JP2003249215A - Manufacturing method of positive active material for alkaline storage battery and alkaline storage battery using the positive active material obtained by the manufacturing method - Google Patents

Manufacturing method of positive active material for alkaline storage battery and alkaline storage battery using the positive active material obtained by the manufacturing method

Info

Publication number
JP2003249215A
JP2003249215A JP2002050596A JP2002050596A JP2003249215A JP 2003249215 A JP2003249215 A JP 2003249215A JP 2002050596 A JP2002050596 A JP 2002050596A JP 2002050596 A JP2002050596 A JP 2002050596A JP 2003249215 A JP2003249215 A JP 2003249215A
Authority
JP
Japan
Prior art keywords
powder
cobalt
hydroxide
active material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002050596A
Other languages
Japanese (ja)
Other versions
JP4412877B2 (en
Inventor
Hidekatsu Izumi
秀勝 泉
Hiroyuki Sakamoto
弘之 坂本
Yoichi Izumi
陽一 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002050596A priority Critical patent/JP4412877B2/en
Publication of JP2003249215A publication Critical patent/JP2003249215A/en
Application granted granted Critical
Publication of JP4412877B2 publication Critical patent/JP4412877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost and efficient manufacturing method of a positive active material for an alkaline storage battery which is superior in utilization rate and charge-discharge efficiency in high-temperature atmospheres and also superior in a filling characteristic in order to manufacture the alkaline storage battery having a high capacity and a superior charge-discharge characteristic even in a high-temperature application at a low price. <P>SOLUTION: Solid solution particles in which nickel hydroxide covered by cobalt hydroxide is the main component, at least one kind of particles of oxide of element selected from among yttrium, scandium, lanthanoid and calcium, and an alkaline aqueous solution are agitated and mixed, and after particles are mode wet by soaking the surface with the aqueous alkaline solution, a heat-treatment is carried out while continuing agitation and mixing under the existence of oxygen, and this is continued until the particles are dried. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
正極活物質の製造方法とその製造方法にて得られる正極
活物質を用いたアルカリ蓄電池に関連するものである。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material for an alkaline storage battery and an alkaline storage battery using the positive electrode active material obtained by the production method.

【0002】[0002]

【従来の技術】近年、携帯機器の普及に伴って小型二次
電池の需要が高まってきたが、その中でも水酸化ニッケ
ルを主体とした正極を用い、アルカリ水溶液を電解液と
して用いるニッケル・カドミウム蓄電池やニッケル・水
素蓄電池等のアルカリ蓄電池は、高容量、高信頼性、低
コストの二次電池として多くの需要を得ている。
2. Description of the Related Art In recent years, the demand for small secondary batteries has increased with the spread of portable devices. Among them, nickel-cadmium storage batteries using a positive electrode mainly composed of nickel hydroxide and an alkaline aqueous solution as an electrolytic solution. Alkaline storage batteries, such as nickel and hydrogen storage batteries, are in great demand as secondary batteries with high capacity, high reliability, and low cost.

【0003】アルカリ蓄電池用の正極には、大別して焼
結式と非焼結式の二つがある。前者はパンチングメタル
等の芯材とニッケル粉末とを焼結させて得た多孔度80
%程度のニッケル焼結基板に、硝酸ニッケル水溶液等の
ニッケル塩溶液を含浸し、続いてアルカリ水溶液に含浸
する等して多孔質ニッケル焼結基板中に水酸化ニッケル
を生成させて作製するものである。この正極は基板の多
孔度をこれ以上大きくすることが困難であるため、水酸
化ニッケル量を増加することができず、高容量化には限
界がある。
There are roughly two types of positive electrodes for alkaline storage batteries: sintered type and non-sintered type. The former is a porosity of 80 obtained by sintering a core material such as punching metal and nickel powder.
% Nickel sintered substrate is impregnated with a nickel salt solution such as nickel nitrate aqueous solution and then with an alkaline aqueous solution to produce nickel hydroxide in the porous nickel sintered substrate. is there. Since it is difficult for the positive electrode to increase the porosity of the substrate any more, the amount of nickel hydroxide cannot be increased, and there is a limit to increase the capacity.

【0004】後者の非焼結式正極としては、例えば特開
昭50−36935号公報に開示されたように、三次元
的に連続した多孔度95%程度の発泡ニッケル基板に、
水酸化ニッケル粒子を保持させるものが提案されてお
り、現在、高容量のアルカリ蓄電池の正極として広く用
いられている。この非焼結式正極では高容量化の観点か
ら、嵩密度が大きい球状の水酸化ニッケル粒子が使用さ
れる。また、放電特性や充電受け入れ性、寿命特性の向
上のために、上記の水酸化ニッケル粒子にコバルト、カ
ドミウム、亜鉛等の金属元素を一部固溶させて用いるの
が一般的である。
The latter non-sintered positive electrode is, for example, a three-dimensionally continuous foamed nickel substrate having a porosity of about 95%, as disclosed in Japanese Patent Laid-Open No. 50-36935.
A material that holds nickel hydroxide particles has been proposed and is currently widely used as a positive electrode for a high-capacity alkaline storage battery. In this non-sintered positive electrode, spherical nickel hydroxide particles having a large bulk density are used from the viewpoint of increasing the capacity. In addition, in order to improve discharge characteristics, charge acceptability, and life characteristics, it is common to use the above nickel hydroxide particles by partially dissolving a metal element such as cobalt, cadmium, or zinc.

【0005】また、このような水酸化ニッケル粒子とと
もに発泡ニッケル基板に保持させる導電剤としては、水
酸化コバルト、一酸化コバルトのような2価のコバルト
酸化物等が提案されている(例えば特開平7−7712
9号公報)。これら2価のコバルト酸化物は、初充電に
おいて導電性を有するβ−オキシ水酸化コバルトへと電
気化学的に酸化され、これが水酸化ニッケル粒子と基板
骨格とをつなぐ導電ネットワークとして機能する。この
導電ネットワークの存在によって、非焼結式正極では高
密度に充填した活物質の利用率を大幅に高めることが可
能となり、焼結式正極に比べて高容量化が図られる。
Further, as a conductive agent to be held on a foamed nickel substrate together with such nickel hydroxide particles, a divalent cobalt oxide such as cobalt hydroxide or cobalt monoxide has been proposed (for example, Japanese Unexamined Patent Publication No. Hei 10 (1999) -242977). 7-7712
No. 9). These divalent cobalt oxides are electrochemically oxidized into β-cobalt oxyhydroxide having conductivity in the initial charge, and this functions as a conductive network connecting the nickel hydroxide particles and the substrate skeleton. Due to the presence of this conductive network, it is possible to significantly increase the utilization rate of the high-density filled active material in the non-sintered positive electrode, and to increase the capacity as compared with the sintered positive electrode.

【0006】しかし、上記構成の非焼結式正極やこれを
用いたアルカリ蓄電池においても、コバルトによる導電
ネットワークの集電性能は完全なものではなく、水酸化
ニッケル粒子の利用率には上限があった。さらに上記正
極では、電池を過放電あるいは短絡状態で放置したり、
長期の保存や高温下での保存等を行うと、その後の充放
電で正極容量が低下するという欠点があった。これは、
上記したような電池内の電気化学的なコバルトの酸化反
応では、2価のコバルト酸化物を完全にβ−オキシ水酸
化コバルトへ変化させることができず、導電ネットワー
クの機能低下が起こりやすいためである。
However, even in the non-sintered positive electrode having the above structure and the alkaline storage battery using the same, the current collecting performance of the conductive network made of cobalt is not perfect, and the utilization rate of nickel hydroxide particles has an upper limit. It was Furthermore, in the above positive electrode, the battery is left in an over-discharged or short-circuited state,
When stored for a long period of time or at a high temperature, the capacity of the positive electrode is reduced due to subsequent charge and discharge. this is,
This is because the electrochemical cobalt oxidation reaction in the battery as described above cannot completely convert the divalent cobalt oxide into β-cobalt oxyhydroxide, which easily causes the functional deterioration of the conductive network. is there.

【0007】こうしたコバルトによる導電ネットワーク
の不完全さを改善する手段として、特開平8−1481
46号公報では、水酸化コバルトの被覆層を有する水酸
化ニッケル固溶体粒子を、電池外においてアルカリ水溶
液と酸素(空気)との共存下で加熱処理(酸化)し、結
晶構造の乱れた2価よりも価数の大きいコバルト酸化物
の被覆層に改質する手法が開示されている。この場合に
は、あらかじめ水酸化コバルト被覆水酸化ニッケル固溶
体粒子を作製しておくことによるコバルトの分散性向上
等の理由により、使用するコバルト量を少なくできると
いう利点もある。一方、特開平9−73900号公報で
は、この際の製造方法に関して、アルカリ水溶液を含ん
だ水酸化コバルト被覆水酸化ニッケル粒子を、流動造粒
装置等の中で流動させるかあるいは分散させながら加熱
する方法が開示されている。このような処理を行うと、
凝集による粒子塊の発生等のトラブルを少なくできると
いう利点がある。
As a means for improving such imperfections of the conductive network due to cobalt, JP-A-8-1481
According to Japanese Patent Laid-Open No. 46-46, nickel hydroxide solid solution particles having a coating layer of cobalt hydroxide are subjected to heat treatment (oxidation) in the presence of an alkaline aqueous solution and oxygen (air) outside the battery, and a divalent compound having a disordered crystal structure is obtained. A method of modifying the coating layer of cobalt oxide having a high valence is disclosed. In this case, there is also an advantage that the amount of cobalt to be used can be reduced for the reason of improving the dispersibility of cobalt by preparing cobalt hydroxide-coated nickel hydroxide solid solution particles in advance. On the other hand, in Japanese Patent Laid-Open No. 9-73900, regarding the manufacturing method at this time, cobalt hydroxide-coated nickel hydroxide particles containing an alkaline aqueous solution are heated while being fluidized or dispersed in a fluidized granulator or the like. A method is disclosed. When this kind of processing is performed,
There is an advantage that troubles such as generation of particle aggregates due to aggregation can be reduced.

【0008】しかし、上記公報に記載のアルカリ蓄電池
用正極活物質では、被覆層を形成するコバルト種の酸化
状態は未だ完全なものとは言い難く、改良の余地が残さ
れていた。これは、アルカリ共存下での水酸化コバルト
の酸化の進行が、周囲の温度や共存させるアルカリ水溶
液の濃度だけでなく、周囲の水分や酸素量にも大きく影
響を受け、これらの制御なしには十分に高次な状態にま
で酸化させることができないためである。
However, in the positive electrode active material for alkaline storage batteries described in the above publication, it is hard to say that the oxidation state of the cobalt species forming the coating layer is still perfect, and there is room for improvement. This is because the progress of oxidation of cobalt hydroxide in the presence of an alkali is greatly affected not only by the ambient temperature and the concentration of the alkaline aqueous solution to be coexisted, but also by the ambient water content and oxygen content. This is because it cannot be oxidized to a sufficiently higher state.

【0009】ここで、水酸化コバルト被覆水酸化ニッケ
ル粒子をアルカリ水溶液の共存雰囲気下で酸化する場
合、被覆層を形成する水酸化コバルトの反応機構とし
て、次の2つのプロセスが考えられる。1つ目は、水酸
化コバルトが被覆層表面に存在するアルカリ水溶液に式
1: Co(OH)2 + OH- → HCoO2 - + H2O の反応によりコバルト錯イオン(HCoO2 -)として溶
解し、これが酸素に触れることで、式2: HCoO2 - + 1/2H2O + 1/4O2 → CoOO
H + OH- の反応により酸化され、高次コバルト酸化物として水酸
化ニッケル粒子上に析出するプロセスである。
Here, when the cobalt hydroxide-coated nickel hydroxide particles are oxidized in the coexisting atmosphere of the alkaline aqueous solution, the following two processes are considered as the reaction mechanism of the cobalt hydroxide forming the coating layer. First, the formula in an aqueous alkaline solution of cobalt hydroxide are present in the coating layer surface 1: Co (OH) 2 + OH - → HCoO 2 - + H 2 O reaction by the cobalt complex ion (HCoO 2 -) dissolved as Then, when this is exposed to oxygen, the formula 2: HCoO 2 + 1 / 2H 2 O + 1 / 4O 2 → CoOO
It is a process of being oxidized by the reaction of H + OH and being deposited as high-order cobalt oxide on nickel hydroxide particles.

【0010】2つ目は、水酸化コバルトがアルカリと酸
素が共存する雰囲気下で、水を生成しながら、式3: Co(OH)2 + OH- → CoOOH + H2O +
- のように固相反応的に(つまり溶解を伴わずに)酸化し
て高次コバルト酸化物になるプロセスである。この場
合、酸素は式4: 1/4O2 + 1/2H2O + e- → OH- の反応により消費される。
Secondly, in the atmosphere in which cobalt hydroxide coexists with alkali and oxygen, while generating water, the formula 3: Co (OH) 2 + OH → CoOOH + H 2 O +
It is a process in which a higher order cobalt oxide is oxidized by solid-phase reaction (that is, without dissolution) like e . In this case, oxygen is consumed by the reaction of formula 4: 1 / 4O 2 + 1 / 2H 2 O + e → OH .

【0011】以上の2つのプロセスについて詳しく考察
すると、まず1つ目のプロセスの進行は、水酸化コバル
トのアルカリ水溶液への溶解性に依存する(式1)。し
かし、例えば濃度30重量%のKOH水溶液で60℃程
度においてもこの溶解度は数百ppmにすぎず、溶解速
度もさほど大きくない。従って反応速度を高めるために
は雰囲気を高温にする必要がある。しかしながらここで
高温にした際、周囲の湿度が低すぎる等の理由でアルカ
リ水溶液が蒸発して乾燥枯渇すると、式1の錯イオンの
生成が不能となり、反応が停止する。一方、式2の酸化
反応では、生じたコバルト錯イオンが十分に酸素(空
気)に触れることが重要で、周囲酸素が欠乏するような
環境で高温になると、式5: HCoO2 - + 1/6O2 → 1/3Co34 + OH- の副反応により、導電性の乏しい低次コバルト酸化物
(Co34、Co価数:2.67)が生成する。
Considering the above two processes in detail, first, the progress of the first process depends on the solubility of cobalt hydroxide in the alkaline aqueous solution (Equation 1). However, for example, even in a KOH aqueous solution having a concentration of 30% by weight, the solubility is only several hundred ppm even at about 60 ° C., and the dissolution rate is not so large. Therefore, it is necessary to raise the temperature of the atmosphere to increase the reaction rate. However, if the alkaline aqueous solution evaporates and dries up when the temperature is raised to a high temperature, the complex ions of Formula 1 cannot be generated and the reaction is stopped. On the other hand, in the oxidation reaction of the equation 2, it is important that the generated cobalt complex ions come into sufficient contact with oxygen (air), and when the temperature becomes high in an environment where the surrounding oxygen is deficient, the equation 5: HCoO 2 + 1 / Due to a side reaction of 6O 2 → ⅓Co 3 O 4 + OH −, a low-order cobalt oxide (Co 3 O 4 , Co valence: 2.67) having poor conductivity is generated.

【0012】2つ目のプロセスであるが、アルカリ共存
下で水酸化コバルトを加熱すると式3の機構により高次
のコバルト酸化物が生成する。このとき酸素共存下では
式4の反応が同時に起こり、式3の反応は連続的に進行
する。この反応を円滑に進めるためには、反応系を高温
にすること、OH-濃度を高くすること(式3)、O2
度を高くすること(式4)、および生成した水を反応系
より適度に除去することがポイントになる。ここで水の
除去が過剰になる(つまり乾燥させすぎる)と、アルカ
リ種からのOH-イオンの生成が不能となるため式3の
反応が停止する。また逆に、水の除去が不十分になる
と、水酸化コバルト近傍のO2濃度が相対的に下がるた
めに式4の反応が十分に進まず、結果として式3の代わ
りに式6: Co(OH)2 + 2/3OH- → 1/3Co34
4/3H2O + 2/3e- の副反応により、導電性の乏しい低次コバルト酸化物
(Co34)が生成する。
In the second process, when cobalt hydroxide is heated in the presence of alkali, higher order cobalt oxide is produced by the mechanism of equation 3. At this time, in the coexistence of oxygen, the reaction of formula 4 simultaneously occurs, and the reaction of formula 3 proceeds continuously. In order to make this reaction proceed smoothly, the reaction system should be heated to a high temperature, the OH - concentration should be increased (Equation 3), the O 2 concentration should be increased (Equation 4), and the produced water should be removed from the reaction system. The point is to remove it appropriately. If the water is removed excessively (that is, too much is dried), the reaction of the formula 3 is stopped because OH ions cannot be generated from the alkaline species. On the contrary, when the water removal is insufficient, the reaction of the formula 4 does not proceed sufficiently because the O 2 concentration near the cobalt hydroxide is relatively decreased, and as a result, instead of the formula 3, the formula 6: Co ( OH) 2 + 2 / 3OH - → 1 / 3Co 3 O 4 +
A side reaction of 4 / 3H 2 O + 2 / 3e produces a low-order cobalt oxide (Co 3 O 4 ) having poor conductivity.

【0013】以上のように何れのプロセスにおいても、
処理時の水と酸素(空気)の制御が重要となる。上記観
点から、水酸化コバルト被覆水酸化ニッケル粒子のアル
カリ共存雰囲気での酸化を最も効率的に進行させるに
は、適量のアルカリ水溶液を表面に持つことでファニキ
ュラ状態(化学工学上の分類で、粒子表面に液が十分に
存在しており且つ通気性を有した湿潤状態)となった粒
子に対して、高温下で水と酸素の量をうまく制御しなが
ら処理を施さなければならない。
As described above, in any process,
Control of water and oxygen (air) during processing is important. From the above point of view, in order to most efficiently proceed the oxidation of cobalt hydroxide-coated nickel hydroxide particles in an atmosphere coexisting with an alkali, it is necessary to have an appropriate amount of an alkaline aqueous solution on the surface so that the funicular state (in terms of chemical engineering, particles Particles that have a sufficient amount of liquid on their surface and have a breathable (wet state) must be treated under high temperature while controlling the amounts of water and oxygen well.

【0014】この課題を改善する提案として、特開平1
1−97008号公報では、酸化条件を制御することに
よって被覆層を形成するコバルト種は価数が3価よりも
高次なγ−オキシ水酸化コバルトまで酸化されるという
点、そして、この活物質を用いた正極の利用率や耐過放
電性能等が、酸化が不十分な活物質を用いた場合に比べ
て飛躍的に向上する点が開示された。ここで、このγ−
オキシ水酸化コバルトは結晶内にアルカリカチオン(K
+あるいはNa+)を多量に含有するといった特徴も併せ
持つ。
As a proposal for improving this problem, Japanese Unexamined Patent Publication No.
1-97008 discloses that the cobalt species forming the coating layer by controlling the oxidation conditions are oxidized to γ-cobalt oxyhydroxide having a higher valence than trivalent, and this active material. It has been disclosed that the utilization factor and over-discharge resistance of the positive electrode using the are significantly improved as compared with the case where the active material whose oxidation is insufficient is used. Where this γ-
Cobalt oxyhydroxide is an alkali cation (K
It also has the feature of containing a large amount of + or Na + ).

【0015】ところで、近年、コバルト被覆層へコバル
ト以外の異種元素を分散することで、コバルト被覆層を
改質し、より高性能のコバルト被覆水酸化ニッケル粒子
を得る提案も数多くなされている。例えば、特開平10
−21909号公報では、水酸化ニッケル粒子の表面を
水酸化イットリウムと水酸化コバルトとの共晶で被覆す
ることで、充放電サイクルの初期はもとより、長期にわ
たって高い活物質利用率を発現することが開示されてい
る。
By the way, in recent years, many proposals have been made to obtain higher performance cobalt-coated nickel hydroxide particles by modifying the cobalt coating layer by dispersing a different element other than cobalt into the cobalt coating layer. For example, JP-A-10
In JP-A-21909, by coating the surface of nickel hydroxide particles with a eutectic of yttrium hydroxide and cobalt hydroxide, it is possible to develop a high utilization ratio of the active material not only at the beginning of the charge / discharge cycle but also for a long time. It is disclosed.

【0016】また、特開平11−260360号公報で
は、水酸化ニッケル粒子表面の少なくとも一部を、イッ
テルビウムを含有するコバルト化合物層で被覆すること
で、利用率および高温雰囲気下での充電効率を向上でき
ることが開示されている。また、特開2001−185
137号公報では、水酸化ニッケル粒子の表面をコバル
トとイットリウム等の異種元素との混晶物で被覆した
後、アルカリ水溶液の存在下における酸化剤による酸化
あるいは空気酸化を行うことによって、コバルト価数が
3.0価を超える混晶物の被覆層を有するニッケル価数
が2.0〜2.3価の高次水酸化ニッケルが得られ、こ
の正極活物質が高利用率を示すことが開示されている。
Further, in Japanese Patent Laid-Open No. 11-260360, at least a part of the surface of the nickel hydroxide particles is covered with a cobalt compound layer containing ytterbium to improve the utilization factor and the charging efficiency in a high temperature atmosphere. It is disclosed that this can be done. In addition, Japanese Patent Laid-Open No. 2001-185
In Japanese Patent No. 137, the cobalt valence is determined by coating the surface of nickel hydroxide particles with a mixed crystal of different elements such as cobalt and yttrium, and then performing oxidation with an oxidizing agent or air oxidation in the presence of an alkaline aqueous solution. It is disclosed that a high-order nickel hydroxide having a nickel valence of 2.0 to 2.3 and having a mixed crystal coating layer having a valence of more than 3.0 is obtained, and that this positive electrode active material exhibits a high utilization rate. Has been done.

【0017】[0017]

【発明が解決しようとする課題】本発明者らによる検討
の結果、特開平10−21909号公報および特開平1
1−260360号公報に開示されている水酸化コバル
ト被覆水酸化ニッケル粒子は、被覆層である水酸化コバ
ルトと異種元素との共晶物あるいは混晶物が水酸化コバ
ルト単体に比べて高密度成長させることが困難であり、
それらを被覆した水酸化ニッケル粒子自体も嵩高くなる
ため、充填性に課題を有することが明らかになった。ま
た、被覆層である水酸化コバルトと異種元素との共晶物
あるいは混晶物が、水酸化コバルト単体に比べて空気中
にて導電性に乏しい低次コバルト酸化物(Co34)に
酸化され易いため、空気中にて長期保管できないという
課題も有していることが明らかになった。すなわち、そ
れらを被覆した水酸化ニッケル粉末を空気中にて長期保
管した場合、被覆層が低次コバルト酸化物に酸化され易
く、生成した低次コバルト酸化物は比較的アルカリ水溶
液中でも安定であり、電池内での電気化学的な酸化にお
いても、高導電性のβ−オキシ水酸化コバルトに酸化さ
れ難く、正極活物質間の導電性が低下し、利用率が減少
することになる。
DISCLOSURE OF THE INVENTION As a result of examination by the present inventors, JP-A-10-21909 and JP-A-1
In the cobalt hydroxide-coated nickel hydroxide particles disclosed in JP-A 1-260360, the eutectic or mixed crystal of the coating layer of cobalt hydroxide and a different element grows at a higher density than cobalt hydroxide alone. Is difficult to
It was revealed that the nickel hydroxide particles themselves coated with them also become bulky, and thus have a problem in filling property. In addition, the eutectic or mixed crystal of the coating layer of cobalt hydroxide and a different element becomes a low-order cobalt oxide (Co 3 O 4 ) which has poor electrical conductivity in the air as compared with cobalt hydroxide alone. It has been revealed that there is also a problem that it cannot be stored in the air for a long time because it is easily oxidized. That is, when the nickel hydroxide powder coated with them is stored in the air for a long period of time, the coating layer is easily oxidized to a lower cobalt oxide, and the generated lower cobalt oxide is relatively stable in an alkaline aqueous solution, Even in the electrochemical oxidation in the battery, it is difficult to oxidize into β-cobalt oxyhydroxide having high conductivity, the conductivity between the positive electrode active materials decreases, and the utilization rate decreases.

【0018】また、特開2001−185137号公報
に開示されているコバルト被覆水酸化ニッケル粒子で
は、酸化処理前の活物質粉末が前述同様に嵩高いため、
従来に比べて酸化条件の制御が困難になるといった課題
を有することが明らかになった。また、水酸化コバルト
と異種元素との共晶物あるいは混晶物が多量の水和水を
含有していることも明らかになっており、このことも酸
化条件の制御の難しさに影響していると考えられる。さ
らに、酸化処理前の活物質粉末の被覆層が前述同様に空
気中にて導電性に乏しい低次コバルト酸化物に酸化され
易いため、空気中にて長期保管できず、被覆後直ちに高
次コバルト酸化物まで酸化しなければならないといった
取扱いの不便さも有していた。
Further, in the cobalt-coated nickel hydroxide particles disclosed in Japanese Patent Laid-Open No. 2001-185137, the active material powder before oxidation treatment is as bulky as described above,
It has become clear that there is a problem that it is more difficult to control the oxidation conditions than in the past. It has also been clarified that the eutectic or mixed crystal of cobalt hydroxide and a different element contains a large amount of water of hydration, which also affects the difficulty of controlling the oxidation conditions. It is believed that Furthermore, since the coating layer of the active material powder before the oxidation treatment is likely to be oxidized in the air to the low-order cobalt oxide having poor conductivity in the same manner as described above, it cannot be stored for a long time in the air and the high-order cobalt oxide is immediately after the coating. It also had the inconvenience of handling that it had to oxidize even oxides.

【0019】[0019]

【課題を解決するための手段】本発明は上記課題を解決
するものであり、利用率および高温雰囲気下での充電効
率に優れ、かつ充填性にも優れたアルカリ蓄電池用正極
活物質の低コストかつ効率的な製造方法を提供するもの
である。また、この製造方法にて作製される正極活物質
を用いた高容量かつ高温使用時においても優れた充放電
特性を有するアルカリ蓄電池を提供するものである。
Means for Solving the Problems The present invention is to solve the above problems and provides a positive electrode active material for an alkaline storage battery, which is excellent in utilization rate and charging efficiency in a high temperature atmosphere, and is also low in cost. And an efficient manufacturing method is provided. Further, the present invention provides an alkaline storage battery using the positive electrode active material produced by this production method, which has high capacity and excellent charge / discharge characteristics even when used at high temperature.

【0020】上記課題を解決するために、本発明の製造
方法は、水酸化コバルトにて被覆された水酸化ニッケル
を主成分とする固溶体粒子と、イットリウム、スカンジ
ウム、ランタノイドおよびカルシウムから選ばれる少な
くとも一種の酸化物粒子と、アルカリ水溶液とを撹拌混
合し、粒子表面がアルカリ水溶液で濡れた湿潤粒子にす
る第1工程と、前記湿潤粒子を酸素存在下で撹拌混合し
ながら加熱処理を行い、乾燥まで導く第2工程とを備え
たことを特徴とするものである。
In order to solve the above-mentioned problems, the production method of the present invention comprises a solid solution particle containing nickel hydroxide as a main component coated with cobalt hydroxide, and at least one selected from yttrium, scandium, lanthanoid and calcium. The first step of mixing the oxide particles and the alkaline aqueous solution with stirring to make wet particles whose surface is wet with the alkaline aqueous solution, and performing heat treatment while stirring and mixing the wet particles in the presence of oxygen until drying. And a second step of guiding.

【0021】前記の第1工程において、水酸化コバルト
被覆水酸化ニッケル粒子は、その表面がアルカリ水溶液
で均一に濡れた湿潤粒子となり、同時にイットリウム等
の酸化物粒子はアルカリ水溶液によってゲル状の水酸化
物に変化する。続く第2工程において、水酸化コバルト
被覆層は式1、式2および式3の反応によって高次コバ
ルト酸化物に酸化されるが、この際、ゲル状のイットリ
ウム等の水酸化物はその被覆層中に拡散していく。最終
的には、被覆層中に拡散したイットリウム等の水酸化物
は脱水し、酸化物として被覆層中に均一に分散すること
になる。すなわち、イットリウム等の酸化物が均一に分
散した高次コバルト酸化物に被覆された水酸化ニッケル
粒子が作製されることとなる。
In the above-mentioned first step, the cobalt hydroxide-coated nickel hydroxide particles become wet particles whose surface is uniformly wetted with the alkaline aqueous solution, and at the same time, the oxide particles of yttrium or the like are gelled by the alkaline aqueous solution. Change into a thing. In the subsequent second step, the cobalt hydroxide coating layer is oxidized to a higher cobalt oxide by the reaction of Formula 1, Formula 2 and Formula 3, while the gel-like hydroxide such as yttrium is coated in the coating layer. It spreads inside. Finally, the hydroxide such as yttrium diffused in the coating layer is dehydrated and uniformly dispersed as an oxide in the coating layer. That is, nickel hydroxide particles coated with a higher cobalt oxide in which an oxide such as yttrium is uniformly dispersed are produced.

【0022】本発明の製造方法では、特開平10−21
909号公報、特開平11−260360号公報、特開
2001−185137号公報に開示されているよう
な、高密度成長が困難である水酸化コバルトと異種元素
との共晶物あるいは混晶物の被覆層を作製する過程を含
まない。高密度成長が可能な水酸化コバルト単体にて被
覆された水酸化ニッケル粒子とイットリウム等の酸化物
粒子を使用するため、高密度かつ充填性に優れた異種元
素を含有する高次コバルト酸化物にて被覆された水酸化
ニッケル粒子が得られる。原料である水酸化コバルト被
覆水酸化ニッケル粒子は、空気中でも比較的酸化され難
いため酸化処理前の長期保管も可能であり、少量の水和
水しか含有しないため酸化条件の制御も簡便であり、生
産性の向上が図られる。また、既存の水酸化コバルト被
覆水酸化ニッケル粒子をそのまま使用でき、活物質製造
コストの上昇を抑制できるという利点も併せ持つ。
In the manufacturing method of the present invention, the method disclosed in JP-A-10-21
909, Japanese Unexamined Patent Publication No. 11-260360, and Japanese Unexamined Patent Publication No. 2001-185137, a eutectic or mixed crystal of cobalt hydroxide and a different element, which is difficult to grow at high density. It does not include the process of making a coating layer. Since nickel hydroxide particles coated with a simple cobalt hydroxide capable of high-density growth and oxide particles such as yttrium are used, a high-order cobalt oxide containing different elements with high density and excellent filling properties can be obtained. Coated nickel hydroxide particles are obtained. Cobalt hydroxide-coated nickel hydroxide particles as a raw material can be stored for a long time before the oxidation treatment because it is relatively difficult to be oxidized even in air, and since the amount of hydration water contained is small, it is easy to control the oxidation conditions. Productivity is improved. Further, the existing cobalt hydroxide-coated nickel hydroxide particles can be used as they are, and it also has an advantage that an increase in active material production cost can be suppressed.

【0023】ここで、特開平11−73954号公報に
おいて、水酸化ニッケルと、コバルト化合物または金属
コバルトと、イットリウム等の異種元素の化合物と、ア
ルカリ水溶液とを混合し、その混合物を酸素存在下で加
熱処理するという本発明と類似の製造方法が開示されて
いる。しかし、上記製造方法は高次コバルト化合物層を
水酸化ニッケル粒子と異種元素化合物粒子の両方の表面
に析出させるというものであり、異種元素をコバルト被
覆層中に分散させるものではないという点で本発明の製
造方法とは根本的に異なる。さらに上記製造方法は、コ
バルト化合物粉末を使用するため酸化条件の制御が非常
に困難であるといった課題も有している。
Here, in JP-A-11-73954, nickel hydroxide, a cobalt compound or metallic cobalt, a compound of a different element such as yttrium, and an alkaline aqueous solution are mixed, and the mixture is mixed in the presence of oxygen. A manufacturing method similar to the present invention of heat treatment is disclosed. However, the above-mentioned manufacturing method is to deposit the higher cobalt compound layer on the surfaces of both the nickel hydroxide particles and the different element compound particles, and the different element is not dispersed in the cobalt coating layer. It is fundamentally different from the manufacturing method of the invention. Further, the above-mentioned production method has a problem that it is very difficult to control the oxidation conditions because the cobalt compound powder is used.

【0024】[0024]

【発明の実施の形態】本発明の製造方法は、水酸化コバ
ルトにて被覆された水酸化ニッケルを主成分とする固溶
体粒子と、イットリウム、スカンジウム、ランタノイド
およびカルシウムから選ばれる少なくとも一種の酸化物
粒子と、アルカリ水溶液とを撹拌混合し、粒子表面がア
ルカリ水溶液で濡れた湿潤粒子にする第1工程と、前記
湿潤粒子を酸素存在下で撹拌混合しながら加熱処理を行
い、乾燥まで導く第2工程とを備えたことを特徴とする
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION The production method of the present invention comprises solid solution particles containing nickel hydroxide as a main component and coated with cobalt hydroxide, and at least one kind of oxide particles selected from yttrium, scandium, lanthanoids and calcium. And an alkaline aqueous solution by stirring and mixing to make wet particles whose surface is wet with the alkaline aqueous solution, and a second step of performing heat treatment while stirring and mixing the wet particles in the presence of oxygen, and leading to drying It is characterized by having and.

【0025】前記第1工程では、水酸化コバルト被覆水
酸化ニッケル粒子は、その表面がアルカリ水溶液で均一
に濡れた湿潤粒子となり、同時にイットリウム等の酸化
物粒子はアルカリ水溶液によってゲル状の水酸化物に変
化する。続く第2工程において、水酸化コバルト被覆層
は式1、式2および式3の反応によって高次コバルト酸
化物に酸化されるが、その際、ゲル状のイットリウム等
の水酸化物はその被覆層中に拡散していく。最終的に
は、被覆層中に拡散したイットリウム等の水酸化物は脱
水し、酸化物として被覆層中に均一に分散することにな
る。すなわち、イットリウム等の酸化物が均一に分散し
た高次コバルト酸化物にて被覆された水酸化ニッケル粒
子が作製されることとなる。なお、粒子をファニキュラ
状態にするのに必要なアルカリ水溶液の量は、粒子の物
性によって変化するが、当業者であればその量を容易に
選択可能である。
In the first step, the cobalt hydroxide-coated nickel hydroxide particles become wet particles whose surface is uniformly wet with an alkaline aqueous solution, and at the same time, oxide particles such as yttrium are gelled hydroxide by the alkaline aqueous solution. Changes to. In the subsequent second step, the cobalt hydroxide coating layer is oxidized to a higher cobalt oxide by the reaction of Formula 1, Formula 2, and Formula 3, while the gel-state hydroxide such as yttrium is coated in the coating layer. It spreads inside. Finally, the hydroxide such as yttrium diffused in the coating layer is dehydrated and uniformly dispersed as an oxide in the coating layer. That is, nickel hydroxide particles coated with a higher cobalt oxide in which an oxide such as yttrium is uniformly dispersed are produced. The amount of the alkaline aqueous solution required to bring the particles into the funicular state varies depending on the physical properties of the particles, but those skilled in the art can easily select the amount.

