JPH11154763A - Phtoreceiver, flame sensor, and manufacture of light receiving element - Google Patents

Phtoreceiver, flame sensor, and manufacture of light receiving element

Info

Publication number
JPH11154763A
JPH11154763A JP9319531A JP31953197A JPH11154763A JP H11154763 A JPH11154763 A JP H11154763A JP 9319531 A JP9319531 A JP 9319531A JP 31953197 A JP31953197 A JP 31953197A JP H11154763 A JPH11154763 A JP H11154763A
Authority
JP
Japan
Prior art keywords
single crystal
semiconductor layer
receiving element
crystal film
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9319531A
Other languages
Japanese (ja)
Inventor
Hikari Hirano
光 平野
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP9319531A priority Critical patent/JPH11154763A/en
Publication of JPH11154763A publication Critical patent/JPH11154763A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an InAlGa-based light receiving element with good quantum efficiency and high speed of response. SOLUTION: A photoreceiver includes a photoreceiver part (PR) made up of a high resistance Iny Alx Ga1-x-y N single crystal film 5 with carrier density of 1×10<15> cm<-3> or below, where x>=0, y>=0, between a semiconductor layer FL of first conductivity type and a semiconductor layer SL of second conductivity type other than the first conductivity type. Then, a pair of electrodes 8a and 8b are formed for providing continuity between the semiconductor layer FL and the semiconductor layer SL.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受光素子、その受
光素子を用いた火炎センサ、及び、前記受光素子の製造
方法に関する。
The present invention relates to a light receiving element, a flame sensor using the light receiving element, and a method for manufacturing the light receiving element.

【0002】[0002]

【従来の技術】光の検出に用いられる受光素子として
は、入射した光のエネルギーによって電子正孔対を生じ
る半導体の性質を利用して、導電型の異なるすなわちp
型とn型の半導体層を接合させたいわゆるpn接合型の
受光素子がよく知られている。かかる受光素子を構成す
る半導体材料としてはSi等が一般的に用いられるが、
InAlGaN系の材料も比較的短波長の光を検出する
ための材料として期待されている。
2. Description of the Related Art A light-receiving element used for detecting light utilizes a property of a semiconductor in which an electron-hole pair is generated by the energy of incident light, and has a different conductivity type, that is, p-type.
A so-called pn junction type light receiving element in which a type and an n type semiconductor layer are bonded is well known. As a semiconductor material constituting such a light receiving element, Si or the like is generally used,
InAlGaN-based materials are also expected as materials for detecting light having a relatively short wavelength.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、InA
lGaN系の材料で、pn接合型の受光素子を構成した
場合、量子効率や応答速度の面で十分な性能のものが得
られなかった。本発明は、上記実情に鑑みてなされたも
のであって、その目的は、良好な量子効率及び応答速度
を有するInAlGaN系の受光素子を提供する点にあ
る。
SUMMARY OF THE INVENTION However, InA
When a pn-junction type light receiving element is made of an lGaN-based material, sufficient performance in terms of quantum efficiency and response speed cannot be obtained. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an InAlGaN-based light receiving device having good quantum efficiency and response speed.

【0004】[0004]

【課題を解決するための手段】上記請求項1記載の構成
を備えることにより、第1導電型の半導体層と、その半
導体層とは導電型の異なる第2導電型の半導体層との間
に、キャリア濃度が1×1015cm-3以下の高抵抗のI
y Alx Ga1-x-y N単結晶膜(x≧0,y≧0)を
形成して受光部が構成され、前記第1導電型の半導体層
と前記第2導電型の半導体層との間に通電されるように
一対の電極が形成されて、受光素子が構成される。すな
わち、本発明の発明者は、Iny Alx Ga1-x-y N単
結晶膜(x≧0,y≧0)において、キャリア濃度を1
×1015cm-3以下となし得ることを実験的に見出し、
その高抵抗のIny Alx Ga1-x-y N単結晶膜が得ら
れたことを利用して、第1導電型の半導体層と、その半
導体層とは導電型の異なる第2導電型の半導体層との間
に、その高抵抗のIny Alx Ga1-x-y N単結晶膜を
位置させていわゆるPIN型受光素子を作製することが
可能となったのである。受光素子をPIN型受光素子と
して構成することで、高抵抗のIny Alx Ga1-x-y
N単結晶膜において入射光により発生した電子正孔対を
印加した電界により効率良く且つ高速に一対の電極側に
取り出すことができ、良好な量子効率及び応答速度を有
するInAlGaN系の受光素子を提供できるに至っ
た。尚、Iny Alx Ga1-x-y N単結晶膜を十分に高
抵抗にすることができるので、その高抵抗のIny Al
x Ga1-x-y N単結晶膜に十分に高い電圧を印加して、
いわゆるアバランシェフォトダイオード(APD)とす
ることも可能である。
According to the first aspect of the present invention, a semiconductor layer of a first conductivity type is provided between a semiconductor layer of a second conductivity type having a different conductivity type from the semiconductor layer of the first conductivity type. , High resistance I having a carrier concentration of 1 × 10 15 cm −3 or less
An n y Al x Ga 1-xy N single crystal film (x ≧ 0, y ≧ 0) is formed to constitute a light receiving portion, and the light receiving portion is formed by the first conductive type semiconductor layer and the second conductive type semiconductor layer. A pair of electrodes are formed so as to be energized therebetween, thereby forming a light receiving element. That is, the inventors of the present invention set the carrier concentration to 1 in the In y Al x Ga 1-xy N single crystal film (x ≧ 0, y ≧ 0).
It was experimentally found that it could be less than × 10 15 cm -3 ,
Utilizing the high-resistance In y Al x Ga 1-xy N single crystal film, a semiconductor layer of the first conductivity type and a semiconductor of the second conductivity type having a different conductivity type from the semiconductor layer between the layers, it became possible that by positioning the in y Al x Ga 1-xy N single crystal film having a high resistance to produce a so-called PIN-type light receiving element. By configuring the light receiving element as a PIN type light receiving element, a high-resistance In y Al x Ga 1-xy
Provided is an InAlGaN-based light-receiving element having good quantum efficiency and response speed, in which electron-hole pairs generated by incident light in an N single crystal film can be efficiently and rapidly taken out to a pair of electrodes by an applied electric field. I can do it. Since the In y Al x Ga 1-xy N single crystal film can have a sufficiently high resistance, the high resistance In y Al
by applying a sufficiently high voltage to x Ga 1-xy N single crystal film,
A so-called avalanche photodiode (APD) can also be used.

【0005】又、上記請求項2記載の構成を備えること
により、請求項1記載の受光素子において、前記高抵抗
のIny Alx Ga1-x-y N単結晶膜を、V族元素の I
II族元素に対する材料供給比率を5000以上としてM
OCVD法にて成膜して受光素子が構成される。すなわ
ち、かかる成膜条件にて、Iny Alx Ga1-x-y N単
結晶膜(x≧0,y≧0)のキャリア濃度を十分に小さ
くできることを実験的に確認でき、上記の如く、PIN
型受光素子又はAPDを作製することが可能となったの
である。
[0005] Further, by providing the structure of the second aspect, in the light receiving element of the first aspect, the high-resistance In y Al x Ga 1-xy N single crystal film is formed of a group V element I
The material supply ratio to Group II element is set to 5000 or more and M
A light receiving element is formed by film formation by the OCVD method. That is, it can be experimentally confirmed that the carrier concentration of the In y Al x Ga 1-xy N single crystal film (x ≧ 0, y ≧ 0) can be sufficiently reduced under these film forming conditions.
Thus, it became possible to produce a type light receiving element or an APD.

