JPH11163387A - Light-receiving element, and manufacture of, ultraviolet-ray receiving element and light receiving element - Google Patents

Light-receiving element, and manufacture of, ultraviolet-ray receiving element and light receiving element

Info

Publication number
JPH11163387A
JPH11163387A JP9321157A JP32115797A JPH11163387A JP H11163387 A JPH11163387 A JP H11163387A JP 9321157 A JP9321157 A JP 9321157A JP 32115797 A JP32115797 A JP 32115797A JP H11163387 A JPH11163387 A JP H11163387A
Authority
JP
Japan
Prior art keywords
semiconductor layer
receiving element
light
conductivity type
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9321157A
Other languages
Japanese (ja)
Other versions
JP3922772B2 (en
Inventor
Hikari Hirano
光 平野
Pelno Cyril
ペルノー シリル
Hiroshi Amano
浩 天野
Isamu Akasaki
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP32115797A priority Critical patent/JP3922772B2/en
Publication of JPH11163387A publication Critical patent/JPH11163387A/en
Application granted granted Critical
Publication of JP3922772B2 publication Critical patent/JP3922772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a manufacturing method for ultraviolet-ray receiving element, having high response speed and good quantum efficiency. SOLUTION: In a light-receiving element of P-N junction type, PIN junction type, or photodiode such as APD(avalanche photodiode) or FET type, a higher resistance is given by the activation of semiconductor layers FL and SL and heat treatment of ion implantation region HR, and each semiconductor layer is formed by Iny Alx Ga1-x-y N-based materials (x>=0, y>=0) containing impurities, an ion implantation region is formed through ion implantation in a particular region of each semiconductor layer. Thereafter a heat treatment is performed at a heat treatment temperature, capable of having activation treatment of a semiconductor layer containing impurities performed and capable of providing a higher resistance for the ion implantation region, and the activation treatment for the semiconductor layer and high resistance treatment of the ion implantation region are performed at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、第1導電型の半導
体層と、その半導体層とは導電型の異なる第2導電型の
半導体層とが厚さ方向に並べて積層された構成を有し、
光に対する感度を有する受光部を備え、前記第1導電型
の半導体層と前記第2導電型の半導体層とに亙って通電
されるように一対の電極が形成されて構成されている受
光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a structure in which a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type having a different conductivity type from the semiconductor layer are stacked side by side in the thickness direction. ,
A light-receiving element comprising a light-receiving portion having sensitivity to light, and having a pair of electrodes formed so as to be energized over the semiconductor layer of the first conductivity type and the semiconductor layer of the second conductivity type. And a method for producing the same.

【0002】[0002]

【従来の技術】このような受光素子の代表例として、3
00nm近傍以下の波長領域に感度を有するように構成
される半導体火炎センサ(紫外線受光素子の一種)を例
に取って以下説明する。かかる半導体火炎センサは、火
炎が放射する光を300nm近傍以下の波長領域におい
て検出することで、他の光(雑音光(太陽光及び室内光
等))と区別した状態で火炎を検出することができる。
このような半導体火炎センサとしては、その構成として
第1導電型(例えばp型)の半導体層と第2導電型(例
えばn型)の半導体層とを厚さ方向に並べて積層して、
いわゆるPN接合型,PIN接合型あるいはAPD(ア
バランシェフォトダイオード)等のフォトダイオードと
して構成したものがある。さらに、近似した構成のもの
として、所謂、FET方式のものも、現今、発明者らに
より提案されている。ここで、このような半導体層を形
成しようとする場合は、所定の不純物を含む材料からな
る層を一旦形成しておき、この層の形成後、これを熱処
理することにより、半導体層の活性化を図り、良好な状
態の半導体層を得ることができる。
2. Description of the Related Art As a typical example of such a light receiving element, 3
A semiconductor flame sensor (a type of ultraviolet light receiving element) configured to have sensitivity in a wavelength region of around 00 nm or less will be described below as an example. Such a semiconductor flame sensor can detect a flame radiated by a flame in a wavelength region of about 300 nm or less, thereby detecting the flame in a state distinguished from other light (noise light (sunlight, room light, etc.)). it can.
Such a semiconductor flame sensor has a configuration in which a semiconductor layer of a first conductivity type (for example, p-type) and a semiconductor layer of a second conductivity type (for example, n-type) are stacked side by side in the thickness direction.
There is a so-called PN junction type, PIN junction type, or a photodiode configured as an APD (avalanche photodiode). Further, as an approximate configuration, a so-called FET type is currently proposed by the inventors. Here, when such a semiconductor layer is to be formed, a layer made of a material containing a predetermined impurity is once formed, and after this layer is formed, a heat treatment is performed to activate the semiconductor layer. And a semiconductor layer in a favorable state can be obtained.

【0003】一方、このような火炎センサを考える場
合、PN接合、PIN及びAPDのMesa界面の逆方
向バイアス時の漏れ電流、FETのゲート周辺から迂回
するピンチオフ時のソースドレイン間の漏れ電流が大き
いと、微弱な光に対応する信号が、漏れ電流に埋もれた
り、S/Nの低い信号しか得られないこととなりやす
い。特に、火炎センサでは、温度の高い使用環境で、1
nW/cm2以下の光を検出することが必要条件である
ことから、これは大きな問題となる。そこで、PN接
合、Mesa界面や、FET構造のゲート周辺の特定部
位の高抵抗化処理を目的として、窒素、酸素、フッ素、
水素、ヘリウム等をイオン注入して、このイオン注入領
域を高抵抗化部として形成することを発明者らは提案す
る。このような高抵抗化部の形成処理は、イオン注入工
程と、このイオン注入領域を含む素子全体を所定の高温
状態とする熱処理工程との組み合わせからなり、この熱
処理は、概略、700℃〜1100℃の温度範囲内で、
1分から15分の加熱処理をおこなうこととなる。
On the other hand, when considering such a flame sensor, the leakage current at the time of reverse bias at the Mesa interface between the PN junction, the PIN and the APD, and the leakage current between the source and the drain at the time of pinch-off bypassing around the FET gate are large. Then, the signal corresponding to the weak light is easily buried in the leakage current, or only a signal having a low S / N is easily obtained. In particular, in the case of a flame sensor, in a high-temperature use environment, 1
This is a significant problem because it is a necessary condition to detect light of nW / cm 2 or less. Therefore, for the purpose of increasing the resistance of the PN junction, the Mesa interface, and a specific portion around the gate of the FET structure, nitrogen, oxygen, fluorine,
The inventors propose that hydrogen, helium, or the like be ion-implanted to form the ion-implanted region as a high-resistance portion. The process of forming such a high resistance portion includes a combination of an ion implantation step and a heat treatment step of bringing the entire device including the ion implantation region into a predetermined high temperature state. Within the temperature range of ° C,
Heat treatment is performed for 1 minute to 15 minutes.

【0004】従って、受光素子の熱処理を考えた場合、
現行の手法を踏襲すると、熱処理を伴った半導体層の形
成をした後、高抵抗化領域の形成を目的として、イオン
注入をおこない、さらに、高抵抗化のための熱処理をお
こなうこととなる。この工程を図1(ロ)に示した。さ
らに、このような目的を異にする熱処理の温度領域の関
係を図1(ハ)に示した。
Therefore, considering heat treatment of a light receiving element,
According to the current method, after forming a semiconductor layer accompanied by a heat treatment, ion implantation is performed for the purpose of forming a high resistance region, and further, a heat treatment for increasing the resistance is performed. This step is shown in FIG. Further, FIG. 1C shows the relationship between the temperature ranges of the heat treatment for different purposes.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、発明者
らの実験では、このような高抵抗化処理を目的とした熱
処理をおこなうと、高抵抗化処理を必要としない部分ま
でも若干高抵抗となる現象が観測された。この現象は、
半導体層をなす単結晶成長膜の結晶の粒界が熱処理に広
がったことと、結晶成長した時点で、既に存在していた
結晶中の欠陥が深い準位の生成に寄与したためと発明者
らは考えている。即ち、高抵抗化処理に伴った通常の半
導体層の劣化が発生する場合があることが確認された。
しがって、本発明は、上記実情に鑑みてなされたもので
あって、その目的は、イオン注入、熱処理を伴った高抵
抗化部の形成にあたっても、通常の半導体層の劣化を発
生にくい受光素子の製造方法を得ることにある。
However, in experiments conducted by the present inventors, when such a heat treatment for the purpose of increasing the resistance is performed, even portions that do not require the increase in the resistance have a slightly higher resistance. A phenomenon was observed. This phenomenon is
According to the inventors, the grain boundaries of the crystals of the single crystal growth film forming the semiconductor layer were widened by the heat treatment, and the defects in the crystals already existing contributed to the generation of deep levels at the time of the crystal growth. thinking. That is, it has been confirmed that the normal semiconductor layer may be deteriorated due to the high resistance treatment.
Therefore, the present invention has been made in view of the above-described circumstances, and its purpose is to prevent the deterioration of a normal semiconductor layer even in the formation of a high resistance portion accompanied by ion implantation and heat treatment. An object of the present invention is to provide a method for manufacturing a light receiving element.

【0006】[0006]

【課題を解決するための手段】本発明による、第1導電
型の半導体層と、その半導体層とは導電型の異なる第2
導電型の半導体層とが厚さ方向に並べて積層された構成
で、光に対する感度を有する受光部を備え、前記第1導
電型の半導体層と前記第2導電型の半導体層とに亙って
通電されるように一対の電極が形成されて成る受光素子
の製造方法の特徴手段は、前記第1導電型の半導体層及
び前記第2導電型の半導体層を、不純物を含むIny
x Ga1-x-y N(x≧0,y≧0)系の材料から形成
するとともに、前記第1導電型の半導体層あるいは前記
第2導電型の半導体層の特定部位に、イオン注入により
イオン注入領域を形成し、前記不純物を含む半導体層の
活性化処理が可能で、且つ、前記イオン注入領域を高抵
抗化できる熱処理温度で熱処理をおこない、前記半導体
層の活性化処理と前記イオン注入領域の高抵抗化処理を
同時におこなうことにある。すなわち、Iny Alx
1-x-y N(x≧0,y≧0)系の材料にて受光素子を
構成することで、例えば、 III族元素の組成比(x,
y)を適当に選択して、特定波長領域に光感度を有する
素子を形成することができる。さらに、PN接合、Me
sa界面や、FET構造のゲート周辺等に高抵抗化部を
形成することにより、所謂、漏れ電流を低減化すること
ができる。さて、このようにして、半導体層と高抵抗化
部の形成とをおこなう場合に、工程順として、1 不純
物を含む半導体層の形成、2 活性化処理を目的とした
熱処理、3 イオン注入、4 高抵抗化処理を目的とし
た熱処理の順で行われる処理工程を、1 不純物を含む
半導体層の形成、2 イオン注入、3 熱処理とするこ
とで、半導体層の活性化と特定領域の高抵抗化を達成し
ながら、工程を簡略化して素子に対する熱のダメージを
最小限に留めることができる。このような工程順の変更
状態を、図1(イ)(ロ)に対比して示した。この工程
の変更は、活性化処理を目的とした熱処理の温度域と、
高抵抗化処理を目的とした温度域に重複する温度範囲が
あり、このような温度範囲を選択して、この温度範囲内
で一気に熱処理をおこなう方が、素子に対するダメージ
が少ないことを、発明者らが見出したことによる。図1
(ハ)にこのような温度範囲を示した。
According to the present invention, a semiconductor layer of a first conductivity type and a second conductivity type semiconductor layer having a different conductivity type are used.
A semiconductor layer of a conductivity type is stacked side by side in the thickness direction, and a light-receiving portion having sensitivity to light is provided, and the semiconductor layer of the first conductivity type and the semiconductor layer of the second conductivity type are provided. A feature of a method of manufacturing a light receiving element in which a pair of electrodes are formed so as to be energized is that the semiconductor layer of the first conductivity type and the semiconductor layer of the second conductivity type are made of In y A containing impurities.
I x Ga 1-xy N (x ≧ 0, y ≧ 0) based material and ion-implanted into a specific portion of the first conductivity type semiconductor layer or the second conductivity type semiconductor layer by ion implantation. Forming an implantation region, performing a heat treatment at a heat treatment temperature capable of activating the semiconductor layer containing the impurity and increasing the resistance of the ion implantation region, and activating the semiconductor layer and the ion implantation region; To simultaneously perform the resistance increasing process. That is, In y Al x G
By constituting the light receiving element with a 1-xy N (x ≧ 0, y ≧ 0) -based material, for example, the composition ratio of the group III element (x,
By appropriately selecting y), an element having photosensitivity in a specific wavelength region can be formed. Furthermore, PN junction, Me
By forming the high resistance portion at the sa interface, around the gate of the FET structure, or the like, so-called leakage current can be reduced. When the semiconductor layer and the high resistance portion are formed in this manner, the order of the steps is as follows: 1) formation of a semiconductor layer containing impurities, 2) heat treatment for the purpose of activation, 3) ion implantation, The processing steps performed in the order of heat treatment for the purpose of increasing the resistance are: (1) formation of a semiconductor layer containing impurities, (2) ion implantation, and (3) heat treatment to activate the semiconductor layer and increase the resistance of a specific region. Can be achieved while simplifying the process and minimizing thermal damage to the device. Such a changed state of the process order is shown in comparison with FIGS. The change of this process is performed in the temperature range of the heat treatment for the activation process,
The inventors have found that there is a temperature range that overlaps with the temperature range for the purpose of increasing the resistance, and that such a temperature range is selected and heat treatment is performed at a stretch within this temperature range. According to what they found. FIG.
(C) shows such a temperature range.

【0007】このような熱処理温度範囲は、700℃〜
850℃の範囲であり、この範囲より、処理温度が低い
と高抵抗化処理を充分にできない場合がある。一方、処
理温度が高いと、通常の半導体層部位に劣化を発生する
おそれがある。このような処理温度範囲内での処理時間
としては、5分〜15分の範囲内の時間が好ましい。こ
のような工程を経ることで、半導体層の劣化を防止した
状態で、所定特定部位に高抵抗化部を形成できるため、
量子効率が良く応答速度の早い素子を製造することがで
きる。
[0007] Such a heat treatment temperature range is from 700 ° C to
The temperature is in the range of 850 ° C., and if the processing temperature is lower than this range, the resistance increasing processing may not be sufficiently performed. On the other hand, if the processing temperature is high, there is a possibility that a normal semiconductor layer portion may be deteriorated. As a processing time within such a processing temperature range, a time within a range of 5 minutes to 15 minutes is preferable. Through such a process, it is possible to form a high resistance portion at a predetermined specific portion while preventing deterioration of the semiconductor layer,
An element with good quantum efficiency and high response speed can be manufactured.

【0008】さて、p型半導体層の形成にあたっては、
前記不純物としては、Mg、Ca、Cから選択される一
種以上を使用可能であり、高抵抗化処理をおこなう場合
のイオンとしては、窒素、酸素、フッ素、水素、ヘリウ
ムの1種以上を使用することが好ましい。この場合、特
にMgが取扱いやすく、打ち込み用のイオンとしては、
水素を使用する場合は、深い位置までイオンの打ち込み
が可能である。さて、n型半導体層の形成にあたって
は、前記不純物としては、Siを使用可能であり、高抵
抗化処理をおこなう場合のイオンとしては、窒素、酸
素、フッ素、水素、ヘリウムの1種以上を使用すること
が好ましい。この場合も打ち込み用のイオンとしては、
水素を使用する場合は、深い位置までイオンの打ち込み
が可能である。
In forming a p-type semiconductor layer,
As the impurity, one or more selected from Mg, Ca, and C can be used, and as the ion for performing the high resistance treatment, one or more of nitrogen, oxygen, fluorine, hydrogen, and helium are used. Is preferred. In this case, Mg is particularly easy to handle, and as the ion for implantation,
When using hydrogen, ions can be implanted to a deep position. In the formation of the n-type semiconductor layer, Si can be used as the impurity, and one or more of nitrogen, oxygen, fluorine, hydrogen, and helium are used as ions for performing the high-resistance treatment. Is preferred. Also in this case, as the ion for implantation,
When using hydrogen, ions can be implanted to a deep position.

【0009】即ち、請求項1〜4のいずれか1項に記載
の受光素子の製造方法に従って受光素子を製造すること
により、半導体層において劣化が少なく、高抵抗化部に
おいてその抵抗が高い受光素子を得ることができる。
That is, by manufacturing the light receiving element according to the method for manufacturing a light receiving element according to any one of claims 1 to 4, the deterioration in the semiconductor layer is small and the resistance in the high resistance portion is high. Can be obtained.

【0010】さて、これまでの説明にあたっては、特定
材料(Iny Alx Ga1-x-y N(x≧0,y≧0)系
の材料)からなる受光素子の形成に関する説明をおこな
ったが、紫外線受光素子として素子を構成し、外乱光を
除去した状態で火炎光を検出したい場合にあっては、こ
れまで説明してきた受光素子の製造方法に従って、30
0nm近傍以下の波長領域に感度を有する前記受光部を
形成して、半導体火炎センサを得ることが好ましい。こ
こで、300nm近傍とは、300nm自体を含むとと
もに、これより低い280程度までの短波長側の範囲を
含んでいる。
[0010] So far when the description of, has been subjected to description relates to the formation of the light-receiving element comprising a specific material (In y Al x Ga 1- xy N (x ≧ 0, y ≧ 0) based material), In the case where an element is configured as an ultraviolet light receiving element and flame light is to be detected in a state where disturbance light is removed, 30 μm is applied according to the method of manufacturing a light receiving element described above.
It is preferable to obtain the semiconductor flame sensor by forming the light receiving portion having sensitivity in a wavelength region near 0 nm or less. Here, the vicinity of 300 nm includes not only 300 nm itself but also a range on the short wavelength side up to about 280 lower than 300 nm.

【0011】さて、火炎の存在を検出するについては、
火炎から発する光を検出することによってその存否等を
検出できるが、この場合、火炎以外の光源からの光を検
出してしまうと火炎を誤検出してしまうことになる。こ
のような誤検出の原因となる光としては一般的に太陽光
と蛍光灯とが考えられる。ここで、図6に示すように、
検出対象とする火炎のスペクトルと、太陽光及び蛍光灯
(図6においては「室内光」として示す)のスペクトル
とを比較すると、300nm近傍以下では、火炎のスペ
クトルがある程度の強度があるのに対し、太陽光及び蛍
光灯は十分に小さい相対強度となっている。従って、可
視光の領域では感度を有さず紫外線領域に感度を有する
受光素子を用いて火炎センサを構成することで、太陽光
や蛍光灯等の外乱光を除外して火炎の存否を検出できる
ものとなる。この場合、蛍光灯の影響を主に考えるべき
室内では、300nm以下とすることが好ましく、太陽
光を考えるべき室外を対象とする場合は、280nm以
下とすることが好ましい。この場合も、外乱光の影響を
抑制しながら、火炎の検出を行える紫外線受光素子を、
量子効率が良く応答速度の早い状態に製造することがで
きる。
Now, regarding the detection of the presence of a flame,
The presence or absence of the light can be detected by detecting the light emitted from the flame. In this case, if the light from a light source other than the flame is detected, the flame is erroneously detected. In general, sunlight and fluorescent lamps can be considered as light that causes such erroneous detection. Here, as shown in FIG.
Comparing the spectrum of the flame to be detected with the spectrum of sunlight and a fluorescent lamp (shown as "indoor light" in FIG. 6), the spectrum of the flame has a certain intensity below 300 nm. , Sunlight and fluorescent lights have sufficiently small relative intensities. Therefore, by configuring the flame sensor using a light receiving element having no sensitivity in the visible light region and having a sensitivity in the ultraviolet region, it is possible to detect the presence or absence of a flame by excluding disturbance light such as sunlight or a fluorescent lamp. It will be. In this case, the thickness is preferably 300 nm or less in a room where the influence of a fluorescent lamp is mainly considered, and is preferably 280 nm or less in an outdoor where sunlight is considered. In this case, too, an ultraviolet light receiving element capable of detecting a flame while suppressing the influence of disturbance light,
It can be manufactured with good quantum efficiency and high response speed.

【0012】即ち、各半導体層の材料組成として、受光
部に於ける感度領域が300nm近傍以下となる組成の
ものを選択して、各半導体層を形成し、さらに、半導体
体層の積層部の所定特定部位に高抵抗化部を、本願の方
法に従って形成することにより、得られた火炎センサ
は、感度の点で量子効率が高く、その光に対する応答速
度が早いものとできる。この場合も、300nm以下、
あるいは280nm以下とすることが好ましい。
That is, the material composition of each semiconductor layer is selected so that the sensitivity region in the light-receiving portion is less than or equal to about 300 nm, each semiconductor layer is formed, and the semiconductor layer is stacked. By forming a high resistance portion at a predetermined specific portion according to the method of the present application, the obtained flame sensor can have high quantum efficiency in terms of sensitivity and a high response speed to light. Also in this case, 300 nm or less,
Alternatively, the thickness is preferably 280 nm or less.

【0013】[0013]

【発明の実施の形態】以下、本発明の受光素子(紫外線
受光素子)の一例である半導体火炎センサの実施の形態
を図面に基づいて説明する。半導体火炎センサPSは、
図2に示すように、単結晶基板であるサファイヤ基板1
上にAlN緩衝層2、n+ Iny Alx Ga1-x-y N単
結晶膜3、n- In y Alx Ga1-x-y N単結晶膜4、
高抵抗のIny Alx Ga1-x-y N単結晶膜5、p-
y Alx Ga1-x-y N単結晶膜6、p+ Iny Alx
Ga1-x-y N単結晶膜7を積層し、n+ Iny Alx
1-x-y N単結晶膜3上とp+ InyAlx Ga1-x-y
N単結晶膜7上とに一対の電極8a,8bが形成され、
更に、上記各層の周部に高抵抗領域HRが形成されて構
成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a light receiving element (ultraviolet ray) of the present invention will be described.
Embodiment of semiconductor flame sensor as an example of light receiving element)
Will be described with reference to the drawings. The semiconductor flame sensor PS
As shown in FIG. 2, a sapphire substrate 1 which is a single crystal substrate
AlN buffer layer 2, n on top+InyAlxGa1-xyN only
Crystal film 3, n-In yAlxGa1-xyN single crystal film 4,
High resistance InyAlxGa1-xyN single crystal film 5, p-I
nyAlxGa1-xyN single crystal film 6, p+InyAlx
Ga1-xyAn N single crystal film 7 is laminated, and n+InyAlxG
a1-xyOn the N single crystal film 3 and p+InyAlxGa1-xy
A pair of electrodes 8a and 8b are formed on the N single crystal film 7,
Further, a high-resistance region HR is formed in a peripheral portion of each of the above layers.
Is done.

【0014】すなわち、第1導電型の半導体層FLとし
てのn+ Iny Alx Ga1-x-y N単結晶膜3及びn-
Iny Alx Ga1-x-y N単結晶膜4と、第2導電型の
半導体層SLとしてのp- Iny Alx Ga1-x-y N単
結晶膜6及びp+ Iny Al x Ga1-x-y N単結晶膜7
との間に、高抵抗のIny Alx Ga1-x-y N単結晶膜
5を形成して受光部PRが構成され、第1導電型の半導
体層FLと第2導電型の半導体層SLとの間に通電され
るように一対の電極8a,8bが形成されている。又、
導電型の表記からも明らかなように、第1導電型の半導
体層FL及び第2導電型の半導体層SLの何れにおいて
も、キャリア濃度の異なる2層にて構成され、高抵抗の
Iny Alx Ga1-x-y N単結晶膜5に近い層ほどキャ
リア濃度が低いものとなるように構成されている。この
ような素子構成においては、受光部PRを構成する各層
のうち、主に高抵抗のIny Alx Ga1-x-y N単結晶
膜5が入射光による電子正孔対の発生に寄与する。尚、
半導体火炎センサPSは、いわゆるPIN型受光素子と
して構成される場合と、いわゆるAPDとして構成され
る場合とがあるが、素子の構成として両者で異なるの
は、上記の高抵抗のIny Alx Ga1-x-y N単結晶膜
5の層厚のみである。
That is, the first conductivity type semiconductor layer FL is formed.
N+InyAlxGa1-xyN single crystal film 3 and n-
InyAlxGa1-xyN single crystal film 4 and second conductivity type
P as the semiconductor layer SL-InyAlxGa1-xyN only
Crystal film 6 and p+InyAl xGa1-xyN single crystal film 7
Between the high resistance InyAlxGa1-xyN single crystal film
5 to form a light receiving portion PR, and a semiconductor of the first conductivity type.
Electric current is applied between the body layer FL and the semiconductor layer SL of the second conductivity type.
A pair of electrodes 8a and 8b are formed as described above. or,
As is clear from the notation of the conductivity type, the semiconductor of the first conductivity type is used.
In either the body layer FL or the semiconductor layer SL of the second conductivity type
Is also composed of two layers with different carrier concentrations,
InyAlxGa1-xyThe layer closer to the N single crystal film 5 has
The rear concentration is configured to be low. this
In such an element configuration, each layer constituting the light receiving portion PR
Among them, mainly high-resistance InyAlxGa1-xyN single crystal
The film 5 contributes to generation of electron-hole pairs due to incident light. still,
The semiconductor flame sensor PS is a so-called PIN type light receiving element.
And the so-called APD
May be different, but the element configuration differs between the two.
Is the high-resistance InyAlxGa1-xyN single crystal film
5 only.

【0015】上記構成の受光部PRによる分光感度は、
受光部PRを構成するIny AlxGa1-x-y N単結晶
の III族元素の組成比によって規定される。具体的に
は、図3に示すInを含まないAlx Ga1-x Nのバン
ドギャップとAl混晶比xとの関係のように、Al混晶
比が大きくなるほどバンドギャップが広くなって光吸収
端が短波長側に移動する。Alx Ga1-x NのAlの一
部がInに置き代わる関係となるIny Alx Ga
1-x-y Nの場合では、Inが、Al又はGaに置き変わ
る割合が大きくなるにつれてバンドギャップが狭くなり
光吸収端が長波長側に移動する。本発明では、半導体火
炎センサPSを火炎センサとして用いるものとしてお
り、上述のように、図6に「ガスの火炎の光」として示
すガスの炎から発する光のスペクトルを、同様に図6に
示す雑音光として作用する太陽光や室内光(蛍光灯の
光)の影響を除外した状態で検出できるのが望ましい。
The spectral sensitivity of the light receiving unit PR having the above configuration is as follows.
It is defined by the composition ratio of the group III element of the In y Al x Ga 1-xy N single crystal constituting the light receiving portion PR. Specifically, as the relationship between the band gap and the Al mixed crystal ratio x of the Al x Ga 1-x N containing no In shown in FIG. 3, the band gap higher Al mixed crystal ratio becomes larger wider light The absorption edge moves to the shorter wavelength side. In y Al x Ga in which a part of Al of Al x Ga 1-x N replaces In
In the case of 1-xy N, the band gap becomes narrower and the light absorption edge moves to the longer wavelength side as the ratio of replacing In with Al or Ga increases. In the present invention, the semiconductor flame sensor PS is used as a flame sensor. As described above, the spectrum of the light emitted from the gas flame shown as “gas flame light” in FIG. 6 is also shown in FIG. It is desirable that detection can be performed in a state excluding the influence of sunlight or indoor light (light of a fluorescent lamp) acting as noise light.

【0016】このため、吸収スペクトルの長波長端が3
00nm近傍以下となるようにするのが好適である。具
体的には、y=0としてInを含まないAlx Ga1-x
Nの場合では、Al混晶比を0.42乃至0.45の範
囲で選択すれば、バンドギャップが概ね4.5eVとな
り、吸収スペクトルの長波長端はおよそ275nmとな
る。y>0としてInを成分に含める場合は、それに応
じてAl混晶比xを大きくし、ガリウムの割合を減じる
ことで、上記のバンドギャップとすることができる。但
し、y≧0.5の範囲では、Alの割合を最大にしても
吸収スペクトルの長波長端が長波長側へ移動し過ぎるも
のとなり、現実には、0≦y<0.5の範囲が望まし
い。又、Al混晶比xを大とし過ぎると、図6に示す
「ガスの火炎の光」に対する感度も低下し、火炎センサ
としての利用が困難となるので、0≦x≦0.6の範囲
とするのが望ましい。尚、太陽光が完全に遮光された室
内で使用されることが前提であれば、バンドギャップが
概ね4.3eVとなるようにして、吸収端を若干長波長
側へ移動させてもほぼ同等の性能が得られる。
Therefore, the long wavelength end of the absorption spectrum is 3
It is preferable that the thickness be around 00 nm or less. Specifically, Al x Ga 1 -x containing no In with y = 0
In the case of N, if the Al mixed crystal ratio is selected in the range of 0.42 to 0.45, the band gap becomes approximately 4.5 eV, and the long wavelength end of the absorption spectrum becomes approximately 275 nm. When In is included in the component with y> 0, the above band gap can be obtained by increasing the Al mixed crystal ratio x and reducing the gallium ratio accordingly. However, in the range of y ≧ 0.5, even if the ratio of Al is maximized, the long wavelength end of the absorption spectrum moves too much to the long wavelength side, and in reality, the range of 0 ≦ y <0.5 is satisfied. desirable. On the other hand, if the Al mixed crystal ratio x is too large, the sensitivity to “gas flame light” shown in FIG. 6 also decreases, making it difficult to use as a flame sensor. It is desirable that In addition, if it is assumed that the device is used in a room where sunlight is completely shielded, the band gap is set to approximately 4.3 eV, and even if the absorption edge is slightly moved to the longer wavelength side, almost the same value is obtained. Performance is obtained.

【0017】次に、上記構成の半導体火炎センサPSの
製造方法について説明する。半導体火炎センサPSを構
成する各層は、ウェハ状態のサファイヤ基板1上に、M
OCVD装置にて積層される。MOCVD装置は、反応
室(成膜室)が常圧付近となる常圧型のものを使用す
る。上記各層の積層は、ウェハ状態のサファイヤ基板1
を反応室(成膜室) にセットした状態で、サファイヤ基
板1を加熱し、各構成元素の材料ガスの供給状態を順次
切換えることにより、順次積層される。尚、サファイヤ
基板1の基板温度は、AIN緩衝層2の成長時は400
℃〜600℃とし、AIN緩衝層2上への上記各層の成
長時は900℃〜1100℃(最も好ましくは1050
℃)とする。材料ガスとしては、In,Al,Ga及び
Nの各構成元素は、夫々、TMIn(トリメチルインジ
ウム),TMAl(トリメチルアルミニウム),TMG
a(トリメチルガリウム)及びNH3 (アンモニア)と
して供給され、又、n型不純物としてSi,p型不純物
としてMgが、夫々、SiH4 (シラン),CP2 Mg
(シクロペンタンマグネシウム)として適宜供給され
る。尚、p型不純物としてCaを用いる場合は、いわゆ
るイオニンプランテーションを用いる。
Next, a method of manufacturing the semiconductor flame sensor PS having the above configuration will be described. Each layer constituting the semiconductor flame sensor PS is formed on the sapphire substrate 1 in a wafer state by M
The layers are stacked by an OCVD apparatus. As the MOCVD apparatus, a normal pressure type reactor in which a reaction chamber (film formation chamber) is near normal pressure is used. The lamination of each of the above layers is performed on the sapphire substrate 1 in a wafer state.
The sapphire substrate 1 is heated in a state where is set in the reaction chamber (film forming chamber), and the supply state of the material gas of each constituent element is sequentially switched, whereby the layers are sequentially laminated. Note that the substrate temperature of the sapphire substrate 1 is 400 when the AIN buffer layer 2 is grown.
C. to 600 ° C., and 900 ° C. to 1100 ° C. (most preferably 1050 ° C.) during the growth of each of the above layers on the AIN buffer layer 2.
° C). As the material gas, the constituent elements of In, Al, Ga and N are TMIn (trimethylindium), TMAl (trimethylaluminum), and TMG, respectively.
a (trimethylgallium) and NH 3 (ammonia), Si as an n-type impurity, Mg as a p-type impurity, SiH 4 (silane), CP 2 Mg, respectively.
(Cyclopentane magnesium). When Ca is used as the p-type impurity, so-called ionine plantation is used.

【0018】上記各層の積層において、AlN緩衝層2
は約200Åの層厚に成長させ、n + Iny Alx Ga
1-x-y N単結晶膜3はSiH4 ガスを流しながらキャリ
ア濃度が約1×1018cm-3で約3μmの層厚に成長さ
せ、n- Iny Alx Ga1- x-y N単結晶膜4はSiH
4 ガスを流しながらキャリア濃度が約1×1017cm -3
で約0.1μmの層厚に成長させる。これらの層の積
層における他の成膜条件は公知の方法と同様である。
尚、n+ Iny Alx Ga1-x-y N単結晶膜3の層厚は
2μm以上とすることが望ましく、本実施形態では上述
の如く3μmとしいる。
In the lamination of the above layers, the AlN buffer layer 2
Grows to a layer thickness of about 200 ° and n +InyAlxGa
1-xyThe N single crystal film 3 is made of SiHFourCarry while flowing gas
A concentration is about 1 × 1018cm-3Grown to a layer thickness of about 3μm
Let n-InyAlxGa1- xyThe N single crystal film 4 is made of SiH
FourCarrier concentration is about 1 × 10 while flowing gas17cm -3
 To grow to a layer thickness of about 0.1 μm. The product of these layers
Other film forming conditions for the layer are the same as in a known method.
Note that n+InyAlxGa1-xyThe layer thickness of the N single crystal film 3 is
Preferably, the thickness is 2 μm or more.
3 μm as shown in FIG.

【0019】上記高抵抗のIny Alx Ga1-x-y N単
結晶膜5を積層する際においては、TMIn,TMA
l,TMGa及びNH3 の材料供給量を、夫々、a(m
ol/sec),b(mol/sec),c(mol/
sec)及びX(mol/sec)とすると、V族元素
の III族元素に対する材料供給比率、すなわち、X/
(a+b+c)が、5000以上となるように設定して
成膜する。このような条件で成膜することにより、In
y Alx Ga1-x-y N単結晶膜5は、キャリア濃度が1
×1015cm-3以下の高抵抗の単結晶膜が得られ、具体
例としては、x=0,y=0としてGaN単結晶膜を成
膜した場合には、5×10 13cm-3以下のキャリア濃度
のものが得られる。尚、高抵抗のIny Alx Ga
1-x-y N単結晶膜5を成膜する場合にも、必要に応じ
て、Si,Mg,C又はCaを不純物としてドーピング
してキャリア濃度を調整しても良い。尚、常圧型のMO
CVD装置によって、上記の成膜条件として成膜するこ
とで極めて良好な特性のものが得られるのであるが、必
ずしも常圧型に限られず、いわゆる減圧型のMOCVD
装置を用いても良い。減圧型のVOCVD装置におい
て、Iny Alx Ga1-x-y N単結晶膜5の成膜時の圧
力を1/3〜1/2気圧程度とすると、V族元素のIII
族元素に対する材料供給比率を上述のように高い値に容
易に設定できる。
The high resistance InyAlxGa1-xyN only
When the crystal film 5 is laminated, TMIn, TMA
1, TMGa and NHThreeThe material supply amount of each is a (m
ol / sec), b (mol / sec), c (mol / sec)
sec) and X (mol / sec), group V elements
Of the material supply to the group III element, ie, X /
(A + b + c) is set to be 5000 or more
Form a film. By forming a film under such conditions, In
yAlxGa1-xyThe N single crystal film 5 has a carrier concentration of 1
× 10Fifteencm-3The following high-resistance single crystal film was obtained,
As an example, a GaN single crystal film is formed with x = 0 and y = 0.
5 × 10 13cm-3The following carrier concentration
Is obtained. In addition, high resistance InyAlxGa
1-xyWhen forming the N single crystal film 5 as necessary,
Doping with Si, Mg, C or Ca as impurities
Then, the carrier concentration may be adjusted. In addition, normal pressure type MO
The film is formed by the CVD apparatus under the above-described film forming conditions.
With this, very good characteristics can be obtained.
So-called reduced pressure type MOCVD is not limited to normal pressure type.
An apparatus may be used. Decompression type VOCVD equipment
And InyAlxGa1-xyPressure at the time of forming the N single crystal film 5
When the force is about 1/3 to 1/2 atm, III
The material supply ratio to the group elements is set to a high value as described above.
Can be set easily.

【0020】高抵抗のIny Alx Ga1-x-y N単結晶
膜5の層厚は、半導体火炎センサPSをPIN型受光素
子とする場合は0.1μm、半導体火炎センサPSをA
PDとする場合は0.5μmとする。APDの場合に層
厚を厚くしているのは、APDに高電圧を印加したとき
に、膜内の電界強度が過度に大きくならないようにする
ためである。但し、高抵抗のIny Alx Ga1-x-y
単結晶膜5の層厚を厚くし過ぎると、応答速度が低下す
るので留意する必要があるが、0.5μm程度では実用
上十分な応答速度が得られる。
The layer thickness of the high-resistance In y Al x Ga 1 -xy N single crystal film 5 is 0.1 μm when the semiconductor flame sensor PS is a PIN type light receiving element, and the thickness of the semiconductor flame sensor PS is A.
In the case of PD, it is 0.5 μm. The reason why the layer thickness is increased in the case of the APD is to prevent the electric field intensity in the film from being excessively increased when a high voltage is applied to the APD. However, the high-resistance In y Al x Ga 1-xy N
If the layer thickness of the single crystal film 5 is too large, it is necessary to keep in mind that the response speed is reduced. However, when the thickness is about 0.5 μm, a practically sufficient response speed can be obtained.

【0021】高抵抗のIny Alx Ga1-x-y N単結晶
膜5の成膜後に、p- Iny AlxGa1-x-y N単結晶
膜6はCP2 Mgを流しながらキャリア濃度が約1×1
17cm-3 で約0.1μmの層厚に成長させ、p+
y Alx Ga1-x-y N単結晶膜7はCP2 Mgを流し
ながらキャリア濃度が約1×1018cm-3で約0.3μ
mの層厚に成長させる。これまでの処理により、活性化
処理を経ていない半導体層が多層状に積層された受光部
を原始的に形成することができる。次に、高抵抗化領域
の形成を目的としたイオン注入処理に進む。この処理
は、水素イオンを利用したイオン注入により行い、ウェ
ハーの厚さ方向視の図面である図4において斜線で示す
領域IPに、ウェハーの厚さ方向に水素イオンを打ち込
む。イオンの加速電圧は、打ち込み深さが、図2に示す
ように、n- Iny Alx Ga1-x-y N単結晶膜4に達
する深さかあるいはそれより深いものとなるように設定
する。
After the formation of the high resistance In y Al x Ga 1 -xy N single crystal film 5, the p - In y Al x Ga 1 -xy N single crystal film 6 has a carrier concentration of about 2 while flowing CP 2 Mg. 1x1
Grown at 0 17 cm -3 to a layer thickness of about 0.1 μm, p + I
The n y Al x Ga 1 -xy N single crystal film 7 has a carrier concentration of about 1 × 10 18 cm −3 and about 0.3 μm while flowing CP 2 Mg.
m to a layer thickness of m. By the above-described processing, a light receiving portion in which semiconductor layers that have not been subjected to the activation processing are stacked in a multilayer shape can be primitively formed. Next, the process proceeds to an ion implantation process for forming a high resistance region. This process is performed by ion implantation using hydrogen ions, and hydrogen ions are implanted in the thickness direction of the wafer into a region IP indicated by oblique lines in FIG. 4 which is a drawing viewed in the thickness direction of the wafer. Acceleration voltage of ions, implantation depth, as shown in FIG. 2, n - In y Al x Ga 1-xy N is set to be as single-crystal film depth or deeper than reaches 4.

【0022】このようにして、半導体層の形成及び素子
特定部位に対するイオン注入処理を終えた後、本願の特
徴となる半導体層の活性化処理、高抵抗化処理の一部を
担う処理を、同時におこなう。この処理は、700〜8
50℃(具体的には820℃)で、5〜15分(具体的
には10分)の処理である。
After the formation of the semiconductor layer and the ion implantation for the element specific portion are completed in this manner, the processing for performing the activation of the semiconductor layer and the processing for increasing the resistance, which are features of the present invention, are simultaneously performed. Do it. This processing is performed between 700 and 8
The treatment is performed at 50 ° C. (specifically, 820 ° C.) for 5 to 15 minutes (specifically, 10 minutes).

【0023】この後、図5に示すように、水素イオンを
打ち込んだ部分をn+ Iny AlxGa1-x-y N単結晶
膜3が露出する深さまで帯状にフォトエッチング処理を
行い、その帯状にエッチングした部分に個々の半導体火
炎センサPSに対応する状態で電極8bを形成すると共
に、水素イオンを打ち込んでいない部分に電極8aを形
成する。尚、図5において破線BLは、水素イオンを打
ち込んだ領域と打ち込んでいない領域の境界を示してい
る。電極8aはNiとAuの2層構成で、p+ Iny
x Ga1-x-y N単結晶膜7側をNiとし、一方、電極
8bはTiとAlの2層構成で、n+ Iny AlxGa
1-x-y N単結晶膜3側をTiとして、夫々例えば電子ビ
ーム蒸着等により積層した後、リフトオフ法や化学的エ
ッチング等により、電極8aをメッシュ状に形成し、電
極8bを矩形形状に形成する。電極8a,8bの形成
後、図5において一点鎖線CLにて示す素子分離線に沿
ってダイシング等により個々の素子に素子分離する。電
極8a,8bの形成後により確実なオーミックコンタク
トをとるために加熱処理を行っても良いが、この場合
は、打ち込んだ水素イオンが加熱処理によって離脱する
ことを考慮して、水素イオンの打ち込み量を多めに設定
しておくことが望ましい。このように素子分離を行うこ
とによって、図2に示すように、第1導電型の半導体層
FL及び第2導電型の半導体層SLが露出する側面部分
に、第1導電型の半導体層FLと第2導電型の半導体層
SLとに亘る状態で、イオン注入により高抵抗化された
高抵抗領域HRが備えられることになる。
[0023] Thereafter, as shown in FIG. 5 performs photo-etching process to strip the implanted's partial hydrogen ions to n + In y Al x Ga 1 -xy N single crystal film 3 depth is exposed, the strip The electrode 8b is formed in a portion corresponding to the individual semiconductor flame sensor PS in the portion etched in the above manner, and the electrode 8a is formed in a portion not implanted with hydrogen ions. In FIG. 5, a broken line BL indicates a boundary between a region where hydrogen ions are implanted and a region where hydrogen ions are not implanted. The electrode 8a has a two-layer structure of Ni and Au, and has p + In y A
The l x Ga 1-xy N single crystal film 7 side is Ni, whereas the electrode 8b of a two-layer structure of Ti and Al, n + In y Al x Ga
After the 1-xy N single crystal film 3 side is made of Ti and laminated by, for example, electron beam evaporation, the electrode 8a is formed in a mesh shape by a lift-off method or chemical etching, and the electrode 8b is formed in a rectangular shape. . After the formation of the electrodes 8a and 8b, elements are separated into individual elements by dicing or the like along element separation lines indicated by alternate long and short dash lines CL in FIG. After the electrodes 8a and 8b are formed, a heat treatment may be performed in order to obtain a more reliable ohmic contact. In this case, the amount of implanted hydrogen ions is considered in consideration of the fact that the implanted hydrogen ions are separated by the heat treatment. Is desirably set to a large value. By performing the element isolation in this manner, as shown in FIG. 2, the first conductive type semiconductor layer FL and the first conductive type semiconductor layer FL are formed on the side surfaces where the first conductive type semiconductor layer FL and the second conductive type semiconductor layer SL are exposed. A high resistance region HR having a high resistance by ion implantation is provided over the second conductivity type semiconductor layer SL.

【0024】以上のようにして作製された半導体火炎セ
ンサPSは、有効受光面積を1cm 2 に換算した場合
に、暗電流が約10nA程度のものが得られる。尚、上
記高抵抗領域HRを備えずに、他の条件を同一条件とし
た場合は、暗電流が約1nA以上となり、暗電流が大幅
に改善されている。さらに、図1(ロ)に示す工程を経
る場合と、図1(イ)に示す工程をへる場合とにあって
は、本願の工程である図1(イ)の工程を取る方が、素
子の光に対する応答速度を早くすることができた。さら
に、その量子効率も、%オーダーで向上した。
The semiconductor flame cell manufactured as described above
The sensor PS has an effective light receiving area of 1 cm TwoWhen converted to
In addition, a dark current of about 10 nA is obtained. In addition, above
Without the high resistance region HR, the other conditions are the same.
In this case, the dark current becomes about 1 nA or more,
Has been improved. Further, through the process shown in FIG.
And the case where the process shown in FIG.
It is simpler to take the step of FIG.
The response speed of the child to light could be increased. Further
In addition, its quantum efficiency has been improved in the order of%.

【0025】〔別実施形態〕以下、別実施形態を列記す
る。 (1) 上記実施の形態では、半導体火炎センサをPIN接
合型フォトダイオード又はAPDとして構成する場合を
例示しているが、上記実施の形態における受光部PRの
積層構成において、高抵抗のIny Alx Ga1-x-y
単結晶膜5を備えない積層構成として、PN接合型フォ
トダイオードとして構成しても良い。上記構成とした場
合の半導体火炎センサPSは、上記実施の形態における
半導体火炎センサPSの製造方法において、高抵抗のI
y Alx Ga1-x-y N単結晶膜5を成膜しないものと
する以外は同一工程によって製造でき、有効受光面積を
1cm2 に換算した場合に、暗電流が約10pA程度の
ものが得られる。この場合も、図1(ロ)に示す工程を
経る場合と、図1(イ)に示す工程をへる場合とにあっ
ては、本願の工程である図1(イ)の工程を取る方が、
素子の光に対する応答速度を早くすることができた。さ
らに、その量子効率も、%オーダーで向上した。また、
本願手法は、FET構造を取る場合のゲート周辺の高抵
抗化の場合にあっも、適用することができる。
[Other Embodiments] Hereinafter, other embodiments will be listed. (1) In the above-described embodiment, the case where the semiconductor flame sensor is configured as a PIN junction type photodiode or an APD is illustrated. However, in the stacked configuration of the light receiving unit PR in the above-described embodiment, a high-resistance In y Al x Ga 1-xy N
A stacked structure without the single crystal film 5 may be configured as a PN junction type photodiode. The semiconductor flame sensor PS having the above configuration is the same as the semiconductor flame sensor PS according to the above-described embodiment in the method of manufacturing the semiconductor flame sensor PS.
n y Al x except that Ga 1-xy N single crystal film 5 shall not be deposited may be prepared by the same process, if obtained by converting the effective light receiving area to 1 cm 2, obtained of about dark current of about 10pA Can be Also in this case, in the case of going through the step shown in FIG. 1B and the step of going to the step shown in FIG. 1A, the method of FIG. But,
The response speed of the device to light could be increased. Furthermore, its quantum efficiency has been improved on the order of%. Also,
The method of the present application can be applied even in the case of increasing the resistance around the gate when the FET structure is adopted.

【0026】(2) 上記実施の形態では、高抵抗領域HR
を形成するために水素イオンを打ち込む場合を例示して
いるが、例えば、N,O,F,He,Cl,等の他のイ
オンを打ち込んで高抵抗化するものとしても良い。この
場合、Nイオン等のように同一加速電圧での打ち込み深
さが水素イオンに較べて浅いものは、それに応じて加速
電圧を高くするか、又は、受光部PRを構成する各層の
層厚を薄くする必要がある。 (3) 上記実施の形態では、図4に示すように、ウェハー
状態でイオン注入を行うものとしているが、ウェハー状
態から素子分離を行った後に、第1導電型の半導体層F
L及び第2導電型の半導体層SLが露出する側面部分に
向けて、側方又は斜め上方からイオン注入を行っても良
い。
(2) In the above embodiment, the high resistance region HR
Although the case where a hydrogen ion is implanted to form the above is exemplified, other ions such as N, O, F, He, Cl, etc. may be implanted to increase the resistance. In this case, when the implantation depth at the same accelerating voltage, such as N ions, is shallower than that of hydrogen ions, the accelerating voltage is increased accordingly, or the thickness of each layer constituting the light receiving portion PR is increased. Need to be thin. (3) In the above embodiment, as shown in FIG. 4, the ion implantation is performed in the wafer state. However, after the element is separated from the wafer state, the first conductive type semiconductor layer F is formed.
Ion implantation may be performed from the side or obliquely upward toward the side surface portion where L and the second conductive type semiconductor layer SL are exposed.

【0027】(4) 電極8aをいわゆる透明電極として構
成しても良い。透明電極とすると、電極8aを受光面の
全面に形成することが可能である。透明電極の具体例と
しては例えば、Pdを50Å程度の膜厚で積層すれば良
い。 (5) 上記実施の形態では、被検出光はメッシュ状の電極
8aの開口部分を通過してp+ Iny Alx Ga1-x-y
N単結晶膜7に入射する構成としているが、p+Iny
Alx Ga1-x-y N単結晶膜7の上に実効的に1/4波
長に相当する層厚のAlN反射防止膜を形成しても良
い。このように反射防止膜の材質をバンドギャップの広
いAlNとすることで、反射防止膜での被検出光の吸収
を抑制できるとともに、MOCVDによる一回の成長プ
ロセスで反射防止膜まで含めて形成することが可能とな
る。
(4) The electrode 8a may be configured as a so-called transparent electrode. When a transparent electrode is used, the electrode 8a can be formed on the entire light receiving surface. As a specific example of the transparent electrode, for example, Pd may be laminated with a thickness of about 50 °. (5) In the above embodiment, the light to be detected is p + In y Al x Ga 1 -xy through the opening portions of the mesh-like electrode 8a
Although it is configured to be incident on the N single crystal film 7, p + In y
On the Al x Ga 1-xy N single crystal film 7, an AlN anti-reflection film having a thickness equivalent to a quarter wavelength may be formed. Since the material of the antireflection film is made of AlN having a wide band gap, the absorption of the light to be detected by the antireflection film can be suppressed, and the antireflection film is formed to include the antireflection film in a single growth process by MOCVD. It becomes possible.

【0028】(6) 上記実施の形態では、単結晶基板1上
にAlN緩衝層2を積層しているが、このAlN緩衝層
2の代わりに、AlGaNを緩衝層として用いても良
い。このようにAlGaNを緩衝層として用いても、基
板側との格子定数のミスマッチを緩和することができ
る。この場合、n+ Iny Alx Ga1-x-y N単結晶膜
3、n- Iny Alx Ga1-x-y N単結晶膜4、高抵抗
のIny Alx Ga1- x-y N単結晶膜5、p- Iny
x Ga1-x-y N単結晶膜6、p+ Iny Al x Ga
1-x-y N単結晶膜7のAl混晶比と、AlGaN緩衝層
のAl混晶比との差を0.1以下とすれば、高抵抗のI
y Alx Ga1-x-y N単結晶膜5等の結晶性を一層良
好なものとできる。
(6) In the above embodiment, on the single crystal substrate 1
The AlN buffer layer 2 is laminated on the
AlGaN may be used as the buffer layer instead of 2
No. Even when AlGaN is used as the buffer layer,
The lattice constant mismatch with the plate side can be reduced.
You. In this case, n+InyAlxGa1-xyN single crystal film
3, n-InyAlxGa1-xyN single crystal film 4, high resistance
InyAlxGa1- xyN single crystal film 5, p-InyA
lxGa1-xyN single crystal film 6, p+InyAl xGa
1-xyAl mixed crystal ratio of N single crystal film 7 and AlGaN buffer layer
If the difference from the Al mixed crystal ratio is 0.1 or less, the high resistance I
nyAlxGa1-xyBetter crystallinity of N single crystal film 5 etc.
You can do something good.

【0029】(7) 上記実施の形態では、単結晶基板1と
してサファイヤ基板を用いているが、例えば、サファイ
ヤ基板の代わりにSiC単結晶基板を用いても良い。 (8) 上記実施の形態では、第1導電型の半導体層FL及
び第2導電型の半導体層SLの夫々をキャリア濃度が異
なる2層構成としているが、夫々単層にて構成しても良
い。すなわち、上記実施の形態において、n- Iny
x Ga1-x-y N単結晶膜4及びp- Iny Alx Ga
1-x-y N単結晶膜6を省略しても良い。又、逆に、3層
以上にて構成して、高抵抗のIny Alx Ga1-x-y
単結晶膜5の近い層ほどキャリア濃度が低くなるように
構成しても良い。 (9) 上記実施の形態では、第1導電型をn型、第2導電
型をp型として説明しているが、これは説明の便宜のた
めに対応付けており、第1導電型をp型、第2導電型を
n型として説明することもできる。又、上記実施の形態
では、単結晶基板1に近い側にn型の半導体層を配置し
てPIN型に構成しているが、単結晶基板1に近い側に
p型の半導体層を配置してPIN型に構成しても良い。 (10)上記実施の形態では、MOCVD装置によって結晶
成長する場合を例示しているが、例えばいわゆるMBE
装置によって各層を結晶成長するようにしても良い。
(7) In the above embodiment, a sapphire substrate is used as the single crystal substrate 1, but for example, a SiC single crystal substrate may be used instead of the sapphire substrate. (8) In the above-described embodiment, each of the first conductivity type semiconductor layer FL and the second conductivity type semiconductor layer SL has a two-layer structure with different carrier concentrations, but each may have a single layer structure. . That is, in the above embodiment, n In y A
l x Ga 1-xy N single crystal film 4 and p - In y Al x Ga
The 1-xy N single crystal film 6 may be omitted. Further, on the contrary, it constituted by three or more layers, of high resistance In y Al x Ga 1-xy N
It may be configured such that a layer closer to the single crystal film 5 has a lower carrier concentration. (9) In the above embodiment, the first conductivity type is described as n-type and the second conductivity type is described as p-type. However, this is associated for convenience of description, and the first conductivity type is p-type. The type and the second conductivity type can be described as n-type. Further, in the above-described embodiment, an n-type semiconductor layer is arranged on the side closer to the single crystal substrate 1 to form a PIN type. However, a p-type semiconductor layer is arranged on the side closer to the single crystal substrate 1. May be configured as a PIN type. (10) In the above embodiment, the case where the crystal is grown by the MOCVD apparatus is exemplified.
Crystal growth of each layer may be performed by an apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体火炎センサの製造工程と熱処理温度との
説明図
FIG. 1 is an explanatory diagram of a semiconductor flame sensor manufacturing process and a heat treatment temperature.

【図2】本発明の実施の形態にかかる半導体火炎センサ
の断面図
FIG. 2 is a sectional view of the semiconductor flame sensor according to the embodiment of the present invention;

【図3】本発明の実施の形態にかかる組成比とバンドギ
ャップとの関係を示す図
FIG. 3 is a diagram showing a relationship between a composition ratio and a band gap according to the embodiment of the present invention.

【図4】本発明の実施の形態にかかる半導体火炎センサ
の製造工程の一部を概略的に示す平面図
FIG. 4 is a plan view schematically showing a part of the manufacturing process of the semiconductor flame sensor according to the embodiment of the present invention.

【図5】本発明の実施の形態にかかる半導体火炎センサ
の製造工程の一部を概略的に示す平面図
FIG. 5 is a plan view schematically showing a part of a manufacturing process of the semiconductor flame sensor according to the embodiment of the present invention.

【図6】ガス光等の分光スペクトルを示す図FIG. 6 is a diagram showing a spectrum of gas light or the like;

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 AlN緩衝層 5 高抵抗のIny Alx Ga1-x-y N単結晶
膜 8a,8b 一対の電極 HR 高抵抗領域 FL 第1導電型の半導体層 PR 受光部 SL 第2導電型の半導体層
1 of the single-crystal substrate 2 AlN buffer layer 5 high resistance In y Al x Ga 1-xy N single crystal film 8a, the semiconductor layer PR receiving portion SL second conductivity type 8b pair of electrodes HR high resistance region FL first conductivity type Semiconductor layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤崎 勇 愛知県名古屋市天白区塩釜口1―501 名 城大学理工学部電気電子工学科内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Isamu Akasaki 1-401 Shiogamaguchi, Tenpaku-ku, Nagoya-shi, Aichi Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体層と、その半導体層
とは導電型の異なる第2導電型の半導体層とが厚さ方向
に並べて積層されて構成され、光に対する感度を有する
受光部を備え、 前記第1導電型の半導体層と前記第2導電型の半導体層
とに亙って通電されるように一対の電極が形成されて成
る受光素子の製造方法であって、 前記第1導電型の半導体層及び前記第2導電型の半導体
層を、不純物を含むIny Alx Ga1-x-y N(x≧
0,y≧0)系の材料から形成するとともに、 前記第1導電型の半導体層あるいは前記第2導電型の半
導体層の特定部位に、イオン注入によりイオン注入領域
を形成し、 前記不純物を含む半導体層の活性化処理が可能で、且
つ、前記イオン注入領域を高抵抗化できる熱処理温度で
熱処理をおこない、 前記半導体層の活性化処理と前記イオン注入領域の高抵
抗化処理を同時におこなう受光素子の製造方法。
1. A light-receiving section having a first conductivity type semiconductor layer and a second conductivity type semiconductor layer having a different conductivity type, which are stacked side by side in the thickness direction. A method for manufacturing a light receiving element, comprising: a pair of electrodes formed so as to be energized over the semiconductor layer of the first conductivity type and the semiconductor layer of the second conductivity type; The semiconductor layer of the conductivity type and the semiconductor layer of the second conductivity type are formed of In y Al x Ga 1-xy N (x ≧
(0, y ≧ 0) -based material, and an ion implantation region is formed by ion implantation in a specific portion of the first conductivity type semiconductor layer or the second conductivity type semiconductor layer, and contains the impurity. A light-receiving element capable of activating a semiconductor layer and performing a heat treatment at a heat treatment temperature capable of increasing the resistance of the ion-implanted region, and simultaneously performing the activation treatment of the semiconductor layer and the resistance-improving treatment of the ion-implanted region. Manufacturing method.
【請求項2】 前記不純物がMg、Ca、Cから選択さ
れる一種以上であり、前記イオンが窒素、酸素、フッ
素、水素、ヘリウムの1種以上である請求項1記載の受
光素子の製造方法。
2. The method according to claim 1, wherein the impurities are at least one selected from Mg, Ca, and C, and the ions are at least one of nitrogen, oxygen, fluorine, hydrogen, and helium. .
【請求項3】 前記不純物がSiであり、前記イオンが
窒素、酸素、フッ素、水素、ヘリウムの1種以上である
請求項1記載の受光素子の製造方法。
3. The method according to claim 1, wherein the impurity is Si, and the ions are at least one of nitrogen, oxygen, fluorine, hydrogen, and helium.
【請求項4】 前記熱処理温度を700℃から850℃
の範囲内の温度とする請求項1〜3のいずれか1項記載
の受光素子の製造方法。
4. The heat treatment temperature is from 700 ° C. to 850 ° C.
The method for manufacturing a light-receiving element according to any one of claims 1 to 3, wherein the temperature is in a range of:
【請求項5】 請求項1〜4のいずれか1項に記載の受
光素子の製造方法に従って製造される受光素子。
5. A light-receiving element manufactured according to the method for manufacturing a light-receiving element according to claim 1.
【請求項6】 請求項1〜4のいずれか1項に記載の受
光素子の製造方法に従って製造され、前記受光部が30
0nm近傍以下の波長領域に感度を有する紫外線受光素
子を得る紫外線受光素子の製造方法。
6. The light-receiving element is manufactured according to the method for manufacturing a light-receiving element according to claim 1, wherein the light-receiving part is 30
A method for manufacturing an ultraviolet light receiving element for obtaining an ultraviolet light receiving element having sensitivity in a wavelength region of about 0 nm or less.
【請求項7】 請求項6記載の紫外線受光素子の製造方
法に従って製造され、前記受光部が300nm近傍以下
の波長領域に感度を有する紫外線受光素子である火炎セ
ンサ。
7. A flame sensor manufactured according to the method for manufacturing an ultraviolet light receiving element according to claim 6, wherein the light receiving section is an ultraviolet light receiving element having a sensitivity in a wavelength region near 300 nm or less.
JP32115797A 1997-11-21 1997-11-21 Light receiving element, method for manufacturing ultraviolet light receiving element, and light receiving element Expired - Lifetime JP3922772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32115797A JP3922772B2 (en) 1997-11-21 1997-11-21 Light receiving element, method for manufacturing ultraviolet light receiving element, and light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32115797A JP3922772B2 (en) 1997-11-21 1997-11-21 Light receiving element, method for manufacturing ultraviolet light receiving element, and light receiving element

Publications (2)

Publication Number Publication Date
JPH11163387A true JPH11163387A (en) 1999-06-18
JP3922772B2 JP3922772B2 (en) 2007-05-30

Family

ID=18129450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32115797A Expired - Lifetime JP3922772B2 (en) 1997-11-21 1997-11-21 Light receiving element, method for manufacturing ultraviolet light receiving element, and light receiving element

Country Status (1)

Country Link
JP (1) JP3922772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955674B1 (en) 2007-06-29 2010-05-06 주식회사 하이닉스반도체 Method of controling the sheet resistance in impurity region of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955674B1 (en) 2007-06-29 2010-05-06 주식회사 하이닉스반도체 Method of controling the sheet resistance in impurity region of semiconductor device

Also Published As

Publication number Publication date
JP3922772B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
Su et al. GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes
Razeghi Short-wavelength solar-blind detectors-status, prospects, and markets
KR101639779B1 (en) Semiconductor photo-detecting device
TWI427824B (en) Infrared ray emitting element
Chiou et al. High detectivity InGaN-GaN multiquantum well pn junction photodiodes
CN107863413A (en) A kind of AlGaN bases day blind ultraviolet snowslide heterojunction phototransistor detector and preparation method thereof
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
CN109285914B (en) AlGaN-based ultraviolet heterojunction phototransistor detector and preparation method thereof
CN109686809A (en) A kind of III nitride semiconductor visible light avalanche photodetector and preparation method
CN107195709B (en) A kind of tri-nitride base heterojunction phototransistor
KR101619110B1 (en) Semi-conductor optoelectronic dcvice and method for manufacturing the same
Chang et al. GaN-Based Schottky Barrier Photodetectors With a 12-Pair Mg $ _ {\rm x} $ N $ _ {\rm y} $–GaN Buffer Layer
JP2005235908A (en) NITRIDE SEMICONDUCTOR LAMINATED SUBSTRATE AND GaN-BASED COMPOUND SEMICONDUCTOR DEVICE
Boltar et al. Solid-state photoelectronics of the ultraviolet range
JPH11186174A (en) Semiconductor device and its manufacture
Seo et al. The heterogenous integration of GaN thin-film metal-semiconductor-metal photodetectors onto silicon
KR102473352B1 (en) Light detecting device
JPH11154763A (en) Phtoreceiver, flame sensor, and manufacture of light receiving element
JPH11163387A (en) Light-receiving element, and manufacture of, ultraviolet-ray receiving element and light receiving element
JP2008060161A (en) Optical detector, and method of manufacturing optical detector
JPH0955522A (en) Tunnel diode
JP2005136136A (en) Method of manufacturing semiconductor device, and method of manufacturing wafer
JP3564811B2 (en) Group III nitride semiconductor light emitting device
JPH11177119A (en) Photodiode and its manufacture
JP2005235910A (en) GaN-BASED COMPOUND SEMICONDUCTOR LIGHT RECEIVING ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term