その夫々のニッケル極
を正極として前記と同様に半電池を作製し、初充電温度
を45℃で前記と同様にして初充電を実施した。その結
果を下記表4に示す。
Due to a change in the temperature of the heat oxidation treatment in the thermostatic oven
Influence Next, each nickel electrode A was put into a thermostat, and the temperature was set to 120.
After heating at a temperature of 140 ° C., 140 ° C., 170 ° C., 200 ° C., and 220 ° C. for 15 minutes, the product was taken out, allowed to cool, and returned to room temperature to produce a paste-type nickel electrode. These are called nickel electrodes G, H, C, I, and J, respectively. A half-cell was prepared in the same manner as described above using the respective nickel electrodes as positive electrodes, and the initial charge was performed at the initial charge temperature of 45 ° C. in the same manner as described above. The results are shown in Table 4 below.

【0018】[0018]

【表4】 [Table 4]

【0019】表4から明らかなように、加熱処理温度が
特に140℃以上で、ΔE値及び利用率が著しく向上す
ることが認められた。また、ΔEは、200℃で最大値
となり、それ以上では更に向上せず飽和値を示した。利
用率は170℃での加熱処理が最大値を示した。また、
120℃から140℃に上昇するとき、ΔE及び利用率
の両者が著しく向上した。このことから、140℃以上
でβ−水酸化コバルトの分解点を超したためと推定され
る。
As is evident from Table 4, it was recognized that the ΔE value and the utilization factor were significantly improved when the heat treatment temperature was particularly 140 ° C. or higher. Further, ΔE reached its maximum value at 200 ° C., and showed a saturated value without any further improvement above that. As for the utilization factor, the heat treatment at 170 ° C. showed the maximum value. Also,
When increasing from 120 ° C. to 140 ° C., both ΔE and utilization improved significantly. From this, it is estimated that the decomposition point of β-cobalt hydroxide was exceeded at 140 ° C. or higher.

【0020】以上の結果から、β−水酸化コバルトを被
覆した水酸化ニッケルを充填したニッケル極を空気中で
加熱酸化処理して製造した本発明のペースト式ニッケル
極を正極としたものを、その初充電に当たり、初充電時
の温度を上昇させることにより、更に大きなΔEと利用
率を同時に持つニッケル極が得られることが判る。ま
た、オキシ水酸化コバルトと四三酸化コバルト又は残存
する水酸化コバルトの比率を決定する酸化状態は、温度
×時間で決定されるので限定はできないが、工業生産
上、温度は140℃から200℃、時間は5分から30
分程度で、高能率且つ経済的に優れたペースト式ニッケ
ル極が製造でき、また、初充電は35℃以上で、最適で
は45℃又はその近傍で行うことにより優れたアルカリ
蓄電池が得られることが判る。
From the above results, the paste-type nickel electrode of the present invention produced by heating and oxidizing a nickel electrode filled with nickel hydroxide coated with β-cobalt hydroxide in air was used as a positive electrode. It can be seen that, at the time of the first charge, by increasing the temperature at the time of the first charge, a nickel electrode having both a larger ΔE and a higher utilization factor can be obtained. Further, the oxidation state which determines the ratio of cobalt oxyhydroxide to cobalt tetroxide or the remaining cobalt hydroxide is not limited because it is determined by temperature × time, but in industrial production, the temperature is from 140 ° C. to 200 ° C. , 5 minutes to 30 minutes
Within minutes, a highly efficient and economically excellent paste-type nickel electrode can be manufactured, and an excellent alkaline storage battery can be obtained by performing initial charging at 35 ° C. or more, and optimally at or near 45 ° C. I understand.

【0021】アルカリ二次電池の水酸化ニッケルの利用
率の比較試験 上記のニッケル極A,B,C,D,E,Fを夫々正極と
し、市販のAB5 系水素吸蔵合金、例えばAmNi3.4
Co0.8 Al0.3 Mm0.4 から成る水素吸蔵合金電極を
負極とし親水化したポリオレフィン系不織布セパレータ
を介して積層して成る極板群を電槽内に収容し、KOH
を主体とした比重1.30を有するアルカリ電解液を
1.9cc注入し、電池蓋を気密に施し、公称容量12
00mAh相当のAAサイズニッケル−水素化物電池を
夫々製造した。その電池の夫々を電池A,B,C,D,
E,Fと称する。次に、これら電池A〜Fを夫々前記の
電解液を注入後、直ちに封口を行い、45℃で5時間放
置後、0.2Cの電流で公称容量に対し150%の電気
量を初充電した。その後、25℃で16時間放置後、
0.2Cの電流で1Vまで放電を行った。次に、同様の
充電と放電を3サイクル繰り返して初期活性化を行い、
3サイクル目の放電時の各電池容量を測定し、その各電
池容量から水酸化ニッケルの利用率を算出した。その結
果を下記表5に示す。
Use of Nickel Hydroxide for Alkaline Secondary Battery
Comparative Test The above nickel electrode A rate, B, C, D, E, and the respective positive electrode F, commercially available AB 5 hydrogen storage alloy, for example AmNi 3.4
An electrode group formed by laminating a hydrogen absorbing alloy electrode made of Co 0.8 Al 0.3 Mm 0.4 as a negative electrode through a hydrophilic polyolefin nonwoven fabric separator is housed in a battery case.
1.9 cc of an alkaline electrolyte having a specific gravity of 1.30 mainly composed of
AA size nickel-hydride batteries corresponding to 00 mAh were each manufactured. Each of the batteries is a battery A, B, C, D,
They are called E and F. Next, each of the batteries A to F was sealed immediately after injecting the above-mentioned electrolyte solution, left at 45 ° C. for 5 hours, and initially charged with a current of 0.2 C to an amount of electricity of 150% of the nominal capacity. . Then, after standing at 25 ° C for 16 hours,
Discharge was performed at a current of 0.2 C to 1 V. Next, the same charge and discharge are repeated for three cycles to perform initial activation.
The capacity of each battery at the time of the discharge in the third cycle was measured, and the utilization rate of nickel hydroxide was calculated from the capacity of each battery. The results are shown in Table 5 below.

【0022】[0022]

【表5】 [Table 5]

【0023】表5から明らかなように、各電池の水酸化
ニッケルの利用率は、前記の半電池による試験と同じよ
うに、本発明のペースト式ニッケル極B,C,Dを用い
た電池B,C,Dにおいて、利用率の向上が認められ
た。
As is clear from Table 5, the utilization rate of nickel hydroxide in each battery was the same as that in the test using the half-cell, and the battery B using the paste-type nickel electrodes B, C, and D of the present invention was used. , C, and D, an improvement in the utilization rate was observed.

【0024】次に、各電池A〜Fについて、高温充電受
入性を評価するため、各電池について、充電を40℃、
50℃、60℃で0.2Cの電流で7.5時間行い、放
電は室温で1時間放置した後、0.2Cの電流で1Vま
で行い、容量を測定して上記表5のサイクル目の放電容
量を100%としたときの比率を算出した。その結果を
下記表6に示す。
Next, in order to evaluate the high-temperature charge acceptability of each of the batteries A to F, charging was performed at 40 ° C.
Performed at 50 ° C. and 60 ° C. with a current of 0.2 C for 7.5 hours, allowed to stand at room temperature for 1 hour, performed with a current of 0.2 C up to 1 V, measured the capacity, and measured the capacity at the cycle of Table 5 above. The ratio when the discharge capacity was set to 100% was calculated. The results are shown in Table 6 below.

【0025】[0025]

【表6】 [Table 6]

【0026】表6から明らかなように、前記の半電池試
験で大きなΔEを持ったニッケル極を用いた電池ほど、
高温充電受入性が高く、充電反応時の酸素発生反応が抑
えられ、水酸化ニッケルを酸化する反応が促進され、高
温での充電効率が上昇することが認められた。
As is clear from Table 6, a battery using a nickel electrode having a large ΔE in the half-cell test described above has a larger value.
It was recognized that the high-temperature charge acceptability was high, the oxygen generation reaction during the charging reaction was suppressed, the reaction of oxidizing nickel hydroxide was promoted, and the charging efficiency at high temperatures was increased.

【0027】[0027]

【発明の効果】このように本発明によるときは、β−水
酸化コバルトを被覆した水酸化ニッケル粒子から成る粉
末を三次元多孔集電体に充填したものを、空気中で高温
で加熱酸化処理したので、β−水酸化コバルトの被覆の
一部又は全部がオキシ水酸化コバルトと四三酸化コバル
トから成る酸化被膜に変化した利用率の向上したペース
ト式ニッケル極が得られる。また、該ペースト式ニッケ
ル極を正極としてアルカリ二次電池を構成するときは、
高容量で且つΔEが大きい電池が得られ、特に、初充電
を35℃以上で実施した場合は、高温充電受入性の優れ
たアルカリ二次電池が得られる。
As described above, according to the present invention, a three-dimensional porous current collector filled with powder composed of nickel hydroxide particles coated with β-cobalt hydroxide is heated and oxidized in air at a high temperature. As a result, a paste-type nickel electrode having an improved utilization rate in which a part or the whole of the coating of β-cobalt hydroxide is changed to an oxide coating composed of cobalt oxyhydroxide and cobalt tetroxide is obtained. When constituting an alkaline secondary battery using the paste-type nickel electrode as a positive electrode,
A battery having a high capacity and a large ΔE can be obtained. In particular, when the initial charge is performed at 35 ° C. or higher, an alkaline secondary battery having excellent high-temperature charge acceptability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 β−水酸化コバルトとβ−水酸化コバルトを
本発明の加熱酸化処理法で得られたその酸化物のX線回
折パターンを示す図である。
FIG. 1 is a view showing an X-ray diffraction pattern of β-cobalt hydroxide and its oxide obtained by a heat oxidation treatment method of the present invention.