【0026】前記第1工程にて混合するアルカリ水溶液
は、水酸化ナトリウム水溶液および/または水酸化カリ
ウム水溶液であって、その濃度は40重量%よりも大き
いことが好ましい。本発明で用いる酸化反応は、アルカ
リ水溶液の沸点近くで起こるため、アルカリ水溶液中の
水の蒸発速度は大きい。しかしながら、本発明の酸化反
応の1つ目のプロセスとしては、水酸化コバルトがアル
カリ水溶液に溶解してコバルト錯イオンが生成し(式
1)、さらにこの錯イオンが酸素と反応して高次コバル
ト酸化物になるものである(式2)。従って、処理に際
しては、ある程度の量のアルカリ水溶液が高温下で粒子
表面に存在していなければならない。換言すると、高温
であっても、アルカリ水溶液の蒸発が早いと反応を十分
に進めることができない。この観点より、アルカリ水溶
液の濃度が高いほど沸点が上昇して蒸発速度が遅くなる
ため、処理に適すると言える。また、2つ目の酸化プロ
セスを考えた場合にも、OH-濃度が高い方が酸化は良
く進むため(式3)、やはりアルカリ水溶液の濃度は高
い方が良い。以上の観点より、使用するアルカリ水溶液
の濃度は40重量%よりも大きいものが適する。
The alkaline aqueous solution mixed in the first step is an aqueous sodium hydroxide solution and / or an aqueous potassium hydroxide solution, and the concentration thereof is preferably higher than 40% by weight. Since the oxidation reaction used in the present invention occurs near the boiling point of the alkaline aqueous solution, the evaporation rate of water in the alkaline aqueous solution is high. However, as the first process of the oxidation reaction of the present invention, cobalt hydroxide is dissolved in an alkaline aqueous solution to form a cobalt complex ion (Equation 1), and this complex ion further reacts with oxygen to form a higher cobalt. It becomes an oxide (Equation 2). Therefore, during the treatment, a certain amount of alkaline aqueous solution must be present on the surface of the particles at high temperature. In other words, even if the temperature is high, the reaction cannot be sufficiently promoted if the alkaline aqueous solution evaporates quickly. From this point of view, it can be said that the higher the concentration of the alkaline aqueous solution, the higher the boiling point and the slower the evaporation rate, and hence the more suitable the treatment is. Also, considering the second oxidation process, the higher the OH concentration is, the better the oxidation proceeds (Equation 3). Therefore, the higher the concentration of the alkaline aqueous solution is, the better. From the above viewpoint, it is suitable that the concentration of the alkaline aqueous solution used is greater than 40% by weight.

【0027】前記第2工程における加熱温度は、90〜
130℃であることが好ましい。酸化反応の速度は温度
によって大きく影響を受けるが、設定温度が90℃未満
であると酸化の進行が遅く、1バッチあたりに数時間も
の時間を要することとなる。また同時に、酸化処理装置
内壁での粒子の付着等も生じ易いことから、好ましくな
い。一方、130℃を超える温度では反応が激しく起こ
りすぎて、被覆層内部の水酸化ニッケル粒子に損傷を与
える。以上の観点より、加熱設定温度は90〜130℃
とすることが好ましい。
The heating temperature in the second step is 90-
It is preferably 130 ° C. The rate of the oxidation reaction is greatly influenced by the temperature, but if the set temperature is lower than 90 ° C., the progress of the oxidation is slow and it takes several hours per batch. At the same time, particles are likely to adhere to the inner wall of the oxidation treatment device, which is not preferable. On the other hand, if the temperature exceeds 130 ° C., the reaction takes place too much and damages the nickel hydroxide particles inside the coating layer. From the above viewpoint, the heating set temperature is 90 to 130 ° C.
It is preferable that

【0028】さらに、前記第2工程において補助加熱手
段としてマイクロ波照射を用いると、より効率的に酸化
反応を進行させることができる。同加熱方法は、湿潤粒
子へのマイクロ波照射によって誘導体(この場合はアル
カリ水溶液)に分子レベルで振動を与え、分子の衝突・
摩擦熱によって加熱する手法である。前記第2工程にお
いて、補助加熱手段としてマイクロ波照射を行うことに
より、加熱むらをほとんど生ずることなく湿潤粒子を迅
速に所定温度まで昇温することができる。さらに、マイ
クロ波照射による粒子の加熱は、アルカリ水溶液で濡れ
ている粒子表面の水酸化コバルト被覆層部分から起こる
ため、他の加熱手段に比べて被覆層部分の酸化効率が高
くなり、被覆層の水酸化コバルトは3価を超える高次コ
バルト酸化物まで酸化される。
Further, when microwave irradiation is used as the auxiliary heating means in the second step, the oxidation reaction can be more efficiently progressed. The same heating method oscillates the derivative (in this case, an alkaline aqueous solution) at the molecular level by irradiating the wet particles with microwaves to cause collision of molecules.
This is a method of heating by frictional heat. In the second step, by performing microwave irradiation as an auxiliary heating means, it is possible to quickly raise the temperature of the wet particles to a predetermined temperature without causing uneven heating. Further, since the heating of the particles by microwave irradiation occurs from the cobalt hydroxide coating layer portion on the surface of the particles which is wet with the alkaline aqueous solution, the oxidation efficiency of the coating layer portion is higher than that of other heating means, and the coating layer Cobalt hydroxide oxidizes to higher cobalt oxides having a valence of more than 3.

【0029】前記水酸化コバルト被覆水酸化ニッケル固
溶体粒子において、その水酸化コバルト被覆量は、水酸
化ニッケル固溶体粒子に対して5〜12重量%であるこ
とが好ましい。正極利用率は水酸化ニッケル粒子へのコ
バルト被覆量によって大きく変化するが、被覆量が5重
量%未満であると十分な導電ネットワークが形成でき
ず、正極利用率の低下が顕著となる。一方、被覆量が1
2重量%を超えると正極利用率はもはや増大せずに、水
酸化ニッケル量の減少による正極容量の低下が顕著とな
る。以上の観点より、水酸化コバルト被覆量は、水酸化
ニッケル固溶体粒子に対して5〜12重量%であること
が好ましい。
In the cobalt hydroxide-coated nickel hydroxide solid solution particles, the cobalt hydroxide coating amount is preferably 5 to 12% by weight based on the nickel hydroxide solid solution particles. The positive electrode utilization rate largely varies depending on the cobalt coating amount on the nickel hydroxide particles, but if the coating amount is less than 5% by weight, a sufficient conductive network cannot be formed, and the positive electrode utilization rate is significantly reduced. On the other hand, the coating amount is 1
If it exceeds 2% by weight, the positive electrode utilization rate will no longer increase, and the decrease in the positive electrode capacity due to the decrease in the amount of nickel hydroxide will be remarkable. From the above viewpoints, the coating amount of cobalt hydroxide is preferably 5 to 12% by weight based on the nickel hydroxide solid solution particles.

【0030】前記水酸化コバルト被覆水酸化ニッケル固
溶体粒子は、その平均粒径が5〜20μmであり、かつ
BET比表面積が5〜15m2/gであることが好まし
い。平均粒径が5μm未満の場合は、所定のアルカリ水
溶液によって粒子をファニキュラ状態に到らすことが困
難となり、被覆層を高次コバルト酸化物まで酸化できな
い。また、粒子嵩密度が低下するため高容量の正極を得
ることができない。平均粒径が20μmを超える場合
は、粒子が大き過ぎて水酸化コバルトが均一に被覆され
ないため、良好な導電ネットワークが形成できず、利用
率の低下を生じる。また、BET比表面積については、
これが過大あるいは過小となると粒子の濡れ性が大きく
変化するため、所定のアルカリ水溶液によって粒子をフ
ァニキュラ状態に到らすことが困難となり、被覆層を高
次コバルト酸化物まで酸化できない。以上の観点より、
水酸化コバルト被覆水酸化ニッケル固溶体粒子は、その
平均粒径が5〜20μmであり、かつBET比表面積が
5〜15m2/gであることが好ましい。
The cobalt hydroxide-coated nickel hydroxide solid solution particles preferably have an average particle size of 5 to 20 μm and a BET specific surface area of 5 to 15 m 2 / g. If the average particle size is less than 5 μm, it becomes difficult to bring the particles into the funicular state by a predetermined aqueous alkaline solution, and the coating layer cannot be oxidized to higher cobalt oxide. Further, since the bulk density of particles is lowered, a high capacity positive electrode cannot be obtained. If the average particle size exceeds 20 μm, the particles are too large to be uniformly coated with cobalt hydroxide, so that a good conductive network cannot be formed and the utilization factor decreases. Also, regarding the BET specific surface area,
If it is too large or too small, the wettability of the particles changes greatly, so that it becomes difficult for the particles to reach a funicular state with a predetermined alkaline aqueous solution, and the coating layer cannot be oxidized to higher cobalt oxide. From the above viewpoint,
The cobalt hydroxide-coated nickel hydroxide solid solution particles preferably have an average particle size of 5 to 20 μm and a BET specific surface area of 5 to 15 m 2 / g.

【0031】前記第1工程にて混合するイットリウム、
スカンジウム、ランタノイドおよびカルシウムから選ば
れる少なくとも一種の酸化物粒子の混合量は、水酸化コ
バルト被覆水酸化ニッケル固溶体粒子に対して0.1〜
3.0重量%であることが好ましい。前記酸化物粒子の
混合量が0.1重量%未満であると、前記酸化物の添加
効果(高温雰囲気下での充電効率の向上)が確認できな
い。一方、混合量が3.0重量%を超えても前記添加効
果はそれ以上向上せず、コバルト被覆層近傍の低導電性
化合物(Y23等)の増大による高率放電特性の低下が
顕著となる。以上の観点より、酸化物粒子の混合量は、
水酸化コバルト被覆水酸化ニッケル固溶体粒子に対して
0.1〜3.0重量%、さらには0.5〜1.0重量%
であることが好ましい。
Yttrium mixed in the first step,
The amount of at least one kind of oxide particles selected from scandium, lanthanoid and calcium is 0.1 to 0.1% with respect to cobalt hydroxide-coated nickel hydroxide solid solution particles.
It is preferably 3.0% by weight. If the mixing amount of the oxide particles is less than 0.1% by weight, the effect of adding the oxide (improvement of charging efficiency in a high temperature atmosphere) cannot be confirmed. On the other hand, even if the mixing amount exceeds 3.0% by weight, the above-mentioned addition effect is not further improved, and the high rate discharge characteristic is deteriorated due to the increase of the low conductive compound (Y 2 O 3 etc.) near the cobalt coating layer. It becomes remarkable. From the above viewpoint, the mixing amount of the oxide particles is
0.1 to 3.0% by weight, and further 0.5 to 1.0% by weight, based on the solid solution particles of nickel hydroxide coated with cobalt hydroxide.
Is preferred.

【0032】前記第1工程にて混合するイットリウム、
スカンジウム、ランタノイドおよびカルシウムから選ば
れる少なくとも一種の酸化物粒子は、その平均粒径が
0.2〜8.0μmであり、かつBET比表面積が3〜
60m2/gであることが好ましい。前記酸化物粒子は
複数の金属を含む複合酸化物でもよい。また、1種の酸
化物粒子を単独で用いてもよく、複数の酸化物粒子を組
み合わせて用いてもよい。平均粒径が上記範囲外、ある
いはBET比表面積が60m2/gを超える場合は、粒
子の濡れ性が大きく変化するため、所定のアルカリ水溶
液によって粒子をファニキュラ状態に到らすことが困難
となる。その結果、水酸化コバルト被覆層の酸化、ある
いは酸化物粒子のコバルト酸化物被覆層中への拡散が困
難になる。この観点から、前記酸化物粒子は、その平均
粒径が0.2〜8.0μm、さらには1.0〜4.0μ
mであり、かつBET比表面積が3〜60m2/g、さ
らには3〜30m2/gであることが好ましい。
Yttrium mixed in the first step,
At least one kind of oxide particles selected from scandium, lanthanoid and calcium has an average particle size of 0.2 to 8.0 μm and a BET specific surface area of 3 to.
It is preferably 60 m 2 / g. The oxide particles may be a composite oxide containing a plurality of metals. Further, one type of oxide particles may be used alone, or a plurality of oxide particles may be used in combination. If the average particle size is out of the above range or the BET specific surface area exceeds 60 m 2 / g, the wettability of the particles is greatly changed, and it becomes difficult to bring the particles into a funicular state by a predetermined alkaline aqueous solution. . As a result, it becomes difficult to oxidize the cobalt hydroxide coating layer or diffuse the oxide particles into the cobalt oxide coating layer. From this viewpoint, the oxide particles have an average particle size of 0.2 to 8.0 μm, and more preferably 1.0 to 4.0 μm.
m, and the BET specific surface area is preferably 3 to 60 m 2 / g, more preferably 3 to 30 m 2 / g.

【0033】前記水酸化コバルト被覆水酸化ニッケル固
溶体粒子において、内部の水酸化ニッケル粒子は、コバ
ルト、亜鉛、カドミウム、カルシウム、マンガン、マグ
ネシウム、アルミニウム、チタン、イットリウムおよび
ランタノイドから選ばれる少なくとも一種の元素を含有
することが好ましい。原料粉末として上記固溶体粒子を
用いることで、充電時の膨化が抑制され、充放電サイク
ルに伴う容量劣化の少ないアルカリ蓄電池用正極活物質
が得られる。
In the cobalt hydroxide-coated nickel hydroxide solid solution particles, the internal nickel hydroxide particles contain at least one element selected from cobalt, zinc, cadmium, calcium, manganese, magnesium, aluminum, titanium, yttrium and lanthanoid. It is preferable to contain. By using the solid solution particles as the raw material powder, it is possible to obtain a positive electrode active material for an alkaline storage battery in which swelling during charging is suppressed and the capacity deterioration due to charge / discharge cycles is small.

【0034】本発明の製造法にて作製した正極活物質を
適用した好適なアルカリ蓄電池用非焼結式正極として
は、導電性芯体に活物質を含有するペーストを塗布し、
乾燥してなるペースト式正極等が挙げられる。このとき
の導電性芯体の具体例としては、ニッケル発泡体、フェ
ルト状金属繊維多孔体、波板加工芯材、バリ付穿孔芯
材、パンチングメタル等が挙げられる。
A preferred non-sintered positive electrode for an alkaline storage battery, to which the positive electrode active material produced by the production method of the present invention is applied, is a conductive core coated with a paste containing the active material,
Examples include a paste-type positive electrode formed by drying. Specific examples of the conductive core at this time include a nickel foam, a felt-like metal fiber porous body, a corrugated plate-processed core material, a perforated core material with burrs, and a punching metal.

【0035】本発明の製造法にて作製した正極活物質を
用いた好適なアルカリ蓄電池の具体例としては、ニッケ
ル・水素蓄電池、ニッケル・カドミウム蓄電池、および
ニッケル・亜鉛蓄電池等が挙げられる。
Specific examples of suitable alkaline storage batteries using the positive electrode active material produced by the production method of the present invention include nickel-hydrogen storage batteries, nickel-cadmium storage batteries, and nickel-zinc storage batteries.

【0036】[0036]

【実施例】以下、本発明の実施例について、詳細に説明
する。 《実施例1》 (i)原料粉末の調製 原料となる水酸化コバルト被覆水酸化ニッケル固溶体粒
子は、周知の以下の手法を用いて合成した。まず、硫酸
ニッケルを主成分とし、硫酸コバルトおよび硫酸亜鉛を
所定量だけ含有させた水溶液に、アンモニア水溶液で溶
液pHを調整しながら水酸化ナトリウム水溶液を徐々に
滴下しながら攪拌を行い、球状の水酸化ニッケル固溶体
粒子を析出させる方法を用いた。この析出した水酸化ニ
ッケル固溶体粒子を水洗、乾燥した後、硫酸コバルト水
溶液中に投入し、水酸化ナトリウム水溶液を徐々に加
え、35℃でpH=12を維持するように調整しながら
攪拌を続けて固溶体粒子表面に水酸化コバルトを析出さ
せた。ここで水酸化コバルトの被覆量については、水酸
化ニッケル固溶体粒子に対する比率が7.0重量%とな
るように調整した。作製した水酸化コバルト被覆水酸化
ニッケル固溶体粒子は水洗した後、真空乾燥を行った。
以下これを粉末Aと表記する。なお、この粉末Aは平均
粒径が10.4μm、BET比表面積が10.6m2
g、タップ密度が2.1g/cm3であった。
EXAMPLES Examples of the present invention will be described in detail below. Example 1 (i) Preparation of Raw Material Powder Cobalt hydroxide-coated nickel hydroxide solid solution particles used as a raw material were synthesized by the following well-known method. First, an aqueous solution containing nickel sulfate as a main component and cobalt sulfate and zinc sulfate in a predetermined amount is stirred while gradually adding dropwise an aqueous sodium hydroxide solution while adjusting the solution pH with an aqueous ammonia solution to form a spherical water solution. A method of precipitating nickel oxide solid solution particles was used. The precipitated nickel hydroxide solid solution particles were washed with water and dried, then put into a cobalt sulfate aqueous solution, sodium hydroxide aqueous solution was gradually added, and stirring was continued while adjusting the pH to 12 at 35 ° C. Cobalt hydroxide was deposited on the surface of the solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the ratio with respect to the nickel hydroxide solid solution particles was 7.0% by weight. The prepared cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then vacuum dried.
Hereinafter this is referred to as powder A. The powder A has an average particle size of 10.4 μm and a BET specific surface area of 10.6 m 2 /
The tap density was 2.1 g / cm 3 .

【0037】(ii)第1工程 上記粉末Aと酸化イットリウム粉末を撹拌混合機能およ
び加熱機能を備えた酸化処理装置内に投入し、濃度45
重量%の水酸化ナトリウム水溶液の適量を滴下しながら
撹拌混合を行った。ここで、酸化イットリウム粉末は、
平均粒径が3.8μm、BET比表面積が3.2m2
gのものを使用し、粉末Aに対して1.0重量%を投入
した。この第1工程にて、粉末Aはその表面がほぼ均一
に濡れた湿潤粒子となった。
(Ii) First Step The powder A and the yttrium oxide powder are put into an oxidation treatment apparatus having a stirring and mixing function and a heating function, and a concentration of 45 is obtained.
Stirring and mixing were performed while adding an appropriate amount of an aqueous solution of sodium hydroxide of wt% dropwise. Here, the yttrium oxide powder is
Average particle size 3.8 μm, BET specific surface area 3.2 m 2 /
1.0 g by weight based on the powder A was used. In the first step, the powder A became wet particles whose surface was almost uniformly wet.

【0038】(iii)第2工程 引き続き、撹拌混合を継続しながら酸化処理装置内が1
10℃になるまで加熱し、その後は110℃で一定とな
るように制御しながら、湿潤粒子がほぼ完全乾燥するま
で加熱および撹拌混合を継続した。こうして得られたコ
バルト酸化物被覆水酸化ニッケル固溶体粒子は水洗した
後、乾燥を行った。以下これを粉末Bと表記する。こう
して得られた粉末Bは、平均粒径が10.3μm、BE
T比表面積が10.2m2/g、タップ密度が2.2g
/cm3であった。また、そのコバルト酸化物被覆層中
にイットリウムを含有していることを透過電子顕微鏡
(TEM)の観察より確認した。
(Iii) Second step While the stirring and mixing are continued, the inside of the oxidation treatment apparatus is set to 1
The mixture was heated to 10 ° C., and thereafter, heating and stirring and mixing were continued until the wet particles were almost completely dried while controlling the temperature to be constant at 110 ° C. The cobalt oxide-coated nickel hydroxide solid solution particles thus obtained were washed with water and then dried. Hereinafter, this is referred to as powder B. The powder B thus obtained has an average particle size of 10.3 μm, BE
T specific surface area of 10.2 m 2 / g, tap density of 2.2 g
/ Cm 3 . Moreover, it was confirmed by observation with a transmission electron microscope (TEM) that yttrium was contained in the cobalt oxide coating layer.

【0039】《比較例1》第1工程で、酸化イットリウ
ム粉末を投入しないこと以外、実施例1と同様の第1工
程および第2工程を行い、粉末Aに酸化処理を施した
後、水洗、乾燥を行った。以下これを粉末Cと表記す
る。この粉末Cは平均粒径が10.3μm、BET比表
面積が9.7m2/g、タップ密度が2.2g/cm3
あった。
Comparative Example 1 In the first step, the same first and second steps as in Example 1 were carried out except that yttrium oxide powder was not added, and the powder A was subjected to an oxidation treatment and then washed with water. It was dried. Hereinafter, this is referred to as powder C. The powder C had an average particle size of 10.3 μm, a BET specific surface area of 9.7 m 2 / g and a tap density of 2.2 g / cm 3 .

【0040】《比較例2》実施例1で得た水酸化ニッケ
ル固溶体粒子を硝酸コバルトと硝酸イットリウムの混合
水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加
え、35℃でpH=12を維持するように調整しながら
攪拌を続けて水酸化ニッケル固溶体粒子表面に水酸化コ
バルトと水酸化イットリウムの混晶物を析出させた。こ
こで水酸化コバルトの被覆量については、水酸化ニッケ
ル固溶体粒子に対する比率が7.0重量%となるように
調整した。また、水酸化イットリウムの被覆量について
は、水酸化ニッケル固溶体粒子に対する比率がY23
算で1.0重量%となるように調整した。作製したイッ
トリウム混晶水酸化コバルト被覆水酸化ニッケル固溶体
粒子は水洗した後、真空乾燥を行った。以下これを粉末
Dと表記する。なお、この粉末Dは平均粒径が11.0
μm、BET比表面積が14.2m2/g、タップ密度
が1.8g/cm3であった。
Comparative Example 2 The nickel hydroxide solid solution particles obtained in Example 1 were put into a mixed aqueous solution of cobalt nitrate and yttrium nitrate, an aqueous sodium hydroxide solution was gradually added, and pH = 12 was maintained at 35 ° C. The mixed crystal of cobalt hydroxide and yttrium hydroxide was deposited on the surface of the nickel hydroxide solid solution particles while adjusting the temperature as described above. Here, the coating amount of cobalt hydroxide was adjusted so that the ratio with respect to the nickel hydroxide solid solution particles was 7.0% by weight. Further, the coating amount of yttrium hydroxide was adjusted so that the ratio with respect to the nickel hydroxide solid solution particles would be 1.0% by weight in terms of Y 2 O 3 . The produced yttrium mixed crystal cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then vacuum dried. Hereinafter, this is referred to as powder D. The powder D has an average particle size of 11.0.
μm, the BET specific surface area was 14.2 m 2 / g, and the tap density was 1.8 g / cm 3 .

【0041】第1工程で、粉末Aの代わりに粉末Dを用
い、酸化イットリウム粉末を投入しないこと以外、実施
例1と同様の第1工程および第2工程を行い、粉末Dに
酸化処理を施した後、水洗、乾燥を行った。以下これを
粉末Eと表記する。なお、この粉末Eは平均粒径が1
0.8μm、BET比表面積が12.8m2/g、タッ
プ密度が2.0g/cm3であった。また、そのコバル
ト酸化物被覆層中にイットリウムを含有していることを
透過電子顕微鏡(TEM)の観察より確認した。
In the first step, the powder D was used in place of the powder A, and the same first and second steps as in Example 1 were performed except that the yttrium oxide powder was not added, and the powder D was subjected to the oxidation treatment. After that, it was washed with water and dried. Hereinafter, this is referred to as powder E. The powder E has an average particle size of 1
The surface area was 0.8 μm, the BET specific surface area was 12.8 m 2 / g, and the tap density was 2.0 g / cm 3 . Moreover, it was confirmed by observation with a transmission electron microscope (TEM) that yttrium was contained in the cobalt oxide coating layer.

【0042】《比較例3》実施例1で得た水酸化ニッケ
ル固溶体粒子、水酸化コバルト粉末(平均粒径0.1μ
m)、酸化イットリウム粉末(平均粒径1.0μm)を
酸化処理装置内に投入し、実施例1と同様の第1工程お
よび第2工程を行い、酸化処理を施した後、水洗、乾燥
を行った。ここで、水酸化コバルト粉末および酸化イッ
トリウム粉末の投入量は、前記水酸化ニッケル固溶体粒
子に対してそれぞれ7.0重量%、1.0重量%となる
ように調整した。以下これを粉末Fと表記する。この粉
末Fは平均粒径が11.0μm、BET比表面積が1
5.3m2/g、タップ密度が1.9g/cm3であっ
た。
Comparative Example 3 Nickel hydroxide solid solution particles and cobalt hydroxide powder obtained in Example 1 (average particle size 0.1 μm)
m), yttrium oxide powder (average particle size 1.0 μm) was put into an oxidation treatment apparatus, the first step and the second step similar to those in Example 1 were performed, and after the oxidation treatment, washing and drying were performed. went. Here, the input amounts of the cobalt hydroxide powder and the yttrium oxide powder were adjusted to be 7.0% by weight and 1.0% by weight, respectively, with respect to the nickel hydroxide solid solution particles. Hereinafter, this is referred to as powder F. This powder F has an average particle size of 11.0 μm and a BET specific surface area of 1
It was 5.3 m 2 / g and the tap density was 1.9 g / cm 3 .

【0043】[活物質の物性]こうして得られた粉末A〜
Fについて、ヨウ素還元滴定にてコバルト平均価数を算
出した。ここで、各粉末のニッケル平均価数は2.0価
と仮定した。また、粉末B、C、E、Fについて、各粉
末を2t/cm2の圧力で加圧成型してペレットを作製
し、交流4端子法にて粉体導電率を測定した。以上の結
果を表1に示す。
[Physical Properties of Active Material] Powder A thus obtained
The average cobalt valence of F was calculated by iodine reduction titration. Here, the average nickel valence of each powder was assumed to be 2.0. Further, with respect to the powders B, C, E, and F, each powder was pressure-molded at a pressure of 2 t / cm 2 to prepare pellets, and the powder conductivity was measured by an AC 4-terminal method. The above results are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】粉末Bが粉末Cとほぼ同等のBET比表面
積、タップ密度の値を示すのに対し、粉末E、FはBE
T比表面積が大きく、タップ密度が小さくなる傾向があ
る。水酸化コバルトと水酸化イットリウムの混晶物が水
酸化コバルト単体に比べて嵩高いため、粉末Dは粉末A
に比べてBET比表面積が大きく、タップ密度が小さく
なる。酸化処理後も原料粉末のその物性を反映して、粉
末Eは粉末Cに比べてBET比表面積が大きく、タップ
密度が小さくなるものと考えられる。また、粉末Fに関
しては、水酸化コバルトの微粉末を機械的に混合しなが
ら水酸化ニッケル表面に結合させる手法であるため被覆
層表面が粗くなり、遊離したコバルト酸化物微粒子も存
在しているため、さらにBET比表面積が大きく、タッ
プ密度が小さくなるものと考えられる。一方、粉末B
は、粉末Cと同一の原料粉末である粉末Aから作製され
るため、BET比表面積が小さく、タップ密度の大き
い、充填性に優れた活物質粉末となる。
Powder B has almost the same BET specific surface area and tap density as powder C, whereas powders E and F have BE.
The T specific surface area is large and the tap density tends to be small. Since the mixed crystal of cobalt hydroxide and yttrium hydroxide is bulkier than cobalt hydroxide alone, powder D is powder A
The BET specific surface area is large and the tap density is small as compared with. It is considered that the powder E has a larger BET specific surface area and a smaller tap density than the powder C, reflecting the physical properties of the raw material powder even after the oxidation treatment. With respect to the powder F, since the method is a method in which fine powder of cobalt hydroxide is mechanically mixed and bonded to the surface of nickel hydroxide, the surface of the coating layer becomes rough and free cobalt oxide fine particles are also present. Further, it is considered that the BET specific surface area is large and the tap density is small. On the other hand, powder B
Is produced from powder A, which is the same raw material powder as powder C, so that the active material powder has a small BET specific surface area, a large tap density, and excellent filling properties.

【0046】また、粉末Bが粉末Cに比べて、コバルト
平均価数、粉体導電率ともに高い値を示すのに対し、粉
末E、Fは何れも低価数、低導電率になる傾向がある。
粉末Dの被覆層である水酸化コバルトと水酸化イットリ
ウムの混晶物は多量の水和水を含有する。酸化処理時に
はこの水和水が脱水して水酸化コバルト被覆層近傍に水
が生成し、O2濃度が低下するために式4の反応が阻害
され、式3の反応が進行し難くなる。結果として水酸化
コバルト被覆層の酸化が抑制され、粉末Eは粉末Cに比
べて、コバルト平均価数、粉体導電率ともに低い値にな
るものと考えられる。また、粉末Fに関しては、嵩高い
水酸化コバルトの微粉末を使用するため、粒子の混合物
を湿潤状態にするためには多量の水酸化ナトリウム水溶
液が必要となる。従って、多量の水を含有する水酸化コ
バルト粒子を酸化することとなり、粉末Eの場合よりも
さらに式3の反応が進行し難くなるものと考えられる。
結果として式6の副反応により、導電性の乏しいCo3
4が生成してしまい、粉末Eよりもさらにコバルト平
均価数、粉体導電率ともに低い値になるものと考えられ
る。
Further, the powder B has a higher average cobalt valence and powder conductivity than the powder C, while the powders E and F both tend to have a low valence and a low conductivity. is there.
The mixed crystal of cobalt hydroxide and yttrium hydroxide, which is the coating layer of powder D, contains a large amount of water of hydration. During the oxidation treatment, this hydration water is dehydrated to generate water in the vicinity of the cobalt hydroxide coating layer, and the O 2 concentration is lowered, so that the reaction of the formula 4 is inhibited and the reaction of the formula 3 becomes difficult to proceed. As a result, it is considered that the oxidation of the cobalt hydroxide coating layer is suppressed, and the powder E has lower cobalt average valence and powder conductivity than the powder C. Further, since the powder F is a bulky fine powder of cobalt hydroxide, a large amount of aqueous sodium hydroxide solution is required to bring the mixture of particles into a wet state. Therefore, it is considered that the cobalt hydroxide particles containing a large amount of water are oxidized and the reaction of the formula 3 is more difficult to proceed than in the case of the powder E.
As a result, due to the side reaction of Formula 6, Co 3 having poor conductivity is used.
It is considered that O 4 is generated and the average cobalt valence and the powder conductivity are lower than those of the powder E.

【0047】一方、粉末Bは、粉末Cと同一の原料粉末
である粉末Aから作製されるため、粉末Cとほぼ同一の
酸化条件にて容易に処理を施すことができる。酸化イッ
トリウム粉末を混合する分、湿潤状態にするためには水
酸化ナトリウム水溶液を若干多く必要とするが、粉末E
の場合の様にコバルト平均価数、粉体導電率の低下は生
じず、むしろ粉末Cよりもコバルト平均価数、粉体導電
率ともに優れた活物質粉末となる。これは、酸化処理が
以下の機構で進行するためと考えられる。まず第1工程
において、粉末Aは、その表面が水酸化ナトリウム水溶
液で均一に濡れた湿潤粒子となり、同時に酸化イットリ
ウム粉末は水酸化ナトリウム水溶液によってゲル状の水
酸化イットリウムに変化する。続く第2工程において、
水酸化コバルト被覆層は式1、式2および式3の反応に
よって高次コバルト酸化物に酸化され、同時にゲル状の
水酸化イットリウムはその被覆層中に拡散していく。被
覆層中に拡散したゲル状の水酸化イットリウムは脱水し
て酸化イットリウムに変化し、この際、被覆層近傍に水
が生成するが、すでに被覆層は高次コバルト酸化物まで
酸化されており悪影響を受けることはない。むしろ、高
次コバルト酸化物被覆層中に拡散したゲル状の水酸化イ
ットリウムがナトリウムを含有しているため、被覆層が
さらに高次(特開平11−97008号公報記載のγ−
CoOOH)まで酸化されるのではないかと推察してい
る。
On the other hand, since the powder B is produced from the powder A which is the same raw material powder as the powder C, the powder B can be easily treated under substantially the same oxidizing conditions as the powder C. The amount of yttrium oxide powder mixed in requires a slightly larger amount of sodium hydroxide aqueous solution to obtain a wet state.
The average cobalt valence and the powder conductivity do not decrease as in the above case, and the active material powder is superior to the powder C in both the cobalt average valence and the powder conductivity. It is considered that this is because the oxidation process proceeds by the following mechanism. First, in the first step, the powder A becomes wet particles whose surface is uniformly wetted with an aqueous sodium hydroxide solution, and at the same time, the yttrium oxide powder is changed into a gel-form yttrium hydroxide by the aqueous sodium hydroxide solution. In the following second step,
The cobalt hydroxide coating layer is oxidized to higher cobalt oxide by the reactions of the formulas 1, 2 and 3, and at the same time, the gel-form yttrium hydroxide diffuses into the coating layer. The gel-form yttrium hydroxide diffused in the coating layer is dehydrated and converted to yttrium oxide, at which time water is generated in the vicinity of the coating layer, but the coating layer has already been oxidized to higher cobalt oxides, which has a bad effect. I will not receive it. Rather, since the gel-form yttrium hydroxide diffused in the higher-order cobalt oxide coating layer contains sodium, the coating layer has a higher order (γ-described in JP-A No. 11-97008).
It is speculated that even CoOOH) may be oxidized.

【0048】[ニッケル・水素蓄電池の特性]粉末Bに、
増粘剤としてカルボキシメチルセルロース(CMC)を
0.1重量%、バインダーとしてポリテトラフルオロエ
チレン(PTFE)を0.2重量%と適量の純水とを加
えて混合分散させ、活物質スラリーとした。この活物質
スラリーを厚さ1.3mmの発泡ニッケル多孔体基板に
充填し、80℃の乾燥機内で乾燥させた後、ロールプレ
スにより厚さ約0.7mmに圧延し、さらにこれを所定
の大きさに切断加工してニッケル正極を作製した。
[Characteristics of nickel-hydrogen storage battery]
Carboxymethyl cellulose (CMC) was added as a thickener in an amount of 0.1% by weight, and polytetrafluoroethylene (PTFE) was added in an amount of 0.2% by weight as a binder, and an appropriate amount of pure water was mixed and dispersed to obtain an active material slurry. This active material slurry was filled in a foamed nickel porous substrate having a thickness of 1.3 mm, dried in a drier at 80 ° C., and then rolled by a roll press to a thickness of about 0.7 mm, and further, a predetermined size. It was cut into pieces and a nickel positive electrode was produced.

【0049】この正極と水素吸蔵合金を主体とした負
極、親水化処理を施したポリプロピレン不織布セパレー
タ、水酸化カリウム濃度が7.0規定、水酸化リチウム
濃度が1.0規定である2成分系アルカリ電解液を用
い、公知の方法によりAAサイズのニッケル・水素蓄電
池Bを作製した。
This positive electrode and a negative electrode mainly composed of a hydrogen storage alloy, a polypropylene nonwoven fabric separator subjected to a hydrophilic treatment, a two-component alkali having a potassium hydroxide concentration of 7.0 normal and a lithium hydroxide concentration of 1.0 normal. AA-sized nickel-hydrogen storage battery B was produced by a known method using the electrolytic solution.

【0050】また、粉末Bの代わりに、粉末E、Fを用
いたこと以外、電池Bと同様にして、それぞれ電池E、
Fを作製した。さらに、粉末Cを用い、粉末Cに対して
1.0重量%のY23を添加したこと以外、電池Bと同
様にして、電池Cを作製した。ここで、これら4種の電
池は、使用した各粉末の充填性が異なるため、正極の充
填密度に差違が生じ、電池容量にばらつきが生じた。ニ
ッケルの1電子反応を基準とした時の各電池の理論容量
は、電池B、Cが1500mAh、電池E、Fが140
0mAhであった。
Further, in the same manner as the battery B except that the powders E and F were used instead of the powder B, the batteries E and
F was produced. Further, a battery C was prepared in the same manner as the battery B, except that the powder C was used and 1.0% by weight of Y 2 O 3 was added to the powder C. Here, these four types of batteries have different packing properties of the powders used, so that the packing densities of the positive electrodes differ, and the battery capacities vary. The theoretical capacity of each battery based on the one-electron reaction of nickel is 1500 mAh for batteries B and C and 140 mA for batteries E and F.
It was 0 mAh.

【0051】これら4種の電池を、20℃の一定温度
で、まず充電レート0.1CmAで15時間充電し、次
いで放電レート0.2CmAで電池電圧が1.0Vにな
るまで放電させるサイクルを5サイクル繰り返し、5サ
イクル目の放電容量を測定し、放電容量C1とした。
These four types of batteries were charged at a constant temperature of 20 ° C. at a charge rate of 0.1 CmA for 15 hours, and then discharged at a discharge rate of 0.2 CmA until the battery voltage reached 1.0 V. The discharge capacity at the fifth cycle was measured by repeating the cycle, and was defined as the discharge capacity C 1 .

【0052】次に、50℃の一定温度にて充電レート
0.1CmAで15時間充電し、3時間の休止の後、2
0℃の一定温度にて放電レート0.2CmAで電池電圧
が1.0Vになるまで放電させた時の放電容量を測定
し、放電容量C2とした。理論容量に対する放電に寄与
した活物質の割合を示す指標として、次式で定義される
活物質利用率を求めた。また、高温での充電効率を示す
指標として、次式で定義される50℃充電効率を求め
た。 活物質利用率(%)={放電容量C1/理論容量}×1
00 50℃充電効率(%)={放電容量C2/放電容量C1
×100
Next, the battery was charged at a constant temperature of 50 ° C. at a charge rate of 0.1 CmA for 15 hours, and after 3 hours of rest, 2
The discharge capacity was measured when the battery was discharged at a constant temperature of 0 ° C. at a discharge rate of 0.2 CmA until the battery voltage became 1.0 V, and the discharge capacity was defined as C 2 . The active material utilization rate defined by the following equation was obtained as an index showing the ratio of the active material that contributed to the discharge with respect to the theoretical capacity. Further, as an index showing charging efficiency at high temperature, 50 ° C. charging efficiency defined by the following equation was obtained. Active material utilization rate (%) = {discharge capacity C 1 / theoretical capacity} × 1
00 50 ° C charging efficiency (%) = {discharge capacity C 2 / discharge capacity C 1 }
× 100

【0053】さらに、20℃の一定温度で、充電レート
0.1CmAで15時間充電し、次いで放電レート0.
2CmAで電池電圧が1.0Vになるまで放電させた
後、直ちに電池を分解して放電後の各正極粉末を採取し
た。この採取した各正極粉末についてヨウ素還元滴定を
行い、放電後の各正極粉末のニッケル平均価数を算出し
た。ここで、各粉末のコバルト平均価数は表1の値であ
ると仮定してニッケル平均価数を算出した。
Further, the battery was charged at a constant temperature of 20 ° C. and a charge rate of 0.1 CmA for 15 hours, and then discharged at a discharge rate of 0.
After discharging at 2 CmA until the battery voltage became 1.0 V, the battery was immediately disassembled to collect each discharged positive electrode powder. Iodine reduction titration was performed on each of the collected positive electrode powders, and the average nickel valence of each positive electrode powder after discharge was calculated. Here, the average valence of nickel was calculated assuming that the average valence of cobalt of each powder is the value in Table 1.

【0054】以上の充放電試験結果を利用率、50℃充
電効率、放電後ニッケル平均価数として表2に示す。ま
た、各電池の20℃一定温度での放電曲線を図1に示
す。
The results of the above charge / discharge test are shown in Table 2 as the utilization factor, the charging efficiency at 50 ° C. and the average valence of nickel after discharging. Further, the discharge curve of each battery at a constant temperature of 20 ° C. is shown in FIG.

【0055】[0055]

【表2】 [Table 2]

【0056】電池Bにおいて、電池Cに比べて優れた利
用率、50℃充電効率を示した。表1より粉末Bがコバ
ルト平均価数、粉体導電率ともに非常に優れた値を示す
ことから、正極中においてきわめて良好な導電ネットワ
ークが形成されており、高利用率を示すことが示唆され
る。実際、放電後正極粉末のニッケル価数は電池Cに比
べて低い値を示し、このことは粉末Bがより深くまで放
電可能であることを意味している。また、充電時の酸素
発生過電圧の増大に効果を有するイットリウムがコバル
ト被覆層中に均一に分散していることから、単に酸化イ
ットリウム粉末を添加している電池Cよりも、50℃充
電効率が向上するものと考えられる。
The battery B showed a higher utilization factor and a 50 ° C. charging efficiency than the battery C. From Table 1, it is suggested that powder B has extremely excellent average cobalt valence and powder conductivity, and thus a very good conductive network is formed in the positive electrode, indicating high utilization. . In fact, the nickel valence of the positive electrode powder after discharge is lower than that of the battery C, which means that the powder B can be discharged deeper. In addition, since yttrium, which has an effect of increasing the oxygen generation overvoltage at the time of charging, is uniformly dispersed in the cobalt coating layer, the charging efficiency at 50 ° C. is higher than that of the battery C in which yttrium oxide powder is simply added. It is supposed to do.

【0057】電池Eに関しては、電池Cに比べて50℃
充電効率は優れた値を示すが、常温での利用率は若干し
か向上しない。表1より粉末Eは粉末Cに比べて、コバ
ルト平均価数、粉体導電率ともに若干低い値を示し、放
電後の正極粉末のニッケル価数は電池Cとほぼ同等の値
を示すことから、正極中の導電ネットワークは電池Cと
ほぼ同等あるいは若干劣るものと考えられる。若干の利
用率向上は、常温でも被覆層中のイットリウムによって
充電受け入れ性が向上しているためと推察される。しか
しながら、前述したように粉末Eは充填性が劣るため、
電池Cに比べて正極充填密度が減少し、結果として図1
に示すように放電容量は小さくなってしまう。なお、5
0℃充電効率の向上は、前述同様、イットリウムがコバ
ルト被覆層中に分散性良く存在しているためと考えられ
る。
The temperature of the battery E is 50 ° C. higher than that of the battery C.
The charging efficiency shows an excellent value, but the utilization rate at room temperature is only slightly improved. As shown in Table 1, powder E has a slightly lower average cobalt valence and powder conductivity than powder C, and the nickel valence of the positive electrode powder after discharge is almost the same as that of battery C. The conductive network in the positive electrode is considered to be almost the same as or slightly inferior to Battery C. It is speculated that the slight improvement in the utilization factor is due to the improvement in the charge acceptance due to the yttrium in the coating layer even at room temperature. However, as described above, since the powder E has poor filling properties,
The positive electrode packing density was reduced compared to Battery C, resulting in
As shown in, the discharge capacity becomes small. 5
It is considered that the improvement of the 0 ° C. charging efficiency is due to the presence of yttrium in the cobalt coating layer with good dispersibility, as described above.

【0058】電池Fに関しては、電池Cに比べて利用率
が減少する。表1より粉末Fは粉末Cに比べて、コバル
ト平均価数、粉体導電率ともに低い値を示しており、放
電し難い正極になっていると考えられる。放電後の正極
粉末のニッケル価数も電池Cに比べて高い値を示してお
り、十分放電できていないことを示唆している。さら
に、前述したように粉末Fは充填性も劣るため、結果と
して図1に示すように電池Fの電池容量はきわめて小さ
なものとなる。なお、50℃充電効率は、酸化イットリ
ウム粉末が電池Cと同様に正極活物質の粒子間に存在す
るため、電池Cと同等になる。
The utilization factor of the battery F is lower than that of the battery C. From Table 1, the powder F has a lower average cobalt valence and a lower powder conductivity than the powder C, and is considered to be a positive electrode that is difficult to discharge. The nickel valence of the positive electrode powder after discharging also showed a higher value than that of the battery C, suggesting that the battery was not sufficiently discharged. Further, as described above, since the powder F has poor filling property, as a result, the battery capacity of the battery F becomes extremely small as shown in FIG. The 50 ° C. charging efficiency is the same as that of the battery C because the yttrium oxide powder exists between the particles of the positive electrode active material as in the battery C.

【0059】《実施例2》実施例1に記載の粉末Aを大
気中にて1ヶ月間放置した。1ヶ月放置後の粉末Aは、
若干、褐色がかった色に変色した。以下これを粉末Gと
表記する。なお、この粉末Gは平均粒径が10.3μ
m、BET比表面積が10.3m2/g、タップ密度が
2.2g/cm3であった。次に、この粉末Gを用いて
実施例1に記載の第1工程および第2工程と同様にして
酸化処理を施した後、水洗、乾燥を行った。以下これを
粉末Hと表記する。こうして得られた粉末Hは平均粒径
が10.3μm、BET比表面積が9.8m2/g、タ
ップ密度が2.2g/cm3であった。また、そのコバ
ルト酸化物被覆層中にイットリウムを含有していること
を透過電子顕微鏡(TEM)の観察より確認した。
Example 2 The powder A described in Example 1 was left in the atmosphere for 1 month. Powder A after left for 1 month is
A slight brownish discoloration occurred. Hereinafter, this is referred to as powder G. This powder G has an average particle size of 10.3μ.
m, BET specific surface area was 10.3 m 2 / g, and tap density was 2.2 g / cm 3 . Next, the powder G was subjected to an oxidation treatment in the same manner as in the first step and the second step described in Example 1, followed by washing with water and drying. Hereinafter, this is referred to as powder H. The powder H thus obtained had an average particle size of 10.3 μm, a BET specific surface area of 9.8 m 2 / g, and a tap density of 2.2 g / cm 3 . Moreover, it was confirmed by observation with a transmission electron microscope (TEM) that yttrium was contained in the cobalt oxide coating layer.

【0060】《比較例4》比較例2に記載の粉末Dを大
気中にて1ヶ月間放置した。1ヶ月放置後の粉末Dは、
茶褐色に変色した。以下これを粉末Iと表記する。な
お、この粉末Iは平均粒径が11.1μm、BET比表
面積が13.8m2/g、タップ密度が1.8g/cm3
であった。次に、この粉末Iを用いて、酸化イットリウ
ム粉末を投入しないこと以外はすべて実施例1に記載の
第1工程および第2工程と同様にして酸化処理を施した
後、水洗、乾燥を行った。以下これを粉末Jと表記す
る。こうして得られた粉末Jは平均粒径が11.0μ
m、BET比表面積が12.9m 2/g、タップ密度が
1.9g/cm3であった。また、そのコバルト酸化物
被覆層中にイットリウムを含有していることを透過電子
顕微鏡(TEM)の観察より確認した。
Comparative Example 4 The powder D described in Comparative Example 2 was used in a large amount.
It was left in the air for one month. Powder D after left for 1 month is
It turned dark brown. Hereinafter this is referred to as powder I. Na
The powder I has an average particle size of 11.1 μm and a BET ratio table.
Area is 13.8m2/ G, tap density is 1.8g / cm3
Met. Next, using this powder I, yttrium oxide
All described in Example 1 except that no powder was added.
Oxidation treatment was performed in the same manner as the first step and the second step.
Then, it was washed with water and dried. Hereinafter, this is referred to as powder J
It The powder J thus obtained has an average particle size of 11.0 μ.
m, BET specific surface area 12.9 m 2/ G, tap density
1.9 g / cm3Met. Also, its cobalt oxide
It is confirmed that the coating layer contains yttrium by transmission electron
It was confirmed by observation with a microscope (TEM).

【0061】[活物質の物性]粉末G〜Jについて、実施
例1に記載と同様の方法にてコバルト平均価数を算出し
た。また、粉末H、Jについて、実施例1に記載と同様
の方法にて粉体導電率を測定した。以上の結果を表3に
示す。
[Physical Properties of Active Material] With respect to the powders G to J, the average cobalt valence was calculated by the same method as described in Example 1. Further, with respect to the powders H and J, the powder conductivity was measured by the same method as described in Example 1. The above results are shown in Table 3.

【0062】[0062]

【表3】 [Table 3]

【0063】粉末Aを大気中にて1ヶ月放置した粉末G
については、コバルト平均価数は放置前に比べてほとん
ど上昇せず、それを酸化処理した粉末Hも、粉末Aを放
置せずに酸化処理した粉末Bとほぼ同等のコバルト平均
価数、粉体導電率の値を示す。このことは、本発明の製
造方法では、使用する粉末Aの水酸化コバルト被覆層が
空気中で長期保管した場合でも比較的酸化され難いた
め、長期保管後に酸化処理を施しても、コバルト平均価
数、粉体導電率ともに優れた活物質粉末を得ることがで
きることを意味している。
Powder G obtained by leaving powder A in the air for one month
Regarding, the average cobalt valence was almost no higher than that before the standing, and the powder H obtained by the oxidation treatment of the powder H also had the same cobalt average valence and the same powder B as the powder B obtained by the oxidation treatment of the powder A without standing. The value of conductivity is shown. This means that in the production method of the present invention, the cobalt hydroxide coating layer of the powder A to be used is relatively difficult to be oxidized even when stored in the air for a long period of time. This means that it is possible to obtain an active material powder having excellent number and powder conductivity.

【0064】一方、粉末Dを大気中にて1ヶ月放置した
粉末Iについては、コバルト平均価数は放置前に比べて
上昇しており、水酸化コバルト被覆層が長期保管によっ
て酸化されていることが分かる。被覆層である水酸化コ
バルトと水酸化イットリウムの混晶物が空気中にて酸化
され易く、時間経過に伴って低次コバルト酸化物(Co
34)に酸化されたためと考えられる。また、粉末Iを
酸化処理した粉末Jでは、粉末Dを放置せずに酸化処理
した粉末Eに比べて、コバルト平均価数、粉体導電率と
もに低い値を示した。長期放置にてコバルト被覆層中に
生成した低導電性の低次コバルト酸化物(Co34)が
アルカリ雰囲気下でも比較的安定であり、高導電性の高
次コバルト酸化物に酸化されないためと考えられる。
On the other hand, in the powder I which has been left in the air for one month, the average cobalt valence is higher than that before the powder is left, and the cobalt hydroxide coating layer is oxidized by the long-term storage. I understand. The mixed crystal of cobalt hydroxide and yttrium hydroxide, which is the coating layer, is easily oxidized in the air, and the lower cobalt oxide (Co
It is thought that this is because it was oxidized to 3 O 4 ). In addition, in the powder J obtained by oxidizing the powder I, both the average cobalt valence and the powder conductivity were lower than those of the powder E in which the powder D was oxidized without being left. The low-conductivity low-order cobalt oxide (Co 3 O 4 ) generated in the cobalt coating layer after being left for a long time is relatively stable even in an alkaline atmosphere and is not oxidized to the high-conductivity high-order cobalt oxide. it is conceivable that.

【0065】[ニッケル・水素蓄電池の特性]粉末H、J
を用いて、実施例1に記載と同様の方法にてAAサイズ
のニッケル・水素蓄電池を作製した。以下、粉末H、J
に対応するこれらの電池を、それぞれ電池H、Jと表記
する。なお、粉末H、Jの充填性が異なるため、正極の
充填密度に差違が生じ、ニッケルの1電子反応を基準と
した時の各電池の理論容量は、電池Hが1500mA
h、電池Jが1400mAhとなった。
[Characteristics of nickel-hydrogen storage battery] Powder H, J
Using, the AA size nickel-hydrogen storage battery was produced by the same method as described in Example 1. Hereinafter, powders H and J
These batteries corresponding to are referred to as batteries H and J, respectively. Since the packing properties of the powders H and J are different, the packing densities of the positive electrodes are different, and the theoretical capacity of each battery based on the one-electron reaction of nickel is 1500 mA for the battery H.
h, the battery J became 1400 mAh.

【0066】これらの電池を、20℃の一定温度で、ま
ず充電レート0.1CmAで15時間充電し、次いで放
電レート0.2CmAで電池電圧が1.0Vになるまで
放電させるサイクルを5サイクル繰り返し、5サイクル
目の放電容量を測定し、実施例1と同様に利用率を算出
した。また、放電終了後、直ちに各電池を分解して放電
後の正極粉末を採取した。この採取した正極粉末につい
てヨウ素還元滴定を行い、放電後の正極粉末のニッケル
平均価数を算出した。ここで、各粉末のコバルト平均価
数は表3の値であると仮定してニッケル平均価数を算出
した。
These batteries were charged at a constant temperature of 20 ° C. at a charge rate of 0.1 CmA for 15 hours and then discharged at a discharge rate of 0.2 CmA until the battery voltage reached 1.0 V. This cycle was repeated 5 times. The discharge capacity at the 5th cycle was measured, and the utilization rate was calculated in the same manner as in Example 1. Immediately after the end of discharge, each battery was disassembled to collect the positive electrode powder after discharge. The collected positive electrode powder was subjected to iodine reduction titration to calculate the average nickel valence of the positive electrode powder after discharge. Here, the average nickel valence of each powder was calculated assuming that the average cobalt valence of each powder is the value in Table 3.

【0067】以上の充放電試験結果を利用率、放電後ニ
ッケル平均価数として表4に示す。また、各電池の放電
曲線を図2に示す。なお、表4、図2ともに原料粉末を
放置せずに酸化処理を施した粉末B、Eを用いて作製し
た電池B、Eの結果も併記する。
The results of the above charge / discharge test are shown in Table 4 as the utilization ratio and the average valence of nickel after discharge. The discharge curve of each battery is shown in FIG. In addition, in Table 4 and FIG. 2, the results of the batteries B and E prepared by using the powders B and E that were subjected to the oxidation treatment without leaving the raw material powder are also shown.

【0068】[0068]

【表4】 [Table 4]

【0069】電池Hに関しては、電池Bとほぼ同等の優
れた利用率を示した。また、放電後正極粉末のニッケル
価数も電池Bと同様に低い値を示し、深くまで放電でき
ていることを表している。表3より粉末Hが粉末Bと同
等の高いコバルト平均価数、粉体導電率を示すことか
ら、正極中においてきわめて良好な導電ネットワークが
形成されているためと考えられる。
The battery H exhibited an excellent utilization rate almost equal to that of the battery B. Also, the nickel valence of the positive electrode powder after discharge shows a low value as in the case of the battery B, indicating that deep discharge is possible. From Table 3, it is considered that the powder H has the same high cobalt average valence and powder conductivity as the powder B, and it is considered that an extremely good conductive network is formed in the positive electrode.

【0070】電池Jに関しては、電池Eに比べて顕著な
利用率の減少が確認された。放電後正極粉末のニッケル
価数も電池Eに比べて上昇しており、十分放電できてい
ないことを示唆している。表3より粉末Jは粉末Eに比
べて、コバルト平均価数、粉体導電率ともに低い値を示
しており、放電し難い正極になっていると考えられる。
Regarding Battery J, it was confirmed that the utilization factor was remarkably reduced as compared with Battery E. The nickel valence of the positive electrode powder after discharge is also higher than that of the battery E, suggesting that the battery was not sufficiently discharged. From Table 3, powder J has lower cobalt average valence and powder conductivity than powder E, and it is considered that the powder J is a positive electrode that is difficult to discharge.

【0071】以上の結果から、本発明の製造方法によっ
て、利用率および高温雰囲気下での充電効率に優れ、か
つ高密度充填が可能なイットリウム分散コバルト酸化物
被覆水酸化ニッケル粉末を効率的に製造できることが明
らかとなった。また、本発明の製造方法に用いる原料粉
末は空気中でも比較的酸化され難いため、長期保管後の
原料粉末を用いても、優れた活物質粉末が得られること
も明らかとなった。
From the above results, the yttrium-dispersed cobalt oxide-coated nickel hydroxide powder having excellent utilization factor and charging efficiency under high temperature atmosphere and capable of high density filling can be efficiently produced by the production method of the present invention. It became clear that it was possible. Further, it has been clarified that the raw material powder used in the production method of the present invention is relatively hard to be oxidized even in the air, so that even if the raw material powder after long-term storage is used, an excellent active material powder can be obtained.

【0072】《実施例3》混合する水酸化ナトリウム水
溶液の濃度を、35、40、45、48重量%と変化さ
せること以外はすべて実施例1に記載の第1工程および
第2工程と同様にして酸化処理粉末を作製した。これら
の酸化処理粉末について実施例1に記載と同様の方法に
てコバルト平均価数、粉体導電率を測定した。結果を表
5に示す。また、各酸化処理粉末を用いて実施例1に記
載と同様の方法にてニッケル・水素蓄電池を作製し、充
放電評価を行った。図3に水酸化ナトリウム水溶液濃度
と活物質利用率の関係を示す。
Example 3 All steps were the same as the first step and the second step described in Example 1 except that the concentration of the mixed sodium hydroxide aqueous solution was changed to 35, 40, 45 and 48% by weight. To produce an oxidation-treated powder. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. The results are shown in Table 5. In addition, a nickel-hydrogen storage battery was prepared by using each oxidation-treated powder in the same manner as in Example 1, and the charge / discharge evaluation was performed. FIG. 3 shows the relationship between the sodium hydroxide aqueous solution concentration and the active material utilization rate.

【0073】[0073]

【表5】 [Table 5]

【0074】表5より、第1工程にて混合する水酸化ナ
トリウム水溶液の濃度を40重量%よりも大きくした場
合に、コバルト平均価数、粉体導電率ともに高い値を示
し、被覆層が高次コバルト酸化物まで酸化されているこ
とが分かる。また、利用率もその結果に対応して、水酸
化ナトリウム水溶液の濃度を40重量%よりも大きくし
た場合に高い値を示していることが図3より分かる。
From Table 5, when the concentration of the aqueous sodium hydroxide solution mixed in the first step is made higher than 40% by weight, both the cobalt average valence and the powder conductivity show high values, and the coating layer is high. It can be seen that even the subcobalt oxide is oxidized. Further, it can be seen from FIG. 3 that the utilization rate also shows a high value when the concentration of the aqueous sodium hydroxide solution is made higher than 40% by weight, corresponding to the result.

【0075】この結果は以下のように推察される。酸化
反応プロセスの1つは式1、式2で示されるように、水
酸化コバルトが水酸化ナトリウム水溶液に溶解してコバ
ルト錯イオンが生成し、この錯イオンが酸素と反応して
高次コバルト酸化物になる反応である。従って、酸化処
理の際にはある程度の量の水酸化ナトリウム水溶液が高
温下で被覆層表面に存在していなければならない。しか
し、酸化処理は水酸化ナトリウム水溶液の沸点近くで行
われるため、水酸化ナトリウム水溶液の濃度が低く、そ
の蒸発が早いと反応を十分に進めることができない。逆
に水酸化ナトリウム水溶液の濃度が高いほど沸点が上昇
し、その蒸発速度が遅くなるため、酸化処理に適すると
言える。また、式3で表される酸化反応の2つ目のプロ
セスを考えた場合にも、OH-濃度が高い方が酸化が促
進されるため、やはり水酸化ナトリウム水溶液の濃度は
高い方が酸化処理に適すると考えられる。
This result is estimated as follows. As one of the oxidation reaction processes, as shown in Formula 1 and Formula 2, cobalt hydroxide is dissolved in an aqueous sodium hydroxide solution to form a cobalt complex ion, and this complex ion reacts with oxygen to form a higher cobalt oxidation. It is a reaction that becomes a thing. Therefore, a certain amount of sodium hydroxide aqueous solution must be present on the surface of the coating layer at high temperature during the oxidation treatment. However, since the oxidation treatment is performed near the boiling point of the sodium hydroxide aqueous solution, the reaction cannot be sufficiently advanced if the concentration of the sodium hydroxide aqueous solution is low and the evaporation thereof is fast. On the contrary, the higher the concentration of the sodium hydroxide aqueous solution, the higher the boiling point and the slower the evaporation rate thereof, and therefore, it can be said that it is suitable for the oxidation treatment. Also, when considering the second process of the oxidation reaction represented by Formula 3, the higher the OH concentration is, the more the oxidation is promoted. Therefore, the higher the concentration of the sodium hydroxide aqueous solution is, the higher the oxidation treatment is. Considered to be suitable for.

【0076】本実施例の検討結果からは、水酸化ナトリ
ウム水溶液の濃度を40重量%よりも大とした場合に、
被覆層が高次コバルト酸化物まで充分に酸化され、その
結果として高利用率を発現することが分かった。以上よ
り、本発明の製造方法での酸化処理に使用する水酸化ナ
トリウム水溶液の濃度は40重量%よりも大きいものが
適することが明らかとなった。
From the examination results of this example, when the concentration of the aqueous sodium hydroxide solution was set to be higher than 40% by weight,
It was found that the coating layer was sufficiently oxidized to higher-order cobalt oxide, resulting in high utilization rate. From the above, it has been clarified that the concentration of the sodium hydroxide aqueous solution used for the oxidation treatment in the production method of the present invention is preferably greater than 40% by weight.

【0077】《実施例4》第2工程における加熱温度
を、70、90、110、130、140℃と変化させ
ること以外はすべて実施例1に記載の第1工程および第
2工程と同様にして酸化処理粉末を作製した。これらの
酸化処理粉末について実施例1に記載と同様の方法にて
コバルト平均価数、粉体導電率を測定した。結果を表6
に示す。また、各酸化処理粉末を用いて実施例1に記載
と同様の方法にてニッケル・水素蓄電池を作製し、充放
電評価を行った。図4に酸化処理温度と活物質利用率の
関係を示す。
Example 4 All steps were the same as the first and second steps described in Example 1 except that the heating temperature in the second step was changed to 70, 90, 110, 130 and 140 ° C. Oxidized powder was prepared. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. The results are shown in Table 6.
Shown in. In addition, a nickel-hydrogen storage battery was prepared by using each oxidation-treated powder in the same manner as in Example 1, and the charge / discharge evaluation was performed. FIG. 4 shows the relationship between the oxidation treatment temperature and the active material utilization rate.

【0078】[0078]

【表6】 [Table 6]

【0079】表6より、70〜140℃の温度範囲にて
酸化処理を行った何れの場合も、良好なコバルト平均価
数、粉体導電率の値を示し、被覆層が高次コバルト酸化
物まで酸化されていることが分かる。しかし図4に示す
ように、利用率に関しては140℃で酸化処理した粉末
にて顕著な低下が見られた。140℃で酸化処理した粉
末でも良好なコバルト平均価数、粉体導電率の値を示す
ことから、この低下はコバルト酸化物被覆層に起因する
ものではなく、処理温度が高温すぎて被覆層内部の水酸
化ニッケル粒子が損傷を受けたためと考えられる。ま
た、70℃で酸化処理した場合は、コバルト平均価数、
粉体導電率、利用率ともに良好な粉末が得られるもの
の、酸化処理に数時間もの時間を要することが明らかに
なった。これは、酸化反応の速度が処理温度によって影
響を受け、処理温度が低いほど酸化反応の進行が遅くな
るためである。以上より、本発明の製造方法での酸化処
理時の加熱温度は90〜130℃が適することが明らか
となった。
From Table 6, in any case where the oxidation treatment was carried out in the temperature range of 70 to 140 ° C., good cobalt average valence and powder conductivity were shown, and the coating layer was a higher cobalt oxide. You can see that it has been oxidized up to. However, as shown in FIG. 4, the utilization rate of the powder oxidized at 140 ° C. was significantly reduced. Even if the powder was oxidized at 140 ° C., the average cobalt valence and powder conductivity values were good, so this decrease was not due to the cobalt oxide coating layer, and the treatment temperature was too high and the inside of the coating layer was too high. It is considered that the nickel hydroxide particles in 1. were damaged. When the oxidation treatment is performed at 70 ° C., the average valence of cobalt,
Although it was possible to obtain a powder having good powder conductivity and utilization rate, it became clear that the oxidation treatment requires several hours. This is because the rate of the oxidation reaction is affected by the treatment temperature, and the lower the treatment temperature, the slower the progress of the oxidation reaction. From the above, it became clear that the heating temperature during the oxidation treatment in the production method of the present invention is suitably 90 to 130 ° C.

【0080】《実施例5》第2工程において、補助加熱
手段としてマイクロ波照射を行うこと以外はすべて実施
例1に記載の第1工程および第2工程と同様にして酸化
処理粉末を作製した。以下これを粉末Kと表記する。こ
の粉末Kについて実施例1に記載と同様の方法にてコバ
ルト平均価数、粉体導電率を測定した。さらに、粉末K
を用いて実施例1に記載と同様の方法にてニッケル・水
素蓄電池を作製し、充放電評価を行った。以上の結果を
粉末Bの値と比較して表7に示す。
Example 5 In the second step, an oxidation-treated powder was produced in the same manner as the first step and the second step described in Example 1 except that microwave irradiation was performed as an auxiliary heating means. Hereinafter, this is referred to as powder K. With respect to this powder K, the average cobalt valence and the powder conductivity were measured in the same manner as in Example 1. Furthermore, powder K
Using the above, a nickel-hydrogen storage battery was prepared in the same manner as described in Example 1, and the charge / discharge evaluation was performed. The above results are shown in Table 7 in comparison with the value of powder B.

【0081】[0081]

【表7】 [Table 7]

【0082】表7より、粉末Kが粉末Bに比べてコバル
ト平均価数、粉体導電率、利用率ともに向上することが
分かる。マイクロ波照射による加熱は、水酸化ナトリウ
ム水溶液で濡れている粒子表面の水酸化コバルト被覆層
部分から起こるため、被覆層の酸化反応がより効率的に
進行したためと考えられる。また、マイクロ波照射を行
うことにより、加熱むらをほとんど生じることなく、迅
速に所定温度まで昇温することができ、酸化処理時間の
短縮が図られるという利点も併せ持つ。以上より、第2
工程において補助加熱手段としてマイクロ波照射を用い
るとさらに好ましいことが明らかとなった。
From Table 7, it can be seen that the powder K has improved cobalt average valence, powder conductivity, and utilization rate as compared with the powder B. It is considered that since the heating by microwave irradiation occurs from the cobalt hydroxide coating layer portion of the particle surface which is wet with the sodium hydroxide aqueous solution, the oxidation reaction of the coating layer proceeds more efficiently. In addition, by performing microwave irradiation, it is possible to quickly raise the temperature to a predetermined temperature with almost no heating unevenness, and it is possible to shorten the oxidation treatment time. From the above, the second
It has become clear that it is more preferable to use microwave irradiation as an auxiliary heating means in the process.

【0083】《実施例6》原料粉末の水酸化コバルト被
覆量を、水酸化ニッケル固溶体粒子に対して、3、5、
7、12、14重量%と変化させること以外はすべて実
施例1に記載の第1工程および第2工程と同様にして酸
化処理粉末を作製した。これらの酸化処理粉末について
実施例1に記載と同様の方法にてコバルト平均価数、粉
体導電率を測定した。結果を表8に示す。また、各酸化
処理粉末を用いて実施例1に記載と同様の方法にてニッ
ケル・水素蓄電池を作製し、充放電評価を行った。図5
に水酸化コバルト被覆量と活物質利用率の関係を示す。
Example 6 The coating amount of cobalt hydroxide in the raw material powder was set to 3, 5 with respect to the nickel hydroxide solid solution particles.
Oxidation-treated powder was produced in the same manner as in the first step and the second step described in Example 1 except that the content was changed to 7, 12, and 14% by weight. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. The results are shown in Table 8. In addition, a nickel-hydrogen storage battery was prepared by using each oxidation-treated powder in the same manner as in Example 1, and the charge / discharge evaluation was performed. Figure 5
Shows the relationship between the cobalt hydroxide coating amount and the active material utilization rate.

【0084】[0084]

【表8】 [Table 8]

【0085】表8および図5より、水酸化コバルトが5
重量%以上被覆された原料粉末を用いた場合、コバルト
平均価数、粉体導電率、利用率ともに良好な値を示すこ
とが分かる。被覆量が3重量%の粉末では粉体導電率お
よび利用率の顕著な低下が見られるが、この低下は被覆
量が少なすぎて十分な導電ネットワークが形成できない
ためと考えられる。また、被覆量が5〜12重量%の範
囲では利用率が徐々に増加するが、12重量%を超える
ともはや利用率は増大せず、むしろ、水酸化ニッケル量
の減少による正極容量の低下が顕著になる。さらに、被
覆層であるコバルト酸化物の一部が剥離して、酸化処理
装置内壁へ付着するという問題も生じた。以上より、本
発明の製造方法にて使用する原料粉末の水酸化コバルト
被覆量は、水酸化ニッケル固溶体粒子に対して、5〜1
2重量%が適することが明らかとなった。
From Table 8 and FIG. 5, cobalt hydroxide was 5
It can be seen that when the raw material powder coated in an amount of not less than wt% is used, the average cobalt valence, the powder conductivity, and the utilization rate show good values. With the powder having a coating amount of 3% by weight, the powder conductivity and the utilization rate are remarkably reduced, but it is considered that this reduction is because the coating amount is too small to form a sufficient conductive network. Further, the utilization rate gradually increases when the coating amount is in the range of 5 to 12% by weight, but when the coating amount exceeds 12% by weight, the utilization rate does not increase anymore, but rather, the positive electrode capacity decreases due to the reduction of the nickel hydroxide amount. It will be noticeable. Further, a problem that a part of the cobalt oxide, which is the coating layer, peels off and adheres to the inner wall of the oxidation treatment device has occurred. From the above, the cobalt hydroxide coating amount of the raw material powder used in the production method of the present invention is 5 to 1 with respect to the nickel hydroxide solid solution particles.
It has been found that 2% by weight is suitable.

【0086】《実施例7》原料粉末の平均粒径を、3、
5、10、20、24μmと変化させること以外はすべ
て実施例1に記載の第1工程および第2工程と同様にし
て酸化処理粉末を作製した。これらの酸化処理粉末につ
いて実施例1に記載と同様の方法にてコバルト平均価
数、粉体導電率を測定した。結果を表9に示す。また、
各酸化処理粉末を用いて実施例1に記載と同様の方法に
てニッケル・水素蓄電池を作製し、充放電評価を行っ
た。図6に原料粉末の平均粒径と活物質利用率の関係を
示す。
Example 7 The average particle size of the raw material powder was 3,
Oxidation-treated powder was produced in the same manner as in the first step and the second step described in Example 1, except that the powder was changed to 5, 10, 20, and 24 μm. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. The results are shown in Table 9. Also,
A nickel-hydrogen storage battery was produced in the same manner as in Example 1 using each of the oxidation-treated powders, and charge / discharge evaluation was performed. FIG. 6 shows the relationship between the average particle size of the raw material powder and the active material utilization rate.

【0087】[0087]

【表9】 [Table 9]

【0088】表9および図6より、5〜20μmの平均
粒径を有する原料粉末を用いて酸化処理を行った場合、
コバルト平均価数、粉体導電率、利用率ともに良好な値
を示すことが分かる。一方、平均粒径が3μmあるいは
24μmの原料粉末を用いた場合では、粉体導電率、利
用率ともに低下が確認された。一般的に平均粒径が小さ
くなると比表面積は大きくなる傾向があり、平均粒径が
3μmの場合も比表面積が大きいために、所定の水酸化
ナトリウム水溶液ではファニキュラ状態の湿潤粒子に到
らすことが困難である。そのために酸化処理時に被覆層
の酸化が進行し難く、コバルト平均価数および粉体導電
率が低下し、利用率も減少したものと考えられる。さら
にこの場合、粉末の嵩密度が低下するために充填性も低
下するという問題もある。平均粒径が24μmの場合
は、粒子が大きすぎて水酸化コバルトが均一に被覆され
ないため、良好な導電ネットワークを形成できず、粉体
導電率が低下し、利用率も低下したものと考えられる。
From Table 9 and FIG. 6, when the raw material powder having an average particle size of 5 to 20 μm was used for the oxidation treatment,
It can be seen that the average cobalt valence, the powder conductivity, and the utilization rate show good values. On the other hand, in the case of using the raw material powder having an average particle diameter of 3 μm or 24 μm, it was confirmed that both the powder conductivity and the utilization rate decreased. Generally, when the average particle size is small, the specific surface area tends to be large. Even when the average particle size is 3 μm, the specific surface area is large. Is difficult. Therefore, it is considered that the oxidation of the coating layer hardly progressed during the oxidation treatment, the average cobalt valence and the powder conductivity decreased, and the utilization factor also decreased. Further, in this case, there is also a problem that the bulk density of the powder is lowered and thus the filling property is also lowered. When the average particle size is 24 μm, it is considered that the particles are too large to be uniformly coated with cobalt hydroxide, so that a good conductive network cannot be formed, the powder conductivity is lowered, and the utilization factor is also lowered. .

【0089】次に、原料粉末のBET比表面積を、3、
5、10、15、18m2/gと変化させること以外は
すべて実施例1に記載の第1工程および第2工程と同様
にして酸化処理粉末を作製した。これらの酸化処理粉末
について実施例1に記載と同様の方法にてコバルト平均
価数、粉体導電率を測定した。結果を表10に示す。ま
た、各酸化処理粉末を用いて実施例1に記載と同様の方
法にてニッケル・水素蓄電池を作製し、充放電評価を行
った。図7に原料粉末のBET比表面積と活物質利用率
の関係を示す。
Next, the BET specific surface area of the raw material powder was set to 3,
Oxidized powder was produced in the same manner as in the first step and the second step described in Example 1, except that the powder was changed to 5, 10, 15, and 18 m 2 / g. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. The results are shown in Table 10. In addition, a nickel-hydrogen storage battery was prepared by using each oxidation-treated powder in the same manner as in Example 1, and the charge / discharge evaluation was performed. FIG. 7 shows the relationship between the BET specific surface area of the raw material powder and the active material utilization rate.

【0090】[0090]

【表10】 [Table 10]

【0091】表10および図7より、5〜15m2/g
のBET比表面積を有する原料粉末を用いて酸化処理を
行った場合、コバルト平均価数、粉体導電率、利用率と
もに良好な値を示すことが分かる。一方、BET比表面
積が3m2/gあるいは18m2/gの原料粉末を用いた
場合は、コバルト平均価数、粉体導電率、利用率ともに
低下が見られる。この結果は、原料粉末の比表面積が過
大あるいは過小になると粒子の濡れ性が大きく変化する
ため、前述同様に水酸化コバルト被覆層の酸化が抑制さ
れたためと考えられる。さらにBET比表面積が18m
2/gの原料粉末を用いた場合は、被覆層であるコバル
ト酸化物の一部が剥離して、酸化処理装置内壁へ付着す
るという現象も見られた。以上より、本発明の製造方法
にて使用する原料粉末は、その平均粒径が5〜20μ
m、BET比表面積が5〜15m2/gであるものが適
することが明らかとなった。
From Table 10 and FIG. 7, 5 to 15 m 2 / g
It can be seen that when the oxidation treatment is performed using the raw material powder having the BET specific surface area, the cobalt average valence, the powder conductivity, and the utilization rate show good values. On the other hand, when the raw material powder having a BET specific surface area of 3 m 2 / g or 18 m 2 / g is used, the average cobalt valence, the powder conductivity and the utilization rate decrease. It is considered that this result is because when the specific surface area of the raw material powder is too large or too small, the wettability of the particles is greatly changed, so that the oxidation of the cobalt hydroxide coating layer is suppressed as described above. Furthermore, BET specific surface area is 18m
When 2 / g of the raw material powder was used, a phenomenon was also observed in which part of the cobalt oxide, which was the coating layer, peeled off and adhered to the inner wall of the oxidation treatment device. From the above, the raw material powder used in the production method of the present invention has an average particle size of 5 to 20 μm.
It has been clarified that those having m and BET specific surface area of 5 to 15 m 2 / g are suitable.

【0092】《実施例8》第1工程での酸化イットリウ
ム粉末の混合量を、粉末Aに対して、0.05、0.
1、0.5、1.0、3.0、5.0重量%と変化させ
ること以外はすべて実施例1に記載の第1工程および第
2工程と同様にして酸化処理粉末を作製した。これらの
酸化処理粉末について実施例1に記載と同様の方法にて
コバルト平均価数、粉体導電率を測定した。結果を表1
1に示す。また、各酸化処理粉末を用いて実施例1に記
載と同様の方法にてニッケル・水素蓄電池を作製し、充
放電評価を行った。図8に酸化イットリウム混合量と5
0℃充電効率の関係を示す。
Example 8 The yttrium oxide powder mixed amount in the first step was 0.05, 0.
Oxidized powder was produced in the same manner as in the first step and the second step described in Example 1, except that the content was changed to 1, 0.5, 1.0, 3.0, and 5.0% by weight. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. The results are shown in Table 1.
Shown in 1. In addition, a nickel-hydrogen storage battery was prepared by using each oxidation-treated powder in the same manner as in Example 1, and the charge / discharge evaluation was performed. Fig. 8 shows the amount of yttrium oxide mixed and 5
The relationship of 0 degreeC charge efficiency is shown.

【0093】[0093]

【表11】 [Table 11]

【0094】図8より、酸化イットリウム粉末を0.1
重量%以上混合して酸化処理を行った場合、良好な高温
充電効率を示すことが分かる。混合量が0.05重量%
の場合は酸化イットリウム粉末を混合しない場合(電池
Cの場合)と同等の高温充電効率しか示さず、酸化イッ
トリウムの添加効果が確認できなかった。混合量が0.
1〜3.0重量%の範囲では高温充電効率は徐々に向上
するが、3.0重量%を超えるとそれ以上の向上は見ら
れなくなる。むしろ、5.0重量%添加した場合には、
高率放電特性が顕著に低下するという問題が生じた。表
11より、酸化イットリウム粉末を5.0重量%混合し
て酸化処理を行った粉末にて粉体導電率の低下が確認さ
れることから、コバルト被覆層中において低導電性の酸
化イットリウムが増大したために、粉体導電率が低下
し、高率放電特性も低下したものと考えられる。以上よ
り、本発明の製造方法にて使用する酸化イットリウムの
混合量は、粉末Aに対して0.1〜3.0重量%が適す
ることが明らかとなった。
From FIG. 8, the yttrium oxide powder was added to 0.1
It can be seen that when the mixture is mixed in an amount of not less than wt% and the oxidation treatment is performed, good high temperature charging efficiency is exhibited. 0.05% by weight
In case (2), the high temperature charging efficiency was the same as that in the case where yttrium oxide powder was not mixed (in the case of battery C), and the effect of adding yttrium oxide could not be confirmed. The mixing amount is 0.
In the range of 1 to 3.0% by weight, the high temperature charging efficiency gradually improves, but when it exceeds 3.0% by weight, no further improvement can be seen. Rather, when 5.0% by weight is added,
There has been a problem that the high rate discharge characteristics are significantly deteriorated. From Table 11, it is confirmed that the powder conductivity is reduced in the powder obtained by mixing 5.0% by weight of yttrium oxide powder and subjected to the oxidation treatment. Therefore, yttrium oxide having low conductivity is increased in the cobalt coating layer. Therefore, it is considered that the powder conductivity was lowered and the high rate discharge characteristics were also lowered. From the above, it was revealed that the suitable amount of yttrium oxide used in the production method of the present invention was 0.1 to 3.0% by weight with respect to the powder A.

【0095】《実施例9》第1工程にて混合する酸化イ
ットリウム粉末の平均粒径を、0.1、0.2、1.
0、4.0、8.0、16.0μmと変化させること以
外はすべて実施例1に記載の第1工程および第2工程と
同様にして酸化処理粉末を作製した。これらの酸化処理
粉末について実施例1に記載と同様の方法にてコバルト
平均価数、粉体導電率を測定した。結果を表12に示
す。また、各酸化処理粉末を用いて実施例1に記載と同
様の方法にてニッケル・水素蓄電池を作製し、充放電評
価を行った。図9に酸化イットリウム粉末の平均粒径と
活物質利用率の関係を示す。
Example 9 The average particle size of the yttrium oxide powder mixed in the first step is 0.1, 0.2, 1.
Oxidation-treated powder was produced in the same manner as in the first step and the second step described in Example 1, except that the powder was changed to 0, 4.0, 8.0, and 16.0 μm. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. The results are shown in Table 12. In addition, a nickel-hydrogen storage battery was prepared by using each oxidation-treated powder in the same manner as in Example 1, and the charge / discharge evaluation was performed. FIG. 9 shows the relationship between the average particle size of the yttrium oxide powder and the active material utilization rate.

【0096】[0096]

【表12】 [Table 12]

【0097】表12および図9より、0.2〜8.0μ
mの平均粒径を有する酸化イットリウム粉末を用いて酸
化処理を行った場合、コバルト平均価数、粉体導電率、
利用率ともに良好な値を示すことが分かる。一方、平均
粒径が0.1μmあるいは16.0μmの酸化イットリ
ウム粉末を用いた場合では、粉体導電率、利用率ともに
低下が確認された。平均粒径が0.1μmの場合は、酸
化イットリウム粉末が非常に嵩高くなり、ゲル状の水酸
化イットリウムに変化させるためには多量の水酸化ナト
リウム水溶液が必要となる。そのため、酸化処理時に水
酸化コバルト被覆層近傍に過剰の水が存在し、O2濃度
が低下するために式4の反応が阻害され、式3の反応が
進行し難くなる。結果として水酸化コバルト被覆層の酸
化が抑制され、コバルト平均価数、粉体導電率ともに低
い値となり、利用率も低下するものと考えられる。一
方、平均粒径が16.0μmの場合は、粒径が大き過ぎ
るため、ゲル状の水酸化イットリウムに変化し難いもの
と考えられる。結果としてイットリウムがコバルト酸化
物被覆層中に十分に拡散せず、低導電性の酸化イットリ
ウムとして被覆層表面に付着するため、粉体導電率が低
下し、利用率も低下したものと考えられる。
From Table 12 and FIG. 9, 0.2 to 8.0 μ
When yttrium oxide powder having an average particle size of m is used for the oxidation treatment, the average cobalt valence, the powder conductivity,
It can be seen that the utilization rate shows good values. On the other hand, when yttrium oxide powder having an average particle diameter of 0.1 μm or 16.0 μm was used, both the powder conductivity and the utilization rate were confirmed to be lowered. When the average particle size is 0.1 μm, the yttrium oxide powder becomes very bulky, and a large amount of aqueous sodium hydroxide solution is required to convert it into yttrium hydroxide in the form of gel. Therefore, excess water exists near the cobalt hydroxide coating layer during the oxidation treatment, and the O 2 concentration decreases, so that the reaction of formula 4 is inhibited and the reaction of formula 3 becomes difficult to proceed. As a result, it is considered that the oxidation of the cobalt hydroxide coating layer is suppressed, the average cobalt valence and the powder conductivity become low, and the utilization rate also decreases. On the other hand, when the average particle size is 16.0 μm, the particle size is too large, and it is considered that the yttrium hydroxide gel is unlikely to change. As a result, it is considered that yttrium does not sufficiently diffuse into the cobalt oxide coating layer and adheres to the surface of the coating layer as yttrium oxide having low conductivity, so that the powder conductivity decreases and the utilization rate also decreases.

【0098】次に、第1工程にて混合する酸化イットリ
ウム粉末のBET比表面積を、3、10、30、60、
90m2/gと変化させること以外はすべて実施例1に
記載の第1工程および第2工程と同様にして酸化処理粉
末を作製した。これらの酸化処理粉末について実施例1
に記載と同様の方法にてコバルト平均価数、粉体導電率
を測定した。結果を表13に示す。また、各酸化処理粉
末を用いて実施例1に記載と同様の方法にてニッケル・
水素蓄電池を作製し、充放電評価を行った。図10に酸
化イットリウム粉末のBET比表面積と活物質利用率の
関係を示す。
Next, the BET specific surface areas of the yttrium oxide powders mixed in the first step are set to 3, 10, 30, 60,
Oxidation-treated powder was produced in the same manner as in the first step and the second step described in Example 1, except that the powder was changed to 90 m 2 / g. Example 1 of these oxidized powders
The average cobalt valence and the powder conductivity were measured by the same method as described in 1. The results are shown in Table 13. In addition, using each oxidation-treated powder in the same manner as described in Example 1, nickel.
A hydrogen storage battery was produced and evaluated for charge and discharge. FIG. 10 shows the relationship between the BET specific surface area of yttrium oxide powder and the active material utilization rate.

【0099】[0099]

【表13】 [Table 13]

【0100】表13および図10より、3〜60m2
gのBET比表面積を有する酸化イットリウム粉末を用
いて酸化処理を行った場合、コバルト平均価数、粉体導
電率、利用率ともに良好な値を示すことが分かる。BE
T比表面積が90m2/gの酸化イットリウム粉末を用
いた場合は、コバルト平均価数、粉体導電率、利用率と
もに低下が見られる。この結果は、酸化イットリウム粉
末の比表面積が過大であるため、ゲル状の水酸化イット
リウムに変化させるには多量の水酸化ナトリウム水溶液
が必要となり、前述同様に水酸化コバルト被覆層の酸化
が抑制されたためと考えられる。以上より、本発明の製
造方法にて使用する酸化イットリウム粉末は、その平均
粒径が0.2〜8.0μm、BET比表面積が3〜60
2/gであるものが適することが明らかとなった。
From Table 13 and FIG. 10, 3 to 60 m 2 /
It can be seen that when the yttrium oxide powder having a BET specific surface area of g is used for the oxidation treatment, the cobalt average valence, the powder conductivity, and the utilization rate show good values. BE
When yttrium oxide powder having a T specific surface area of 90 m 2 / g is used, the average cobalt valence, the powder conductivity, and the utilization rate decrease. This result indicates that the yttrium oxide powder has an excessively large specific surface area, and therefore a large amount of sodium hydroxide aqueous solution is required to convert it to gel yttrium hydroxide, and the oxidation of the cobalt hydroxide coating layer is suppressed as described above. It is thought to be a tame. From the above, the yttrium oxide powder used in the production method of the present invention has an average particle size of 0.2 to 8.0 μm and a BET specific surface area of 3 to 60.
It has been found that a value of m 2 / g is suitable.

【0101】《実施例10》第1工程において、酸化イ
ットリウム粉末の代わりに、同じ平均粒径、BET比表
面積を有する酸化スカンジウム、酸化エルビウム、酸化
イッテルビウム、酸化ルテチウムおよび酸化カルシウム
を用いたこと以外はすべて実施例1に記載の第1工程お
よび第2工程と同様にして酸化処理粉末を作製した。こ
れらの酸化処理粉末について実施例1に記載と同様の方
法にてコバルト平均価数、粉体導電率を測定した。ま
た、各酸化処理粉末を用いて実施例1に記載と同様の方
法にてニッケル・水素蓄電池を作製し、充放電評価を行
った。以上の結果を酸化イットリウムを用いた粉末Bの
値と比較して表14に示す。
Example 10 In the first step, scandium oxide, erbium oxide, ytterbium oxide, lutetium oxide and calcium oxide having the same average particle diameter and BET specific surface area were used instead of the yttrium oxide powder. Oxidation-treated powder was produced in the same manner as in the first step and the second step described in Example 1. The cobalt average valence and the powder conductivity of these oxidation-treated powders were measured by the same method as described in Example 1. In addition, a nickel-hydrogen storage battery was prepared by using each oxidation-treated powder in the same manner as in Example 1, and the charge / discharge evaluation was performed. The above results are shown in Table 14 in comparison with the values of the powder B using yttrium oxide.

【0102】[0102]

【表14】 [Table 14]

【0103】表14より、酸化イットリウム粉末の代わ
りに、酸化スカンジウム、酸化エルビウム、酸化イッテ
ルビウム、酸化ルテチウムまたは酸化カルシウムを用い
て酸化処理を行ったいずれの場合も、コバルト平均価
数、粉体導電率、利用率ともに良好な値を示すことが分
かる。この結果は、酸化イットリウム粉末の代わりに、
酸化スカンジウム、酸化エルビウム、酸化イッテルビウ
ム、酸化ルテチウムまたは酸化カルシウムを用いて酸化
処理を行っても、実施例1記載の粉末Bの場合と同様の
反応機構で、被覆層が良好な高次コバルト酸化物に酸化
された結果と考えられる。
From Table 14, it is found that, in each case where scandium oxide, erbium oxide, ytterbium oxide, lutetium oxide or calcium oxide was used for the oxidation treatment instead of the yttrium oxide powder, the average cobalt valence and the powder conductivity were determined. It can be seen that the utilization rate shows good values. The result is that instead of yttrium oxide powder,
Even if oxidation treatment is performed using scandium oxide, erbium oxide, ytterbium oxide, lutetium oxide, or calcium oxide, a higher-order cobalt oxide having a good coating layer with the same reaction mechanism as in the case of powder B described in Example 1 It is thought to be the result of being oxidized.

【0104】以上より、本発明の製造方法にて使用する
酸化物粉末としては、酸化イットリウム粉末に限定され
るものではなく、スカンジウム、ランタノイドおよびカ
ルシウムから選ばれる酸化物粉末を使用した場合にも同
様の効果が得られることが明らかとなった。
From the above, the oxide powder used in the production method of the present invention is not limited to yttrium oxide powder, and the same applies to the case of using oxide powder selected from scandium, lanthanoid and calcium. It became clear that the effect of.

【0105】なお、本実施例中では、酸化処理時に使用
するアルカリ水溶液として水酸化ナトリウム水溶液のみ
を記述したが、これに限定されるものではなく、水酸化
カリウム水溶液、あるいは水酸化ナトリウムと水酸化カ
リウムの2成分系水溶液を使用しても同様の効果が得ら
れることを確認した。また、本実施例中では、酸化処理
に使用する原料粉末としてコバルトおよび亜鉛の固溶体
粒子のみを記述したが、固溶元素の種類はこれに限定さ
れるものでなく、コバルト、亜鉛、カドミウム、カルシ
ウム、マンガン、マグネシウム、アルミニウム、チタ
ン、イットリウムおよびランタノイドから選ばれる少な
くとも一種の元素を含有する水酸化ニッケル粒子すべて
において、同様の効果が得られることを確認した。
In this embodiment, only the sodium hydroxide aqueous solution is described as the alkaline aqueous solution used at the time of the oxidation treatment, but the present invention is not limited to this, and the potassium hydroxide aqueous solution or the sodium hydroxide and hydroxide is used. It was confirmed that the same effect can be obtained by using a binary aqueous solution of potassium. Further, in this example, only the solid solution particles of cobalt and zinc were described as the raw material powder used for the oxidation treatment, but the type of the solid solution element is not limited to this, and cobalt, zinc, cadmium, and calcium. It has been confirmed that the same effect can be obtained with all nickel hydroxide particles containing at least one element selected from manganese, magnesium, aluminum, titanium, yttrium and lanthanoid.

【0106】[0106]

【発明の効果】以上に説明したように、本発明の製造方
法によって、利用率および高温雰囲気下での充電効率に
優れ、かつ充填性にも優れたアルカリ蓄電池用正極活物
質を効率的に提供することが可能である。また、本発明
の製造方法は、既存の原料粉末をそのまま使用できるた
め活物質製造コストの上昇を抑制でき、原料粉末の長期
保管も可能であるため生産性の向上も図られる。その結
果、高容量かつ高温使用時においても優れた充放電特性
を有するアルカリ蓄電池を低価格にて製造することが可
能となる。
As described above, according to the production method of the present invention, a positive electrode active material for an alkaline storage battery, which is excellent in utilization rate and charging efficiency in a high temperature atmosphere and is excellent in filling property, is efficiently provided. It is possible to Further, in the production method of the present invention, since the existing raw material powder can be used as it is, an increase in the active material production cost can be suppressed, and the raw material powder can be stored for a long period of time, so that the productivity can be improved. As a result, it becomes possible to manufacture an alkaline storage battery having a high capacity and excellent charge / discharge characteristics even when used at high temperature at a low price.

【図面の簡単な説明】[Brief description of drawings]

【図1】電池B、C、EおよびFの放電容量と電池電圧
との関係を示す図である。
FIG. 1 is a diagram showing a relationship between discharge capacities of batteries B, C, E and F and battery voltage.

【図2】電池B、E、HおよびJの放電容量と電池電圧
との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the discharge capacities of batteries B, E, H and J and the battery voltage.

【図3】第1工程で用いる水酸化ナトリウム水溶液の濃
度と活物質利用率との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the concentration of the sodium hydroxide aqueous solution used in the first step and the active material utilization rate.

【図4】第2工程における加熱温度と活物質利用率との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between a heating temperature and an active material utilization rate in a second step.

【図5】水酸化ニッケルを被覆する水酸化コバルト量と
活物質利用率との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the amount of cobalt hydroxide coating nickel hydroxide and the utilization factor of the active material.

【図6】原料粉末の平均粒径と活物質利用率との関係を
示す図である。
FIG. 6 is a diagram showing a relationship between an average particle diameter of raw material powder and an active material utilization rate.

【図7】原料粉末のBET比表面積と活物質利用率との
関係を示す図である。
FIG. 7 is a diagram showing a relationship between a BET specific surface area of raw material powder and an active material utilization rate.

【図8】第1工程で用いる酸化イットリウム粉末の混合
量と50℃充電効率との関係を示す図である。
FIG. 8 is a graph showing the relationship between the amount of yttrium oxide powder mixed and the charging efficiency at 50 ° C. used in the first step.

【図9】第1工程で用いる酸化イットリウム粉末の平均
粒径と活物質利用率との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the average particle size of the yttrium oxide powder used in the first step and the active material utilization rate.

【図10】第1工程で用いる酸化イットリウム粉末のB
ET比表面積と活物質利用率との関係を示す図である。
FIG. 10: B of yttrium oxide powder used in the first step
It is a figure which shows the relationship between ET specific surface area and an active material utilization rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和泉 陽一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H028 AA02 AA06 BB03 BB05 BB06 BB15 EE05 HH01 HH05 HH08 5H050 AA05 AA08 AA19 BA13 BA14 CA04 CB14 CB16 DA02 DA10 EA12 FA17 FA18 GA02 GA10 GA22 GA27 HA01 HA05 HA07 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoichi Izumi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5H028 AA02 AA06 BB03 BB05 BB06                       BB15 EE05 HH01 HH05 HH08                 5H050 AA05 AA08 AA19 BA13 BA14                       CA04 CB14 CB16 DA02 DA10                       EA12 FA17 FA18 GA02 GA10                       GA22 GA27 HA01 HA05 HA07                       HA14

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 水酸化コバルトにて被覆された水酸化ニ
ッケルを主成分とする固溶体粒子と、イットリウム、ス
カンジウム、ランタノイドおよびカルシウムから選ばれ
る少なくとも一種の酸化物粒子と、アルカリ水溶液とを
撹拌混合し、粒子表面がアルカリ水溶液で濡れた湿潤粒
子にする第1工程と、前記湿潤粒子を酸素存在下で撹拌
混合しながら加熱処理を行い、乾燥まで導く第2工程か
らなるアルカリ蓄電池用正極活物質の製造方法。
1. Solid solution particles containing nickel hydroxide as a main component coated with cobalt hydroxide, at least one kind of oxide particles selected from yttrium, scandium, lanthanoid and calcium, and an alkaline aqueous solution are mixed by stirring. A positive electrode active material for an alkaline storage battery comprising a first step of forming wet particles whose surface is wet with an alkaline aqueous solution, and a second step of performing heat treatment while stirring and mixing the wet particles in the presence of oxygen and leading to drying. Production method.
【請求項2】 前記第1工程にて混合するアルカリ水溶
液が水酸化ナトリウム水溶液および/または水酸化カリ
ウム水溶液であって、その濃度が40重量%よりも大き
いことを特徴とする請求項1記載のアルカリ蓄電池用正
極活物質の製造方法。
2. The alkali aqueous solution mixed in the first step is an aqueous sodium hydroxide solution and / or an aqueous potassium hydroxide solution, and the concentration thereof is higher than 40% by weight. A method for producing a positive electrode active material for an alkaline storage battery.
【請求項3】 前記第2工程における加熱温度が90〜
130℃であることを特徴とする請求項1または2に記
載のアルカリ蓄電池用正極活物質の製造方法。
3. The heating temperature in the second step is 90 to
It is 130 degreeC, The manufacturing method of the positive electrode active material for alkaline storage batteries of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 前記第2工程における補助加熱手段とし
てマイクロ波照射を用いることを特徴とする請求項1〜
3のいずれかに記載のアルカリ蓄電池用正極活物質の製
造方法。
4. A microwave irradiation is used as an auxiliary heating means in the second step.
4. The method for producing a positive electrode active material for an alkaline storage battery according to any one of 3 above.
【請求項5】 前記水酸化コバルトにて被覆された水酸
化ニッケルを主成分とする固溶体粒子において、その水
酸化コバルトの被覆量が水酸化ニッケルを主成分とする
固溶体粒子に対して5〜12重量%であることを特徴と
する請求項1〜4のいずれかに記載のアルカリ蓄電池用
正極活物質の製造方法。
5. In the solid solution particles containing nickel hydroxide as a main component and coated with cobalt hydroxide, the coating amount of the cobalt hydroxide is 5 to 12 relative to the solid solution particles containing nickel hydroxide as a main component. It is weight%, The manufacturing method of the positive electrode active material for alkaline storage batteries in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】 前記水酸化コバルトにて被覆された水酸
化ニッケルを主成分とする固溶体粒子は、その平均粒径
が5〜20μmであり、かつBET比表面積が5〜15
2/gであることを特徴とする請求項1〜5のいずれ
かに記載のアルカリ蓄電池用正極活物質の製造方法。
6. The solid solution particles containing nickel hydroxide coated with cobalt hydroxide as a main component have an average particle size of 5 to 20 μm and a BET specific surface area of 5 to 15.
The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, characterized in that the m 2 / g.
【請求項7】 前記第1工程にて混合するイットリウ
ム、スカンジウム、ランタノイドおよびカルシウムから
選ばれる少なくとも一種の酸化物粒子の混合量が水酸化
コバルトにて被覆された水酸化ニッケルを主成分とする
固溶体粒子に対して0.1〜3.0重量%であることを
特徴とする請求項1〜6のいずれかに記載のアルカリ蓄
電池用正極活物質の製造方法。
7. A solid solution containing nickel hydroxide as a main component, wherein the amount of at least one oxide particle selected from yttrium, scandium, lanthanoid and calcium mixed in the first step is cobalt hydroxide-coated nickel hydroxide as a main component. It is 0.1-3.0 weight% with respect to a particle | grain, The manufacturing method of the positive electrode active material for alkaline storage batteries in any one of Claims 1-6 characterized by the above-mentioned.
【請求項8】 前記第1工程にて混合するイットリウ
ム、スカンジウム、ランタノイドおよびカルシウムから
選ばれる少なくとも一種の酸化物粒子は、その平均粒径
が0.2〜8.0μmであり、かつBET比表面積が3
〜60m2/gであることを特徴とする請求項1〜7の
いずれかに記載のアルカリ蓄電池用正極活物質の製造方
法。
8. The average particle size of at least one oxide particle selected from yttrium, scandium, lanthanoid and calcium mixed in the first step is 0.2 to 8.0 μm, and the BET specific surface area is Is 3
-60 m < 2 > / g, The manufacturing method of the positive electrode active material for alkaline storage batteries in any one of Claims 1-7 characterized by the above-mentioned.
【請求項9】 前記水酸化コバルトにて被覆された水酸
化ニッケルを主成分とする固溶体粒子が、コバルト、亜
鉛、カドミウム、カルシウム、マンガン、マグネシウ
ム、アルミニウム、チタン、イットリウムおよびランタ
ノイドから選ばれる少なくとも一種の元素を含有するこ
とを特徴とする請求項1〜8のいずれかに記載のアルカ
リ蓄電池用正極活物質の製造方法。
9. The solid solution particles containing nickel hydroxide as a main component coated with cobalt hydroxide are at least one selected from cobalt, zinc, cadmium, calcium, manganese, magnesium, aluminum, titanium, yttrium and lanthanoids. The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, further comprising:
【請求項10】 請求項1〜9のいずれかに記載の製造
方法により製造されたアルカリ蓄電池用正極活物質。
10. A positive electrode active material for an alkaline storage battery manufactured by the manufacturing method according to claim 1.
【請求項11】 請求項10に記載のアルカリ蓄電池用
正極活物質を主成分とする正極、水素吸蔵合金あるいは
カドミウム酸化物を主成分とする負極、セパレータ、ア
ルカリ電解液、およびこれらを収納する電池ケースから
なるアルカリ蓄電池。
11. A positive electrode containing the positive electrode active material for an alkaline storage battery according to claim 10 as a main component, a negative electrode containing a hydrogen storage alloy or cadmium oxide as a main component, a separator, an alkaline electrolyte, and a battery containing these components. An alkaline storage battery consisting of a case.
JP2002050596A 2002-02-27 2002-02-27 Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method Expired - Fee Related JP4412877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050596A JP4412877B2 (en) 2002-02-27 2002-02-27 Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050596A JP4412877B2 (en) 2002-02-27 2002-02-27 Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method

Publications (2)

Publication Number Publication Date
JP2003249215A true JP2003249215A (en) 2003-09-05
JP4412877B2 JP4412877B2 (en) 2010-02-10

Family

ID=28662784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050596A Expired - Fee Related JP4412877B2 (en) 2002-02-27 2002-02-27 Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method

Country Status (1)

Country Link
JP (1) JP4412877B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011430A1 (en) * 2004-07-30 2006-02-02 Toyota Jidosha Kabushiki Kaisha Alkali battery positive electrode active material, alkali battery positive electrode, alkali battery, and method for manufacturing alkali battery positive electrode active material
JP2006236692A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
JP2008059892A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Alkaline storage battery, and positive electrode therefor
JP2008204777A (en) * 2007-02-20 2008-09-04 National Institute Of Advanced Industrial & Technology Active material for lithium battery and its manufacturing method, and lithium battery using the active material
WO2008113222A1 (en) * 2007-03-16 2008-09-25 Lexel Battery (Shenzhen) Co., Ltd. Nickel hydrogen rechargeable battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011430A1 (en) * 2004-07-30 2006-02-02 Toyota Jidosha Kabushiki Kaisha Alkali battery positive electrode active material, alkali battery positive electrode, alkali battery, and method for manufacturing alkali battery positive electrode active material
JP2006048954A (en) * 2004-07-30 2006-02-16 Toyota Motor Corp Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and manufacturing method of positive electrode active material for alkaline storage battery
JP4736372B2 (en) * 2004-07-30 2011-07-27 トヨタ自動車株式会社 Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, and alkaline storage battery
US9276258B2 (en) 2004-07-30 2016-03-01 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery
JP2006236692A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
JP2008059892A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Alkaline storage battery, and positive electrode therefor
JP2008204777A (en) * 2007-02-20 2008-09-04 National Institute Of Advanced Industrial & Technology Active material for lithium battery and its manufacturing method, and lithium battery using the active material
WO2008113222A1 (en) * 2007-03-16 2008-09-25 Lexel Battery (Shenzhen) Co., Ltd. Nickel hydrogen rechargeable battery

Also Published As

Publication number Publication date
JP4412877B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP4710225B2 (en) Method for producing nickel electrode material
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP5099479B2 (en) Nickel electrode for alkaline secondary battery, method for producing the same, and alkaline secondary battery
JP2953463B2 (en) Positive active material for alkaline storage battery and method for producing the same
JP2012525688A (en) Nickel hydroxide electrode for rechargeable batteries
JP3232990B2 (en) Alkaline storage battery and method for manufacturing the same
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP4412877B2 (en) Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method
JP2002216752A (en) Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery
JP2003017063A (en) Non-sintered nickel positive electrode for alkaline storage battery, and its manufacturing method
JP4834232B2 (en) Nickel / hydrogen secondary battery positive electrode and method for producing the same, nickel / hydrogen secondary battery incorporating the positive electrode
JPH11149924A (en) Positive electrode active material for alkaline storage battery and alkaline storage battery
JP2002298840A (en) Positive electrode active material for alkaline storage battery, and the alkaline storage battery using the same
JP5309479B2 (en) Alkaline storage battery
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP2003346794A (en) Alkaline battery positive electrode active material, its manufacturing method, alkaline battery positive electrode using the same, and alkaline battery using positive electrode
JP3454606B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP4723737B2 (en) Positive electrode for nickel / hydrogen secondary battery, nickel / hydrogen secondary battery using the same
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2008269888A (en) Nickel-hydrogen storage battery
JP4436574B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees