JPH1117217A - Manufacture of material for light-emitting element - Google Patents

Manufacture of material for light-emitting element

Info

Publication number
JPH1117217A
JPH1117217A JP17132897A JP17132897A JPH1117217A JP H1117217 A JPH1117217 A JP H1117217A JP 17132897 A JP17132897 A JP 17132897A JP 17132897 A JP17132897 A JP 17132897A JP H1117217 A JPH1117217 A JP H1117217A
Authority
JP
Japan
Prior art keywords
substrate
porous
earth metal
annealing
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17132897A
Other languages
Japanese (ja)
Inventor
Takahiro Matsumoto
貴裕 松本
Masanori Tanaka
正規 田中
Teishiyoku Ri
定植 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP17132897A priority Critical patent/JPH1117217A/en
Publication of JPH1117217A publication Critical patent/JPH1117217A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a light-emitting element and a photocoupler element having excellent durability by injecting a high concentration of a rare-earth metal oxide such as Er2 O3 to an Si substrate. SOLUTION: After forming may pores on the surface of an Si substrate by mesa etching using electrochemical etching or a mask pattern, a rare earth metal oxide such as Er2 O3 is stuck by spattering to a porous Si surface layer, then annealing is applied for turning a multiporous structure into polycrystalline structure. For Si substrate, single crystal Si, polycrystalline Si or amorphous Si or the like is used. Before annealing, the pore holes on the Si substrate surface are filled up with Si powder, or Si may have an epitaxial growth on the surface of Si substrate. Since the rare earth metal oxide is injected with a high concentration, excellent light-emitting characteristics can be obtained and brittleness can be eliminated by polycrystallization. Also, since the injection is performed in the form of an oxide, the oxidation process in the conventional ion implantation method can be omitted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信,自発光ディス
プレー,光集積回路,発光源等に使用される発光素子材
料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a light emitting device material used for optical communication, self-luminous display, optical integrated circuit, light emitting source and the like.

【0002】[0002]

【従来の技術】Siに希土類元素を注入すると、Si中
の酸素原子と希土類元素のイオンとが結合することによ
る発光が生じる。なかでも、Erは、光ファイバの損失
が最も少ない波長に相当する1.54μmの発光を呈す
るため、光通信,光集積回路等への応用が期待されてい
る。たとえば、Appl.Phys.Lett.43,
p943−945(1983)では、ErをSi基板中
にイオンインプランテーションすることにより、6Kの
温度で1.54μmのホトルミネッセンス特性を示すこ
とが報告されている。
2. Description of the Related Art When a rare earth element is implanted into Si, light emission occurs due to the combination of oxygen atoms in the Si and ions of the rare earth element. Above all, Er exhibits a light emission of 1.54 μm corresponding to the wavelength at which the loss of the optical fiber is the smallest, and therefore, application to optical communication, an optical integrated circuit, and the like is expected. For example, Appl. Phys. Lett. 43,
In p943-945 (1983), it has been reported that ion implantation of Er into a Si substrate exhibits photoluminescence characteristics of 1.54 μm at a temperature of 6K.

【0003】[0003]

【発明が解決しようとする課題】Erを注入した発光素
子で十分な発光強度を得るためには、高濃度でErを注
入する必要がある。しかし、従来のイオンインプランテ
ーション法では、Erイオンが重いため、Er3+ビーム
を安定に得難い。また、Si基板へ数μmの深さでEr
3+を打ち込むために大きな加速電圧を必要とする。しか
も、Si基板前面にEr3+イオンを打ち込む際に、数m
2 のイオンビームをウェーハ全体にわたって長時間ス
キャンさせることが必要になる。このようなことから、
Si基板全体へのErイオン注入濃度は、1019個/c
3 程度の低濃度に止まる。高濃度でEr3+を単結晶S
iに注入することには限界があり、必要とする発光強度
に必要な濃度までEr注入量を多くすることは困難であ
る。また、イオンインプランテーション法では、Erイ
オンを高速でSi基板に打ち込むため、点欠陥,線欠
陥,ループ欠陥,転位等の欠陥が生成し易い。このよう
な欠陥があると発光効率が低下し、必要とする発光素子
が得られない。Er注入の基板には、単結晶Siの外に
ポリSi,非晶質Si,多孔質Si等を使用する試みも
検討されている。この場合には、単結晶Si基板と比較
して多量のErイオンを注入できるが、多量注入によっ
て点欠陥,線欠陥,転位等の欠陥が発生し易い。その結
果、注入量の増加は、却って発光効率を低下させる原因
となる。
In order to obtain a sufficient luminous intensity with a light emitting element into which Er has been implanted, it is necessary to implant Er at a high concentration. However, in the conventional ion implantation method, since Er ions are heavy, it is difficult to stably obtain an Er 3+ beam. Er on a Si substrate at a depth of several μm.
High acceleration voltage is required to drive 3+ . Moreover, when implanting Er 3+ ions into the front surface of the Si substrate, several m
It is necessary to scan the ion beam of m 2 over the entire wafer for a long time. From such a thing,
The concentration of Er ions implanted into the entire Si substrate is 10 19 / c
It stops to a low concentration of about m 3. High concentration Er 3+ single crystal S
There is a limit in injecting into i, and it is difficult to increase the Er injection amount to a concentration required for a required emission intensity. Further, in the ion implantation method, Er ions are implanted into the Si substrate at a high speed, so that defects such as point defects, line defects, loop defects, and dislocations are easily generated. If such a defect exists, the luminous efficiency decreases, and a required light emitting element cannot be obtained. Attempts to use poly-Si, amorphous-Si, porous-Si, etc. in addition to single-crystal Si for the Er-implanted substrate are also being studied. In this case, a large amount of Er ions can be implanted as compared with the single crystal Si substrate, but defects such as point defects, line defects, and dislocations are likely to be generated by the large amount of implantation. As a result, an increase in the injection amount causes a reduction in luminous efficiency.

【0004】一部では、多孔質Siの表面にErを電気
化学的に付着させることも試みられている。たとえば、
Appl.Phys.Lett.65,p983(19
94)では、比抵抗が数Ω・cmのp型(100)Si
基板を用い、フッ化水素酸溶液中で1〜8mA/cm2
の電流を供給する陽極化成処理により多孔質Siを作製
し、次いでErCl3 を解かしたエタノール溶液中に多
孔質Siをカソードとして浸漬し、Er3+を多孔質Si
の表面に電着させることが報告されている。しかし、多
孔質Siは脆い構造であり、しかも電流注入型発光素子
を作製する場合には多孔質Siと電極との接点が非常に
小さいので、Erを電着させた多孔質Si発光素子は、
接点に大きな電界がかかり、寿命が極端に短い。本発明
は、このような問題を解消すべく案出されたものであ
り、多孔質化したSi表層に希土類金属の酸化物をスパ
ッタリングで付着させ、次いで多孔質Siをアニーリン
グにより多結晶化することにより、発光特性に優れた良
質の膜を作製することを目的とする。
Some attempts have been made to electrochemically deposit Er on the surface of porous Si. For example,
Appl. Phys. Lett. 65, p983 (19
94), p-type (100) Si having a specific resistance of several Ω · cm
Using a substrate, 1 to 8 mA / cm 2 in a hydrofluoric acid solution
To produce porous Si by anodizing treatment for supplying a current, and then immersing the porous Si as a cathode in an ethanol solution in which ErCl 3 has been dissolved, and removing Er 3+ from the porous Si.
Has been reported to be electrodeposited on the surface of a steel sheet. However, porous Si has a brittle structure, and when a current injection type light emitting device is manufactured, the contact between the porous Si and the electrode is very small. Therefore, the porous Si light emitting device electrodeposited with Er is
A large electric field is applied to the contacts, and the life is extremely short. The present invention has been devised in order to solve such a problem, in which an oxide of a rare earth metal is attached to a porous Si surface layer by sputtering, and then the porous Si is polycrystallized by annealing. Accordingly, an object of the present invention is to produce a high-quality film having excellent light-emitting characteristics.

【0005】[0005]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、電気化学的エッチング又はマス
クパターンを用いたメサエッチングによりSi基板の表
面に多数の細孔を形成した後、多孔質化したSi表面に
希土類金属の酸化物をスパッタリングで付着させ、次い
で多孔質構造を多結晶構造にするアニーリングを施すこ
とを特徴とする。Si基板としては、単結晶Si,多結
晶Si,非晶質Si等が使用される。希土類金属の酸化
物としては、Er23 ,Ce23 ,Eu23 ,D
23,Nd23 ,La23 ,Pr23 ,Pm2
3 ,Sm23 ,Gd23,Tb23 ,Ho2
3 ,Tm23 ,Yb23 ,Lu23 等が使用さ
れ、スパッタリング時間,プラズマ強度等によって注入
濃度を制御することができる。希土類金属の酸化物を付
着させた多孔質Siは、800〜1400℃に10〜6
0分加熱し、次いで徐冷するアニーリングによって多結
晶化される。以下の説明では、希土類金属の酸化物をE
23 で代表させて説明する。
According to the manufacturing method of the present invention, after a large number of pores are formed on the surface of a Si substrate by electrochemical etching or mesa etching using a mask pattern to achieve the object, A feature is that an oxide of a rare earth metal is attached to the porous Si surface by sputtering, and then annealing is performed to convert the porous structure to a polycrystalline structure. As the Si substrate, single crystal Si, polycrystal Si, amorphous Si, or the like is used. Rare earth metal oxides include Er 2 O 3 , Ce 2 O 3 , Eu 2 O 3 , D
y 2 O 3, Nd 2 O 3, La 2 O 3, Pr 2 O 3, Pm 2
O 3 , Sm 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Ho 2 O
3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 or the like is used, and the injection concentration can be controlled by the sputtering time, plasma intensity, and the like. The porous Si to which the oxide of the rare earth metal is attached is heated at a temperature of 800 to 1400 ° C. to 10 to 6 ° C.
It is polycrystallized by annealing for 0 minutes and then slowly cooling. In the following description, a rare earth metal oxide is referred to as E
A description will be given using r 2 O 3 as a representative.

【0006】多孔質化の程度によっては、アニーリング
でSi基板表面を十分に多結晶化できないことがある。
このような場合、アニーリングに先立って、スパッタリ
ング処理されたSi基板表面にある細孔をSi粉末で充
填する方法,スパッタリング処理されたSi基板の表面
にSiをエピタキシャル成長させる方法等が採用され
る。以下の説明では、希土類金属としてErを例にとっ
て説明するが、本発明はこれに拘束されるものではな
く、Yb(発光波長1μm),Nd(発光波長1.06
μm)等、他の希土類元素も同様に使用可能である。
Depending on the degree of porosity, the surface of the Si substrate may not be sufficiently polycrystallized by annealing.
In such a case, prior to annealing, a method of filling pores on the surface of the sputtered Si substrate with Si powder, a method of epitaxially growing Si on the surface of the sputtered Si substrate, and the like are employed. In the following description, Er will be described as an example of the rare earth metal, but the present invention is not limited to this, and Yb (emission wavelength 1 μm), Nd (emission wavelength 1.06
Other rare earth elements such as μm) can be used as well.

【0007】[0007]

【実施の形態】Si基板としては、単結晶Si,多結晶
Si,非晶質Si等が使用される。Si基板は、電気化
学的なエッチングにより表面が多孔質化される。たとえ
ば、48%フッ酸水溶液に0.1〜5倍のエチルアルコ
ールを加えた溶液にp型Si基板を浸漬し、電流密度5
〜500mA/cm2 で1〜60分間陽極処理すると、
基板表面が多孔質化される。このとき、フッ酸水溶液に
対しエチルアルコールが0.1倍未満になると、陽極処
理時に生成した泡によって多孔質化が阻害される。逆に
5倍を超えるエチルアルコールでは、多孔質の構造が極
端に脆くなるため、安定的な試料の取扱いが困難にな
る。また、電流密度が500mA/cm2 を超えると多
孔質化ではなく電解研磨が起こり始め、逆に5mA/c
2 に満たない電流密度では長時間の処理を必要とす
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a Si substrate, single crystal Si, polycrystal Si, amorphous Si, or the like is used. The surface of the Si substrate is made porous by electrochemical etching. For example, a p-type Si substrate is immersed in a solution obtained by adding 0.1 to 5 times ethyl alcohol to a 48% hydrofluoric acid aqueous solution, and a current density of 5%.
When anodizing at ~ 500 mA / cm 2 for 1-60 minutes,
The substrate surface is made porous. At this time, if the amount of ethyl alcohol is less than 0.1 times the amount of the hydrofluoric acid aqueous solution, the formation of porosity is hindered by bubbles generated during the anodic treatment. Conversely, if the amount of ethyl alcohol exceeds 5 times, the porous structure becomes extremely brittle, so that stable handling of the sample becomes difficult. On the other hand, if the current density exceeds 500 mA / cm 2 , electropolishing starts to occur instead of making the electrode porous, and conversely, 5 mA / c 2
If the current density is less than m 2 , long-time processing is required.

【0008】n型基板を使用する場合には、同様な処理
条件に加え、陽極化成処理時にSi基板を光照射するこ
とが必要である。n型Si基板から作製した多孔質Si
は、p型Si基板から作製した多孔質Siに比較して、
同じ電流密度で化成処理しても多孔度が低いため、多孔
質構造が安定になる。マスクパターンを用いてメサエッ
チングすると、Si(100)基板ではV溝が、Si
(110)基板では垂直溝が形成される。V溝を使用す
る場合には、V溝全体にわたってEr23 が一様にス
パッタされるため、厚く且つEr23の濃度勾配が緩
やかな発光層が形成される。他方、垂直溝では、溝の底
面にEr 23 がスパッタされるため、薄いものの、δ
関数的に局部的にEr23 が高濃度に注入された発光
層が形成される。
When an n-type substrate is used, a similar process is performed.
In addition to the conditions, light irradiation of the Si substrate during anodization
Is necessary. Porous Si fabricated from n-type Si substrate
Is compared to porous Si produced from a p-type Si substrate,
Even if the chemical conversion treatment is performed at the same current density, the porosity is low.
The quality structure becomes stable. Use the mask pattern to
When V is etched, the V-groove is formed on the Si (100) substrate,
Vertical grooves are formed in the (110) substrate. Use V-groove
In this case, Er over the entire V-grooveTwo OThree Is uniformly
Because it is putter, it is thick and ErTwo OThreeSlow concentration gradient
A gentle light emitting layer is formed. On the other hand, in a vertical groove, the bottom of the groove
Er on the surface Two OThree Is sputtered.
Functionally and locally ErTwo OThree Is injected at high concentration
A layer is formed.

【0009】多孔質化されたSi基板に対して、プラズ
マスパッタリング等により希土類金属の酸化物を付着さ
せる。RFマグネトロンスパッタリングを用いた場合、
Arガス圧10-1〜10-3トール,RF出力0.1〜5
W/cm2 でEr23 をスパッタリングすると、1分
間に50〜100ÅのEr23 膜が多孔質化されたS
i基板に堆積される。この堆積条件でスパッタリングを
10分程度継続すると、1020〜1022個/cm3 の高
濃度でEr23 が多孔質Siの細孔表面に付着する。
Er23 の付着量はスパッタリング時間,プラズマ強
度等によって定まるが、Er付着濃度が1020個/cm
3 以上となるように条件設定することが好ましい。この
ようにしてスパッタリングされた希土類金属の酸化物
は、すでに発光体として有効な作用を呈するため。イオ
ンインプランテーション法等のように酸化処理の工程を
必要としない。
An oxide of a rare earth metal is adhered to the porous Si substrate by plasma sputtering or the like. When using RF magnetron sputtering,
Ar gas pressure 10 -1 to 10 -3 Torr, RF output 0.1 to 5
When Er 2 O 3 is sputtered at W / cm 2 , the S 2 in which the Er 2 O 3 film of 50 to 100 ° per minute is made porous is formed.
deposited on the i-substrate. When sputtering is continued for about 10 minutes under these deposition conditions, Er 2 O 3 adheres to the surface of the pores of the porous Si at a high concentration of 10 20 to 10 22 / cm 3 .
The amount of Er 2 O 3 adhered is determined by the sputtering time, plasma intensity, etc., but the Er adhered concentration is 10 20 particles / cm 2.
It is preferable to set conditions so as to be 3 or more. The oxide of the rare earth metal sputtered in this manner already has an effective function as a light emitter. It does not require an oxidation treatment step unlike the ion implantation method.

【0010】Er23 がスパッタリングされた多孔質
Siは、レーザアニーリング,真空アニーリング等の処
理によって脆い多孔質構造が多結晶Siに変換される。
このとき、多結晶Siの内部にまでEr23 が拡散し
ているため、アニーリングによって従来のイオンインプ
ランテーションに比較して1020個/cm3 以上の高濃
度でEr23 を含んだ多結晶のSi膜が形成される。
アニーリングには、不活性雰囲気,真空雰囲気等の非酸
化性雰囲気が使用され、たとえば800〜1400℃に
10〜60分加熱した後で徐冷する条件が採用される。
800℃未満の加熱温度や10分に達しない短時間加熱
では、多結晶化が十分に進行しない。逆に、1400℃
をこえる加熱温度や60分を超える長時間加熱では、膜
全体に均一に分散したEr23 自体が再凝集を起こ
し、膜の発光特性を劣化させる。
The porous Si sputtered with Er 2 O 3 has a brittle porous structure converted to polycrystalline Si by a process such as laser annealing or vacuum annealing.
At this time, since Er 2 O 3 is diffused into the polycrystalline Si, Er 2 O 3 is contained by annealing at a higher concentration of 10 20 / cm 3 or more as compared with the conventional ion implantation. A polycrystalline Si film is formed.
For the annealing, a non-oxidizing atmosphere such as an inert atmosphere or a vacuum atmosphere is used. For example, a condition of heating to 800 to 1400 ° C. for 10 to 60 minutes and then gradually cooling is employed.
If the heating temperature is lower than 800 ° C. or the heating time is shorter than 10 minutes, polycrystallization does not sufficiently proceed. Conversely, 1400 ° C
If the heating temperature exceeds 60 minutes or the heating time is longer than 60 minutes, Er 2 O 3 itself uniformly dispersed throughout the film causes re-aggregation, thereby deteriorating the light emission characteristics of the film.

【0011】多孔質の程度によっては、アニールによっ
て多結晶化が十分に進行しないことがある。たとえば、
n型Si基板を使用した場合、細孔及びSiコラムの径
が数μmの大きな多孔質構造となるため、800〜12
00℃の温度ではアニーリングによって膜を平坦化でき
ない。このような場合、スパッタリング処理後の多孔質
SiをSiの融点1400℃以上まで加熱し、又は多孔
質Siに0.05μm程度の超微粉Siを散布して細孔
を埋め、又はSiをエピタキシャル成長させることによ
り、Er23 の蒸発を抑制した条件下でアニールする
ことが好ましい。このようにして、多孔質構造の細孔を
埋めると多結晶Siと同様な構造が得られ、ひいては多
結晶Siと同様に温度800〜1400℃でアニールで
きる。
[0011] Depending on the degree of porosity, polycrystallization may not proceed sufficiently by annealing. For example,
When an n-type Si substrate is used, a large porous structure having pores and Si columns of several μm in diameter is used.
At a temperature of 00 ° C., the film cannot be planarized by annealing. In such a case, the porous Si after the sputtering treatment is heated to a melting point of Si of 1400 ° C. or higher, or ultrafine powder Si of about 0.05 μm is sprayed on the porous Si to fill the pores or epitaxially grow the Si. Thereby, it is preferable to anneal under conditions in which the evaporation of Er 2 O 3 is suppressed. In this way, when the pores of the porous structure are filled, a structure similar to that of polycrystalline Si is obtained, and thus annealing can be performed at a temperature of 800 to 1400 ° C. similarly to polycrystalline Si.

【0012】Erが高濃度に注入されたSiは、発光素
子,可視発光素子等に使用される。たとえば、発光素子
では、図1,2に示すような積層構造が採用される。図
1のpn接合型発光素子は、次のように作製される。p
型Si基板1の裏面にBをイオン注入してp+ 層を形成
し、p+ 層とオーミック接合するAl電極(+極)2を
蒸着法で形成する。p型Si基板1の表面側には、前述
した方法で1020個/cm3 以上のEr23 を含む発
光層3を形成し、大量のPをドーピングして活性化させ
たSiのエピタキシャル成長膜4を発光層3の上に形成
する。このようにして形成された多層膜にメサエッチン
グでV溝を形成し、V溝に臨む表面を酸化処理して酸化
膜5を形成する。次いで、表面酸化膜をエッチング除去
し、n+ のエピタキシャル成長膜4の上にAl電極6
(−極)を蒸着する。このpn接合型発光素子では、酸
化膜5を介して発光が取り出される。
Si in which Er is implanted at a high concentration is used for a light emitting element, a visible light emitting element and the like. For example, a light emitting element employs a laminated structure as shown in FIGS. The pn junction type light emitting device of FIG. 1 is manufactured as follows. p
B is ion-implanted on the back surface of the mold Si substrate 1 to form ap + layer, and an Al electrode (+ electrode) 2 that forms an ohmic junction with the p + layer is formed by a vapor deposition method. On the surface side of the p-type Si substrate 1, to form a light emitting layer 3 containing 10 20 / cm 3 or more Er 2 O 3 in the manner described above, Si epitaxial growth with activated by doping a large amount of P A film 4 is formed on the light emitting layer 3. A V-groove is formed in the multilayer film thus formed by mesa etching, and a surface facing the V-groove is oxidized to form an oxide film 5. Next, the surface oxide film is removed by etching, and the Al electrode 6 is formed on the n + epitaxial growth film 4.
(-Pole) is deposited. In this pn junction type light emitting element, light emission is extracted through the oxide film 5.

【0013】n型Si基板を使用する場合、図2に示す
ような構造をもつpn接合型発光素子が作製される。こ
の場合、n型Si基板7の裏面にPをイオン注入してn
+ 層を形成し、n+ 層とオーミック接合するAl電極
(−極)8を蒸着法で形成する。n型Si基板7の表面
側には、前述した方法で1020個/cm3 以上のEr2
3 を含む発光層9を形成し、Bを高濃度にドーピング
したp+ 層10を発光層9の上に形成する。次いで、B
ドープ層10を酸化して酸化膜11を形成し、酸化膜1
1の一部をエッチング除去し、Bドープ層10の上にA
l電極12(+極)を蒸着する。このpn接合型発光素
子では、上部から発光が取り出される。
When an n-type Si substrate is used, a pn junction type light emitting device having a structure as shown in FIG. 2 is manufactured. In this case, P ions are implanted into the back surface of the n-type Si
A + layer is formed, and an Al electrode (− pole) 8 that forms an ohmic junction with the n + layer is formed by a vapor deposition method. On the surface side of the n-type Si substrate 7, at least 10 20 / cm 3 of Er 2
A light emitting layer 9 containing O 3 is formed, and a p + layer 10 doped with B at a high concentration is formed on the light emitting layer 9. Then B
The doped layer 10 is oxidized to form an oxide film 11, and the oxide film 1
1 is removed by etching, and A
1 electrode 12 (+ electrode) is deposited. In this pn junction type light emitting element, light emission is extracted from the upper part.

【0014】[0014]

【実施例】比抵抗3〜5Ω・cmのp型(100)Si
基板から、次の手順で発光素子を作製した。HF:C2
5 OH:H2 O=1:2:1の溶液にSi基板を陽極
として浸漬し、電流10mA/cm2 を60分供給し、
Si基板を電解エッチングした。電解エッチングによ
り、Si基板の表面が多孔質化した。Si基板表面に形
成された多孔質構造は、それぞれ5nm程度の細孔及び
Siコラムからなっていた。表面が多孔質化されたSi
基板に対し、Arガス圧10-2トール,RF出力2W/
cm2 ,スパッタリング時間10分の条件下でEr2
3 をRFマグネトロンスパッタリングした。スパッタリ
ング後の表面をSEM観察すると、図3で模式的に示す
ように多孔質Siの表面及び細孔13の底面に多量のE
23 が付着し、細孔13に臨むSiコラム14の側
面にはEr23 が薄く付着していた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS P-type (100) Si having a specific resistance of 3 to 5 .OMEGA.cm
A light emitting device was manufactured from the substrate by the following procedure. HF: C 2
H 5 OH: H 2 O = 1: 2: The Si substrate was immersed as an anode 1 of a solution, a current 10 mA / cm 2 was supplied for 60 minutes,
The Si substrate was electrolytically etched. The surface of the Si substrate was made porous by electrolytic etching. The porous structure formed on the surface of the Si substrate was composed of pores of about 5 nm and Si columns. Si with porous surface
Ar gas pressure 10 -2 Torr, RF output 2 W /
Er 2 O under the conditions of cm 2 and a sputtering time of 10 minutes.
3 was subjected to RF magnetron sputtering. When the surface after sputtering is observed by SEM, a large amount of E is present on the surface of the porous Si and the bottom of the pores 13 as schematically shown in FIG.
r 2 O 3 was attached, and Er 2 O 3 was attached thinly on the side surface of the Si column 14 facing the pores 13.

【0015】次いで、真空中で1000℃に30分加熱
し、降温速度1℃/秒で徐冷するアニーリングを施し
た。アニーリングされたSi基板の表面は、100nm
〜数μmの結晶粒からなる膜厚5μm程度の多孔質Si
となっており、この多孔質Siに1020個/cm3 のE
23 発光体が含まれていた。このような膜をもつS
i基板から、図1に示すpn接合型発光素子を作製し
た。得られたpn接合型発光素子の発光特性を調査した
ところ、従来のイオンインプランテーションで素子の発
光効率(10-6程度)と比較して104 倍程度高い発光
効率(約10-2)を示した。
Next, annealing was carried out by heating to 1000 ° C. for 30 minutes in a vacuum and gradually cooling at a temperature lowering rate of 1 ° C./sec. The surface of the annealed Si substrate is 100 nm
Porous Si with a film thickness of about 5 μm consisting of crystal grains of
The porous Si has an E of 10 20 / cm 3 .
An r 2 O 3 phosphor was included. S having such a film
The pn junction type light emitting device shown in FIG. 1 was manufactured from the i substrate. When the light emission characteristics of the obtained pn junction type light emitting device were examined, the light emission efficiency (about 10 -2 ) was about 10 4 times higher than the light emission efficiency (about 10 −6 ) of the element by the conventional ion implantation. Indicated.

【0016】[0016]

【発明の効果】以上に説明したように、本発明において
は、多孔質化したSiにEr23 をスパッタリングし
た後、アニールすることにより表層のEr濃度を高めて
いる。そのため、従来のイオンインプランテーションに
比較して格段に高濃度のErをSi表層に注入すること
ができ、優れた発光特性を呈する材料が得られる。ま
た、多孔質化したSi表層を多結晶化しているので、多
孔質に起因する脆さがなく、電極との接点を比較的大き
くすることができ、得られる発光素子の寿命も長くな
る。
As described above, in the present invention, Er 2 O 3 is sputtered on porous Si, followed by annealing to increase the Er concentration in the surface layer. Therefore, a much higher concentration of Er can be implanted into the Si surface layer as compared with the conventional ion implantation, and a material exhibiting excellent light emission characteristics can be obtained. Further, since the porous Si surface layer is polycrystallized, there is no brittleness due to the porosity, the contact point with the electrode can be made relatively large, and the life of the obtained light emitting element is prolonged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従ってErを高濃度で表層に注入し
たp型Si基板で形成された発光素子
FIG. 1 shows a light emitting device formed of a p-type Si substrate in which Er is implanted into a surface layer at a high concentration according to the present invention.

【図2】 本発明に従ってErを高濃度で表層に注入し
たn型Si基板で形成された発光素子
FIG. 2 shows a light emitting device formed of an n-type Si substrate in which Er is implanted into a surface layer at a high concentration according to the present invention.

【図3】 RFマグネトロンスパッタリングで多孔質S
iに付着したEr23 を示す模式図
Fig. 3 Porous S by RF magnetron sputtering
Schematic diagram showing Er 2 O 3 attached to i

【符号の説明】[Explanation of symbols]

1:p型Si基板 2,12:Al電極(+)
3,9:発光層 4:エピタキシャル成長膜 5,11:酸化膜
6,8:Al電極(−) 7:n型Si基板 10:Bドープ層 13:細孔
14:Siコラム
1: p-type Si substrate 2, 12: Al electrode (+)
3, 9: light emitting layer 4: epitaxial growth film 5, 11: oxide film
6, 8: Al electrode (-) 7: n-type Si substrate 10: B-doped layer 13: pore 14: Si column

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気化学的エッチング又はマスクパター
ンを用いたメサエッチングによりSi基板の表面に多数
の細孔を形成した後、多孔質化したSi表面に希土類金
属の酸化物をスパッタリングで付着させ、次いで多孔質
構造を多結晶構造にするアニーリングを施すことを特徴
とする発光素子材料の製造方法。
After forming a large number of pores on the surface of a Si substrate by electrochemical etching or mesa etching using a mask pattern, an oxide of a rare earth metal is attached to the porous Si surface by sputtering. Then, annealing is performed to convert the porous structure to a polycrystalline structure.
【請求項2】 Si基板として単結晶Si,多結晶Si
又は非晶質Siを使用する請求項1記載の製造方法。
2. A single crystal Si and a polycrystal Si as a Si substrate.
2. The method according to claim 1, wherein amorphous Si is used.
【請求項3】 アニーリングに先立って、希土類金属の
酸化物が付着したSi基板表面にある細孔をSi粉末で
充填する請求項1記載の製造方法。
3. The method according to claim 1, wherein prior to the annealing, pores on the surface of the Si substrate to which the oxide of the rare earth metal is attached are filled with Si powder.
【請求項4】 アニーリングに先立って、希土類金属の
酸化物が付着したSi基板の表面にSiをエピタキシャ
ル成長させる請求項1記載の製造方法。
4. The method according to claim 1, wherein, prior to the annealing, Si is epitaxially grown on the surface of the Si substrate to which the rare earth metal oxide is attached.
JP17132897A 1997-06-27 1997-06-27 Manufacture of material for light-emitting element Pending JPH1117217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17132897A JPH1117217A (en) 1997-06-27 1997-06-27 Manufacture of material for light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17132897A JPH1117217A (en) 1997-06-27 1997-06-27 Manufacture of material for light-emitting element

Publications (1)

Publication Number Publication Date
JPH1117217A true JPH1117217A (en) 1999-01-22

Family

ID=15921204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17132897A Pending JPH1117217A (en) 1997-06-27 1997-06-27 Manufacture of material for light-emitting element

Country Status (1)

Country Link
JP (1) JPH1117217A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846509B2 (en) * 2000-11-22 2005-01-25 Massachusetts Institute Of Technology Room temperature luminescent Erbium Oxide thin films for photonics
JP2006514445A (en) * 2003-03-21 2006-04-27 インテル・コーポレーション Improved light emitting device system and method
JP2006135208A (en) * 2004-11-09 2006-05-25 Sony Corp Method for manufacturing diffusion region of rare earth element ion, light-emitting diode, and method for manufacturing the same
WO2007147670A1 (en) 2006-06-23 2007-12-27 Robert Bosch Gmbh Method for producing a silicon substrate having modified surface properties and a silicon substrate of said type
JP2013048136A (en) * 2011-08-29 2013-03-07 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method thereof
JP2014038927A (en) * 2012-08-15 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method therefor
JP2014038926A (en) * 2012-08-15 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method therefor
JP2017092075A (en) * 2015-11-02 2017-05-25 株式会社ソディック Light emitting element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846509B2 (en) * 2000-11-22 2005-01-25 Massachusetts Institute Of Technology Room temperature luminescent Erbium Oxide thin films for photonics
JP2006514445A (en) * 2003-03-21 2006-04-27 インテル・コーポレーション Improved light emitting device system and method
JP2006135208A (en) * 2004-11-09 2006-05-25 Sony Corp Method for manufacturing diffusion region of rare earth element ion, light-emitting diode, and method for manufacturing the same
JP4529646B2 (en) * 2004-11-09 2010-08-25 ソニー株式会社 Rare earth element ion diffusion region manufacturing method, light emitting device manufacturing method, and light emitting device
WO2007147670A1 (en) 2006-06-23 2007-12-27 Robert Bosch Gmbh Method for producing a silicon substrate having modified surface properties and a silicon substrate of said type
JP2013048136A (en) * 2011-08-29 2013-03-07 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method thereof
JP2014038927A (en) * 2012-08-15 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method therefor
JP2014038926A (en) * 2012-08-15 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method therefor
JP2017092075A (en) * 2015-11-02 2017-05-25 株式会社ソディック Light emitting element

Similar Documents

Publication Publication Date Title
KR100246902B1 (en) Semiconductor substrate and fabrication method for the same
US6806171B1 (en) Method of producing a thin layer of crystalline material
EP0584777B2 (en) Semiconductor device and process for producing the same
JP3143473B2 (en) Silicon-on-porous silicon; manufacturing method and material
KR100287271B1 (en) How to sharpen emitter sites using low temperature oxidation process
EP0618624B1 (en) Light emitting device and method of manufacturing the same
JPH1117217A (en) Manufacture of material for light-emitting element
US6017773A (en) Stabilizing process for porous silicon and resulting light emitting device
KR100861739B1 (en) Thin buried oxides by low-dose oxygen implantation into modified silicon
EP0312466B1 (en) Process of manufacturing a silicon structure on isolator
JPH1117216A (en) Manufacture of material for light-emitting element
US4451303A (en) Diffusion of aluminum
JPH11191617A (en) Manufacture of soi substrate
JP2931204B2 (en) Method for manufacturing semiconductor light emitting device
JP3789064B2 (en) Electron emitter
JP2019129233A (en) Manufacturing method of SOI wafer
JPH0846161A (en) Soi substrate and fabrication thereof
JPH05267270A (en) Manufacture of porous semiconductor and porous semiconductor substrate
KR20230173138A (en) Manufacturing method and germanium substrate structure for epitaxial growth of germanium layer
JP2010027731A (en) Method of manufacturing simox wafer, and simox wafer
JPH06267931A (en) Porous formation of silicon substrate
JP2006216804A (en) Semiconductor substrate and its manufactuing method
JP3480479B2 (en) Method for manufacturing SOI substrate
JP3544296B2 (en) Electron-emitting device
Fernandez et al. Single Crystal Silicon Membranes