【図2】 図1に示すβ−水酸化コバルトの酸化処理物
とその酸化処理物を電解液で反応させたもののX線回折
パターンを示す図である。
FIG. 2 is a diagram showing an X-ray diffraction pattern of an oxidized product of β-cobalt hydroxide shown in FIG. 1 and a reaction of the oxidized product with an electrolytic solution.

【図3】 製法を異にした夫々のペースト式ニッケル極
を用いた夫々の半電池の充電時間とその電極の電位との
関係を示す図である。
FIG. 3 is a diagram showing the relationship between the charging time of each half-cell using each paste-type nickel electrode obtained by different manufacturing methods and the potential of the electrode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 β−水酸化コバルトを被覆した水酸化ニ
ッケル粒子から成る粉末のペーストを三次元多孔集電体
に充填して成るニッケル極を、空気中で加熱して被覆さ
れたβ−水酸化コバルトの一部又は全部をオキシ水酸化
コバルトと四三酸化コバルトに酸化処理することを特徴
とするペースト式ニッケル極の製造法。
1. A three-dimensional porous current collector filled with a paste of powder composed of nickel hydroxide particles coated with β-cobalt hydroxide, and heated in air to form the coated β-water. A method for producing a paste-type nickel electrode, comprising oxidizing a part or all of cobalt oxide to cobalt oxyhydroxide and cobalt trioxide.
【請求項2】 オキシ水酸化コバルトと四三酸化コバル
トを被覆した水酸化ニッケル粒子から成る活物質を充填
された三次元集電体から成るペースト式ニッケル極。
2. A paste-type nickel electrode comprising a three-dimensional current collector filled with an active material comprising nickel hydroxide particles coated with cobalt oxyhydroxide and cobalt tetroxide.
【請求項3】 請求項2に記載のペースト式ニッケル極
を正極として具備するアルカリ二次電池を、35℃以上
で初充電を実施することを特徴とするアルカリ二次電
池。
3. An alkaline secondary battery comprising the paste-type nickel electrode according to claim 2 as a positive electrode and an initial charge at 35 ° C. or higher.
JP9362028A 1997-12-11 1997-12-11 Manufacture of paste-type nickel electrode, the paste type nickel electrode, and alkaline secondary battery Pending JPH11176431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9362028A JPH11176431A (en) 1997-12-11 1997-12-11 Manufacture of paste-type nickel electrode, the paste type nickel electrode, and alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9362028A JPH11176431A (en) 1997-12-11 1997-12-11 Manufacture of paste-type nickel electrode, the paste type nickel electrode, and alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH11176431A true JPH11176431A (en) 1999-07-02

Family

ID=18475667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9362028A Pending JPH11176431A (en) 1997-12-11 1997-12-11 Manufacture of paste-type nickel electrode, the paste type nickel electrode, and alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH11176431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276258B2 (en) 2004-07-30 2016-03-01 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276258B2 (en) 2004-07-30 2016-03-01 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery

Similar Documents

Publication Publication Date Title
JP4710225B2 (en) Method for producing nickel electrode material
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JP3363670B2 (en) Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3079303B2 (en) Activation method of alkaline secondary battery
JP2002304991A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JPH0221098B2 (en)
JPH11219701A (en) Unsintered nickel electrode for sealed alkaline storage battery and battery
JPH11176431A (en) Manufacture of paste-type nickel electrode, the paste type nickel electrode, and alkaline secondary battery
JP2003249215A (en) Manufacturing method of positive active material for alkaline storage battery and alkaline storage battery using the positive active material obtained by the manufacturing method
JP2003346794A (en) Alkaline battery positive electrode active material, its manufacturing method, alkaline battery positive electrode using the same, and alkaline battery using positive electrode
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP2003077468A (en) Manufacturing method of nickel electrode material
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP2001338677A (en) Method of manufacturing alkalistorage battery
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP4168293B2 (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate