JPH11171554A - Furnace material for reduced pressure defoaming device of molten glass and reduced pressure defoaming device - Google Patents

Furnace material for reduced pressure defoaming device of molten glass and reduced pressure defoaming device

Info

Publication number
JPH11171554A
JPH11171554A JP23274498A JP23274498A JPH11171554A JP H11171554 A JPH11171554 A JP H11171554A JP 23274498 A JP23274498 A JP 23274498A JP 23274498 A JP23274498 A JP 23274498A JP H11171554 A JPH11171554 A JP H11171554A
Authority
JP
Japan
Prior art keywords
molten glass
vacuum degassing
refractory
tank
furnace material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23274498A
Other languages
Japanese (ja)
Other versions
JP3005210B2 (en
Inventor
Yusuke Takei
祐輔 竹居
Masataka Matsuwaki
正隆 松脇
Toshiyasu Kawaguchi
年安 河口
Shun Kijima
駿 木島
Junji Tanigaki
淳史 谷垣
Toshihiro Ishino
利弘 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP23274498A priority Critical patent/JP3005210B2/en
Priority to US09/164,356 priority patent/US6119484A/en
Priority to KR1019980041667A priority patent/KR100682778B1/en
Priority to TW087116447A priority patent/TW498058B/en
Priority to IDP981327A priority patent/ID20649A/en
Priority to DE69807812T priority patent/DE69807812T3/en
Priority to EP98118842A priority patent/EP0908417B2/en
Priority to DE69823560T priority patent/DE69823560T2/en
Priority to EP04007832A priority patent/EP1439148A3/en
Priority to EP00122258A priority patent/EP1078891B1/en
Priority to CNB991025741A priority patent/CN1184153C/en
Publication of JPH11171554A publication Critical patent/JPH11171554A/en
Priority to US09/473,680 priority patent/US6405564B1/en
Application granted granted Critical
Publication of JP3005210B2 publication Critical patent/JP3005210B2/en
Priority to KR1020060029382A priority patent/KR100682779B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch
    • C03B5/205Mechanical means for skimming or scraping the melt surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a furnace material for a reduced pressure defoaming device for molten glass which is capable of subjecting a large amt. of the molten glass to reduced pressure defoaming treatment and is applicable to a large-sized glass melting furnace forming furnace and a device therefor. SOLUTION: The furnace material of at least the part in direct contact with the molten glass of the flow passage 40 of a reduced pressure defoaming vessel among a riser 16 housed in a reduced pressure casing, the reduced pressure defoaming vessel 14 for executing the molten glass 8 to the reduced pressure defoaming treatment and a downcomer 18 is formed of refractories having a porosity of <=5%. The refractories are preferably electroformed refractories or densely fired refractories.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続的に供給され
る溶融ガラスから気泡を除去する溶融ガラスの減圧脱泡
装置に用いる炉材およびこれを用いる溶融ガラスの減圧
脱泡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace material used for a vacuum degassing apparatus for molten glass for removing air bubbles from a continuously supplied molten glass, and to a vacuum degassing apparatus for molten glass using the same.

【0002】[0002]

【従来の技術】従来より、成形されたガラス製品の品質
を向上させるために、溶融炉で溶融した溶融ガラスを成
形装置で成形する前に溶融ガラス内に発生した気泡を除
去する減圧脱泡装置が用いられている。このような従来
の減圧脱泡装置を図5に示す。図5に示す減圧脱泡装置
100は、溶解槽112中の溶融ガラスGを減圧脱泡処
理して、次の処理槽に連続的に供給するプロセスに用い
られるものであって、真空吸引されている。減圧ハウジ
ング102内に水平に減圧脱泡槽104が収納配置さ
れ、その両端に垂直に取り付けられる上昇管106およ
び下降管108が収納配置されている。
2. Description of the Related Art Conventionally, in order to improve the quality of molded glass products, a vacuum degassing apparatus for removing air bubbles generated in a molten glass before molding the molten glass in a melting furnace by a molding apparatus. Is used. FIG. 5 shows such a conventional vacuum degassing apparatus. The vacuum degassing apparatus 100 shown in FIG. 5 is used for a process in which the molten glass G in the melting tank 112 is degassed under reduced pressure and is continuously supplied to the next processing tank. I have. A decompression degassing tank 104 is horizontally accommodated in a decompression housing 102, and an ascending pipe 106 and a descending pipe 108 vertically attached to both ends thereof are accommodated and arranged.

【0003】上昇管106は減圧脱泡槽104に連通
し、脱泡処理前の溶融ガラスGを溶解槽112から上昇
させて減圧脱泡槽104に導入する。下降管108は、
減圧脱泡槽104に連通し、脱泡処理後の溶融ガラスG
を減圧脱泡槽104から下降させて、次の処理槽(図示
せず)に導出する。そして、減圧ハウジング102内に
おいて、減圧脱泡槽104、上昇管106および下降管
108の周囲には、これらを断熱被覆する断熱用レンガ
などの断熱材110が配設されている。なお、減圧ハウ
ジング102は、金属製、例えばステンレス製であり、
外部から真空ポンプ(図示せず)等によって真空吸引さ
れ、内部が減圧され、内設される減圧脱泡槽104内を
所定の減圧、例えば1/20〜1/3気圧の減圧状態に
維持する。
The rising pipe 106 communicates with the vacuum degassing tank 104, and the molten glass G before defoaming is lifted from the melting tank 112 and introduced into the vacuum degassing tank 104. The downcomer 108 is
The molten glass G after the defoaming process is communicated with the vacuum degassing tank 104.
Is lowered from the vacuum degassing tank 104 and led out to the next processing tank (not shown). In the decompression housing 102, around the decompression degassing tank 104, the rising pipe 106, and the downcoming pipe 108, a heat insulating material 110 such as a heat insulating brick for heat insulating and covering these is provided. The decompression housing 102 is made of metal, for example, stainless steel.
The inside of the vacuum degassing tank 104 provided therein is maintained at a predetermined reduced pressure, for example, at a reduced pressure of 1/20 to 1/3 atm. .

【0004】従来の減圧脱泡装置100においては、高
温、例えば1200〜1400℃の温度の溶融ガラスG
を処理するように構成されているので、本出願人の出願
に係る特開平2−221129号公報に開示しているよ
うに、減圧脱泡槽104、上昇管106および下降管1
08などのように溶融ガラスGと直接接触する部分は、
通常白金または白金ロジウムのような白金合金などの貴
金属製円管で構成されている。本出願人は、これらを白
金合金製円管を用いることによって、減圧脱泡装置を実
用化している。
In the conventional vacuum degassing apparatus 100, the molten glass G at a high temperature, for example, at a temperature of 1200 to 1400 ° C.
Therefore, as disclosed in Japanese Unexamined Patent Application Publication No. 2-221129 filed by the present applicant, the vacuum degassing tank 104, the riser 106 and the downcomer 1
08, etc., the part which is in direct contact with the molten glass G,
Usually, it is formed of a circular pipe made of a noble metal such as platinum or a platinum alloy such as platinum rhodium. The present applicant has put a vacuum degassing apparatus into practical use by using a platinum alloy circular tube.

【0005】ここで、これらを白金合金などの貴金属製
円管で構成するのは、溶融ガラスGが高温であるばかり
でなく、貴金属が溶融ガラスとの高温反応性が低く、溶
融ガラスとの反応による不均質化を生じさせることがな
く、高温での温度がある程度確保できるからである。特
に、減圧脱泡槽104を貴金属製円管で構成するのは、
上記理由に加え、貴金属製円管自体に電流を流して自己
発熱させ、円管内の溶融ガラスGを均一に加熱し、溶融
ガラスGの温度を所定の温度に保持するためである。
[0005] The reason why these are made of a circular pipe made of a noble metal such as a platinum alloy is that not only the molten glass G has a high temperature but also the noble metal has low reactivity with the molten glass at a high temperature, and the reaction with the molten glass is low. This is because a high-temperature can be secured to some extent without causing inhomogeneity due to the above. In particular, when the vacuum degassing tank 104 is composed of a precious metal circular pipe,
In addition to the above-mentioned reason, the reason is that an electric current is caused to flow through the precious metal circular tube itself to cause self-heating, thereby uniformly heating the molten glass G in the circular tube and keeping the temperature of the molten glass G at a predetermined temperature.

【0006】[0006]

【発明が解決しようとする課題】ところで、減圧脱泡槽
104を貴金属で構成すると、機械的強度の点から円管
とするのがよいが、白金などの貴金属は高価であるた
め、肉厚を厚くできないため、コストおよび強度の両方
の点から円管の直径には限界があり、あまり大きくでき
ず、減圧脱泡槽104で脱泡処理できる溶融ガラスGの
流量にも限界があり、大流量の減圧脱泡装置を構築でき
ないという問題があった。もちろん、円管状減圧脱泡槽
104の全長を長くして容量を大きくし、脱泡処理量を
増加させることも考えられるが、装置が長大化し、高価
になるという問題があるため、減圧脱泡装置100にお
ける溶融ガラスGの脱泡処理量(流量)を大きくできな
いという問題があった。
When the vacuum degassing tank 104 is made of a noble metal, it is preferable to use a circular tube from the viewpoint of mechanical strength. However, since a noble metal such as platinum is expensive, the thickness is reduced. Since the thickness cannot be increased, the diameter of the circular pipe is limited in terms of both cost and strength, and cannot be so large. The flow rate of the molten glass G that can be defoamed in the vacuum degassing tank 104 is also limited. However, there is a problem that a vacuum degassing apparatus cannot be constructed. Of course, it is conceivable to increase the total length of the tubular vacuum degassing tank 104 to increase its capacity and increase the amount of degassing treatment. However, since there is a problem that the apparatus becomes long and expensive, the decompression degassing tank 104 is used. There is a problem that the defoaming treatment amount (flow rate) of the molten glass G in the apparatus 100 cannot be increased.

【0007】また、溶融ガラスGは、粉体原料を溶解反
応させることによって得られるので、溶解の点では、溶
解槽112の温度は高い方が好ましく、また、減圧脱泡
の点でも溶融ガラスの粘度は低く、従って温度は高い方
が好ましい。しかしながら、従来の減圧脱泡装置110
は、高温強度の点から、減圧脱泡槽104などに貴金属
合金を用いる必要がある一方で、貴金属は高価なもので
あり、コストの点から円管の厚みをあまり厚くできない
ため、白金などの貴金属を用いると、減圧脱泡装置10
0の入口での溶融ガラスの温度は、上述した所定温度
(1200〜1400℃)に制限されてしまっていた。
[0007] Further, since the molten glass G is obtained by melting and reacting a powdery raw material, it is preferable that the temperature of the melting tank 112 be higher in terms of melting, and that the molten glass G be degassed under reduced pressure. It is preferred that the viscosity be low and therefore the temperature be high. However, the conventional vacuum degassing apparatus 110
It is necessary to use a noble metal alloy for the vacuum degassing tank 104 and the like from the point of high temperature strength, but the noble metal is expensive and the thickness of the circular tube cannot be made too large from the point of cost. When a noble metal is used, the vacuum degassing apparatus 10
The temperature of the molten glass at the entrance of 0 was limited to the above-mentioned predetermined temperature (1200 to 1400 ° C.).

【0008】一方、成形機(成形処理槽)において、脱
泡処理済の溶融ガラスを成形するのに適した温度は、成
形対象物、例えば板材や瓶材などによって異なるが、所
定温度に制限されている。このため、減圧脱泡槽104
に貴金属が用いられると、減圧脱泡装置100の入口で
の溶融ガラスGの温度は1400℃程度に制限され、そ
の流量(処理量)も大きくできず、溶融ガラスG自体が
持ち込む熱量もあまり大きくないため、減圧脱泡装置1
00内での溶融ガラスGの温度低下によって、減圧脱泡
装置100の出口での溶融ガラスGの温度が成形に必要
な温度より低下してしまうという問題があった。このた
め、上述したように、減圧脱泡槽104内の溶融ガラス
Gを均一に加熱する必要が生じ、この均一加熱のために
減圧脱泡槽104自体を貴金属製円管とせざるを得ず、
その結果、上述したように処理量を多くできないという
問題があった。
On the other hand, the temperature suitable for forming the defoamed molten glass in the forming machine (forming tank) depends on the forming object, for example, a plate material or a bottle material, but is limited to a predetermined temperature. ing. Therefore, the vacuum degassing tank 104
When a noble metal is used, the temperature of the molten glass G at the inlet of the vacuum degassing apparatus 100 is limited to about 1400 ° C., the flow rate (processing amount) cannot be increased, and the amount of heat brought in by the molten glass G itself is too large. There is no vacuum degassing device 1
There is a problem that the temperature of the molten glass G at the outlet of the vacuum degassing apparatus 100 drops below the temperature required for molding due to the decrease in the temperature of the molten glass G within 00. Therefore, as described above, it is necessary to uniformly heat the molten glass G in the vacuum degassing tank 104, and for this uniform heating, the vacuum degassing tank 104 itself has to be a precious metal circular pipe.
As a result, there is a problem that the processing amount cannot be increased as described above.

【0009】そこで、上述の問題点の克服のために、減
圧脱泡槽104や上昇管106や下降管108の管路に
高価でコストのかかる白金合金などの貴金属製材料を用
いる替わりに、これらに比べて安価でコストもかからな
い耐火物製炉材を用いることが考えられる。一般に耐火
物製炉材を溶融炉に用いる場合、炉材として使用する耐
火物が溶融ガラスと直接接触する初期時に、耐火物の表
面から細かい気泡が発生する発泡現象が知られている。
これらの気泡には、溶融ガラスと接触する耐火物の表面
が還元状態になっているため、耐火物表面の不純物であ
る炭素、炭化物や窒化物が酸素と結びつき、二酸化炭素
(CO2 )ガスや窒素(N2 )ガスとなって発生する気
泡と、また、耐火物に存在する気孔内の気体が、溶融ガ
ラスと接触することで耐火物表面から発生する気泡との
2種類がある。
In order to overcome the above-mentioned problems, instead of using expensive and costly precious metal materials such as platinum alloys for the vacuum degassing tank 104, the riser pipe 106 and the descender pipe 108, these materials are used. It is conceivable to use a refractory furnace material which is inexpensive and inexpensive as compared with the above. In general, when a refractory furnace material is used in a melting furnace, a foaming phenomenon in which fine bubbles are generated from the surface of the refractory material at the initial stage when the refractory material used as the furnace material comes into direct contact with the molten glass is known.
In these bubbles, since the surface of the refractory in contact with the molten glass is in a reduced state, carbon, carbide and nitride, which are impurities on the surface of the refractory, are combined with oxygen, so that carbon dioxide (CO 2 ) gas and There are two types: bubbles generated as nitrogen (N 2 ) gas, and bubbles generated from the surface of the refractory when gas in pores existing in the refractory comes into contact with molten glass.

【0010】また、一般に、耐火物に存在する気孔とし
ては、気孔が外表面に通じている開気孔(見かけ気孔)
と、気孔が外表面に通じておらず独立に存在する閉気孔
とが存在し、このような2種類の気孔の少なくとも一方
を持つ耐火物を減圧脱泡装置100の炉材として用いた
場合、開気孔の場合には、気孔内に含まれる気体が溶融
ガラスとの接触初期時に一気に気泡となり、それ以降は
気孔からの発泡は少なく、また閉気孔の場合には、溶融
ガラスとの接触初期時に気孔内に含まれる気体が一気に
気泡になることはないものの、耐火物の侵食により表面
が徐々に削られるに従って、耐火物内部の閉気孔が新た
に溶融ガラスと接触することで、徐々に気孔内に含まれ
る気体が気泡となって発泡することが考えられる。その
ため、減圧脱泡装置100の流路に耐火物製炉材を使用
すると、使用開始以降も断続的に長期にわたって、炉材
から気泡が発生するおそれがある。
In general, the pores present in the refractory include open pores (apparent pores) whose pores communicate with the outer surface.
And, there are closed pores in which the pores do not communicate with the outer surface and exist independently, and when a refractory having at least one of such two types of pores is used as a furnace material of the vacuum degassing apparatus 100, In the case of open pores, the gas contained in the pores becomes bubbles at a burst at the initial stage of contact with the molten glass, and thereafter there is little bubbling from the pores, and in the case of closed pores, at the initial stage of contact with the molten glass. Although the gas contained in the pores does not suddenly become bubbles, the closed pores inside the refractory gradually come into contact with the molten glass as the surface is gradually shaved by the erosion of the refractory, so that the inside of the pores gradually increases. It is conceivable that the gas contained in is foamed as bubbles. Therefore, if a refractory furnace material is used in the flow path of the vacuum degassing apparatus 100, bubbles may be generated from the furnace material for a long period of time even after the start of use.

【0011】また、耐火物製炉材を減圧脱泡装置の流路
に使用した場合、溶融ガラスGの温度は、白金を炉材と
して用いた際の従来の減圧脱泡処理条件を変えないため
にも、また、高温に上げて炉材の侵食を早めることのな
いためにも、溶融ガラスGの温度を約1200〜140
0℃に設定することが考えられる。しかし、この脱泡処
理温度、約1200〜1400℃は、清澄剤のみを用い
た従来の脱泡処理工程、すなわち、清澄剤によって気泡
を成長させ、その気泡を溶融ガラス内で上昇させ、最終
的に溶融ガラス液表面で破泡させて脱泡する工程の脱泡
処理温度、約1400〜1500℃に比べて相対的に低
い。このため、耐火物製炉材を溶融ガラスの流路に用い
た減圧脱泡装置では、流路に用いた耐火物製炉材の侵食
速度は小さく、侵食によって耐火物内部の閉気孔が表面
に現れて気泡を発生させることは少ないことも考えられ
る。しかしながら、耐火物製炉材を流路に用いる減圧脱
泡装置では、上述のように、従来の清澄剤のみを用いた
清澄工程の脱泡処理温度に比べて相対的に低い温度で脱
泡処理を行うため、清澄剤を用いて脱泡処理する場合に
比べて溶融ガラスGの粘度は高くなり、一旦耐火物表面
で発生した気泡の溶融ガラスG中での浮上速度が小さく
なり、脱泡が十分に行われないおそれを払拭できないと
いう問題があった。
Further, when a refractory furnace material is used for the flow path of the vacuum degassing apparatus, the temperature of the molten glass G is not changed from the conventional vacuum degassing treatment conditions when platinum is used as the furnace material. Also, in order not to raise the temperature to a high temperature and accelerate the erosion of the furnace material, the temperature of the molten glass G is set to about 1200 to 140
It is conceivable to set the temperature to 0 ° C. However, this defoaming treatment temperature, about 1200 to 1400 ° C., is a conventional defoaming treatment step using only a fining agent, that is, bubbles are grown by the fining agent, and the bubbles are raised in the molten glass. The defoaming treatment temperature in the step of defoaming by defoaming on the surface of the molten glass liquid is relatively lower than about 1400 to 1500 ° C. For this reason, in the vacuum degassing system using the refractory furnace material for the molten glass flow path, the erosion rate of the refractory furnace material used for the flow path is low, and the closed pores inside the refractory are exposed to the surface by the erosion. It is conceivable that air bubbles appear and generate little. However, as described above, in the vacuum degassing apparatus using the refractory furnace material in the flow path, the defoaming process is performed at a relatively lower temperature than the defoaming process temperature in the conventional fining process using only the fining agent. Therefore, the viscosity of the molten glass G is higher than in the case of performing the defoaming treatment using a fining agent, the rising speed of the bubbles once generated on the surface of the refractory in the molten glass G is reduced, and the defoaming is performed. There is a problem that it is not possible to dispel the possibility that the operation is not performed sufficiently.

【0012】本発明の第1の目的は、上記従来技術の問
題点を解消し、高価な白金等の貴金属材料に比べて安価
でコストもかからず、自身からの気泡の発生が少なく、
たとえ気泡の発生があっても溶融ガラスの減圧脱泡処理
中に同様に確実に脱泡され、溶融ガラスを確実に脱泡す
ることができ、ガラスの品質を高品質に維持することの
できる最適な溶融ガラスの減圧脱泡装置用炉材を提供す
ることにある。また、本発明の第2の目的は、低コスト
で大流量、例えば15トン/日以上の流量の溶融ガラス
を脱泡処理することができ、大型のガラス溶解炉や溶解
槽および成形炉や成形処理槽に配設して用いることがで
き、これらに比してコンパクトな溶融ガラスの減圧脱泡
装置を提供することにある。
A first object of the present invention is to solve the above-mentioned problems of the prior art, to reduce the cost and cost as compared with expensive noble metal materials such as platinum and to reduce the generation of bubbles from itself.
Even if bubbles are generated, it is also degassed reliably during the degassing process of the molten glass under reduced pressure, so that the molten glass can be degassed reliably and the quality of the glass can be maintained at high quality. An object of the present invention is to provide a furnace material for a vacuum degassing apparatus for molten glass. A second object of the present invention is to provide a low-cost, high-rate, for example, a molten glass having a flow rate of, for example, 15 tons / day or more, which can be defoamed. An object of the present invention is to provide a vacuum degassing apparatus for molten glass which can be used by being disposed in a processing tank and which is more compact than these.

【0013】[0013]

【課題を解決するための手段】そこで、発明者らは、溶
融ガラスの減圧脱泡装置において、白金合金などの貴金
属製材料の替わりに用いることのできる耐火物製炉材に
ついて鋭意検討を行った結果、以下の知見を得て、本発
明に至ったものである。
Accordingly, the present inventors have conducted intensive studies on refractory furnace materials which can be used in place of precious metal materials such as platinum alloys in a vacuum degassing apparatus for molten glass. As a result, the following findings have been obtained, and the present invention has been achieved.

【0014】まず、白金合金などの貴金属製材料を用い
る替わりに、減圧脱泡槽に耐火物を用いた炉材を使用し
た場合、耐火物の種類によらず貴金属製材料に比べコス
トがかからず、大流量の溶融ガラスを処理できる減圧脱
泡装置が製作でき、溶融炉で発生した気泡を溶融ガラス
中から脱泡できるということ、および、装置をコンパク
トにし作業性をよくするため減圧脱泡槽の体積は小さく
されるので、溶融ガラスの流量に対する溶融ガラスに接
触する耐火物表面の面積が相対的に大きくなり、そのた
め、耐火物を炉材として使用する場合、耐火物によって
は、耐火物の侵食が速く、閉気孔から発生する気泡の量
は無視できないことを知見した。しかも、このような耐
火物の気孔から発生する気泡は、清澄剤を用いて溶融ガ
ラス内を浮上させて脱泡させる程の気泡の大きさでない
ため、粘度の高い溶融ガラス内を浮上することはなく、
溶融ガラス内に残存し、また、化学反応によって発生す
る気泡に比べて視認され得る程の大きさであるため、製
品としてのガラスの品質を著しく低下させることを知見
した。
First, when a furnace material using a refractory is used in a vacuum degassing tank instead of using a noble metal material such as a platinum alloy, the cost is higher than that of a noble metal material regardless of the type of refractory. In addition, a vacuum degassing device capable of processing a large flow of molten glass can be manufactured, and air bubbles generated in the melting furnace can be degassed from the molten glass. In addition, vacuum degassing to reduce the size of the device and improve workability Since the volume of the tank is reduced, the area of the surface of the refractory in contact with the molten glass relative to the flow rate of the molten glass becomes relatively large. Therefore, when the refractory is used as a furnace material, depending on the refractory, the Erosion was fast, and the amount of bubbles generated from closed pores was not negligible. Moreover, the bubbles generated from the pores of such a refractory are not large enough to float inside the molten glass using a fining agent and defoam, so that they cannot float inside the molten glass having a high viscosity. Not
It has been found that the size of the glass as a product is significantly reduced because it remains in the molten glass and is large enough to be visually recognized as compared with bubbles generated by a chemical reaction.

【0015】このため、溶融ガラスと直接接触する炉材
となる耐火物の表面から発生する、開気孔を起因とする
気泡の発生量およびこの耐火物の侵食によって溶融ガラ
スと接触する閉気孔を起因とする気泡の発生量と、減圧
脱泡後溶融ガラス中に残存する気泡の個数との関係を研
究した結果、減圧脱泡装置用炉材として用いる耐火物の
気孔率を所定値、すなわち5%以下とすることにより、
直接溶融ガラスと接触する耐火物の表面および侵食表面
から発生する気泡の総量は長期間にわたって少なく、た
とえ、これらの気泡が完全に脱泡されなくても、気泡の
残存個数はガラス製品として許容される残存気泡個数の
範囲に入り、減圧脱泡装置用炉材として適していること
を知見するとともに、その炉材を用いて、大流量の溶融
ガラスを脱泡処理することができ、大型のガラス溶解炉
や溶解槽および成形炉や成形処理槽に配設して用いるこ
とができることを知見し、本発明に至ったものである。
[0015] Therefore, the amount of bubbles generated from the surface of the refractory as a furnace material which comes into direct contact with the molten glass due to the open pores and the closed pores which come into contact with the molten glass due to the erosion of the refractory. As a result of studying the relationship between the amount of generated bubbles and the number of bubbles remaining in the molten glass after degassing under reduced pressure, the porosity of the refractory used as a furnace material for the depressurized defoaming device was set to a predetermined value, that is, 5%. By:
The total amount of bubbles generated from the surface of the refractory and the eroded surface that comes into direct contact with the molten glass is small over a long period, and even if these bubbles are not completely removed, the number of remaining bubbles is acceptable as glass products. And found that it is suitable as a furnace material for vacuum degassing equipment, and that the furnace material can be used to degas large amounts of molten glass. The present inventors have found that they can be used by disposing them in a melting furnace, a melting tank, a forming furnace or a forming processing tank, and have reached the present invention.

【0016】すなわち、本発明の第1の態様は、溶融ガ
ラスの脱泡処理を行う減圧脱泡装置の流路の少なくとも
前記溶融ガラスと直接接触する部分に用いる炉材であっ
て、気孔率が5%以下である耐火物を用いることを特徴
とする溶融ガラスの減圧脱泡装置用炉材を提供するもの
である。
That is, a first aspect of the present invention is a furnace material used in at least a portion of a flow path of a vacuum degassing apparatus for defoaming molten glass, which is in direct contact with the molten glass, and has a porosity. An object of the present invention is to provide a furnace material for a vacuum degassing apparatus for molten glass, characterized by using a refractory of 5% or less.

【0017】その際、前記耐火物は気孔率が3%以下で
あることが好ましく、またその耐火物は、電鋳耐火物あ
るいは緻密質焼成耐火物であることが好ましく、また、
前記電鋳耐火物は、アルミナ系電鋳耐火物、ジルコニア
系電鋳耐火物、およびアルミナ−ジルコニア−シリカ系
電鋳耐火物の少なくとも1種の電鋳耐火物であり、前記
緻密質焼成耐火物は、緻密質アルミナ系耐火物、緻密質
ジルコニア−シリカ系耐火物、および緻密質アルミナ−
ジルコニア−シリカ系耐火物の少なくとも1種の焼成耐
火物であることが好ましい。さらに、前記耐火物は、所
定の形状に鋳込み成形した電鋳耐火物の少なくとも溶融
ガラスと直接接触する面の表層を研磨したものであるこ
とが好ましく、また、前記電鋳耐火物の表層の研磨は、
少なくとも5mm以上であり、この表層が少なくとも5
mm以上研磨された前記電鋳耐火物の見かけ気孔率は1
%以下である溶融ガラスの減圧脱泡装置用炉材であるこ
とが好ましい。
At this time, the refractory preferably has a porosity of 3% or less, and the refractory is preferably an electroformed refractory or a densely fired refractory.
The electroformed refractory is at least one type of electroformed refractory of an alumina-based electroformed refractory, a zirconia-based electroformed refractory, and an alumina-zirconia-silica-based electroformed refractory. Are dense alumina-based refractories, dense zirconia-silica-based refractories, and dense alumina-
It is preferably at least one kind of zirconia-silica-based refractory. Further, it is preferable that the refractory is a material obtained by polishing at least a surface layer of a surface of an electroformed refractory which is cast into a predetermined shape and which is in direct contact with molten glass, and a surface layer of the electroformed refractory is preferably polished. Is
At least 5 mm or more, and this surface layer is at least 5 mm.
mm, the apparent porosity of the electroformed refractory is 1
% Or less is preferably a furnace material for a vacuum degassing apparatus for molten glass.

【0018】また、本発明の第2の態様は、減圧吸引さ
れる減圧ハウジングと、この減圧ハウジング内に収容さ
れ、上記第1の態様の減圧脱泡装置用炉材で構成され
た、大流量の溶融ガラスを流す流路および脱泡空間を有
し、溶融ガラスを減圧脱泡する減圧脱泡槽と、この減圧
脱泡槽に連通され、脱泡処理前の溶融ガラスを前記減圧
脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通さ
れ、脱泡処理後の溶融ガラスを前記減圧脱泡槽から導出
する導出手段とを有する溶融ガラスの減圧脱泡装置を提
供するものである。
According to a second aspect of the present invention, there is provided a decompression housing, which is sucked under reduced pressure, and a high-flow rate housing which is housed in the decompression housing and which is constituted by the furnace material for the decompression defoaming apparatus of the first aspect. A vacuum degassing tank having a flow path for flowing the molten glass and a defoaming space, and a vacuum degassing tank for degassing and degassing the molten glass, and the molten glass before the defoaming treatment is communicated with the vacuum degassing tank. And a deriving unit that is connected to the vacuum degassing tank and that derives the degassed molten glass from the vacuum degassing tank. .

【0019】ここで、前記減圧脱泡槽の流路は、矩形断
面を有するのが好ましい。また、前記導入手段および前
記導出手段はそれぞれ上昇管および下降管であり、前記
上昇管および前記下降管の少なくともいずれか一方は、
前記炉材で構成されるのが好ましく、また、矩形断面流
路を有する管であってもよく、さらに、前記減圧脱泡槽
とともに前記減圧ハウジング」内に収容されるのが好ま
しい。また、前記減圧脱泡槽の流路における溶融ガラス
の流量は、15トン/日以上であるのが好ましい。ま
た、前記減圧脱泡装置には、溶融ガラスを冷却するため
の冷却装置を有することが好ましい。
Here, the flow path of the vacuum degassing tank preferably has a rectangular cross section. Further, the introduction means and the derivation means are a riser and a downcomer, respectively, and at least one of the riser and the downcomer is
It is preferable to constitute the furnace material, and it may be a tube having a rectangular cross-section flow path, and it is further preferable that the tube is housed in the vacuum housing together with the vacuum degassing tank. The flow rate of the molten glass in the flow path of the vacuum degassing tank is preferably 15 tons / day or more. Further, it is preferable that the vacuum degassing apparatus has a cooling device for cooling the molten glass.

【0020】[0020]

【発明の実施の形態】本発明に係る溶融ガラスの減圧脱
泡装置用炉材は、気孔率が5%以下である耐火物を用い
ることを特徴とするが、本発明における気孔は、大きさ
が10mm以下の空隙であり、電鋳耐火物の引け巣(v
oid)のような大きさが10mmを超える空隙は含ま
ない。ここで引け巣とは、電鋳耐火物鋳造時に体積収縮
によって生じる空隙である。以下、本発明に係る溶融ガ
ラスの減圧脱泡装置用炉材およびこれを用いる溶融ガラ
スの減圧脱泡装置を添付の図面に示す好適実施例に基づ
いて、詳細に説明する。図1は、本発明の第2の態様の
溶融ガラスの減圧脱泡装置の一実施例の断面模式図であ
る。図3は、図1に示す溶融ガラスの減圧脱泡装置のII
−II線矢視図であり、減圧脱泡槽の横断面を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The furnace material for a vacuum degassing apparatus for molten glass according to the present invention is characterized by using a refractory having a porosity of 5% or less. Are voids of 10 mm or less, and shrinkage cavities (v
Oid) does not include a gap having a size exceeding 10 mm. Here, shrinkage cavities are voids formed by volume shrinkage during electroforming refractory casting. Hereinafter, a furnace material for a vacuum degassing apparatus for molten glass and a vacuum degassing apparatus for molten glass using the same according to the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings. FIG. 1 is a schematic sectional view of one embodiment of a vacuum degassing apparatus for molten glass according to the second aspect of the present invention. FIG. 3 shows the vacuum degassing apparatus for molten glass shown in FIG.
FIG. 2 is a view taken along line II, showing a cross section of the vacuum degassing tank.

【0021】同図に示すように、本発明の第2の態様の
溶融ガラスの減圧脱泡装置10は、溶解槽24内の溶融
ガラスGを減圧脱泡処理して、図示しない次の処理槽、
例えば、フロートバスなどの板材の成形処理槽や瓶など
の成形作業槽などに連続的に供給するプロセスに用いら
れるもので、略門型のステンレス製減圧ハウジング12
と、減圧ハウジング12内に水平に収納配置され、矩形
断面をもつ減圧脱泡槽14と、減圧ハウジング12内に
垂直に収納配置され、減圧脱泡槽14の左右両端部にそ
れぞれ、各上端部が取り付けられる上昇管16および下
降管18とを有する。また、図示例の減圧脱泡装置10
においては、減圧脱泡槽14,上昇管16および下降管
18と、減圧ハウジング12との間には断熱材20が充
填され、減圧脱泡槽14,上昇管16および下降管18
の各々の周囲を断熱被覆している。さらに、図示例の溶
融ガラスの減圧脱泡装置10では、減圧ハウジング12
内の下降管18の上側部分においては、下降管18の外
周に沿って冷却管22が配設されている。
As shown in the figure, a vacuum degassing apparatus 10 for molten glass according to a second embodiment of the present invention performs a degassing process on a molten glass G in a melting tank 24, and a next processing tank (not shown). ,
For example, it is used for a process of continuously supplying a plate material forming processing tank such as a float bath or a forming work tank such as a bottle, etc.
And a vacuum degassing tank 14 having a rectangular cross section which is horizontally housed and disposed in the decompression housing 12, and an upper end portion which is vertically housed and disposed in the decompression housing 12, at each of the left and right ends of the vacuum degassing tank 14. And an ascending pipe 16 and a descending pipe 18 to which are attached. Further, the vacuum degassing apparatus 10 of the illustrated example is used.
In this embodiment, a heat insulating material 20 is filled between the decompression housing 14 and the vacuum degassing tank 14, the rising pipe 16 and the downcoming pipe 18, and the vacuum degassing tank 14, the rising pipe 16 and the downcoming pipe 18 are filled.
Are heat-insulated. Further, in the vacuum degassing apparatus 10 for molten glass in the illustrated example, the vacuum housing 12
In the upper part of the downcomer 18, a cooling pipe 22 is provided along the outer periphery of the downcomer 18.

【0022】図示例においては、上昇管16の上側部分
は、減圧ハウジング12の脚部12aに収納配置され
る。また、上昇管16の下側部分は、減圧ハウジング1
2の脚部12aから突出し、上流案内ダクト26の開放
端に嵌入され、上流案内ダクト26内の溶融ガラスG内
に浸漬されている。そして、上流案内ダクト26は、溶
解槽24に連通されている。一方、下降管18の上側部
分は、減圧ハウジング12の脚部12bに収納配置され
る。また、下降管18の下側部分は、減圧ハウジング1
2の脚部12bから突出し、下流案内ダクト28の開放
端に嵌入され、下流案内ダクト28内の溶融ガラスG内
に浸漬されている。そして下流案内ダクト28は、図示
しない次の処理槽に連通されている。
In the illustrated example, the upper part of the riser 16 is housed in the leg 12 a of the decompression housing 12. The lower portion of the riser 16 is provided with the decompression housing 1.
The second projection 12 protrudes from the leg 12 a, is fitted into the open end of the upstream guide duct 26, and is immersed in the molten glass G in the upstream guide duct 26. The upstream guide duct 26 is connected to the melting tank 24. On the other hand, the upper part of the downcomer 18 is housed and arranged in the leg 12 b of the decompression housing 12. The lower portion of the downcomer pipe 18 is provided with the decompression housing 1.
The second projection 12 protrudes from the leg 12b, is fitted into the open end of the downstream guide duct 28, and is immersed in the molten glass G in the downstream guide duct 28. The downstream guide duct 28 communicates with a next processing tank (not shown).

【0023】減圧ハウジング12は、図示例では、両脚
部12aおよび12bを有する略門型をなすステンレス
製ハウジングであり、減圧脱泡槽14、上昇管16およ
び下降管18を収納し、これら、特に減圧脱泡槽14の
内部を所定の減圧条件(後述する)に維持するための圧
力容器として機能するもので、図中右上部に内部を真空
吸引して減圧するための吸引口12Cを有する。この減
圧ハウジング12の吸引口12Cは図示しない真空ポン
プ等に接続される。なお、減圧ハウジング12の形状お
よび材質は、その機能を阻害するものでなければ、何ら
限定されるものではない。
In the illustrated example, the decompression housing 12 is a substantially portal-shaped stainless steel housing having both legs 12a and 12b. The decompression housing 12 accommodates a decompression degassing tank 14, an ascending pipe 16 and a descending pipe 18; It functions as a pressure vessel for maintaining the inside of the vacuum degassing tank 14 under a predetermined pressure reducing condition (described later), and has a suction port 12C at the upper right portion in the drawing for vacuum suctioning the inside to reduce the pressure. The suction port 12C of the decompression housing 12 is connected to a vacuum pump or the like (not shown). Note that the shape and material of the decompression housing 12 are not limited at all, as long as the function is not hindered.

【0024】減圧脱泡槽14は、図1中左下側において
上昇管16の上端に連通し、右下側において下降管18
の上端に連通し、その左上側および右上側に、減圧脱泡
槽14内を所定の減圧状態(設定減圧条件)に維持する
ための吸引口14a,14bを有している。減圧脱泡槽
14内においては、上昇管16から導入された溶融ガラ
スGが図中右側に向って流れ、下降管18に導出される
が、減圧脱泡槽14の上部には溶融ガラスG中の気泡を
浮上させて破泡させるための上部空間14sが設けられ
る。さらに、減圧脱泡槽14内には溶融ガラスG中を浮
上してきた気泡を堰止め、破泡を促進するとともに、下
流への気泡の流出を低減し、もしくは防止するために、
溶融ガラスG中にその一部が浸漬され、その余が上部空
間14sに突出するバリヤ30a,30bが配設され
る。
The vacuum degassing tank 14 communicates with the upper end of the riser 16 at the lower left side in FIG. 1 and the downcomer 18 at the lower right side.
The suction ports 14a and 14b for maintaining the inside of the vacuum degassing tank 14 at a predetermined reduced pressure state (set reduced pressure condition) are provided on the upper left and upper right sides of the upper side of the tank. In the vacuum degassing tank 14, the molten glass G introduced from the rising pipe 16 flows toward the right side in the figure and is led out to the downcomer pipe 18. There is provided an upper space 14s for floating air bubbles to break them. Furthermore, in order to stop air bubbles floating in the molten glass G in the vacuum degassing tank 14 to promote foam breaking, and to reduce or prevent the outflow of air bubbles downstream,
Barriers 30a and 30b are provided, a part of which is immersed in the molten glass G and the remainder protrudes into the upper space 14s.

【0025】ここで、減圧脱泡槽14内での減圧条件
は、溶融ガラスGの粘度(温度)などの条件に応じて1
/20〜1/3気圧に設定される。また、溶解槽24の
溶融ガラスGと減圧脱泡槽14の溶融ガラスGとのレベ
ル差Hは、設定された減圧条件に応じて、溶融ガラスG
の突沸、減圧槽からの素地のオーバフローなどを防止す
るようなレベル差に設定される。従って、減圧脱泡槽1
4内の圧力を1/20〜1/3気圧に設定すると、溶解
槽24と減圧脱泡槽14との溶融ガラスGのレベル差H
は約2.5〜3.5m必要となる。
Here, the reduced pressure condition in the reduced pressure degassing tank 14 depends on the conditions such as the viscosity (temperature) of the molten glass G and the like.
/ 20 to 1/3 atmosphere. Further, the level difference H between the molten glass G in the melting tank 24 and the molten glass G in the vacuum degassing tank 14 is determined by the molten glass G according to the set pressure reduction conditions.
The level difference is set so as to prevent bumping and overflow of the substrate from the decompression tank. Therefore, the vacuum degassing tank 1
4 is set to 1/20 to 1/3 atmosphere, the level difference H of the molten glass G between the melting tank 24 and the vacuum degassing tank 14 is set.
Requires about 2.5 to 3.5 m.

【0026】減圧脱泡槽14は、図3に示されるよう
に、所定寸法の流路断面形状、好ましくは矩形断面を有
し、所定長さの管、好ましくは角筒状管(角管)であっ
て、嵩密度が高く稠密な耐火物、つまり本発明の第1の
態様の減圧脱泡装置用炉材である気孔率5%以下、好ま
しくは3%以下、の耐火物製炉材で構成される。本発明
において、減圧脱泡槽14の流路の断面形状は、また制
限的ではなく、どのような形状でもよく、例えば図3に
示す矩形、円形、楕円形、多角形などを挙げることがで
きるが、図3に示すように矩形とするのが好ましい。従
って、以下では、流路断面は矩形を代表例として説明す
る。ここにおいて、気孔率とは、耐火物に含まれる気孔
容積の全容積に対する割合で、(1−嵩比重/真比重)
×100(%)であり、耐火物内部に占める気孔の体積
が大きいものは気孔率は高くなり、内部に占める気孔の
体積が小さいものは気孔率が小さいことを示すものであ
る。なお、嵩比重および真比重はJIS R2205に
したがって測定される。また、ここでいう気孔は開気孔
および閉気孔を含む。
As shown in FIG. 3, the vacuum degassing tank 14 has a flow path cross section of a predetermined dimension, preferably a rectangular cross section, and a pipe of a predetermined length, preferably a square tubular pipe (square pipe). And a dense refractory material having a high bulk density, that is, a refractory furnace material having a porosity of 5% or less, preferably 3% or less, which is a furnace material for a vacuum degassing apparatus according to the first aspect of the present invention. Be composed. In the present invention, the cross-sectional shape of the flow path of the vacuum degassing tank 14 is not limited, and may be any shape, such as a rectangle, a circle, an ellipse, and a polygon shown in FIG. However, it is preferable to make it rectangular as shown in FIG. Therefore, in the following, the cross section of the flow channel will be described using a rectangle as a representative example. Here, the porosity is the ratio of the pore volume contained in the refractory to the total volume, and is (1−bulk specific gravity / true specific gravity).
× 100 (%), where the pore volume occupying the inside of the refractory is large, the porosity is high, and the pore volume occupying the inside is small, indicating that the porosity is small. The bulk specific gravity and the true specific gravity are measured according to JIS R2205. Further, the pores here include open pores and closed pores.

【0027】次に、本発明の第1の態様の減圧脱泡装置
用炉材について説明する。なお、本発明の第1の態様の
減圧脱泡装置用炉材は、本発明の第2の態様の減圧脱泡
槽、上昇管および下降管にも好適に使用される。本態様
の炉材は、気孔率が5%以下の耐火物を用いることを特
徴とするものである。本態様において、炉材として用い
る耐火物の気孔率を5%以下にするのは、耐火物の気孔
率が5%以下であれば、耐火物製炉材を減圧脱泡槽等の
流路に使用した場合でも、耐火物の気孔内の気体によっ
て発生する溶融ガラス内の気泡の個数を許容範囲内に維
持することができるとともに、耐蝕性も高く、流路の寿
命、すなわち減圧脱泡装置の寿命も要求レベルを満足す
るものとなるからである。
Next, a furnace material for a vacuum degassing apparatus according to the first embodiment of the present invention will be described. The furnace material for a vacuum degassing apparatus according to the first aspect of the present invention is also suitably used for the vacuum degassing tank, ascending pipe and descending pipe according to the second aspect of the present invention. The furnace material of the present embodiment is characterized by using a refractory having a porosity of 5% or less. In the present embodiment, the porosity of the refractory used as the furnace material is set to 5% or less, if the porosity of the refractory is 5% or less, the refractory furnace material is supplied to a flow path of a vacuum degassing tank or the like. Even when used, the number of bubbles in the molten glass generated by the gas in the pores of the refractory can be maintained within an allowable range, the corrosion resistance is high, and the life of the flow path, that is, the pressure reduction defoaming device is used. This is because the service life also satisfies the required level.

【0028】以下に、本態様の炉材として用いる耐火物
の気孔率を5%以下に限定する理由について詳細に説明
する。前述したように、溶融ガラス中に混入する泡のう
ち、耐火物の気孔によるものは、開気孔起因のものと、
閉気孔起因の2つがあり、前者は減圧脱泡処理の初期に
ほとんど発生し、稼働するにつれ発生しなくなるのに対
し、後者は稼働中に徐々に発生してくる。また、閉気孔
起因の泡は、化学反応による泡よりも径が大きく、溶融
ガラス中から脱泡されないと致命的になりやすいという
問題があったことは前述した通りである。
Hereinafter, the reason why the porosity of the refractory used as the furnace material of the present embodiment is limited to 5% or less will be described in detail. As described above, among the bubbles mixed in the molten glass, those due to the pores of the refractory are caused by open pores,
There are two types that are caused by closed pores. The former occurs almost at the beginning of the decompression and defoaming process, and does not occur as the apparatus operates, whereas the latter gradually occurs during the operation. As described above, bubbles due to closed pores have a larger diameter than bubbles due to a chemical reaction, and are likely to be fatal unless defoamed from the molten glass.

【0029】ところで、通常の清澄剤等を用いる脱泡清
澄処理では、高温では溶融ガラスの粘度が低く、容易に
抜け出て脱泡してしまうし、低温では侵食が極めて少な
く、泡の発生量自体が問題にならない。このため、処理
される溶融ガラスの温度が低い減圧脱泡清澄処理におい
ても、泡の発生量は全く問題にならないと考えられてい
た。しかしながら、減圧脱泡処理においては、装置をコ
ンパクトにし作業性を良くするために減圧脱泡槽の体積
を小さくすることが好ましい。そのため、耐火物製炉材
への負荷は、上述の通常の脱泡清澄処理の場合の10倍
程度になり、稼働中に発生する閉気孔起源の泡を無視で
きないという問題があったことも前述した通りである。
By the way, in the defoaming fining treatment using a usual fining agent or the like, the viscosity of the molten glass is low at a high temperature and easily escapes and defoams. At a low temperature, the erosion is extremely small. Does not matter. For this reason, it has been considered that the amount of generated bubbles does not matter at all even in the vacuum degassing and fining treatment in which the temperature of the molten glass to be treated is low. However, in the vacuum degassing treatment, it is preferable to reduce the volume of the vacuum degassing tank in order to make the apparatus compact and improve workability. For this reason, the load on the refractory furnace material is about 10 times that in the case of the above-described ordinary defoaming fining treatment, and there is a problem that bubbles generated from closed pores generated during operation cannot be ignored. As you did.

【0030】すなわち、減圧して溶融ガラスG内の気泡
を脱泡する減圧脱泡槽14の流路に耐火物製炉材を使用
した場合、溶融ガラスGと直接接触する耐火物製炉材
は、減圧下にさらされて、その耐火物中に含まれる気孔
内の気体が減圧脱泡槽14内に吸引され、その気体は耐
火物から溶融ガラスGに放出されて、溶融ガラスG中に
約0.1〜0.2mm程度の細かい気泡を発生させるこ
とになる。減圧によって耐火物の気孔から放出されて溶
融ガラスG内に発生した気泡には、粘度の高い溶融ガラ
スを浮上して減圧脱泡槽外部へ吸引されることなく、溶
融ガラスG内に残存する気泡が存在する。
That is, when a refractory furnace material is used in the flow path of the vacuum degassing tank 14 for defoaming and defoaming the bubbles in the molten glass G, the refractory furnace material that comes into direct contact with the molten glass G is: Exposure to reduced pressure causes gas in the pores contained in the refractory to be sucked into the vacuum degassing tank 14, and the gas is released from the refractory into the molten glass G, into the molten glass G. Fine bubbles of about 0.1 to 0.2 mm are generated. Bubbles released from the pores of the refractory due to reduced pressure and generated in the molten glass G include bubbles remaining in the molten glass G without floating the high-viscosity molten glass and being sucked out of the vacuum degassing tank. Exists.

【0031】減圧脱泡処理される前の溶融ガラスG内に
発生する気泡は、ガラスを溶解する際に原料として使用
する炭酸ソ−ダや清澄剤として使用する硫酸ナトリウム
や硝酸ナトリウム等を原因として発生する二酸化炭素
(CO2 )や二酸化硫黄(SO 2 )ガスさらには、窒素
(N2 )ガスを成分としており、これらのガスの気泡は
減圧脱泡処理によってほとんど除去される。そのため、
溶融ガラスG内に残存する気泡は、減圧脱泡槽14の耐
火物製炉材の気孔から発生する気泡が支配的となる。そ
のため、耐火物製炉材の気孔から発生する気泡を押さえ
る必要がある。
In the molten glass G before being subjected to the vacuum degassing treatment,
The generated bubbles are used as a raw material when melting the glass
Sodium carbonate used as sodium carbonate and fining agent
Carbon dioxide generated due to sodium and sodium nitrate
(COTwo) And sulfur dioxide (SO Two) Gas and even nitrogen
(NTwo) Gases are the components, and the bubbles of these gases are
Almost removed by vacuum degassing. for that reason,
Bubbles remaining in the molten glass G are resistant to the
Bubbles generated from the pores of the furnace material are dominant. So
To suppress air bubbles generated from pores of refractory furnace material
Need to be

【0032】ところで、耐火物製炉材は、溶融ガラスが
通過するにつれて侵食が進むが、侵食が進むことによ
り、さらに加速的に気孔、すなわち閉気孔が露出し、消
失して気泡が生成される。このため、耐火物製炉材の耐
蝕性、すなわち溶融ガラスによる侵食速度が問題になる
が、本態様においては、この耐蝕性(侵食速度)も気孔
率に依存することが判明している。
In the refractory furnace material, the erosion proceeds as the molten glass passes, but as the erosion progresses, the pores, ie, closed pores, are further accelerated to be exposed and disappear to generate bubbles. . For this reason, the corrosion resistance of the refractory furnace material, that is, the erosion rate due to the molten glass becomes a problem. In this embodiment, it has been found that the corrosion resistance (erosion rate) also depends on the porosity.

【0033】例えば、アルミナ−ジルコニア−シリカ系
電鋳耐火物を本態様の減圧脱泡装置用炉材として用いる
場合の、耐火物の気孔率と溶融ガラスによる耐火物の侵
食速度の関係を図2に示す。ここで、耐火物製炉材の見
かけ気孔率は、開気孔の気孔率であり、JIS R22
05にしたがって測定される。また、侵食速度は、一定
時間の溶融ガラスを流した後、耐火物製炉材の侵食量を
測る侵食促進試験により求めている。なお、ここで、使
用したアルミナ−ジルコニア−シリカ系電鋳耐火物の組
成はジルコニア(ZrO2 )40% 、シリカ(SiO
2 )11.5%、アルミナ(Al2 3 )47%、酸化
ナトリウム(Na2 O)1.1%、その他0.4%であ
る。また、使用したガラスは、ソーダライムシリカガラ
スであり、侵食温度は1300℃である。
For example, the relationship between the porosity of the refractory and the erosion rate of the refractory due to the molten glass when an alumina-zirconia-silica electroformed refractory is used as the furnace material for the vacuum degassing apparatus of this embodiment is shown in FIG. Shown in Here, the apparent porosity of the refractory furnace material is the porosity of the open pores and is defined by JIS R22.
05. Further, the erosion rate is determined by an erosion acceleration test for measuring the amount of erosion of the refractory furnace material after flowing the molten glass for a predetermined time. Here, the composition of the alumina-zirconia-silica electroformed refractory used was 40% zirconia (ZrO 2 ) and silica (SiO
2 ) 11.5%, alumina (Al 2 O 3 ) 47%, sodium oxide (Na 2 O) 1.1%, other 0.4%. The glass used was soda lime silica glass, and the erosion temperature was 1300 ° C.

【0034】図2に示すように、耐火物の見かけ気孔率
と侵食速度とは線型的な関係にあり、1次関数で近似で
きる。そこで、減圧脱泡槽の表面積を50m2 、溶融ガ
ラスの流量( 脱泡処理量) を100ton/dayとす
ると、図2に示す関数から見かけ気孔率0.5%(気孔
率1.5%)での侵食速度は0.1mm/day、見か
け気孔率1%(気孔率2.5%)での侵食速度は、0.
2mm/dayとなり、図2に示す関数から外挿するこ
とにより、見かけ気孔率3%(気孔率5%)での侵食速
度は0.6mm/day、見かけ気孔率5%での侵食速
度は、1.0mm/dayとして求めることができる。
As shown in FIG. 2, the apparent porosity of the refractory and the erosion rate have a linear relationship and can be approximated by a linear function. Therefore, assuming that the surface area of the vacuum degassing tank is 50 m 2 and the flow rate of the molten glass (defoaming treatment amount) is 100 ton / day, apparent porosity is 0.5% (porosity 1.5%) from the function shown in FIG. Is 0.1 mm / day, and the erosion rate at an apparent porosity of 1% (porosity of 2.5%) is 0.1 mm / day.
The erosion rate at an apparent porosity of 3% (porosity of 5%) is 0.6 mm / day, and the erosion rate at an apparent porosity of 5% is extrapolated from the function shown in FIG. It can be determined as 1.0 mm / day.

【0035】ここで、見かけ気孔率0.5%(気孔率
1.5%)での侵食速度0.1mm/dayを用いて、
気孔量を計算すると、75cm3 /day(=0.01
cm/day×50×104 cm2 ×0.015)とな
るので、直径0.5mmの気泡の個数に換算すると1.
1×106 個/day(=75cm3 /day/((4
/3)×3.14×0.0253 cm3 ))となり、ガ
ラス1kgあたりの気泡の個数は約11個(=1.1×
106 個/day/105 kg/day)となる。同様
にして、見かけ気孔率1%および3%における計算結果
を見かけ気孔率0.5%の場合も含めて表1に示す。
Here, using an erosion rate of 0.1 mm / day at an apparent porosity of 0.5% (porosity of 1.5%),
When the porosity was calculated, it was 75 cm 3 / day (= 0.01
cm / day × 50 × 10 4 cm 2 × 0.015), which is 1.
1 × 10 6 pieces / day (= 75 cm 3 / day / ((4
/3)×3.14×0.025 3 cm 3 )), and the number of bubbles per 1 kg of glass is approximately 11 (= 1.1 ×
10 6 pieces / day / 10 5 kg / day). Similarly, the calculation results at the apparent porosity of 1% and 3% are shown in Table 1 including the case of the apparent porosity of 0.5%.

【0036】 [0036]

【0037】表1から、アルミナ−ジルコニア−シリカ
系電鋳耐火物の場合、見かけ気孔率3%(気孔率5%)
で、ガラス1kg当たりの個数が約230個となり、ビ
ンガラス等で許容限度ぎりぎりの範囲となる。なお、見
かけ気孔率1.0%(気孔率2.5%)で、ガラス1k
g当たりの気泡個数が約38個となり、十分に高品質な
ガラスということができる。従って、耐火物製炉材を用
いて溶融ガラスの減圧脱泡処理を安定して実用化するた
めには、気孔率5%以下、好ましくは気孔率3%以下の
耐火物製炉材を少なくとも減圧脱泡槽に、好ましくはこ
れに加えてさらに下降管にも、より好ましくはさらにこ
れらに加えて上昇管にも用いることが必要となる。
From Table 1, it can be seen that in the case of the alumina-zirconia-silica electroformed refractory, the apparent porosity is 3% (porosity 5%).
Thus, the number of pieces per 1 kg of glass becomes about 230, which is within the permissible limit for bottle glass and the like. The apparent porosity is 1.0% (porosity 2.5%) and the glass 1k
The number of bubbles per g is about 38, and it can be said that the glass is of sufficiently high quality. Therefore, in order to stabilize and practically use the vacuum degassing treatment of the molten glass using the refractory furnace material, at least the refractory furnace material having a porosity of 5% or less, preferably 3% or less, is decompressed. It is necessary to use the defoaming tank, preferably additionally for the downcomer, more preferably still further for the upcomer.

【0038】このように、気孔率5%以下の耐火物を溶
融ガラスの流路に用いた場合、溶融ガラスの減圧脱泡処
理の機能を十分に発揮し、さらには侵食速度の低下によ
り減圧脱泡槽14の寿命も要求する寿命を満足する。と
くに、ガラスの品質が高く気泡許容個数の値が小さい値
に厳しく制限される光学用や電子用ガラスの場合、好ま
しくは気孔率3%以下、より好ましくは0.5%以下の
耐火物製炉材を使用することで、許容範囲内に気泡個数
を押さえることができ、かつ、耐火物の侵食を押さえて
減圧脱泡槽14の寿命も維持することができる。このよ
うに、製品としてのガラスの用途に応じて気孔率の異な
る耐火物を流路の炉材として選択的に使い分けるのが好
ましい。
As described above, when the refractory having a porosity of 5% or less is used for the flow path of the molten glass, the function of the degassing and degassing treatment of the molten glass is sufficiently exhibited, and further, the erosion rate is reduced to reduce the decompression rate. The life of the foam tank 14 also satisfies the required life. In particular, in the case of optical or electronic glass in which the quality of the glass is high and the value of the allowable number of bubbles is strictly limited to a small value, a refractory furnace having a porosity of preferably 3% or less, more preferably 0.5% or less. By using the material, the number of bubbles can be suppressed within an allowable range, and the erosion of the refractory can be suppressed, and the life of the vacuum degassing tank 14 can be maintained. As described above, it is preferable to selectively use refractories having different porosity as the furnace material of the flow channel according to the use of the glass as a product.

【0039】本発明の第1の態様の炉材に用いられる耐
火物は、気孔率5%以下の耐火物、より好ましくは、気
孔率3%以下であり、溶融ガラスGに溶出しても品質を
劣化、例えば、着色や異質化など生じさせることがな
く、好ましくは、溶融ガラスGとの反応性が小さく、耐
火物の材料自体も溶融ガラスに侵食されにくい、耐火物
であればどのようなものでもよい。このような耐火物と
しては、緻密質耐火物、例えば、気孔率5%以下の電鋳
耐火物および気孔率5%以下の焼成耐火物を挙げること
ができ、好ましくは、気孔率3%以下の電鋳耐火物およ
び気孔率3%以下の焼成耐火物であることが好ましい。
電鋳耐火物とは、耐火原料を電気溶融した後に、所定の
形状に鋳込み成形して作られた耐火物で、焼成耐火物と
は、耐火原料を成形した後、所定の強度等の性質を持た
せるために、所定の温度で熱処理した耐火物をいう。
The refractory used in the furnace material of the first embodiment of the present invention has a porosity of 5% or less, more preferably 3% or less, and has a high quality even when dissolved in the molten glass G. Deterioration does not cause, for example, coloring or heterogeneity, preferably, the reactivity with the molten glass G is small, and the material itself of the refractory is hardly eroded by the molten glass. It may be something. Examples of such refractories include dense refractories, for example, electroformed refractories having a porosity of 5% or less and fired refractories having a porosity of 5% or less, and preferably having a porosity of 3% or less. It is preferably an electroformed refractory or a fired refractory having a porosity of 3% or less.
An electroformed refractory is a refractory made by electroforming a refractory raw material and then casting it into a predetermined shape.A fired refractory is a refractory formed by molding a refractory raw material and having properties such as a predetermined strength. A refractory that has been heat treated at a predetermined temperature in order to have it.

【0040】ここで、電鋳耐火物としては気孔率が5%
以下の電鋳耐火物であればどのようなものでもよく、よ
り好ましくは、気孔率が3%以下の高嵩密度で、減圧脱
泡槽14の真空を保つことのできる、緻密な電鋳耐火物
であればよい。このような電鋳耐火物としては、例え
ば、ジルコニア系電鋳耐火物、アルミナ系電鋳耐火物、
アルミナ−ジルコニア−シリカ(AZS;Al2 3
ZrO2 −SiO2 )系電鋳耐火物などを挙げることが
できる。一方、通常の焼成耐火物は気孔率が約20%程
度であるのに対し、本発明の第1の態様の炉材に用いら
れる緻密質焼成耐火物は、気孔率が5%以下である。本
発明に用いられる緻密質焼成耐火物は、気孔率が5%以
下であればどのようなものでもよく、好ましくは、気孔
率が3%以下の高嵩密度で、減圧脱泡槽14の真空を保
つことのできる、稠密な焼成耐火物であればよい。例え
ば、緻密質ジルコニア−シリカ系焼成耐火物、緻密質ア
ルミナ系焼成耐火物や、緻密質アルミナ−ジルコニア−
シリカ系焼成耐火物を挙げることができる。α、β−ア
ルミナ系電鋳耐火物は気孔率が気孔率5%以下であり、
この耐火物から構成される炉材は、本発明の第1の態様
の減圧脱泡装置用炉材として用いることができる。
Here, the porosity of the electroformed refractory is 5%.
Any of the following electroformed refractories may be used, and more preferably, a dense electroformed refractory having a high bulk density of 3% or less in porosity and capable of maintaining a vacuum in the vacuum degassing tank 14. Anything is good. As such electroformed refractories, for example, zirconia-based electroformed refractories, alumina-based electroformed refractories,
Alumina-zirconia-silica (AZS; Al 2 O 3
ZrO 2 —SiO 2 ) -based electroformed refractories. On the other hand, a normal fired refractory has a porosity of about 20%, while a dense fired refractory used in the furnace material of the first embodiment of the present invention has a porosity of 5% or less. The dense fired refractory used in the present invention may be any material as long as it has a porosity of 5% or less, and preferably has a high bulk density with a porosity of 3% or less. What is necessary is just to be a dense fired refractory that can maintain the temperature. For example, dense zirconia-silica-based fired refractories, dense alumina-based fired refractories, and dense alumina-zirconia-
Silica-based fired refractories can be mentioned. α, β-alumina-based electrocast refractories have a porosity of 5% or less,
The furnace material made of the refractory can be used as the furnace material for the vacuum degassing apparatus according to the first aspect of the present invention.

【0041】また、電鋳耐火物を減圧脱泡槽14の流路
に使用する場合、耐火物表面の表層を所定厚み、好まし
くは5mm以上予め研磨(スカルピング)したものを耐
火物製炉材として使用することが好ましい。電鋳耐火物
は、その成形工程の鋳造時において、大気の巻き込みに
より耐火物の表面の気孔が多くなる傾向があり、それよ
り深い内部は気孔が殆どなくなり、気孔率が1%以下と
なるからである。表2に、アルミナ−ジルコニア−シリ
カ系電鋳耐火物の耐火物表層0〜6mmの見かけ気孔率
と、耐火物表層6〜20mmの見かけ気孔率を、1個の
耐火物の5ヶ所(サンプリング部位A〜E)からサンプ
リングして調べた結果を示している。サンプリング部位
Bおよびサンプリング部位Cは表層0〜6mmにおいて
1.0%以上の見かけ気孔率を有しているものの、表層
から6〜20mmにおいては、サンプリング部位A〜E
のいずれの見かけ気孔率も1.0%以下となっているこ
とが判る。表層6〜20mmの5ヶ所の見かけ気孔率の
平均は0.81%、偏差が0.07%であるのに対し、
表層0〜6mmでは見かけ気孔率の平均0.87%、偏
差0.34%である。したがって、表層0〜6mmを研
磨(スカルピング)することにより、表層の局部的な気
孔率のばらつきを除去でき、その結果、内部の気孔率と
同程度にすることができる。 このように耐火物の表層を研磨(スカルピング)するこ
とで、溶融ガラスGが耐火物と直接接触する初期に発生
する発泡現象を抑制することができ、減圧脱泡装置10
の立ち上げ初期から溶融ガラスGの脱泡処理をスムーズ
に行うことができるのである。また、研磨(スカルピン
グ)は、公知のグラインダーやダイヤモンド研磨機を用
いて行なう。なお、研磨(スカルピング)を行うのは、
電鋳耐火物に限られる。焼成耐火物は、電鋳耐火物と異
なり、表層の気孔率が特に内部に比べて高いことはない
からである。
When an electroformed refractory is used in the flow path of the vacuum degassing tank 14, the surface layer of the refractory having a predetermined thickness, preferably 5 mm or more, is polished (scalped) in advance as a refractory furnace material. It is preferred to use. Electroformed refractories tend to have a large number of pores on the surface of the refractory due to entrainment in the air during casting in the molding process, and there are few pores inside the refractory, and the porosity is 1% or less. It is. Table 2 shows the apparent porosity of the refractory surface layer of 0 to 6 mm and the apparent porosity of the refractory surface layer of 6 to 20 mm of the alumina-zirconia-silica-based electroformed refractory at five locations of one refractory. The results obtained by sampling from AE) are shown. Although the sampling site B and the sampling site C have an apparent porosity of 1.0% or more at the surface layer of 0 to 6 mm, the sampling sites A to E at the surface layer of 6 to 20 mm.
It can be seen that the apparent porosity of each of them is 1.0% or less. While the average of the apparent porosity at five places of the surface layer 6 to 20 mm is 0.81% and the deviation is 0.07%,
In the surface layer of 0 to 6 mm, the average of the apparent porosity is 0.87%, and the deviation is 0.34%. Therefore, by polishing (sculpting) the surface layer from 0 to 6 mm, the local porosity variation of the surface layer can be removed, and as a result, the porosity can be made substantially equal to the internal porosity. By polishing (sculpting) the surface layer of the refractory in this way, it is possible to suppress the foaming phenomenon that occurs at the initial stage when the molten glass G comes into direct contact with the refractory.
The defoaming treatment of the molten glass G can be performed smoothly from the initial stage of the start-up. Polishing (scalping) is performed using a known grinder or diamond polishing machine. In addition, polishing (scalping) is performed
Limited to electroformed refractories. This is because the fired refractory, unlike the electroformed refractory, has no higher porosity in the surface layer than in the interior.

【0042】このような気孔率が5%以下の耐火物を用
いて所定の断面形状、例えば矩形断面を持つ所定長の減
圧脱泡槽を構築する方法は、特に制限的ではなく、例え
ば小さい直方体の電鋳耐火物を互い違いに3次元的に、
すなわちラビリンス構造に積み上げ、その間の目地の部
分を目地材で埋めて、所定長の管、例えば角筒状管を形
成してもよいし、長さの短かい筒状、例えば角筒状の電
鋳耐火物を一列に積み重ねて、その間の目地の部分を目
地材で埋め、所定長の管、例えば角管を形成してもよ
い。
The method of constructing a vacuum degassing tank having a predetermined cross-sectional shape, for example, a rectangular cross-section and a predetermined length using a refractory having a porosity of 5% or less is not particularly limited. Three-dimensionally alternately cast electroformed refractories,
That is, a labyrinth structure may be piled up and a joint portion between them may be filled with a joint material to form a tube of a predetermined length, for example, a rectangular tube, or a tube of a short length, for example, a rectangular tube, Cast refractories may be stacked in a row and the joints between them may be filled with joints to form a tube of predetermined length, for example a square tube.

【0043】ところで、前述したように、図5に示すよ
うな従来の減圧脱泡装置100においては、溶融ガラス
Gと接触する部分を高温反応性の低さや高温における強
度の点から白金合金等の貴金属製円管(円筒)を用いて
いるが、貴金属で構成するため、装置入口での溶融ガラ
スの温度が所定温度(例えば1400℃)以下に制限さ
れてしまうし、また、コストや高温強度の点から脱泡処
理槽104の管径を所定直径より大きくできず、その結
果、溶融ガラスGの流量、従って脱泡処理量を多くでき
ない。また、従来装置では、貴金属を用いた結果、装置
入口での溶融ガラスGの温度が制限され、かつ流量を多
くできない一方、装置内での冷却を補償して装置出口で
の温度を一定に維持するために加熱しなければならず、
そのために自己発熱させることができる金属、すなわち
貴金属を用いなければならない結果となっていた。
As described above, in the conventional vacuum degassing apparatus 100 as shown in FIG. 5, the portion in contact with the molten glass G is made of platinum alloy or the like in view of low high-temperature reactivity and high-temperature strength. Although a noble metal circular tube (cylindrical) is used, the temperature of the molten glass at the entrance of the apparatus is limited to a predetermined temperature (for example, 1400 ° C.) or less because the pipe is made of a noble metal. From the point of view, the pipe diameter of the defoaming tank 104 cannot be made larger than the predetermined diameter, and as a result, the flow rate of the molten glass G, and hence the defoaming amount, cannot be increased. In addition, in the conventional apparatus, as a result of using a noble metal, the temperature of the molten glass G at the inlet of the apparatus is limited and the flow rate cannot be increased, but the cooling in the apparatus is compensated and the temperature at the outlet of the apparatus is kept constant. Must be heated to
For this reason, a metal that can generate heat, that is, a noble metal must be used.

【0044】これに対し、本発明においては、少なくと
も、減圧脱泡槽14に本発明の第1の態様の減圧脱泡装
置用炉材を用いることにより、円管にする必然性をなく
して、好ましくは角管(角筒状管)で構成することで、
図3に示すように、流量の増大を図るとともに、角管の
サイズの制限をなくしてさらなる流量の増大を図ること
ができる。図4に示すように、従来の減圧脱泡装置10
0の減圧脱泡槽104を直径Dの円管で構成した場合の
流量Qcと本発明の減圧脱泡装置10の減圧脱泡槽14
を幅D、高さDの矩形(正方形)で構成した場合の流量
Qとを比較すると、破泡のための上部空間Sが管の断面
積の半分であるとして、 Q/Qc=(D2 /2/{π(D/2)2 /2}=4/
π=1.27 となるので、角管を用いる本発明の場合は、円管を用い
る従来の場合に比べ、同サイズで、従って、同じ圧損で
その流量Qを1.27倍にすることができる。
On the other hand, in the present invention, at least the furnace material for the vacuum degassing apparatus of the first embodiment of the present invention is used for the vacuum degassing tank 14 to eliminate the necessity of forming a circular tube. Is composed of a square tube (square tubular tube),
As shown in FIG. 3, the flow rate can be increased, and the flow rate can be further increased by eliminating the restriction on the size of the square tube. As shown in FIG.
The flow rate Qc when the vacuum degassing tank 104 of 0 is constituted by a circular pipe having a diameter D and the vacuum degassing tank 14 of the vacuum degassing apparatus 10 of the present invention.
Is compared with the flow rate Q in the case of a rectangle (square) having a width D and a height D, assuming that the upper space S for foam breaking is half the cross-sectional area of the tube, and Q / Qc = (D 2 / 2 / {π (D / 2) 2/2} = 4 /
Since π = 1.27, in the case of the present invention using a square tube, it is possible to increase the flow rate Q by 1.27 times with the same size and the same pressure loss as compared with the conventional case using a circular tube. it can.

【0045】また、図示例のように角管を用いることに
より、高さDを変更せず、幅をDから(1+p)D(p
>0)に拡げることにより、流量をさらに(1+p)2
倍に、従って円管を用いる従来の場合に比して、1.2
7(1+p)2 倍に容易に増大させることができる。こ
れに加え、円管を用いる場合は、円断面において溶融ガ
ラスGの流路の深さを直径の半分以上にすると、上部空
間Sおよびその幅は急激に減少するため、十分な破泡空
間をとることができなくなるが、角管を用いる場合は、
矩形断面では溶融ガラスGの流路深さを高さの半分以上
にしても上部空間Sの幅は変らないので、破泡量に応じ
て適切な空間を設定することができ、適切な深さを設定
することができるので、さらなる流量増大を図ることも
可能である。なお、円管を用いる従来例では、流量増大
のために円管のサイズを大きくしても、サイズ増大に比
して流量の増大効果が角管を用いる図示例の場合より小
さいことはいうまでもない。なお、本発明に用いられる
所定断面形状、例えば矩形断面の減圧脱泡槽14の長さ
Lは、特に制限的ではないが、減圧脱泡槽14内におけ
る溶融ガラスGの深さ、種類、粘度(温度)、流量(処
理量)および流速などに応じて、溶融ガラスG中の気泡
が十分に浮上し、かつ破壊されて除去される時間だけ流
下する溶融ガラスGが減圧脱泡槽14内に留まれる長
さ、すなわち十分に脱泡処理される時間が得られる長さ
に設定すればよい。
Further, by using a square tube as in the illustrated example, the width is changed from D to (1 + p) D (p) without changing the height D.
> 0) to further increase the flow rate to (1 + p) 2
1.2 times that of the conventional case using a circular tube.
7 (1 + p) can be easily increased by a factor of 2 . In addition, when a circular pipe is used, if the depth of the flow path of the molten glass G in the circular cross section is set to half or more of the diameter, the upper space S and the width thereof are sharply reduced. If you use a square tube,
In the rectangular cross section, the width of the upper space S does not change even if the flow path depth of the molten glass G is made half or more of the height, so that an appropriate space can be set according to the amount of foam breaking, and the appropriate depth Can be set, so that the flow rate can be further increased. In the conventional example using the circular pipe, even if the size of the circular pipe is increased for increasing the flow rate, the effect of increasing the flow rate is smaller than that in the illustrated example using the square pipe as compared with the size increase. Nor. In addition, the length L of the predetermined cross-sectional shape used in the present invention, for example, the vacuum degassing tank 14 having a rectangular cross section is not particularly limited, but the depth, type, and viscosity of the molten glass G in the vacuum degassing tank 14 are not limited. In accordance with (temperature), flow rate (processing amount), flow rate, and the like, the molten glass G in which the bubbles in the molten glass G sufficiently float and flow down only for the time that they are destroyed and removed is placed in the vacuum degassing tank 14. The length of staying, that is, the length of time sufficient for the defoaming process may be set.

【0046】上昇管16および下降管18は、それぞれ
減圧脱泡槽14内の溶融ガラスGと溶解槽24内の溶融
ガラスGとのレベル差Hを保つために,用いられるもの
である。上昇管16は、脱泡処理されていない溶融ガラ
スGを減圧によって溶解槽24から上流室内ダクト26
を経て持ち上げ、減圧脱泡槽14内に導入する。また下
降管18は、脱泡処理された溶融ガラスGを減圧脱泡槽
14から導出して下降させ、下流案内ダクト28を経由
して図示しない次の処理槽へ送り出す。
The riser pipe 16 and the descender pipe 18 are used to maintain the level difference H between the molten glass G in the vacuum degassing tank 14 and the molten glass G in the melting tank 24, respectively. The riser pipe 16 moves the molten glass G that has not been defoamed from the melting tank 24 to the upstream indoor duct 26 by reducing the pressure.
And introduced into the vacuum degassing tank 14. Further, the downcomer pipe 18 draws out the defoamed molten glass G from the vacuum degassing tank 14 and lowers it, and sends it out to the next processing tank (not shown) via the downstream guide duct 28.

【0047】ここで、上昇管16および下降管18は、
従来装置の如く、白金合金等の貴金属円管で構成しても
よいが、溶融ガラスGの処理量および導入(入口)温度
の点からは、両者は、特に上昇管16は、減圧脱泡槽1
4と同様に気孔率が5%以下の耐火物製とするのが好ま
しく、例えば気孔率5%以下の耐火物製円筒状管または
気孔率5%以下の耐火物製角筒状管を用いることができ
るが、さらに、好ましくは、減圧脱泡槽14と全く同様
に気孔率5%以下の耐火物製角筒状管で構成するのがよ
い。なお、上昇管16および下降管18の寸法は、減圧
脱泡槽14内における溶融ガラスGの流量、従って減圧
脱泡装置10における脱泡処理量に応じて適宜選択すれ
ばよい。
Here, the riser pipe 16 and the descender pipe 18 are
As in the case of the conventional apparatus, a precious metal circular pipe such as a platinum alloy may be used. However, from the viewpoint of the throughput of molten glass G and the introduction (inlet) temperature, both of them, particularly the riser 16, are provided in a vacuum degassing tank. 1
Similar to 4, it is preferable to use a refractory having a porosity of 5% or less, for example, using a refractory cylindrical tube having a porosity of 5% or less or a refractory square tubular tube having a porosity of 5% or less. However, it is more preferable to use a refractory rectangular tube having a porosity of 5% or less, just like the vacuum degassing tank 14. The dimensions of the riser pipe 16 and the descender pipe 18 may be appropriately selected according to the flow rate of the molten glass G in the vacuum degassing tank 14, that is, the degassing processing amount in the vacuum degassing apparatus 10.

【0048】ところで、本発明においては、減圧脱泡槽
14を所定断面形状の気孔率5%以下の耐火物製管、例
えば矩形断面の気孔率5%以下の耐火物製角管で構成す
ることにより、減圧脱泡槽14内における溶融ガラスG
の流量、従って減圧脱泡装置10における脱泡処理量を
増大させることができるが、脱泡処理量が増大すると、
すなわち上昇管16に流入する溶融ガラスGの量が増大
すると、溶融ガラスGが減圧脱泡装置10に持ち込む顕
熱も当然増大する。このため、従来装置で流量が制限さ
れていたために、減圧脱泡装置10の出口温度を所定の
温度にするのに必要だった加熱装置による減圧脱泡槽1
4などの加熱、特に自己加熱を不要とすることができ
る。さらに、本発明においては、少なくとも減圧脱泡槽
14では白金合金等の貴金属を用いる必要がないので、
減圧脱泡装置10の溶融ガラスGの入口(導入)温度、
すなわち溶解槽24の出口温度を上昇させることもで
き、溶融ガラスGが減圧脱泡装置10に持ち込む顕熱は
ますます増大し、その結果、加熱装置による減圧脱泡槽
14などの加熱を不要なものとすることができる。
In the present invention, the vacuum degassing tank 14 is made of a refractory tube having a porosity of 5% or less having a predetermined cross-sectional shape, for example, a rectangular tube having a porosity of 5% or less having a rectangular cross-section. The molten glass G in the vacuum degassing tank 14
Can be increased, and thus the degassing treatment amount in the vacuum degassing apparatus 10 can be increased.
That is, when the amount of the molten glass G flowing into the riser 16 increases, the sensible heat that the molten glass G brings into the vacuum degassing apparatus 10 naturally increases. For this reason, since the flow rate was restricted in the conventional apparatus, the decompression degassing tank 1 by the heating device which was necessary for setting the outlet temperature of the decompression degassing apparatus 10 to a predetermined temperature was used.
4 or the like, especially self-heating can be made unnecessary. Furthermore, in the present invention, it is not necessary to use a noble metal such as a platinum alloy at least in the vacuum degassing tank 14,
The inlet (introduction) temperature of the molten glass G of the vacuum degassing apparatus 10,
That is, the outlet temperature of the melting tank 24 can be increased, and the sensible heat that the molten glass G brings into the vacuum degassing apparatus 10 is further increased. As a result, heating of the vacuum degassing tank 14 and the like by the heating apparatus is unnecessary. Things.

【0049】このため、本発明においては、脱泡処理
量、従って、減圧脱泡槽14(の矩形断面流路)におけ
る溶融ガラスGの流量を、15トン/日以上、好ましく
は20トン/日以上として、脱泡処理時の溶融ガラスG
の加熱を不要とし、そのための加熱装置を不要とするの
がよい。ここで、かかる加熱装置を設けない場合の脱泡
処理量を、15トン/日以上に限定する理由は、流入ガ
ラス量が少ないと最小規模の減圧脱泡装置全体の温度を
望ましい温度域に維持できないからである。
For this reason, in the present invention, the degassing treatment amount, that is, the flow rate of the molten glass G in the vacuum degassing tank 14 (the rectangular cross-sectional flow path) is set to 15 tons / day or more, preferably 20 tons / day. As described above, the molten glass G during the defoaming process
It is preferable to eliminate the need for heating, and to eliminate the need for a heating device therefor. Here, the reason why the amount of defoaming treatment without such a heating device is limited to 15 tons / day or more is that if the amount of inflow glass is small, the temperature of the entire vacuum degassing device of the smallest scale is maintained in a desired temperature range. Because you can't.

【0050】さらに脱泡処理量を増大させると、溶融ガ
ラスGが減圧脱泡装置10に持ち込む顕熱もますます増
大するので、減圧脱泡装置10の出口温度、従って次の
処理槽、特に成形処理槽の入口温度が所定の温度より高
くなってしまうことがある。この場合には、次の処理槽
である成形処理槽の入口温度が所定の温度となるよう
に、減圧脱泡装置10内外において溶融ガラスGを冷却
する必要がある。このため、本発明においては、脱泡処
理量、すなわち溶融ガラスGの流量が、30トン/日以
上、より好ましくは35トン/日以上の場合には、減圧
脱泡装置10内に冷却装置を設けるのが好ましい。ここ
で、冷却装置を設ける場合の脱泡処理量を、30トン/
日以上に限定する理由は、減圧脱泡装置の大きさをコス
トおよび建設の難易度から極力最小にすると、素地流入
量が大きくなると温度が上がり過ぎて、耐火物の侵食が
大きくなったり、減圧脱泡装置で成形に適正な温度に下
げきれないからである。
When the defoaming processing amount is further increased, the sensible heat brought into the vacuum degassing apparatus 10 by the molten glass G is further increased, so that the outlet temperature of the vacuum degassing apparatus 10, and therefore the next processing tank, especially the molding In some cases, the inlet temperature of the processing tank becomes higher than a predetermined temperature. In this case, it is necessary to cool the molten glass G inside and outside the vacuum degassing apparatus 10 so that the inlet temperature of the forming processing tank, which is the next processing tank, becomes a predetermined temperature. For this reason, in the present invention, when the defoaming treatment amount, that is, the flow rate of the molten glass G is 30 tons / day or more, more preferably 35 tons / day or more, a cooling device is provided in the vacuum degassing apparatus 10. It is preferred to provide. Here, the amount of the defoaming treatment when the cooling device is provided is 30 tons /
The reason for limiting to days or more is that if the size of the vacuum degassing device is minimized from the viewpoint of cost and construction difficulty, the temperature will rise too much when the base material inflow increases, the refractory erosion will increase, This is because the defoaming device cannot reduce the temperature to an appropriate temperature for molding.

【0051】なお、本発明においては、減圧脱泡槽14
内における脱泡処理には溶融ガラスGの粘度は低い、従
って温度は高い方が好ましいので、冷却装置22は、減
圧脱泡槽14の出口側や下降管18、例えば図示例の減
圧脱泡装置10のように下降管18の上方部分の外周に
設けるのが好ましい。しかし、本発明においては、減圧
脱泡槽14の全体や入口側やその他の一部や上昇管16
などに冷却装置22を設けてもよいし、上昇管16、減
圧脱泡槽14および下降管18の2つまたは全部に冷却
装置22を設けてもよいことはもちろんである。また、
本発明に用いる冷却装置22は、図示例のように水など
を冷媒として用いる冷却管22aを巻回したものを用い
ることができ、冷却管22aを設ける位置や方向や間隔
やサイズなどは必要に応じて適宜設定すればよく、冷媒
として水以外の液体や気体をもちいてもよいが、本発明
はこれに限定されない。また、本発明では、減圧脱泡装
置10には冷却装置を設けず、下降管18の出口と成形
処理槽(図示せず)の入口との間、例えば、下流案内ダ
クト28や必要に応じて設けられる脱泡処理済溶融ガラ
スGの均質化を促進するスターラ(図示せず)等に冷却
装置を設けて、次の処理槽である成形処理槽の入口温度
を所定の温度となるようにしてもよいのはもちろんであ
る。
In the present invention, the vacuum degassing tank 14 is used.
Since the viscosity of the molten glass G is low and the temperature is preferably high for the defoaming process in the inside, the cooling device 22 is provided at the outlet side of the vacuum degassing tank 14 and the downcomer pipe 18, for example, the vacuum degassing device in the illustrated example. It is preferably provided on the outer periphery of the upper part of the downcomer 18 as shown in FIG. However, in the present invention, the entirety of the vacuum degassing tank 14, the inlet side, other parts, and the riser pipe 16.
It is a matter of course that the cooling device 22 may be provided on the ascending pipe 16, the vacuum degassing tank 14, and the downcoming pipe 18. Also,
As the cooling device 22 used in the present invention, a device in which a cooling tube 22a using water or the like as a coolant can be used as shown in the illustrated example can be used, and the position, direction, interval, size, and the like of the cooling tube 22a are necessary. The coolant may be appropriately set, and a liquid or gas other than water may be used as the refrigerant, but the present invention is not limited to this. Further, in the present invention, the cooling device is not provided in the vacuum degassing apparatus 10, and between the outlet of the downcomer pipe 18 and the inlet of the forming tank (not shown), for example, the downstream guide duct 28 or as necessary. A cooling device is provided in a stirrer (not shown) or the like for promoting homogenization of the defoamed molten glass G to be provided so that the inlet temperature of the forming processing tank, which is the next processing tank, becomes a predetermined temperature. Of course it is good.

【0052】ところで、本発明においても、脱泡処理を
開始する際、すなわち溶融ガラスGを流し始める際に
は、減圧脱泡装置10の各部、すなわち上昇管16、減
圧脱泡槽14および下降管18の温度は適温から低下し
ているので、運転開始のために加熱が必要であり、この
ために、図示されていない運転開始用加熱装置が設けら
れている。さらに、図示されていないが、運転開始のた
めには、サイホンの原理を働かせる必要があり、上流案
内ダクト26のみならず下流案内ダクト28にも溶融ガ
ラスGがなければならないので、上流案内ダクト26か
ら下流案内ダクト28に溶融ガラスGを流すためのバイ
パス(図示せず)を設けておくのが好ましい。
By the way, also in the present invention, when the defoaming process is started, that is, when the molten glass G is started to flow, each part of the vacuum degassing apparatus 10, that is, the ascending pipe 16, the vacuum degassing tank 14, and the descending pipe. Since the temperature of 18 is lower than the appropriate temperature, heating is necessary for starting operation, and for this purpose, an operation start heating device (not shown) is provided. Further, although not shown, in order to start operation, it is necessary to operate the siphon principle, and not only the upstream guide duct 26 but also the downstream guide duct 28 must have the molten glass G. It is preferable to provide a bypass (not shown) for flowing the molten glass G to the downstream guide duct 28 from above.

【0053】なお、本発明の減圧脱泡装置10は、溶融
ガラスGの流量が、15トン/日未満であっても適用可
能なことはもちろんである。この場合には、従来装置と
同様に溶融ガラスGが持ち込む顕熱が小さく、減圧脱泡
装置10内での冷却によってその出口温度が所定設定温
度より低下してしまうこともあるので、運転中溶融ガラ
スGを常に加熱するための加熱装置32を設けておくの
がよい。このような加熱装置32は、上昇管16の上側
部分の外周に図1に点線で示すように加熱ヒータ32a
を巻回したものが挙げられるが、本発明はこれに限定さ
れず従来公知の加熱装置は全て用いることができる。ま
た、加熱装置32を設ける位置は、図1に示すように、
上昇管16および減圧脱泡槽14の入口側のいずれか、
またはその両方であるのが好ましいが、本発明はこれに
限定されず、これとは別にもしくはこれらに加え、減圧
脱泡槽14の全部や一部、例えば出口側および下降管1
8などのいずれか、もしくは両者であってもよい。加熱
装置32を設ける場合には、溶融ガラスGの脱泡処理量
が、15トン/日未満、特に10トン/日以下である場
合に必要になる。
The vacuum degassing apparatus 10 of the present invention can be applied even if the flow rate of the molten glass G is less than 15 tons / day. In this case, as in the conventional apparatus, the sensible heat brought by the molten glass G is small, and the outlet temperature may be lower than a predetermined set temperature due to cooling in the vacuum degassing apparatus 10. It is preferable to provide a heating device 32 for always heating the glass G. Such a heating device 32 includes a heater 32a on the outer periphery of an upper portion of the riser 16 as shown by a dotted line in FIG.
However, the present invention is not limited to this, and any conventionally known heating devices can be used. Further, the position where the heating device 32 is provided is, as shown in FIG.
Either the riser 16 or the inlet side of the vacuum degassing tank 14,
However, the present invention is not limited to this, and the present invention is not limited to this, but may include all or a part of the vacuum degassing tank 14, for example, the outlet side and the downcomer 1
8, or both. When the heating device 32 is provided, it is necessary when the defoaming treatment amount of the molten glass G is less than 15 tons / day, particularly 10 tons / day or less.

【0054】また、本発明においては、減圧脱泡装置1
0の溶融ガラスGの入口(導入)温度、すなわち溶解槽
24の出口温度は、従来より上昇させることもでき、特
に限定されるものではないが、脱泡処理する溶融ガラス
Gの種類(処理温度での粘度)や処理量や、減圧脱泡装
置10の各部を構成する材料、例えば電鋳耐火物の種類
やサイズなどに応じて適宜選択すればよい。しかしなが
ら、溶解槽24における加熱溶解コストや減圧脱泡装置
10の脱泡効率やその装置内外での加熱や冷却のコスト
などを考慮すると、溶解槽24での溶融ガラスGの出口
温度は、1300〜1450℃とするのが好ましい。
In the present invention, the vacuum degassing apparatus 1
The temperature of the inlet (introduction) of the molten glass G, that is, the temperature of the outlet of the melting tank 24, can be increased conventionally, and is not particularly limited. May be selected as appropriate according to the processing amount, the material constituting each part of the vacuum degassing apparatus 10, for example, the type and size of the electroformed refractory. However, considering the heating melting cost in the melting tank 24, the defoaming efficiency of the vacuum degassing apparatus 10, and the cost of heating and cooling inside and outside the apparatus, the exit temperature of the molten glass G in the melting tank 24 is 1300 to 1300. The temperature is preferably 1450 ° C.

【0055】ここで、本発明の減圧脱泡装置10の処理
対象となる溶融ガラスGは、特に制限的ではなく、例え
ば、ソーダ石灰ガラスやホウケイ酸ガラスなどを挙げる
ことができるが、本発明の減圧脱泡装置10は多量の溶
融ガラスを処理することができることから、多量の処理
が必要とされるソーダ石灰ガラスを処理対象とするのが
よい。
Here, the molten glass G to be processed by the vacuum degassing apparatus 10 of the present invention is not particularly limited, and examples thereof include soda lime glass and borosilicate glass. Since the vacuum degassing apparatus 10 can process a large amount of molten glass, it is preferable to treat soda-lime glass requiring a large amount of processing.

【0056】本発明に係る溶融ガラスの減圧脱泡装置
は、基本的に以上のように構成されるが、以下にその作
用について説明する。
The vacuum degassing apparatus for molten glass according to the present invention is basically configured as described above, and its operation will be described below.

【0057】まず、減圧脱泡装置10の運転を開始する
に先立って、流路40を十分加熱後、溶解槽24内の溶
融ガラスGを減圧脱泡装置10内、すなわち図示しない
バイパスを開放して上流案内ダクト26から下流案内ダ
クト28内に導入し、上昇管16および下降管18の両
下端部を溶融ガラスG中に浸漬する。浸漬完了後、図示
しない真空ポンプを作動して、減圧ハウジング12内を
吸引口12cから真空引きして、従って減圧脱泡槽14
内を吸引口14aおよび14bから真空引きして、減圧
脱泡槽14内を1/20〜1/3気圧に減圧する。その
結果、溶融ガラスGが上昇管16および下降管18内を
上昇し、減圧脱泡槽14内に導入され、溶解槽24と減
圧脱泡槽14との溶融ガラスGのレベル差Hが所定値と
なるように、減圧脱泡槽14内に所定の深さまで満たさ
れ、真空引きされた上部空間14sが形成される。この
後に、バイパスが閉止される。
First, before starting the operation of the vacuum degassing apparatus 10, after sufficiently heating the flow path 40, the molten glass G in the melting tank 24 is opened in the vacuum degassing apparatus 10, that is, a bypass (not shown) is opened. Then, the liquid is introduced from the upstream guide duct 26 into the downstream guide duct 28, and both lower ends of the riser pipe 16 and the descender pipe 18 are immersed in the molten glass G. After the completion of the immersion, a vacuum pump (not shown) is operated to evacuate the inside of the decompression housing 12 from the suction port 12c.
The inside is evacuated from the suction ports 14a and 14b to reduce the pressure in the vacuum degassing tank 14 to 1/20 to 1/3 atmosphere. As a result, the molten glass G rises in the riser pipe 16 and the downcomer pipe 18 and is introduced into the vacuum degassing tank 14, and the level difference H of the molten glass G between the melting tank 24 and the vacuum degassing tank 14 becomes a predetermined value. Thus, the vacuum space 14s is filled in the vacuum degassing tank 14 to a predetermined depth and evacuated. After this, the bypass is closed.

【0058】この後、溶融ガラスGは、溶解槽24から
上流案内ダクト26を経由し、上昇管16内を上昇し
て、減圧脱泡槽14内に導入される。そして溶融ガラス
Gは、減圧脱泡槽14内を流れる間に、所定の減圧条件
下で脱泡処理される。すなわち、所定の減圧条件下の減
圧脱泡槽14内において、溶融ガラスG中の気泡は、溶
融ガラスG中を浮上し、バリヤ30aおよび30bに堰
止められて破泡し、また、上部空間14sまで浮上し
て、破泡する。こうして、溶融ガラスG中から気泡が除
去される。このようにして、脱泡処理された溶融ガラス
Gは、減圧脱泡槽14内から下降管18に導出され、下
降管18内を下降して下流案内ダクト28内に導入さ
れ、下流案内ダクト28から、図示しない次の処理槽
(例えば成形処理槽)に導出される。
Thereafter, the molten glass G rises in the rising pipe 16 from the melting tank 24 via the upstream guide duct 26 and is introduced into the vacuum degassing tank 14. The molten glass G is defoamed under a predetermined decompression condition while flowing in the decompression degassing tank 14. That is, in the vacuum degassing tank 14 under a predetermined reduced pressure condition, the bubbles in the molten glass G float in the molten glass G, are blocked by the barriers 30a and 30b, break, and break in the upper space 14s. Ascends and breaks bubbles. Thus, bubbles are removed from the molten glass G. The defoamed molten glass G is led out of the vacuum degassing tank 14 to the downcomer pipe 18, descends in the downcomer pipe 18 and is introduced into the downstream guide duct 28. From the processing tank (not shown) (for example, a forming processing tank).

【0059】ここにおいて、本発明の第1の態様の気孔
率5%以下の耐火物を減圧脱泡槽14の流路の炉材とし
て使用することで、減圧脱泡槽14の耐火物製炉材から
発生する気泡の個数を許容範囲内に抑え、さらに耐火物
製炉材の侵食を押さえ、減圧脱泡装置10の寿命も要求
レベルを充たすものとなる。また、図示例では、少なく
とも減圧脱泡槽14は、矩形断面を有し、気孔率5%以
下の耐火物、例えば電鋳耐火物製であるので、従来の円
形断面を有し、貴金属製減圧脱泡槽104に比べ、同じ
サイズで同じ圧損でも、溶融ガラスGの流量、すなわち
脱泡処理量を増大させることができるし、また、図示例
のものは、高さを変えないでも幅のみを拡げることがで
きるので、装置規模をあまり大型化することなく、さら
なる大幅な流量増大や、脱泡処理量の増大を図ることが
できる。また、本発明においては、脱泡処理量の増大を
図ることができるので、従来必要であった脱泡処理中の
溶融ガラスGの加熱を不要とし、そのための加熱装置を
不要な物とすることができる。また、本発明において、
冷却装置22を設け、溶融ガラスGの冷却、特に脱泡処
理済溶融ガラスGの冷却を行うことにより、溶解槽24
や成形処理槽などの装置規模に対して、装置規模を大型
化することなく、脱泡処理量をさらに増大させることも
できる。
Here, the refractory having a porosity of 5% or less according to the first embodiment of the present invention is used as a furnace material for the flow path of the vacuum degassing tank 14, so that the refractory furnace of the vacuum degassing tank 14 is used. The number of bubbles generated from the material is kept within an allowable range, the erosion of the refractory furnace material is suppressed, and the life of the vacuum degassing apparatus 10 satisfies the required level. Further, in the illustrated example, at least the vacuum degassing tank 14 has a rectangular cross section and is made of a refractory having a porosity of 5% or less, for example, an electroformed refractory, and thus has a conventional circular cross section, Compared to the defoaming tank 104, even with the same size and the same pressure loss, the flow rate of the molten glass G, that is, the amount of defoaming treatment can be increased. In the illustrated example, only the width is changed without changing the height. Since it can be expanded, it is possible to further increase the flow rate and the defoaming processing amount without increasing the size of the apparatus. Further, in the present invention, since the amount of the defoaming treatment can be increased, the heating of the molten glass G during the defoaming treatment, which was conventionally required, is not required, and the heating device for that purpose is unnecessary. Can be. In the present invention,
A cooling device 22 is provided to cool the molten glass G, and particularly to cool the defoamed molten glass G, so that the melting tank 24 is cooled.
The amount of the defoaming treatment can be further increased without increasing the scale of the apparatus with respect to the scale of the apparatus such as a molding process tank.

【0060】ところで、本発明の溶融ガラスの減圧脱泡
装置は、図1に示すサイフォン方式減圧脱泡装置のみな
らず、特開平5−262530号公報、特開平7−29
1633号公報に示す水平式減圧脱泡装置にも適用して
もよいのはもちろんである。本発明に係る溶融ガラスの
減圧脱泡装置に用いる炉材および溶融ガラスの減圧脱泡
装置について、種々の実施例を挙げて説明したが、本発
明は上述した実施例に限定されるわけではなく、本発明
の要旨を逸脱しない範囲において種々の改良や設計の変
更などが可能なことはもちろんである。
Incidentally, the vacuum degassing apparatus for molten glass according to the present invention is not limited to the siphon type vacuum degassing apparatus shown in FIG. 1, but is also disclosed in JP-A-5-262530 and JP-A-7-29.
As a matter of course, the present invention may be applied to a horizontal vacuum degassing apparatus disclosed in Japanese Patent No. 1633. The furnace material and the vacuum degassing apparatus for molten glass used in the vacuum degassing apparatus for molten glass according to the present invention have been described with reference to various embodiments, but the present invention is not limited to the above-described embodiments. Of course, various improvements and design changes can be made without departing from the spirit of the present invention.

【0061】[0061]

【発明の効果】以上詳述したように、本発明の第1の態
様によれば、白金等の貴金属合金に替えて、気孔率が5
%以下の耐火物製炉材を減圧脱泡槽等の流路に使用する
ことで、白金等の貴金属に比べてコストのかからない減
圧脱泡装置を製作することができるとともに、耐火物中
の気孔から発生する気泡個数を抑えて、溶融ガラス内の
気泡個数を許容範囲内とし、製品としてのガラスの品質
の低下を防ぎ、さらに溶融ガラスによる流路の侵食を押
さえて減圧脱泡装置に要求される流路寿命をも満足させ
ることが可能となる。また、本発明の第2の態様によれ
ば、従来のものに比べ、同じサイズで同じ圧損でも、溶
融ガラスの流量、従って脱泡処理量を増大させることが
できるし、また、減圧脱泡槽の高さを変えないで幅のみ
を拡大できるので、装置規模をあまり大型化することな
く、さらなる大幅な流量増大や、脱泡処理量の増大を図
ることができる。
As described in detail above, according to the first aspect of the present invention, the porosity is 5 instead of the noble metal alloy such as platinum.
% Of the refractory furnace material used in the flow path of the vacuum degassing tank, etc., makes it possible to manufacture a vacuum degassing device that is less expensive than precious metals such as platinum, and to make pores in the refractory. The number of bubbles generated from the glass is suppressed, the number of bubbles in the molten glass is kept within the allowable range, the deterioration of the quality of the glass as a product is prevented, and the erosion of the flow path by the molten glass is further suppressed, which is required for vacuum degassing equipment. It is also possible to satisfy the required flow path life. Further, according to the second aspect of the present invention, the flow rate of the molten glass, and thus the amount of defoaming treatment, can be increased with the same size and the same pressure loss as compared with the conventional one, Since the width alone can be increased without changing the height, the flow rate and the amount of defoaming can be further increased without increasing the size of the apparatus.