【0006】又、上記請求項3記載の構成を備えること
により、前記請求項1又は2記載の受光素子において、
前記高抵抗のIny Alx Ga1-x-y N単結晶膜の吸収
スペクトルの長波長端が300nm近傍以下となるよう
に構成される。このような波長領域は可視光領域から外
れた特殊な波長であり、検出対象となる光は一般的に微
弱なものとなる場合が多い。このような場合に、上記の
ように良好な量子効率及び応答速度を得ることが極めて
有効となる。
According to the third aspect of the present invention, in the light receiving element according to the first or second aspect,
Configured long wavelength edge of the absorption spectrum of In y Al x Ga 1-xy N single crystal film of the high resistance is less 300nm vicinity. Such a wavelength region is a special wavelength out of the visible light region, and light to be detected is generally weak in many cases. In such a case, it is extremely effective to obtain good quantum efficiency and response speed as described above.

【0007】又、上記請求項4記載の構成を備えること
により、請求項1又は2記載の受光素子において、前記
高抵抗のIny Alx Ga1-x-y N単結晶膜が、0≦y
<0.5、且つ、0≦x≦0.6となるように構成され
る。このような範囲の組成比を有するように上記高抵抗
のIny Alx Ga1-x-yN単結晶膜を作製すること
で、可視光の領域では感度を有さず紫外線領域に感度を
有する受光素子の作製が可能となるが、このような波長
領域は可視光領域から外れた特殊な波長であり、検出対
象となる光は一般的に微弱なものとなる場合が多い。こ
のような場合に、上記のように良好な量子効率及び応答
速度を得ることが極めて有効となる。
[0007] Further, by providing the configuration of the fourth aspect, in the light receiving element according to claim 1 or 2, wherein, In y Al x Ga 1- xy N single crystal film of the high resistance, 0 ≦ y
<0.5 and 0 ≦ x ≦ 0.6. By producing the high-resistance In y Al x Ga 1 -xy N single crystal film so as to have a composition ratio in such a range, the light receiving material having no sensitivity in the visible light region and having sensitivity in the ultraviolet region. Although an element can be manufactured, such a wavelength region is a special wavelength out of the visible light region, and the light to be detected is generally weak in many cases. In such a case, it is extremely effective to obtain good quantum efficiency and response speed as described above.

【0008】又、上記請求項5記載の構成を備えること
により、請求項1〜4のいずれか1項に記載の受光素子
において、前記第1導電型の半導体層及び前記第2導電
型の半導体層の夫々がキャリア濃度の異なる複数の層に
て構成され、それら複数の層は、前記高抵抗のIny
x Ga1-x-y N単結晶膜に近い層ほどキャリア濃度が
低いものとなるように構成されている。このように構成
することで、高抵抗のIny Alx Ga1-x-y N単結晶
膜に対して、隣接する層からキャリアが流れ込むのを抑
制して、高抵抗層における空乏層の広がりを確実なもの
とできる。
The light-receiving device according to any one of claims 1 to 4, wherein the semiconductor layer of the first conductivity type and the semiconductor of the second conductivity type are provided. Each of the layers is composed of a plurality of layers having different carrier concentrations, and the plurality of layers are composed of the high-resistance In y A
The structure is such that a layer closer to the l x Ga 1-xy N single crystal film has a lower carrier concentration. With this configuration, it is possible to suppress the flow of carriers from an adjacent layer into the high-resistance InyAlxGa1-xyN single-crystal film, thereby ensuring that the depletion layer spreads in the high-resistance layer. it can.

【0009】又、上記請求項6記載の構成を備えること
により、請求項1〜5のいずれか1項に記載の受光素子
において、前記第1導電型の半導体層、前記高抵抗のI
yAlx Ga1-x-y N単結晶膜及び前記第2導電型の
半導体層が、単結晶基板上に積層したAlN緩衝層の上
に成膜されて受光素子が構成される。すなわち、受光部
を構成する上記各層は、単結晶基板の上に成膜されるの
であるが、単結晶基板の上に直接形成されるのではな
く、単結晶基板の上に積層したAlN緩衝層の上に成膜
される。このようにAlN緩衝層を介して受光部を構成
する各層を積層することで、基板側との格子定数のミス
マッチを緩和して、成長面の平坦なAIN緩衝層の上に
上記各層を積層することができる。
In the light receiving device according to any one of claims 1 to 5, the semiconductor device according to any one of claims 1 to 5, wherein the first conductive type semiconductor layer and the high resistance I
An n y Al x Ga 1 -xy N single crystal film and the semiconductor layer of the second conductivity type are formed on an AlN buffer layer laminated on a single crystal substrate to form a light receiving element. That is, the above-mentioned layers constituting the light receiving section are formed on the single crystal substrate, but are not formed directly on the single crystal substrate, but are formed on the AlN buffer layer laminated on the single crystal substrate. Is formed on the substrate. By stacking the layers constituting the light receiving section via the AlN buffer layer in this way, the mismatch of the lattice constant with the substrate side is reduced, and the above layers are stacked on the AIN buffer layer having a flat growth surface. be able to.

【0010】又、上記請求項7記載の構成を備えること
により、請求項3又は4記載の受光素子を用いて火炎セ
ンサが構成される。すなわち、上記のように可視光の領
域では感度を有さず紫外線領域に感度を有する受光素子
にて火炎センサを構成できる。火炎の存在を検出するに
ついては、火炎から発する光を検出することによってそ
の存否を検出できるが、この場合、火炎以外の光源から
の光を検出してしまうと火炎の存否を誤検出してしまう
ことになる。このような誤検出の原因となる光としては
一般的に太陽光と蛍光灯とが考えられる。ここで、図5
に示すように、検出対象とする火炎のスペクトルと、太
陽光及び蛍光灯(図5においては「室内光」として示
す)のスペクトルとを比較すると、300nm近傍以下
では、火炎のスペクトルがある程度の強度があるのに対
し、太陽光及び蛍光灯は十分に小さい相対強度となって
いる。
In addition, by providing the configuration according to the seventh aspect, a flame sensor is configured using the light receiving element according to the third or fourth aspect. That is, as described above, the flame sensor can be constituted by a light receiving element having no sensitivity in the visible light region and having sensitivity in the ultraviolet region. Regarding the detection of the presence of a flame, the presence or absence of the flame can be detected by detecting the light emitted from the flame, but in this case, if the light from a light source other than the flame is detected, the presence or absence of the flame is erroneously detected. Will be. In general, sunlight and fluorescent lamps can be considered as light that causes such erroneous detection. Here, FIG.
As shown in Fig. 5, when the spectrum of the flame to be detected is compared with the spectra of sunlight and a fluorescent lamp (shown as "indoor light" in Fig. 5), the spectrum of the flame has a certain intensity below 300nm. In contrast, sunlight and fluorescent lamps have a sufficiently small relative intensity.

【0011】従って、可視光の領域では感度を有さず紫
外線領域に感度を有する受光素子を用いて火炎センサを
構成することで、太陽光や蛍光灯等の外乱光を除外して
火炎の存否を検出できるものとなる。この場合、蛍光灯
の影響を主に考えるべき室内では、300nm以下とす
ることが好ましく、太陽光を考えるべき室外を対象とす
る場合は、280nm以下とすることが好ましい。しか
も、測定対象の火炎による熱の影響で火炎センサが温度
上昇すると、一般的に暗電流が増大するのであるが、上
述のようにPIN型受光素子の構成が可能となること
で、暗電流の増大による検出能力の悪化を可及的に抑制
できる。
Therefore, by configuring the flame sensor using a light receiving element having no sensitivity in the visible light region and having a sensitivity in the ultraviolet region, the presence or absence of a flame can be eliminated by excluding disturbance light such as sunlight and fluorescent lights. Can be detected. In this case, the thickness is preferably 300 nm or less in a room where the influence of a fluorescent lamp is mainly considered, and is preferably 280 nm or less in an outdoor where sunlight is considered. Moreover, when the temperature of the flame sensor rises due to the heat of the flame to be measured, the dark current generally increases. However, as described above, the PIN-type light receiving element can be configured to reduce the dark current. Deterioration of detection capability due to an increase can be suppressed as much as possible.

【0012】又、上記請求項8記載の構成を備えること
により、単結晶基板の上に、第1導電型の半導体層、高
抵抗のIny Alx Ga1-x-y N単結晶膜、及び、前記
第1導電型の半導体層とは導電型の異なる第2導電型の
半導体層を順次積層した受光素子の製造方法において、
前記高抵抗のIny Alx Ga1-x-y N単結晶膜を、V
族元素の III族元素に対する材料供給比率を5000以
上としてMOCVD法にて成膜する。このように成膜す
ることで、Iny Alx Ga1-x-y N単結晶膜のキャリ
ア濃度を1×1015cm-3程度か、あるいは、それ以下
に低減できることを実験的に確認できた。これによっ
て、良好な量子効率及び応答速度を有するInAlGa
N系の受光素子を提供できるに至った。
Further, by providing the structure of claim 8, a semiconductor layer of the first conductivity type, a high-resistance In y Al x Ga 1-xy N single crystal film, and In the method for manufacturing a light-receiving element, a semiconductor layer of a second conductivity type different from the first conductivity type is sequentially stacked.
The high-resistance In y Al x Ga 1-xy N single crystal film is
The film is formed by MOCVD with the material supply ratio of the group III element to the group III element being 5000 or more. It has been experimentally confirmed that the carrier concentration of the In y Al x Ga 1 -xyN single crystal film can be reduced to about 1 × 10 15 cm −3 or less by forming the film in this manner. Thereby, InAlGa having good quantum efficiency and response speed is obtained.
An N-type light receiving element can be provided.

【0013】[0013]

【発明の実施の形態】以下、本発明の受光素子の実施の
形態を図面に基づいて説明する。受光素子PSは、図1
に示すように、単結晶基板であるサファイヤ基板1上に
AlN緩衝層2、n+ Iny Alx Ga1-x-y N単結晶
膜3、n- Iny AlxGa1-x-y N単結晶膜4、高抵
抗のIny Alx Ga1-x-y N単結晶膜5、p-Iny
Alx Ga1-x-y N単結晶膜6、p+ Iny Alx Ga
1-x-y N単結晶膜7を積層し、n+ Iny Alx Ga
1-x-y N単結晶膜3上とp+ Iny Alx Ga1-x-y
単結晶膜7上とに一対の電極8a,8bが形成され、更
に、上記各層の周部に高抵抗領域HRが形成されて構成
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the light receiving element of the present invention will be described below with reference to the drawings. The light receiving element PS is shown in FIG.
As shown in, AlN buffer layer 2 on the sapphire substrate 1 is a single crystal substrate, n + In y Al x Ga 1-xy N single crystal film 3, n - In y Al x Ga 1-xy N single crystal film 4, high-resistance In y Al x Ga 1-xy N single crystal film 5, p - In y
Al x Ga 1-xy N single crystal film 6, p + In y Al x Ga
A 1-xy N single crystal film 7 is laminated, and n + In y Al x Ga
On the 1-xy N single crystal film 3 and p + In y Al x Ga 1-xy N
A pair of electrodes 8a and 8b are formed on the single crystal film 7, and a high resistance region HR is formed on the periphery of each layer.

【0014】すなわち、第1導電型の半導体層FLとし
てのn+ Iny Alx Ga1-x-y N単結晶膜3及びn-
Iny Alx Ga1-x-y N単結晶膜4と、第2導電型の
半導体層SLとしてのp- Iny Alx Ga1-x-y N単
結晶膜6及びp+ Iny Al x Ga1-x-y N単結晶膜7
との間に、高抵抗のIny Alx Ga1-x-y N単結晶膜
5を形成して受光部PRが構成され、第1導電型の半導
体層FLと第2導電型の半導体層SLとの間に通電され
るように一対の電極8a,8bが形成されている。又、
導電型の表記からも明らかなように、第1導電型の半導
体層FL及び第2導電型の半導体層SLの何れにおいて
も、キャリア濃度の異なる2層にて構成され、高抵抗の
Iny Alx Ga1-x-y N単結晶膜5に近い層ほどキャ
リア濃度が低いものとなるように構成されている。この
ような素子構成においては、受光部PRを構成する各層
のうち、主に高抵抗のIny Alx Ga1-x-y N単結晶
膜5が入射光による電子正孔対の発生に寄与する。尚、
受光素子PSは、いわゆるPIN型受光素子として構成
される場合と、いわゆるAPDとして構成される場合と
があるが、素子の構成として両者で異なるのは、上記の
高抵抗のIny Alx Ga1-x-y N単結晶膜5の層厚の
みである。
That is, the first conductivity type semiconductor layer FL is formed.
N+InyAlxGa1-xyN single crystal film 3 and n-
InyAlxGa1-xyN single crystal film 4 and second conductivity type
P as the semiconductor layer SL-InyAlxGa1-xyN only
Crystal film 6 and p+InyAl xGa1-xyN single crystal film 7
Between the high resistance InyAlxGa1-xyN single crystal film
5 to form a light receiving portion PR, and a semiconductor of the first conductivity type.
Electric current is applied between the body layer FL and the semiconductor layer SL of the second conductivity type.
A pair of electrodes 8a and 8b are formed as described above. or,
As is clear from the notation of the conductivity type, the semiconductor of the first conductivity type is used.
In either the body layer FL or the semiconductor layer SL of the second conductivity type
Is also composed of two layers with different carrier concentrations,
InyAlxGa1-xyThe layer closer to the N single crystal film 5 has
The rear concentration is configured to be low. this
In such an element configuration, each layer constituting the light receiving portion PR
Among them, mainly high-resistance InyAlxGa1-xyN single crystal
The film 5 contributes to generation of electron-hole pairs due to incident light. still,
The light receiving element PS is configured as a so-called PIN type light receiving element
And when it is configured as a so-called APD
However, the difference between the two in terms of element configuration is
High resistance InyAlxGa1-xyOf the thickness of the N single crystal film 5
It is only.

【0015】上記構成の受光部PRによる分光感度は、
受光部PRを構成するIny AlxGa1-x-y N単結晶
の III族元素の組成比によって規定される。具体的に
は、図2に示すInを含まないAlx Ga1-x Nのバン
ドギャップとAl混晶比xとの関係のように、Al混晶
比が大きくなるほどバンドギャップが広くなって光吸収
端が短波長側に移動する。Alx Ga1-x NのAlの一
部がInに置き代わる関係となるIny Alx Ga
1-x-y Nの場合では、Inが、Al又はGaに置き変わ
る割合が大きくなるにつれてバンドギャップが狭くなり
光吸収端が長波長側に移動する。本発明では、受光素子
PSを火炎センサとして用いるものとしており、上述の
ように、図5に「ガスの火炎の光」として示すガスの炎
から発する光のスペクトルを、同様に図5に示す雑音光
として作用する太陽光や室内光(蛍光灯の光)の影響を
除外した状態で検出できるのが望ましい。
The spectral sensitivity of the light receiving unit PR having the above configuration is as follows.
It is defined by the composition ratio of the group III element of the In y Al x Ga 1-xy N single crystal constituting the light receiving portion PR. Specifically, as shown in FIG. 2, the band gap becomes wider as the Al mixed crystal ratio becomes larger, as in the relationship between the band gap of Al x Ga 1 -xN not containing In and the Al mixed crystal ratio x shown in FIG. The absorption edge moves to the shorter wavelength side. In y Al x Ga in which a part of Al of Al x Ga 1-x N replaces In
In the case of 1-xy N, the band gap becomes narrower and the light absorption edge moves to the longer wavelength side as the ratio of replacing In with Al or Ga increases. In the present invention, the light receiving element PS is used as a flame sensor. As described above, the spectrum of light emitted from the gas flame shown as “gas flame light” in FIG. It is desirable that detection can be performed in a state excluding the influence of sunlight acting as light or indoor light (light of a fluorescent lamp).

【0016】このため、吸収スペクトルの長波長端が3
00nm近傍以下となるようにするのが好適である。具
体的には、y=0としてInを含まないAlx Ga1-x
Nの場合では、Al混晶比を0.33乃至0.35の範
囲で選択すれば、バンドギャップが概ね4.5eVとな
り、吸収スペクトルの長波長端はおよそ275nmとな
る。y>0としてInを成分に含める場合は、それに応
じてAl混晶比xを大きくし、ガリウムの割合を減じる
ことで、上記のバンドギャップとすることができる。但
し、y≧0.5の範囲では、Alの割合を最大にしても
吸収スペクトルの長波長端が長波長側へ移動し過ぎるも
のとなり、現実には、0≦y<0.5の範囲が望まし
い。又、Al混晶比xを大とし過ぎると、図5に示す
「ガスの火炎の光」に対する感度も低下し、火炎センサ
としての利用が困難となるので、0≦x≦0.6の範囲
とするのが望ましい。尚、太陽光が完全に遮光された室
内で使用されることが前提であれば、バンドギャップが
概ね4.3eVとなるようにして、吸収端を若干長波長
側へ移動させてもほぼ同等の性能が得られる。
Therefore, the long wavelength end of the absorption spectrum is 3
It is preferable that the thickness be around 00 nm or less. Specifically, Al x Ga 1 -x containing no In with y = 0
In the case of N, if the Al mixed crystal ratio is selected in the range of 0.33 to 0.35, the band gap is approximately 4.5 eV, and the long wavelength end of the absorption spectrum is approximately 275 nm. When In is included in the component with y> 0, the above band gap can be obtained by increasing the Al mixed crystal ratio x and reducing the gallium ratio accordingly. However, in the range of y ≧ 0.5, even if the ratio of Al is maximized, the long wavelength end of the absorption spectrum moves too much to the long wavelength side, and in reality, the range of 0 ≦ y <0.5 is satisfied. desirable. On the other hand, if the Al mixed crystal ratio x is too large, the sensitivity to “gas flame light” shown in FIG. 5 also decreases, making it difficult to use as a flame sensor. It is desirable that In addition, if it is assumed that the device is used in a room where sunlight is completely shielded, the band gap is set to approximately 4.3 eV, and even if the absorption edge is slightly moved to the longer wavelength side, almost the same value is obtained. Performance is obtained.

【0017】次に、上記構成の受光素子PSの製造方法
について説明する。受光素子PSを構成する各層は、ウ
ェハ状態のサファイヤ基板1上に、MOCVD装置にて
積層される。MOCVD装置は、反応室(成膜室)が常
圧付近となる常圧型のものを使用する。上記各層の積層
は、ウェハ状態のサファイヤ基板1を反応室(成膜室)
にセットした状態で、サファイヤ基板1を加熱し、各構
成元素の材料ガスの供給状態を順次切換えることによ
り、順次積層される。尚、サファイヤ基板1の基板温度
は、AIN緩衝層2の成長時は400℃〜600℃と
し、AIN緩衝層2上への上記各層の成長時は900℃
〜1100℃(最も好ましくは1050℃)とする。材
料ガスとしては、In,Al,Ga及びNの各構成元素
は、夫々、TMIn(トリメチルインジウム),TMA
l(トリメチルアルミニウム),TMGa(トリメチル
ガリウム)及びNH3 (アンモニア)として供給され、
又、n型不純物としてSi,p型不純物としてMgが、
夫々、SiH4 (シラン),CP2 Mg(シクロペンタ
ンマグネシウム)として適宜供給される。尚、不純物と
してCaを用いる場合は、いわゆるイオンインプランテ
ーションを用いる。
Next, a method for manufacturing the light receiving element PS having the above configuration will be described. Each layer constituting the light receiving element PS is stacked on the sapphire substrate 1 in a wafer state by an MOCVD apparatus. As the MOCVD apparatus, a normal pressure type reactor in which a reaction chamber (film formation chamber) is near normal pressure is used. The lamination of each of the above-mentioned layers is performed by putting the sapphire substrate 1 in a wafer state into a reaction chamber (film formation chamber).
In this state, the sapphire substrate 1 is heated, and the supply states of the material gases of the respective constituent elements are sequentially switched, whereby the layers are sequentially laminated. The substrate temperature of the sapphire substrate 1 is 400 ° C. to 600 ° C. during the growth of the AIN buffer layer 2, and 900 ° C. during the growth of the above layers on the AIN buffer layer 2.
11100 ° C. (most preferably 1050 ° C.). As the material gas, the constituent elements of In, Al, Ga and N are TMIn (trimethylindium) and TMA, respectively.
1 (trimethylaluminum), TMGa (trimethylgallium) and NH 3 (ammonia),
Further, Si is used as an n-type impurity, and Mg is used as a p-type impurity.
They are appropriately supplied as SiH 4 (silane) and CP 2 Mg (cyclopentane magnesium), respectively. When Ca is used as an impurity, so-called ion implantation is used.

【0018】上記各層の積層において、AlN緩衝層2
は約200Åの層厚に成長させ、n + Iny Alx Ga
1-x-y N単結晶膜3はSiH4 ガスを流しながらキャリ
ア濃度が約1×1018cm-3で約3μmの層厚に成長さ
せ、n- Iny Alx Ga1- x-y N単結晶膜4はSiH
4 ガスを流しながらキャリア濃度が約1×1017cm -3
で約0.1μmの層厚に成長させる。これらの層の積
層における他の成膜条件は公知の方法と同様である。
尚、n+ Iny Alx Ga1-x-y N単結晶膜3の層厚は
2μm以上とすることが望ましく、本実施形態では上述
の如く3μmとしている。
In the lamination of the above layers, the AlN buffer layer 2
Grows to a layer thickness of about 200 ° and n +InyAlxGa
1-xyThe N single crystal film 3 is made of SiHFourCarry while flowing gas
A concentration is about 1 × 1018cm-3Grown to a layer thickness of about 3μm
Let n-InyAlxGa1- xyThe N single crystal film 4 is made of SiH
FourCarrier concentration is about 1 × 10 while flowing gas17cm -3
 To grow to a layer thickness of about 0.1 μm. The product of these layers
Other film forming conditions for the layer are the same as in a known method.
Note that n+InyAlxGa1-xyThe layer thickness of the N single crystal film 3 is
Preferably, the thickness is 2 μm or more.
3 μm as shown in FIG.

【0019】上記高抵抗のIny Alx Ga1-x-y N単
結晶膜5を積層する際においては、TMIn,TMA
l,TMGa及びNH3 の材料供給量を、夫々、a(m
ol/sec),b(mol/sec),c(mol/
sec)及びX(mol/sec)とすると、V族元素
の III族元素に対する材料供給比率、すなわち、X/
(a+b+c)が、5000以上となるように設定して
成膜する。このような条件で成膜することにより、In
y Alx Ga1-x-y N単結晶膜5は、キャリア濃度が1
×1015cm-3以下の高抵抗の単結晶膜が得られ、具体
例としては、x=0,y=0としてGaN単結晶膜を成
膜した場合には、5×10 13cm-3以下のキャリア濃度
のものが得られる。尚、高抵抗のIny Alx Ga
1-x-y N単結晶膜5を成膜する場合にも、必要に応じ
て、不純物としてSi,Mg又はCaを用いてキャリア
濃度を調整しても良い。尚、常圧型のMOCVD装置に
よって、上記の成膜条件として成膜することで極めて良
好な特性のものが得られるのであるが、必ずしも常圧型
に限られず、いわゆる減圧型のMOCVD装置を用いて
も良い。減圧型のMOCVD装置において、Iny Al
x Ga1-x-y N単結晶膜5の成膜時の圧力を1/3〜1
/2気圧程度とすると、V族元素のIII 族元素に対する
材料供給比率を上述のように高い値に容易に設定でき
る。
The high resistance InyAlxGa1-xyN only
When the crystal film 5 is laminated, TMIn, TMA
1, TMGa and NHThreeThe material supply amount of each is a (m
ol / sec), b (mol / sec), c (mol / sec)
sec) and X (mol / sec), group V elements
Of the material supply to the group III element, ie, X /
(A + b + c) is set to be 5000 or more
Form a film. By forming a film under such conditions, In
yAlxGa1-xyThe N single crystal film 5 has a carrier concentration of 1
× 10Fifteencm-3The following high-resistance single crystal film was obtained,
As an example, a GaN single crystal film is formed with x = 0 and y = 0.
5 × 10 13cm-3The following carrier concentration
Is obtained. In addition, high resistance InyAlxGa
1-xyWhen forming the N single crystal film 5 as necessary,
Using Si, Mg or Ca as impurities
The density may be adjusted. In addition, the atmospheric pressure type MOCVD equipment
Therefore, it is extremely good to form the film under the above film forming conditions.
Good characteristics can be obtained, but it is not necessarily normal pressure type
Not limited to the above, using a so-called reduced pressure type MOCVD apparatus
Is also good. In a reduced pressure type MOCVD apparatus, InyAl
xGa1-xyThe pressure at the time of forming the N single crystal film 5 is 1/3 to 1
/ 2 atm, group V element with respect to group III element
The material supply ratio can be easily set to a high value as described above.
You.

【0020】高抵抗のIny Alx Ga1-x-y N単結晶
膜5の層厚は、受光素子PSをPIN型受光素子とする
場合は0.1μm、受光素子PSをAPDとする場合は
0.5μmとする。APDの場合に層厚を厚くしている
のは、APDに高電圧を印加したときに、膜内の電界強
度が過度に大きくならないようにするためである。但
し、高抵抗のIny Alx Ga1-x-y N単結晶膜5の層
厚を厚くし過ぎると、応答速度が低下するので留意する
必要があるが、0.5μm程度では実用上十分な応答速
度が得られる。
The thickness of the high-resistance In y Al x Ga 1 -xy N single crystal film 5 is 0.1 μm when the light receiving element PS is a PIN type light receiving element and 0 when the light receiving element PS is an APD. 0.5 μm. The reason why the layer thickness is increased in the case of the APD is to prevent the electric field intensity in the film from being excessively increased when a high voltage is applied to the APD. However, if the layer thickness of the high-resistance In y Al x Ga 1-xy N single crystal film 5 is too large, it is necessary to keep in mind that the response speed is reduced. Speed is obtained.

【0021】高抵抗のIny Alx Ga1-x-y N単結晶
膜5の成膜後に、p- Iny AlxGa1-x-y N単結晶
膜6はCP2 Mgを流しながらキャリア濃度が約1×1
17cm-3で約0.1μmの層厚に成長させ、p+ In
y Alx Ga1-x-y N単結晶膜7はCP2 Mgを流しな
がらキャリア濃度が約1×1018cm-3で約0.3μm
の層厚に成長させる。上記各層の積層を終了した後、7
00℃で10分間加熱して活性化処理を行い、更に、上
述の高抵抗領域HRを形成するために高抵抗化処理を行
う。この高抵抗化処理は、水素イオンを利用したイオン
インプランテーションにより行い、ウェハーの厚さ方向
視の図面である図3において斜線で示す領域IPに、ウ
ェハーの厚さ方向に水素イオンを打ち込む。打ち込む深
さは、図1に示すように、n- Iny Alx Ga1-x-y
N単結晶膜4に達する深さとしている。
After the formation of the high resistance In y Al x Ga 1 -xy N single crystal film 5, the p - In y Al x Ga 1 -xy N single crystal film 6 has a carrier concentration of about 2 while flowing CP 2 Mg. 1x1
It is grown to a layer thickness of about 0.1 μm at 0 17 cm −3 and p + In
The yAl x Ga 1-xy N single crystal film 7 has a carrier concentration of about 0.3 × 10 18 cm -3 and about 0.3 μm while flowing CP 2 Mg.
To a layer thickness of After stacking the above layers, 7
The activation treatment is performed by heating at 00 ° C. for 10 minutes, and further, the high resistance treatment is performed to form the above-described high resistance region HR. This resistance increasing process is performed by ion implantation using hydrogen ions, and hydrogen ions are implanted in a region IP shown by oblique lines in a thickness direction of the wafer in a thickness direction of the wafer in FIG. Depth implanted, as shown in FIG. 1, n - In y Al x Ga 1-xy
The depth reaches the N single crystal film 4.

【0022】この後、図4に示すように、水素イオンを
打ち込んだ部分をn+ Iny AlxGa1-x-y N単結晶
膜3が露出する深さまで帯状にフォトエッチング処理を
行い、その帯状にエッチングした部分に個々の受光素子
PSに対応する状態で電極8bを形成すると共に、水素
イオンを打ち込んでいない部分に電極8aを形成する。
尚、図4において破線BLは、水素イオンを打ち込んだ
領域と打ち込んでいない領域の境界を示している。電極
8aはNiとAuの2層構成で、p+ Iny Alx Ga
1-x-y N単結晶膜7側をNiとし、一方、電極8bはT
iとAlの2層構成で、n+ Iny AlxGa1-x-y
単結晶膜3側をTiとして、夫々例えば電子ビーム蒸着
や各種のスパッタ蒸着により積層した後、リフトオフ法
や化学的エッチング等により、電極8aをメッシュ状に
形成し、電極8bを矩形形状に形成する。電極8a,8
bの形成後、図4において二点鎖線CLにて示す素子分
離線に沿って個々の素子に素子分離する。尚、必要に応
じて電極8a,8bの形成後に加熱処理を行っても良
い。
[0022] Thereafter, as shown in FIG. 4, performs a photo-etching process to strip the implanted's partial hydrogen ions to n + In y Al x Ga 1 -xy N single crystal film 3 depth is exposed, the strip An electrode 8b is formed in a portion corresponding to each light receiving element PS in a portion etched in the same manner, and an electrode 8a is formed in a portion where hydrogen ions are not implanted.
In FIG. 4, a broken line BL indicates a boundary between a region where hydrogen ions are implanted and a region where hydrogen ions are not implanted. The electrode 8a has a two-layer structure of Ni and Au, and has p + In y Al x Ga
The 1-xy N single crystal film 7 side is Ni, while the electrode 8b is T
a two-layer structure of the i and Al, n + In y Al x Ga 1-xy N
After the single crystal film 3 side is made of Ti and stacked by, for example, electron beam evaporation or various types of sputter evaporation, the electrode 8a is formed in a mesh shape by a lift-off method or chemical etching, and the electrode 8b is formed in a rectangular shape. . Electrodes 8a, 8
After the formation of b, the elements are separated into individual elements along the element separation lines indicated by two-dot chain lines CL in FIG. Note that a heat treatment may be performed after the formation of the electrodes 8a and 8b as needed.

【0023】以上のようにして作製された受光素子PS
は、PIN型受光素子として構成した場合は、1μW/
cm2 の光をON/OFFして照射したときに、10%
から90%までの立ち上がり時間及び90%から10%
までの立ち下がり時間が1msec以下、量子効率が約
63%のものが得られた。ちなみに、上述の高抵抗のI
y Alx Ga1-x-y N単結晶膜5を備えないPN型受
光素子では、立ち上がり時間及び立ち下がり時間が約4
msec程度、量子効率が約55%程度であり、応答速
度及び量子効率の何れも向上している。又、受光素子P
SをAPDとして構成した場合は、応答速度は上記のP
IN型受光素子の場合と同様であり、1μW/cm2
光を照射したときに、受光面積を1mm2 に換算して、
1nA以上の光電流が得られた。ちなみに、PN型受光
素子では同条件で100pA程度の光電流が得られるに
止まる。
Light receiving element PS manufactured as described above
Is 1 μW /
10% when irradiated with ON / OFF light of cm 2
Rise time from 90% to 90% and 90% to 10%
A fall time of 1 msec or less and a quantum efficiency of about 63% were obtained. Incidentally, the high resistance I
In the PN type light receiving element without the n y Al x Ga 1-xy N single crystal film 5, the rise time and the fall time are about 4 times.
The msec and the quantum efficiency are about 55%, and both the response speed and the quantum efficiency are improved. Also, the light receiving element P
When S is configured as an APD, the response speed is P
This is the same as the case of the IN-type light receiving element. When light of 1 μW / cm 2 is irradiated, the light receiving area is converted into 1 mm 2 ,
A photocurrent of 1 nA or more was obtained. Incidentally, in the PN type light receiving element, a photocurrent of about 100 pA can be obtained under the same conditions.

【0024】〔別実施形態〕以下、別実施形態を列記す
る。 上記実施の形態では、電極8aをメッシュ状に形成
しているが、図6に示すように、リング状に形成しても
良い。尚、図6においては、電極8aの形状以外は全て
上記実施の形態と同様である。 上記実施の形態では、被検出光はメッシュ状の電極
8aの開口部分を通過してp+ Iny Alx Ga1-x-y
N単結晶膜7に入射する構成としているが、p+Iny
Alx Ga1-x-y N単結晶膜7の上に実効的に1/4波
長に相当する層厚のAlN反射防止膜を形成しても良
い。このように反射防止膜の材質をバンドギャップの広
いAlNとすることで、反射防止膜での被検出光の吸収
を抑制できるとともに、MOCVDによる一回の成長プ
ロセスで反射防止膜まで含めて形成することが可能とな
る。
[Other Embodiments] Hereinafter, other embodiments will be listed. In the above embodiment, the electrode 8a is formed in a mesh shape, but may be formed in a ring shape as shown in FIG. Note that, in FIG. 6, all of the configuration other than the shape of the electrode 8a is the same as in the above embodiment. In the above embodiment, the light to be detected is p + In y Al x Ga 1 -xy through the opening portions of the mesh-like electrode 8a
Although it is configured to be incident on the N single crystal film 7, p + In y
On the Al x Ga 1-xy N single crystal film 7, an AlN anti-reflection film having a thickness equivalent to a quarter wavelength may be formed. Since the material of the antireflection film is made of AlN having a wide band gap, the absorption of the light to be detected by the antireflection film can be suppressed, and the antireflection film is formed to include the antireflection film in a single growth process by MOCVD. It becomes possible.

【0025】 上記実施の形態では、単結晶基板1上
にAlN緩衝層2を積層しているが、このAlN緩衝層
2の代わりに、AlGaNを緩衝層として用いても良
い。このようにAlGaNを緩衝層として用いても、基
板側との格子定数のミスマッチを緩和することができ
る。この場合、n+ Iny Alx Ga1-x-y N単結晶膜
3、n- Iny Alx Ga1-x-y N単結晶膜4、高抵抗
のIny Alx Ga1- x-y N単結晶膜5、p- Iny
x Ga1-x-y N単結晶膜6、p+ Iny Al x Ga
1-x-y N単結晶膜7のAl混晶比と、AlGaN緩衝層
のAl混晶比との差を0.1以下とすることで、高抵抗
のIny Alx Ga1-x-y N単結晶膜5等の結晶性を良
好なものとできる。
In the above embodiment, the single crystal substrate 1
The AlN buffer layer 2 is laminated on the
AlGaN may be used as the buffer layer instead of 2
No. Even when AlGaN is used as the buffer layer,
The lattice constant mismatch with the plate side can be reduced.
You. In this case, n+InyAlxGa1-xyN single crystal film
3, n-InyAlxGa1-xyN single crystal film 4, high resistance
InyAlxGa1- xyN single crystal film 5, p-InyA
lxGa1-xyN single crystal film 6, p+InyAl xGa
1-xyAl mixed crystal ratio of N single crystal film 7 and AlGaN buffer layer
By setting the difference from the Al mixed crystal ratio to 0.1 or less, high resistance
InyAlxGa1-xyGood crystallinity of N single crystal film 5 etc.
You can do something good.

【0026】 上記実施の形態では、単結晶基板1と
してサファイヤ基板を用いているが、例えば、サファイ
ヤ基板の代わりにSiC単結晶基板を用いても良い。 上記実施の形態では、第1導電型の半導体層FL及
び第2導電型の半導体層SLの夫々をキャリア濃度が異
なる2層構成としているが、夫々単層にて構成しても良
い。すなわち、上記実施の形態において、n- Iny
x Ga1-x-y N単結晶膜4及びp- Iny Alx Ga
1-x-y N単結晶膜6を省略しても良い。又、逆に、3層
以上にて構成して、高抵抗のIny Alx Ga1-x-y
単結晶膜5の近い層ほどキャリア濃度が低くなるように
構成しても良い。 上記実施の形態では、第1導電型をn型、第2導電
型をp型として説明しているが、これは説明の便宜のた
めに対応付けており、第1導電型をp型、第2導電型を
n型として説明することもできる。又、上記実施の形態
では、単結晶基板1に近い側にn型の半導体層を配置し
てPIN型に構成しているが、単結晶基板1に近い側に
p型の半導体層を配置してPIN型に構成しても良い。 上記実施の形態では、高抵抗のIny Alx Ga
1-x-y N単結晶膜5の成膜のための装置としてMOCV
D装置を例示しているが、例えばいわゆるMBE装置に
て成膜しても良い。この場合も、V族元素のIII 族元素
に対する材料供給比率を上記実施の形態の場合と同様に
高くすることによって、キャリア濃度が1×1015cm
-3以下の高い抵抗のIny Alx Ga1-x-y N単結晶膜
5を得ることができる。
In the above embodiment, a sapphire substrate is used as the single crystal substrate 1, but, for example, a SiC single crystal substrate may be used instead of the sapphire substrate. In the above-described embodiment, each of the first conductivity type semiconductor layer FL and the second conductivity type semiconductor layer SL has a two-layer configuration with different carrier concentrations, but may each have a single layer configuration. That is, in the above embodiment, n In y A
l x Ga 1-xy N single crystal film 4 and p - In y Al x Ga
The 1-xy N single crystal film 6 may be omitted. Further, on the contrary, it constituted by three or more layers, of high resistance In y Al x Ga 1-xy N
It may be configured such that a layer closer to the single crystal film 5 has a lower carrier concentration. In the above embodiment, the first conductivity type is described as n-type, and the second conductivity type is described as p-type. However, this is associated for convenience of description, and the first conductivity type is p-type, The two conductivity types can be described as n-type. Further, in the above-described embodiment, an n-type semiconductor layer is arranged on the side closer to the single crystal substrate 1 to form a PIN type. However, a p-type semiconductor layer is arranged on the side closer to the single crystal substrate 1. May be configured as a PIN type. In the above embodiment, the high-resistance In y Al x Ga
MOCV as an apparatus for forming 1-xy N single crystal film 5
Although the D apparatus is illustrated, the film may be formed by, for example, a so-called MBE apparatus. Also in this case, the carrier concentration is set to 1 × 10 15 cm by increasing the material supply ratio of the group V element to the group III element as in the above embodiment.
An In y Al x Ga 1-xy N single crystal film 5 having a high resistance of −3 or less can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる受光素子の断面図FIG. 1 is a sectional view of a light receiving element according to an embodiment of the present invention.

【図2】本発明の実施の形態にかかる組成比とバンドギ
ャップとの関係を示す図
FIG. 2 is a diagram showing a relationship between a composition ratio and a band gap according to an embodiment of the present invention.

【図3】本発明の実施の形態にかかる受光素子の製造工
程の一部を概略的に示す平面図
FIG. 3 is a plan view schematically showing a part of the manufacturing process of the light receiving element according to the embodiment of the present invention.

【図4】本発明の実施の形態にかかる受光素子の製造工
程の一部を概略的に示す平面図
FIG. 4 is a plan view schematically showing a part of the manufacturing process of the light receiving element according to the embodiment of the present invention.

【図5】ガス光等の分光スペクトルを示す図FIG. 5 is a diagram showing a spectrum of gas light and the like.

【図6】本発明の別実施形態にかかる受光素子の製造工
程の一部を概略的に示す平面図
FIG. 6 is a plan view schematically showing a part of a manufacturing process of a light receiving element according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 AlN緩衝層 5 高抵抗のIny Alx Ga1-x-y N単結晶
膜 8a,8b 一対の電極 FL 第1導電型の半導体層 PR 受光部 SL 第2導電型の半導体層
1 single crystal substrate 2 of AlN buffer layer 5 high resistance In y Al x Ga 1-xy N single crystal film 8a, a semiconductor layer of 8b pair of electrodes FL first conductivity type PR receiving portion SL second conductivity type semiconductor layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体層と、その半導体層
とは導電型の異なる第2導電型の半導体層との間に、キ
ャリア濃度が1×1015cm-3以下の高抵抗のIny
x Ga1-x-y N単結晶膜(x≧0,y≧0)を形成し
て受光部が構成され、 前記第1導電型の半導体層と前記第2導電型の半導体層
との間に通電されるように一対の電極が形成されて構成
されている受光素子。
1. A high-resistance semiconductor layer having a carrier concentration of 1 × 10 15 cm −3 or less between a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type having a different conductivity type from the semiconductor layer. In y A
A light receiving portion is formed by forming an l x Ga 1-xy N single crystal film (x ≧ 0, y ≧ 0), and between the first conductive type semiconductor layer and the second conductive type semiconductor layer. A light receiving element having a pair of electrodes formed so as to be energized.
【請求項2】 前記高抵抗のIny Alx Ga1-x-y
単結晶膜を、V族元素の III族元素に対する材料供給比
率を5000以上としてMOCVD法にて成膜した請求
項1記載の受光素子。
2. The high-resistance In y Al x Ga 1-xy N
2. The light-receiving element according to claim 1, wherein the single crystal film is formed by MOCVD with a material supply ratio of the group V element to the group III element of 5000 or more.
【請求項3】 前記高抵抗のIny Alx Ga1-x-y
単結晶膜の吸収スペクトルの長波長端が300nm近傍
以下となるように構成されている請求項1又は2記載の
受光素子。
According to claim 3 wherein said high-resistance In y Al x Ga 1-xy N
3. The light-receiving element according to claim 1, wherein a long-wavelength end of an absorption spectrum of the single crystal film is set to be around 300 nm or less.
【請求項4】 前記高抵抗のIny Alx Ga1-x-y
単結晶膜が、0≦y<0.5、且つ、0≦x≦0.6と
なるように構成されている請求項1又は2記載の受光素
子。
4. The high-resistance In y Al x Ga 1-xy N
The light receiving element according to claim 1, wherein the single crystal film is configured to satisfy 0 ≦ y <0.5 and 0 ≦ x ≦ 0.6.
【請求項5】 前記第1導電型の半導体層及び前記第2
導電型の半導体層の夫々がキャリア濃度の異なる複数の
層にて構成され、 それら複数の層は、前記高抵抗のIny Alx Ga
1-x-y N単結晶膜に近い層ほどキャリア濃度が低いもの
となるように構成されている請求項1〜4のいずれか1
項に記載の受光素子。
5. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer.
Each of the conductive semiconductor layers is composed of a plurality of layers having different carrier concentrations, and the plurality of layers are composed of the high-resistance In y Al x Ga.
5. The method according to claim 1, wherein a layer closer to the 1-xy N single crystal film has a lower carrier concentration.
A light receiving element according to the item.
【請求項6】 前記第1導電型の半導体層、前記高抵抗
のIny Alx Ga 1-x-y N単結晶膜及び前記第2導電
型の半導体層が、単結晶基板上に積層したAlN緩衝層
の上に成膜されている請求項1〜5のいずれか1項に記
載の受光素子。
6. The semiconductor layer of the first conductivity type, the high resistance
InyAlxGa 1-xyN single crystal film and the second conductive film
Buffer layer in which a semiconductor layer of the type is laminated on a single crystal substrate
6. The film according to claim 1, wherein the film is formed on
Mounted light receiving element.
【請求項7】 請求項3又は4記載の受光素子を用いた
火炎センサ。
7. A flame sensor using the light receiving element according to claim 3.
【請求項8】 単結晶基板の上に、第1導電型の半導体
層、高抵抗のInyAlx Ga1-x-y N単結晶膜、及
び、前記第1導電型の半導体層とは導電型の異なる第2
導電型の半導体層を順次積層した受光素子の製造方法で
あって、 前記高抵抗のIny Alx Ga1-x-y N単結晶膜を、V
族元素の III族元素に対する材料供給比率を5000以
上としてMOCVD法にて成膜する受光素子の製造方
法。
8. A semiconductor layer of a first conductivity type, a high-resistance In y Al x Ga 1-xy N single crystal film on a single crystal substrate, and the semiconductor layer of the first conductivity type is a conductive type. Different second
The conductive semiconductor layer of a sequentially laminated manufacturing method of the light-receiving element, the In y Al x Ga 1-xy N single crystal film of the high resistance, V
A method for manufacturing a light-receiving element in which a material supply ratio of a group III element to a group III element is 5000 or more and a film is formed by MOCVD.
JP9319531A 1997-11-20 1997-11-20 Phtoreceiver, flame sensor, and manufacture of light receiving element Pending JPH11154763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9319531A JPH11154763A (en) 1997-11-20 1997-11-20 Phtoreceiver, flame sensor, and manufacture of light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9319531A JPH11154763A (en) 1997-11-20 1997-11-20 Phtoreceiver, flame sensor, and manufacture of light receiving element

Publications (1)

Publication Number Publication Date
JPH11154763A true JPH11154763A (en) 1999-06-08

Family

ID=18111290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9319531A Pending JPH11154763A (en) 1997-11-20 1997-11-20 Phtoreceiver, flame sensor, and manufacture of light receiving element

Country Status (1)

Country Link
JP (1) JPH11154763A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359300C (en) * 2001-11-22 2008-01-02 富士施乐株式会社 Ultraviolet photosensitive device
JP2009099468A (en) * 2007-10-18 2009-05-07 Hitachi High-Technologies Corp Charged particle beam application device
JP2009300307A (en) * 2008-06-16 2009-12-24 Furukawa Co Ltd Radiation detector and radiation inspecting device using thereof
JP2019004145A (en) * 2017-06-13 2019-01-10 旭化成株式会社 Msm type ultraviolet light receiving element, and msm type ultraviolet light receiving device
JP2020098877A (en) * 2018-12-19 2020-06-25 日本電信電話株式会社 Avalanche photodiode and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359300C (en) * 2001-11-22 2008-01-02 富士施乐株式会社 Ultraviolet photosensitive device
JP2009099468A (en) * 2007-10-18 2009-05-07 Hitachi High-Technologies Corp Charged particle beam application device
JP2009300307A (en) * 2008-06-16 2009-12-24 Furukawa Co Ltd Radiation detector and radiation inspecting device using thereof
JP2019004145A (en) * 2017-06-13 2019-01-10 旭化成株式会社 Msm type ultraviolet light receiving element, and msm type ultraviolet light receiving device
JP2020098877A (en) * 2018-12-19 2020-06-25 日本電信電話株式会社 Avalanche photodiode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5502871B2 (en) Photocell
JP7228176B2 (en) Group III nitride semiconductor light emitting device
KR101639779B1 (en) Semiconductor photo-detecting device
JPH0268968A (en) Compound semiconductor light-emitting device
US7525131B2 (en) Photoelectric surface and photodetector
US20100012954A1 (en) Vertical III-Nitride Light Emitting Diodes on Patterned Substrates with Embedded Bottom Electrodes
US11094843B2 (en) High voltage photovoltaics integrated with light emitting diode containing zinc oxide containing layer
JP2006128527A (en) Method of manufacturing garium nitride system compound semiconductor
JP2010186915A (en) Solar cell
CN110137277B (en) Nonpolar self-supporting GaN-based pin ultraviolet photoelectric detector and preparation method thereof
JPH11154763A (en) Phtoreceiver, flame sensor, and manufacture of light receiving element
KR20150042409A (en) A method of manufacturing a light emitting device
CN115485862A (en) Ultraviolet LED and manufacturing method thereof
JPH0964386A (en) Multijunction solar cell
US10304988B2 (en) High voltage photovoltaics integrated with light emitting diode
KR20130030840A (en) Semi-conductor optoelectronic dcvice and method for manufacturing the same
KR100289595B1 (en) Group III-nitride semiconductor light emitting device
JPH06151966A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JP7160781B2 (en) Light emitting device and manufacturing method thereof
JPH08204215A (en) Series connected solar cell
JPH0955522A (en) Tunnel diode
JPH11153482A (en) Semiconductor flame sensor
JP3922772B2 (en) Light receiving element, method for manufacturing ultraviolet light receiving element, and light receiving element
JP2005235911A (en) GaN-BASED COMPOUND SEMICONDUCTOR LIGHT RECEIVING ELEMENT
JP2005235910A (en) GaN-BASED COMPOUND SEMICONDUCTOR LIGHT RECEIVING ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071004