【0062】また、本発明の第2の態様によれば、脱泡
処理量の増大を図ることができるので、従来必要であっ
た脱泡処理中の溶融ガラスの加熱を不要とし、そのため
の加熱装置を不要なものとすることができる。また、本
発明の第2の態様において、冷却装置を設け、溶融ガラ
ス、特に脱泡処理済溶融ガラスの冷却を行うものでは、
溶解槽や成形処理槽などの装置規模に対して、装置規模
を大型化することなく、溶融ガラスの流量や、脱泡処理
量を、さらに増大させることもできる。
Further, according to the second aspect of the present invention, since the amount of the defoaming treatment can be increased, it is not necessary to heat the molten glass during the defoaming treatment, which was conventionally required, and the heating for that purpose is not required. The device can be made unnecessary. In the second aspect of the present invention, a cooling device is provided to cool the molten glass, particularly the defoamed molten glass.
The flow rate of the molten glass and the defoaming amount can be further increased without increasing the scale of the apparatus such as a melting tank and a forming tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る溶融ガラスの減圧脱泡装置の一
実施例の断面模式図である。
FIG. 1 is a schematic cross-sectional view of one embodiment of a vacuum degassing apparatus for molten glass according to the present invention.

【図2】 耐火物の見かけ気孔率と溶融ガラスによる耐
火物の侵食速度との関係をグラフによって示した説明図
である。
FIG. 2 is a graph showing a relationship between the apparent porosity of the refractory and the erosion rate of the refractory by molten glass.

【図3】 図1に示す減圧脱泡装置の減圧脱泡槽のII−
II線矢視図である。
FIG. 3 shows a vacuum degassing tank of the vacuum degassing apparatus shown in FIG.
FIG.

【図4】 本発明に用いられる減圧脱泡槽と従来の減圧
脱泡槽の断面形状と流量との関係を説明するための説明
図である。
FIG. 4 is an explanatory diagram for explaining a relationship between a cross-sectional shape and a flow rate of a vacuum degassing tank used in the present invention and a conventional vacuum degassing tank.

【図5】 従来の減圧脱泡装置の断面模式図である。FIG. 5 is a schematic cross-sectional view of a conventional vacuum degassing apparatus.

【符号の説明】[Explanation of symbols]

10 減圧脱泡装置 12 減圧ハウジング 12a,12b 脚部 12c 吸引口 14 減圧脱泡槽 14a,14b 吸引口 14s 上部空間 16 上昇管 18 下降管 20 断熱材 22 冷却装置 22a 冷却管 24 溶解槽 26 上流案内ダクト 28 下流案内ダクト 30a,30b バリア 32 加熱装置 32a 加熱ヒータ 40 流路 G 溶融ガラス DESCRIPTION OF SYMBOLS 10 Decompression degassing apparatus 12 Decompression housing 12a, 12b Leg 12c Suction port 14 Decompression degassing tank 14a, 14b Suction port 14s Upper space 16 Rise pipe 18 Downcomer pipe 20 Insulation material 22 Cooling device 22a Cooling pipe 24 Melting tank 26 Upstream guide Duct 28 Downstream guide duct 30a, 30b Barrier 32 Heating device 32a Heater 40 Flow path G Molten glass

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木島 駿 神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内 (72)発明者 谷垣 淳史 神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内 (72)発明者 石野 利弘 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shun Kijima 1-1-1, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Keihin Plant of Asahi Glass Co., Ltd. (72) Atsushi Tanigaki 1-1-1, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Address Asahi Glass Co., Ltd. Keihin Plant (72) Inventor Toshihiro Ishino 1150 Hazawa-cho, Kanagawa-ku, Yokohama

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】溶融ガラスの脱泡処理を行う減圧脱泡装置
の流路の少なくとも前記溶融ガラスと直接接触する部分
に用いる炉材であって、気孔率が5%以下である耐火物
を用いることを特徴とする溶融ガラスの減圧脱泡装置用
炉材。
1. A furnace material for use in at least a portion of a flow path of a vacuum degassing apparatus for defoaming molten glass, which is in direct contact with the molten glass, wherein a refractory having a porosity of 5% or less is used. Furnace material for vacuum degassing equipment for molten glass, characterized in that:
【請求項2】前記耐火物は、電鋳耐火物あるいは緻密質
焼成耐火物である請求項1に記載の溶融ガラスの減圧脱
泡装置用炉材。
2. The furnace material for a vacuum degassing apparatus for molten glass according to claim 1, wherein the refractory is an electroformed refractory or a densely fired refractory.
【請求項3】前記電鋳耐火物は、アルミナ系電鋳耐火
物、ジルコニア系電鋳耐火物、およびアルミナ−ジルコ
ニア−シリカ系電鋳耐火物の少なくとも1種の電鋳耐火
物であり、前記緻密質焼成耐火物は、緻密質アルミナ系
耐火物、緻密質ジルコニア−シリカ系耐火物、および緻
密質アルミナ−ジルコニア−シリカ系耐火物の少なくと
も1種の緻密質焼成耐火物である請求項2に記載の溶融
ガラスの減圧脱泡装置用炉材。
3. The electroformed refractory of claim 1, wherein the electroformed refractory is at least one of an alumina-based electroformed refractory, a zirconia-based electroformed refractory, and an alumina-zirconia-silica-based electroformed refractory. The dense fired refractory is at least one of dense alumina-based refractories, dense zirconia-silica-based refractories, and dense alumina-zirconia-silica-based refractories. A furnace material for a vacuum degassing apparatus for molten glass according to the above.
【請求項4】前記耐火物は、電鋳耐火物の少なくとも溶
融ガラスと直接接触する面の表層を研磨したものである
請求項1〜3のいずれかに記載の溶融ガラスの減圧脱泡
装置用炉材。
4. The vacuum degassing apparatus for molten glass according to claim 1, wherein said refractory is obtained by polishing at least a surface layer of a surface of an electroformed refractory which is in direct contact with molten glass. Furnace materials.
【請求項5】前記電鋳耐火物の表層の研磨は、少なくと
も5mm以上であり、この表層が少なくとも5mm以上
研磨された前記電鋳耐火物の見かけ気孔率は1%以下で
ある請求項4に記載の溶融ガラスの減圧脱泡装置用炉
材。
5. The polishing of the surface layer of the electroformed refractory is at least 5 mm or more, and the apparent porosity of the electroformed refractory whose surface layer is polished at least 5 mm is 1% or less. A furnace material for a vacuum degassing apparatus for molten glass according to the above.
【請求項6】減圧吸引される減圧ハウジングと、 この減圧ハウジング内に収容され、溶融ガラスを流す流
路を有し、該流路の溶融ガラスと直接接触する部分が、
請求項1〜5のいずれかに記載の減圧脱泡装置用炉材で
構成された、溶融ガラスを減圧脱泡する減圧脱泡槽と、 この減圧脱泡槽に連通され、脱泡処理前の溶融ガラスを
前記減圧脱泡槽に導入する導入手段と、 前記減圧脱泡槽に連通され、脱泡処理後の溶融ガラスを
前記減圧脱泡槽から導出する導出手段とを有することを
特徴とする溶融ガラスの減圧脱泡装置。
6. A decompression housing to be suctioned under reduced pressure, and a flow passage housed in the decompression housing and through which molten glass flows, and a portion of the flow passage that directly contacts the molten glass,
A vacuum degassing tank for vacuum degassing molten glass, comprising the furnace material for a vacuum degassing apparatus according to any one of claims 1 to 5, which is communicated with the vacuum degassing tank and before degassing treatment. Introducing means for introducing the molten glass into the vacuum degassing tank, and deriving means communicating with the vacuum degassing tank and extracting the molten glass after the defoaming treatment from the vacuum degassing tank. Vacuum degassing equipment for molten glass.
【請求項7】前記減圧脱泡槽の流路は、矩形断面を有す
る請求項6に記載の溶融ガラスの減圧脱泡装置。
7. The vacuum degassing apparatus for molten glass according to claim 6, wherein the flow path of the vacuum degassing tank has a rectangular cross section.
【請求項8】前記導入手段および前記導出手段はそれぞ
れ上昇管および下降管であり、前記上昇管および前記下
降管の少なくともいずれか一方は、請求項1〜5のいず
れかに記載の減圧脱泡装置用炉材によって構成される請
求項6または7に記載の溶融ガラスの減圧脱泡装置。
8. The vacuum degassing apparatus according to claim 1, wherein said introducing means and said deriving means are a rising pipe and a descending pipe, respectively, and at least one of said rising pipe and said descending pipe is decompressed and defoamed according to claim 1. The vacuum degassing apparatus for molten glass according to claim 6 or 7, which is constituted by a furnace material for the apparatus.
【請求項9】溶融ガラスを冷却するための冷却装置を有
する請求項6〜8のいずれかに記載の溶融ガラスの減圧
脱泡装置。
9. The vacuum degassing apparatus for molten glass according to claim 6, further comprising a cooling device for cooling the molten glass.
JP23274498A 1997-10-06 1998-08-19 Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment Expired - Lifetime JP3005210B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP23274498A JP3005210B2 (en) 1997-10-06 1998-08-19 Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
US09/164,356 US6119484A (en) 1997-10-06 1998-10-01 Vacuum degassing apparatus for molten glass
KR1019980041667A KR100682778B1 (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
TW087116447A TW498058B (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
IDP981327A ID20649A (en) 1997-10-06 1998-10-05 REASON FOR THE DECREASE OF GAS HAMPA FOR GLASS RELEASE
EP98118842A EP0908417B2 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
DE69807812T DE69807812T3 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
DE69823560T DE69823560T2 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing device for molten glass
EP04007832A EP1439148A3 (en) 1997-10-06 1998-10-06 Apparatus for degassing molten glass under reduced pressure
EP00122258A EP1078891B1 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing apparatus for molten glass
CNB991025741A CN1184153C (en) 1998-02-26 1999-02-26 Vacuum degassing apparatus for molten glass
US09/473,680 US6405564B1 (en) 1997-10-06 1999-12-29 Vacuum degassing apparatus for molten glass
KR1020060029382A KR100682779B1 (en) 1997-10-06 2006-03-31 Vacuum degassing apparatus for molten glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-272816 1997-10-06
JP27281697 1997-10-06
JP23274498A JP3005210B2 (en) 1997-10-06 1998-08-19 Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment

Publications (2)

Publication Number Publication Date
JPH11171554A true JPH11171554A (en) 1999-06-29
JP3005210B2 JP3005210B2 (en) 2000-01-31

Family

ID=26530638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23274498A Expired - Lifetime JP3005210B2 (en) 1997-10-06 1998-08-19 Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP3005210B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090112A (en) * 2002-05-21 2003-11-28 한국전기초자 주식회사 Feeder for glass melter
WO2008026606A1 (en) * 2006-08-29 2008-03-06 Asahi Glass Company, Limited Molten glass conduit structure and vacuum deaerator utilizing the same
WO2010104036A1 (en) * 2009-03-09 2010-09-16 日東紡績株式会社 Glass-melting device for producing glass fiber and method for producing glass fiber using same
JP4773095B2 (en) * 2002-10-25 2011-09-14 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Clarification chamber made of platinum group metal material
KR101169317B1 (en) 2006-10-26 2012-07-30 에이엠에스 리써치 코오포레이션 Surgical articles and methods for treating pelvic conditions
US8689586B2 (en) 2009-03-09 2014-04-08 Nitto Boseki Co., Ltd. Glass-melting device for producing glass fiber and method for producing glass fiber
CN113465371A (en) * 2021-07-14 2021-10-01 山东鲁明新材料有限公司 High-oxidability refractory material particle production device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090112A (en) * 2002-05-21 2003-11-28 한국전기초자 주식회사 Feeder for glass melter
JP4773095B2 (en) * 2002-10-25 2011-09-14 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Clarification chamber made of platinum group metal material
WO2008026606A1 (en) * 2006-08-29 2008-03-06 Asahi Glass Company, Limited Molten glass conduit structure and vacuum deaerator utilizing the same
US8136373B2 (en) 2006-08-29 2012-03-20 Asahi Glass Company, Limited Conduit structure for molten glass and vacuum degassing apparatus using the conduit structure
JP5067371B2 (en) * 2006-08-29 2012-11-07 旭硝子株式会社 Molten glass conduit structure and vacuum degassing apparatus using the conduit structure
KR101169317B1 (en) 2006-10-26 2012-07-30 에이엠에스 리써치 코오포레이션 Surgical articles and methods for treating pelvic conditions
WO2010104036A1 (en) * 2009-03-09 2010-09-16 日東紡績株式会社 Glass-melting device for producing glass fiber and method for producing glass fiber using same
US8689586B2 (en) 2009-03-09 2014-04-08 Nitto Boseki Co., Ltd. Glass-melting device for producing glass fiber and method for producing glass fiber
US8689588B2 (en) 2009-03-09 2014-04-08 Nitto Boseki Co., Ltd. Glass-melting device for producing glass fiber and method for producing glass fiber using same
JP5660028B2 (en) * 2009-03-09 2015-01-28 日東紡績株式会社 Glass melting apparatus for producing glass fiber and method for producing glass fiber using the same
CN113465371A (en) * 2021-07-14 2021-10-01 山东鲁明新材料有限公司 High-oxidability refractory material particle production device

Also Published As

Publication number Publication date
JP3005210B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
JP4110663B2 (en) Vacuum degassing method for molten glass flow
US7650764B2 (en) Vacuum degassing apparatus for molten glass
KR100682779B1 (en) Vacuum degassing apparatus for molten glass
JP5470853B2 (en) Glass manufacturing method and vacuum degassing apparatus
JP5434077B2 (en) Glass manufacturing method
JP4075161B2 (en) Method for producing glass by vacuum degassing
JP3005210B2 (en) Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
JP3785792B2 (en) Vacuum degassing equipment for molten glass
JP2000007344A (en) Vacuum defoaming unit for molten glass
JPWO2009107801A1 (en) Vacuum degassing equipment for molten glass
JPWO2012141152A1 (en) Method for defoaming molten glass, apparatus for defoaming molten glass, method for producing molten glass, apparatus for producing molten glass, method for producing glass product, and apparatus for producing glass product
JP2000247647A (en) Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus
JP2000178029A (en) Vacuum defoaming equipment for molten glass
JP6589876B2 (en) Glass melt manufacturing apparatus, glass melt manufacturing method, glass article manufacturing apparatus, and glass article manufacturing method
JP4048646B2 (en) Vacuum degassing method for molten glass and glass manufacturing apparatus by vacuum degassing
JP4821165B2 (en) Vacuum degassing apparatus for molten glass and method for clarifying molten glass using the vacuum degassing apparatus
JP4058935B2 (en) Vacuum deaerator
JP2000290021A (en) Apparatus for production of glass by vacuum defoaming
JPH11240725A (en) Vacuum deaerator for molten glass
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 14

EXPY Cancellation because of completion of term