JPH11160372A - Measuring method for harmonics characteristic - Google Patents

Measuring method for harmonics characteristic

Info

Publication number
JPH11160372A
JPH11160372A JP34067697A JP34067697A JPH11160372A JP H11160372 A JPH11160372 A JP H11160372A JP 34067697 A JP34067697 A JP 34067697A JP 34067697 A JP34067697 A JP 34067697A JP H11160372 A JPH11160372 A JP H11160372A
Authority
JP
Japan
Prior art keywords
current
harmonic
measured
voltage
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34067697A
Other languages
Japanese (ja)
Inventor
Isao Koda
勲 香田
Masakazu Tsukamoto
政和 塚本
Soji Nishimura
荘治 西村
Yasukazu Natsuda
育千 夏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP34067697A priority Critical patent/JPH11160372A/en
Priority to US09/114,133 priority patent/US6114859A/en
Publication of JPH11160372A publication Critical patent/JPH11160372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which the influence of a noise is excluded and in which a harmonics characteristic can be measured with good accuracy by a method wherein the voltage and the current, of a noise existing in a power system, at respective frequencies are subtracted and corrected from a voltage and a current at respective intermediate harmnics in the power system measured by injecting currents at the respective intermdiate harmonics. SOLUTION: A current injection device 3 repeats, at every 30 minutes, an operation in which a current at an intermediate harmnics is generated so as to be injected into an injection point (a). The infected current in the injection point (a) is measured by a current transformer 4. The voltage of a power system 1 is measured by a transformer 5, and a current on the side of a load in the injection point (a) of the system 1 is measured by a current transformer 6. Then, the analog measured output of the current transformer 4, that of the current transformer 6 and that of the transformer 5 are converted into digital signals by an A/D converter 7 in a harmonics measuring apparatus so as to be supplied to a signal processor 8. The processor 8 analyzes digital frequencies of the measured outputs by the current transformers 4, 6 and the transformer 5 so as to detect the voltage and the current of the system 1. In addition, the analyzed result of the processor 8 is supplied to a processor module 9. The processor module 9 subtracts the vector of a noise, and it computes a harmonics characteristic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統に系統基
本波周波数の非整数倍の周波数の電流を注入し、その計
測結果に基づいて電力系統の高調波等価回路を求め、そ
の高調波特性を測定する高調波特性測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for injecting a current having a frequency which is a non-integer multiple of the system fundamental frequency into a power system, obtaining a harmonic equivalent circuit of the power system based on the measurement result, The present invention relates to a method for measuring harmonic characteristics for measuring the characteristics.

【0002】[0002]

【従来の技術】従来、電力供給等の面から、電力系統の
時々刻々の高調波特性を測定して把握することが重要で
ある。
2. Description of the Related Art Conventionally, from the viewpoint of power supply and the like, it is important to measure and grasp momentarily harmonic characteristics of a power system.

【0003】そして、電力系統の負荷側及び上流側の高
調波等価回路は、例えばノートンの定理で表現されたア
ドミタンスと電流源との並列回路とみなすことができ、
電気学会論文誌B,101巻8号,p.451−45
8,(昭和56−8)には、配電線の代表的な高調波で
ある第5調波についての高調波特性につき、系統の基本
波の電圧,電流を計測し、その結果から第5調波につい
ての高調波等価回路のアドミタンス,電流源の大きさ、
位相等を算出して推定し、測定することが記載されてい
る。
The harmonic equivalent circuits on the load side and the upstream side of the power system can be regarded as, for example, a parallel circuit of an admittance expressed by Norton's theorem and a current source.
IEEJ Transactions on Electronics, Vol. 101, No. 8, p. 451-45
8, (Showa 56-8) describes the voltage and current of the fundamental wave of the system with respect to the harmonic characteristics of the fifth harmonic, which is a typical harmonic of the distribution line, and from the result, the fifth harmonic. Admittance of harmonic equivalent circuit for harmonics, size of current source,
It describes that the phase and the like are calculated, estimated, and measured.

【0004】しかし、前記論文誌に記載の高調波測定方
法の場合、測定対象の高調波についての等価回路のアド
ミタンスや電流源を実測して求めるのでなく、系統の基
本波電圧・電流の計測結果から高調波アドミタンス、高
調波電流源の大きさ、位相等を推定して高調波等価回路
を決定するため、この等価回路のアドミタンス等を精度
よく求めることができない。
However, in the case of the harmonic measurement method described in the above-mentioned journal, the admittance and current source of the equivalent circuit for the harmonic to be measured are not actually measured and found, but the measurement results of the fundamental wave voltage and current of the system are obtained. Thus, the harmonic admittance, the size and phase of the harmonic current source are estimated to determine the harmonic equivalent circuit, and therefore the admittance and the like of this equivalent circuit cannot be obtained with high accuracy.

【0005】そこで、本出願人は特願平8−31019
2号の出願により、電力系統に測定対象の高調波の上,
下の系統基本波周波数fs の非整数倍の周波数の電流を
中間高調波の電流としてそれぞれ注入し、注入点の注入
周波数の電圧及び注入点の負荷側,上流側に流れる注入
周波数の電流の実測結果に基づき、系統の注入点の負荷
側,上流側それぞれにつき、注入周波数の中間高調波に
ついての高調波等価回路のアドミタンスを求め、このア
ドミタンスを用いた補間処理前により測定対象の高調波
についての等価回路のアドミタンス及び電流源を決定し
てその高調波等価回路を求めることを既に発明してい
る。
Therefore, the present applicant has filed Japanese Patent Application No. 8-31019.
With the application of No.2, the power system will be
Injecting each non-integer multiple of the frequency of the current of the system fundamental frequency f s of the lower as an intermediate harmonic currents, the load side of the voltage and the injection point of the injection frequency of the injection point, the injection frequency flowing through the upstream side of the current Based on the measurement results, the admittance of the harmonic equivalent circuit for the intermediate harmonic of the injection frequency is determined for each of the load side and the upstream side of the injection point of the system, and the harmonics to be measured before interpolation using this admittance are calculated. Has already invented to determine the admittance and the current source of the equivalent circuit and to find its harmonic equivalent circuit.

【0006】この場合、中間高調波の電流が系統に本来
存在しない周波数の電流であり、この注入周波数につい
ての高調波等価回路のアドミタンスが電圧,電流の実測
により精度よく求まるため、この結果を用いて測定対象
の高調波についての等価回路のアドミタンス等を精度よ
く求めてその高調波等価回路を把握し得る。
In this case, the current of the intermediate harmonic is a current having a frequency that does not originally exist in the system, and the admittance of the harmonic equivalent circuit with respect to this injection frequency can be determined accurately by actually measuring the voltage and the current. Thus, the admittance and the like of the equivalent circuit with respect to the harmonic to be measured can be accurately obtained, and the harmonic equivalent circuit can be grasped.

【0007】[0007]

【発明が解決しようとする課題】前記既出願の測定方法
の場合、系統に中間高調波の周波数成分が存在していれ
ば、この周波数成分がノイズとなって測定誤差の要因と
なる。
In the case of the measuring method of the above-mentioned application, if a frequency component of the intermediate harmonic exists in the system, this frequency component becomes noise and causes a measurement error.

【0008】したがって、従来は中間高調波の注入電流
を比較的大きい適当なレベルに設定して電力系統に注入
している。
Therefore, conventionally, the injection current of the intermediate harmonic is set to a relatively large appropriate level and injected into the power system.

【0009】そのため、中間高調波の注入に大容量,大
型の電流注入装置が必要になり、少ない注入容量で電力
系統の高調波特性を測定できない問題点がある。
For this reason, a large-capacity and large-sized current injection device is required for the injection of the intermediate harmonic, and there is a problem that the harmonic characteristics of the power system cannot be measured with a small injection capacity.

【0010】また、中間高調波の注入点の系統(注入系
統)と計測点の系統(計測系統)とを異ならせ、注入系
統の上流(上位)の系統又はこの上位の系統の下流の注
入系統以外の他の分岐系統を計測系統にとり、上流の系
統や他の分岐系統での高調波特性を測定し、測定範囲を
注入系統外に拡大することが考えられる。
In addition, the system at the injection point of the intermediate harmonic (injection system) and the system at the measurement point (measurement system) are made different from each other, so that the system is upstream (upper) of the injection system or downstream of this higher system. It is conceivable that another branch system other than the above is used as a measurement system, the harmonic characteristics of the upstream system and other branch systems are measured, and the measurement range is extended outside the injection system.

【0011】しかし、中間高調波の注入点と計測点とが
離れる程注入電流の計測レベルは低下する。
However, the farther the injection point of the intermediate harmonic is from the measurement point, the lower the measurement level of the injection current.

【0012】また、とくに上流の系統になる程、系統間
の変電所トランス等により注入電流の計測レベルが一層
低下する。
[0012] In addition, the measurement level of the injected current is further reduced due to a substation transformer or the like between the systems, particularly in an upstream system.

【0013】そのため、上流の系統や他の分岐系統に計
測点をとると、ノイズの影響が極めて大きくなって計測
誤差が大きくなり、実際には測定範囲を拡大することが
できない。
Therefore, if a measurement point is set in an upstream system or another branch system, the influence of noise becomes extremely large, a measurement error becomes large, and the measurement range cannot be actually expanded.

【0014】本発明は、系統既存のノイズの影響を排除
し、少ない注入容量で精度よく電力系統の高調波特性を
測定し得るようにするとともに、その測定範囲の拡大が
図れるようにすることを課題とする。
An object of the present invention is to eliminate the influence of the existing noise of the system, to enable accurate measurement of the harmonic characteristics of the power system with a small injection capacity, and to expand the measurement range. As an issue.

【0015】[0015]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の高調波特性測定方法においては、請求項
1の場合、各中間高調波の電流それぞれの注入前後の電
力系統の各中間高調波の周波数の電圧,電流を系統既存
の各中間高調波のノイズの電圧,電流として計測し、各
中間高調波の電流の注入に基づく電力系統の各中間高調
波の計測電圧,計測電流を、各中間高調波の前記ノイズ
の電圧,電流を減算してそれぞれ補正する。
In order to solve the above-mentioned problems, in the method of measuring harmonic characteristics according to the present invention, in the case of claim 1, the power system before and after the injection of the current of each intermediate harmonic is described. Measures the voltage and current at the frequency of each intermediate harmonic as the voltage and current of the existing intermediate harmonic noise, and measures the voltage and measurement of each intermediate harmonic in the power system based on the injection of the current of each intermediate harmonic. The current is corrected by subtracting the voltage and current of the noise of each intermediate harmonic.

【0016】したがって、各中間高調波の電流を注入し
て計測された電力系統の各中間高調波の電圧,電流か
ら、それぞれの周波数の系統既存のノイズの電圧,電流
が減算され、それらの影響が除去される。
Therefore, the voltage and current of the existing noise at each frequency are subtracted from the voltage and current of each intermediate harmonic of the power system measured by injecting the current of each intermediate harmonic, and their influences are reduced. Is removed.

【0017】そのため、各中間高調波の周波数の系統既
存のノイズの大きさによらず、小容量の電流注入で電力
系統の各中間高調波の注入に基づく電圧,電流を精度よ
く計測することができ、その高調波特性を少ない注入容
量で精度よく測定することができる。
Therefore, it is possible to accurately measure the voltage and the current based on the injection of each intermediate harmonic in the power system with a small-capacity current injection regardless of the existing noise level of the system at the frequency of each intermediate harmonic. It is possible to accurately measure the harmonic characteristics with a small injection capacity.

【0018】しかも、計測系統を注入系統の上流の系統
等の注入系統と異なる系統にしたときは、計測系統の各
中間高調波の周波数の既存のノイズの電圧,電流を計測
することにより、電流注入に基づく計測系統の各中間高
調波の電圧,電流を精度よく計測してその高調波特性を
測定することができ、測定範囲を拡大することができ
る。
In addition, when the measurement system is different from the injection system such as the upstream system of the injection system, the voltage and current of the existing noise at the frequency of each intermediate harmonic of the measurement system are measured. The voltage and current of each intermediate harmonic in the measurement system based on injection can be accurately measured to measure its harmonic characteristics, and the measurement range can be expanded.

【0019】また、請求項2の場合は、各中間高調波の
電流それぞれの注入前後の電力系統の各中間高調波の周
波数の電圧,電流を、系統既存の各中間高調波のノイズ
の電圧,電流として複数回計測し、各中間高調波の前記
ノイズの電圧,電流それぞれの複数回の計測結果の平均
を求め、各中間高調子波の電流の注入に基づく電力系統
の各中間高調波の計測電圧,計測電流を、各中間高調波
の前記ノイズの電流,電圧の平均を減算してそれぞれ補
正する。
In the case of claim 2, the voltage and the current of the frequency of each intermediate harmonic of the power system before and after the injection of the current of each intermediate harmonic are used as the voltage and the noise voltage of the existing intermediate harmonic, respectively. The current is measured a plurality of times, the average of the measurement results of the noise voltage and the current of each of the intermediate harmonics is obtained, and the measurement of each of the intermediate harmonics of the power system based on the injection of the current of each of the intermediate harmonics The voltage and the measured current are respectively corrected by subtracting the average of the noise current and the voltage of each intermediate harmonic.

【0020】したがって、この場合は系統既存の各中間
高調波の周波数のノイズの電圧,電流がそれぞれ複数回
の計測の平均により過渡変動等を防止して一層正確に測
定され、小容量の電流注入で電力系統の各中間高調波の
注入に基づく電圧,電流を一層精度よく測定することが
でき、電力系統の高調波特性を少ない注入容量で極めて
精度よく測定できるとともに、測定範囲を一層拡大する
ことができる。
Therefore, in this case, the voltage and the current of the noise at the frequency of each of the existing intermediate harmonics can be more accurately measured by averaging a plurality of measurements to prevent transient fluctuations, etc. Voltage and current based on the injection of each intermediate harmonic in the power system can be measured more accurately, and the harmonic characteristics of the power system can be measured very accurately with a small injection capacity, and the measurement range can be further expanded. be able to.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態につき、図1
ないし図4を参照して説明する。(1形態)まず、本発
明の実施の1形態につき、図1ないし図3を参照して説
明する。図1は測定対象の電力系統1の単線系統図を示
し、その中間高調波の電流の注入点aに高調波測定装置
2のインバータ等で形成された電流注入装置3が接続さ
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
This will be described with reference to FIG. (One Embodiment) First, one embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a single-wire system diagram of a power system 1 to be measured. A current injection device 3 formed by an inverter or the like of a harmonic measurement device 2 is connected to an injection point a of an intermediate harmonic current.

【0022】そして、測定対象の高調波を周波数n・f
s の第n調波とし、この高調波を挟む系統基本波周波数
s の非整数倍の中間高調波を2周波数f1 ,f2 (f
1 <n・fs <f2 )の中間高調波とすると、電流注入
装置3は、例えば、周波数f1 ,f2 の中間高調波の電
流を順次に又は同時に発生して注入点aに注入すること
を30分毎にくり返す。この注入点aの注入電流は計器
用の変流器4により計測される。
Then, the harmonic to be measured is converted to a frequency n · f
s and the intermediate harmonic that is a non-integer multiple of the system fundamental frequency f s sandwiching this harmonic is divided into two frequencies f 1 and f 2 (f
1 <When intermediate harmonics n · f s <f 2) , current injection device 3, for example, injected into the injection point a generated sequentially or simultaneously intermediate harmonic current of a frequency f 1, f 2 Do it every 30 minutes. The injection current at the injection point a is measured by the current transformer 4 for the instrument.

【0023】また、電力系統1の電圧は計器用の変圧器
5により計測され、電力系統1の注入点aの負荷側の電
流は計器用の変流器6により計測される。
The voltage of the power system 1 is measured by a transformer 5 for a meter, and the current on the load side of the injection point a of the power system 1 is measured by a current transformer 6 for a meter.

【0024】そして、変流器4,6及び変圧器5のアナ
ログ計測出力は高調波測定装置2のA/D変換器7によ
りデジタル信号に変換された後、信号処理装置8に供給
される。
Then, the analog measurement outputs of the current transformers 4 and 6 and the transformer 5 are converted into digital signals by the A / D converter 7 of the harmonic measuring device 2 and then supplied to the signal processing device 8.

【0025】この信号処理装置8は変流器4,6及び変
圧器5の計測出力のDFT,FFT等のデジタル周波数
解析を実行し、電力系統1の各周波数の電圧,電流を検
出する。
The signal processing device 8 executes digital frequency analysis such as DFT and FFT of measurement outputs of the current transformers 4 and 6 and the transformer 5 to detect a voltage and a current of each frequency of the power system 1.

【0026】さらに、信号処理装置8の解析結果の電
圧,電流のベクトル値が演算処理装置9に供給され、こ
の処理装置9は後述の系統既存のノイズのベクトル減算
及び高調波特性の演算を実行し、例えば注入点aの下流
側(負荷側)の測定対象の高調波についての等価回路
(高調波等価回路)10を求めて決定する。
Further, the voltage and current vector values obtained as a result of the analysis by the signal processing device 8 are supplied to an arithmetic processing device 9. The processing device 9 performs a vector subtraction of the existing system noise and a calculation of the harmonic characteristic, which will be described later. Then, for example, an equivalent circuit (harmonic equivalent circuit) 10 for the harmonic to be measured on the downstream side (load side) of the injection point a is obtained and determined.

【0027】ところで、系統基本波周波数fs の非整数
倍の周波数のこの種中間高調波は、本来、電力系統1に
存在しないものであり、通常、系統既存の中間高調波の
ノイズの電圧,電流は微小であり、電流注入装置3の電
流注入中とその前,後とでは変化しないものとみなすこ
とができる。
By the way, this kind of intermediate harmonic having a frequency which is a non-integer multiple of the system fundamental frequency f s is not originally present in the power system 1, and usually, the voltage of the existing intermediate harmonic noise, The current is very small, and it can be considered that the current does not change during current injection by the current injection device 3 and before and after the current injection.

【0028】そこで、周波数f1 ,f2 の両中間高調波
の電流それぞれの注入前後に、電力系統1の両中間高調
波それぞれの周波数の電圧,電流を、系統既存のそれぞ
れの周波数源のノイズの電圧,電流として計測する。
Therefore, before and after the injection of the currents of the two intermediate harmonics of the frequencies f 1 and f 2 , the voltage and current of the respective frequencies of the two intermediate harmonics of the power system 1 are converted to the noise of the existing frequency sources of the system. Measured as voltage and current.

【0029】そして、両中間高調波の電流が注入される
一連の注入期間の前,後は、両中間高調波のいずれにつ
いても注入前後であるため、この実施の形態にあって
は、高調波計測装置2の図2の処理手順のフローチャー
トに示すように、前記の一連の注入期間の前に注入前計
測のステップS1 を設ける。
Before and after a series of injection periods during which the currents of both intermediate harmonics are injected, before and after the injection of both intermediate harmonics, in this embodiment, the harmonics as shown in the flow chart of the procedure 2 of the measuring device 2 is provided with a step S 1 pre-injection measured before a series of injection period of the.

【0030】このステップS1 においては、電流注入装
置3が注入を開始する直前の信号処理装置8のデジタル
周波数解析により、変圧器5,変流器6の計測出力に含
まれた周波数f1 ,f2 の成分を、それぞれの周波数の
系統既存のノイズの電圧,電流として計測し、計測した
周波数f1 ,f2 のノイズの電圧,電流のベクトル値
を、例えば演算処理装置9の後段の記憶装置11に記憶
する。
In this step S 1 , the digital frequency analysis of the signal processing device 8 immediately before the current injection device 3 starts the injection, the frequency f 1 included in the measurement output of the transformer 5 and the current transformer 6, The component of f 2 is measured as the voltage and current of the existing noise of the system of each frequency, and the measured voltage and current vector values of the noise of frequencies f 1 and f 2 are stored, for example, in the latter stage of the arithmetic processing unit 9. It is stored in the device 11.

【0031】つぎに、図2の各中間高調波の注入・計測
のステップS2 に移り、このステップS2 により、電流
注入装置3から注入点aに周波数f1 ,f2 の中間高調
波の電流を順に注入し、そのときの変流器4,6及び変
圧器5の計測出力を信号処理装置8によりデジタル周波
数解析し、注入に基づく電力系統1の両中間高調波の電
圧及び注入点aの負荷側の両中間高調波の電流を検出す
る。
Next, the routine goes to Step S 2 of injection and measurement for each middle harmonic of FIG. 2, step S 2, the current injection device 3 frequencies f 1 to the injection point a from, f 2 intermediate harmonic The currents are sequentially injected, and the measured outputs of the current transformers 4, 6 and the transformer 5 at that time are subjected to digital frequency analysis by the signal processing device 8, and the voltage of both intermediate harmonics of the power system 1 based on the injection and the injection point a The current of both intermediate harmonics on the load side is detected.

【0032】このとき、変流器4,6の計測出力の差の
両中間高調波の電流を求めれば、注入点aから上流側に
分流した両中間高調波の電流も同時に検出できる。
At this time, if the currents of the two intermediate harmonics of the difference between the measured outputs of the current transformers 4 and 6 are obtained, the currents of the two intermediate harmonics shunted upstream from the injection point a can be simultaneously detected.

【0033】そして、一連の注入期間の終了後、信号処
理装置8の検出結果のベクトル値が演算処理装置9に供
給され、この演算処理装置9はステップS3 のノイズ除
去の減算により、記憶部11に保持されていた最新の系
統既存の周波数f1 ,f2 のノイズの電圧,電流と、注
入に基づいて計測された電力系統1の周波数f1 ,f2
の電圧,電流とをベクトル減算(複素演算)し、図3の
ベクトル図に示すように周波数f1 ,f2 の高調波につ
き、注入に基づくノイズを含んだ電圧又は電流の検出ベ
クトルaから系統既存のノイズの電圧又は電流のベクト
ルbを減算し、系統既存のノイズの影響を排除して補正
した電圧,電流のベクトルcを求め、このベクトルcの
電圧,電流を注入に基づく計測電圧,計測電流とする。
[0033] Then, after a series of injection period, the vector value of the detection result of the signal processing device 8 is supplied to the arithmetic processing unit 9, the arithmetic processing unit 9 by the subtraction of the noise removal step S 3, the storage unit Recently strains existing frequency f 1, f 2 of the noise voltage held in the 11, current and the frequency f 1 of based on the injection measured power system 1, f 2
Is subtracted from the voltage and the current by a vector subtraction (complex operation), and as shown in the vector diagram of FIG. 3, the harmonics of the frequencies f 1 and f 2 are systematized from the voltage or current detection vector a including the noise based on the injection. The voltage or current vector b of the existing noise is subtracted, and the voltage and current vector c corrected by eliminating the influence of the existing noise is obtained. The voltage and current of the vector c are measured based on the injection voltage. Current.

【0034】さらに、この周波数f1 ,f2 のノイズを
除去した計測電圧,計測電流に基づき、演算処理装置9
は図2のステップS4 の高調波特性の演算を実行し、測
定対象の高調波についての等価回路10の定数(等価回
路定数),すなわちアドミタンスY(n) ,電流源IG(n)
を求めてその高調波特性を決定する。
Further, based on the measured voltage and measured current from which the noises of the frequencies f 1 and f 2 have been removed, the arithmetic processing unit 9
Constant of the equivalent circuit 10 for the running operation of the harmonic characteristics of the step S 4 in FIG. 2, the harmonic to be measured (the equivalent circuit constant), i.e. the admittance Y (n), the current source I G (n)
To determine its harmonic characteristics.

【0035】すなわち、ステップS3 で得られたノイズ
除去後の周波数f1 ,f2 の計測電圧をV1 ,V2 ,計
測電流をI1 ,I2 とし、それぞれ電圧Vi ,電流Ii
(i=1,2)で表わすと、それらの中間高調波が電力
系統1に本来存在しないため、注入点aからみた負荷側
の等価回路はアドミタンスY(n) に相当する周波数
1 ,f2 についてのアドミタンスYi (=Y1
2 )のみになり、このアドミタンスYi はつぎの数1
の式の演算から求まる。
[0035] That is, step S measured voltage having a frequency f 1, f 2 after the resulting noise removal by 3 V 1, V 2, the measured current and I 1, I 2, respectively voltage V i, the current I i
When expressed by (i = 1, 2), since those intermediate harmonics do not originally exist in the power system 1, the equivalent circuit on the load side as viewed from the injection point a has frequencies f 1 , f corresponding to the admittance Y (n). The admittance Y i for 2 (= Y 1 ,
Y 2 ), and the admittance Y i is
It is obtained from the operation of the expression

【0036】[0036]

【数1】Yi =Ii /Vi ## EQU1 ## Y i = I i / V i

【0037】なお、注入点aの上流側についても、周波
数f1 ,f2 の等価回路はアドミタンスのみとなり、数
1の式と同様の式の演算から求まる。
Note that, also on the upstream side of the injection point a, the equivalent circuit of the frequencies f 1 and f 2 is only admittance and can be obtained from the calculation of the same equation as the equation (1).

【0038】そして、周波数f1 ,f2 の中間高調波に
ついてのアドミタンスY1 ,Y2 が求まれば、測定対象
の高調波についてのアドミタンスY(n) は、最も簡単に
はYn ={(Y1 +Y2 )/2}の補間演算から求ま
る。
When the admittances Y 1 and Y 2 for the intermediate harmonics of the frequencies f 1 and f 2 are obtained, the admittance Y (n) for the harmonic to be measured is most simply Y n = {. It is obtained from the interpolation calculation of (Y 1 + Y 2 ) / 2}.

【0039】つぎに、信号処理装置8のデジタル周波数
解析で得られた電力系統1の測定対象の高調波電圧をV
(n) とし、注入点aの負荷側に流れる測定対象の高調波
の電流をI(n) とすると、つぎの数2の式から電流源I
G(n)が求まる。
Next, the harmonic voltage to be measured of the power system 1 obtained by the digital frequency analysis of the signal processing device 8 is represented by V
(n), and the current of the harmonic to be measured flowing on the load side of the injection point a is represented by I (n).
G (n) is obtained.

【0040】[0040]

【数2】IG(n)=I(n) −V(n) ・Y(n) IG (n) = I (n) −V (n) · Y (n)

【0041】そして、アドミタンスYn 及び電流源I
(n) が求まれば、等価回路10が決定されて注入点aの
負荷側の測定対象の高調波についての特性(高調波特
性)が求められて測定される。
The admittance Y n and the current source I
When (n) is determined, the equivalent circuit 10 is determined, and the characteristic (harmonic characteristic) of the harmonic to be measured on the load side of the injection point a is determined and measured.

【0042】このとき、周波数f1 ,f2 の中間高調波
の電流の注入に基づくそれぞれの周波数の電圧,電流の
計測結果から、直前に計測された系統既存のそれぞれの
周波数成分を除去し、注入した電流のみにもとづく計測
結果を用いて高調波特性を求めて測定するため、注入量
が系統既存の成分より少なくても、その影響を受けるこ
とがなく、電流注入装置3を小容量,小型にし、少ない
注入容量で精度よく高調波特性を求めて測定することが
できる。
At this time, from the measurement results of the voltage and the current of each frequency based on the injection of the current of the intermediate harmonic of the frequencies f 1 and f 2 , the respective frequency components existing in the system measured immediately before are removed. Since the harmonic characteristic is obtained and measured using the measurement result based only on the injected current, even if the injection amount is smaller than the existing components of the system, it is not affected by the injection amount and the current injection device 3 can be reduced in capacity and capacity. The size can be reduced and the harmonic characteristics can be determined and measured accurately with a small injection capacity.

【0043】なお、測定結果は記憶装置11に記憶され
るとともに、CRT等の表示装置12に画面表示され
る。
The measurement results are stored in the storage device 11 and displayed on a screen on a display device 12 such as a CRT.

【0044】また、注入点aの上流側についても、同様
の手法で測定対象の高調波についてのアドミタンス,電
流源を求めて高調波特性を測定することができる。
Also, on the upstream side of the injection point a, the admittance and the current source for the harmonic to be measured can be obtained by the same method to measure the harmonic characteristics.

【0045】ところで、系統既存の両中間高調波の周波
数成分の計測は、両中間高調波の電流それぞれの注入前
後,すなわち両中間高調波の電流それぞれが注入されて
いないときに行えばよい。
The frequency components of the existing two intermediate harmonics may be measured before and after the injection of the currents of the two intermediate harmonics, that is, when the currents of the two intermediate harmonics are not injected.

【0046】したがって、図2のステップS2 の両中間
高調波の電流の一連の注入の前にそれらを計測する代わ
りに、図2の破線の注入後計測のステップS5 によりス
テップS2 の前記の一連の注入が終了してから計測して
もよい。
[0046] Thus, instead of measuring them before a series of injection of both intermediate harmonic current step S 2 in FIG. 2, the step S 2 in step S 5 measuring after injection of the broken line in FIG. 2 May be measured after a series of injections is completed.

【0047】また、本発明の各中間高調波の電流それぞ
れの注入前後とは、各中間高調波の電流につき、それぞ
れが注入されていないときである。
The term “before and after the injection of the current of each intermediate harmonic” in the present invention means the time when the current of each intermediate harmonic is not injected.

【0048】そして、周波数f1 ,f2 の中間高調波の
電流が順次に注入される場合、周波数f1 の中間高調波
の電流については、ステップS2 の前,後のステップS
1 ,S5 の期間だけでなく、ステップS2 の一連の注入
期間中の周波数f1 又はf2の注入を終了してから周波
数f2 又はf1 の注入を開始するまでの注入が停止して
いる周波数切換期間や周波数f2 の電流の注入期間も注
入前後に含まれる。
When the currents of the intermediate harmonics of the frequencies f 1 and f 2 are sequentially injected, the currents of the intermediate harmonics of the frequency f 1 are calculated before and after step S 2 in step S 2.
1, not only the period of S 5, injection is stopped from the end of the injection of frequency f 1 or f 2 in a series of injection period in step S 2 to the start of injection of the frequency f 2 or f 1 infusion period of the current of which frequency switching period or frequency f 2 is also included in the front and rear injection.

【0049】同様に、周波数f2 の中間高調波の電流の
注入前後には、ステップS1 ,S5の期間だけでなく、
ステップS2 の前記周波数切換期間や周波数f1 の電流
の注入期間が含まれる。
Similarly, before and after the injection of the current of the intermediate harmonic having the frequency f 2 , not only the periods of steps S 1 and S 5 but also
Infusion period of said frequency switching period or frequency f 1 of the current step S 2 are included.

【0050】そのため、場合によってはステップS1
はS5 の計測を省き、ステップS2の一連の注入・計測
中に、信号処理装置8の周波数解析に基づき、周波数f
1 の中間高調波の電流を注入しているときの周波数f2
の計測結果,周波数f2 の中間高調波の電流を注入して
いるときの周波数f1 の計測結果を、それぞれ系統既存
の周波数f2 ,f1 のノイズの電圧,電流として検出
し、これらを注入・計測と同時に計測するようにしても
よい。
Therefore, in some cases, the measurement in step S 1 or S 5 is omitted, and during the series of injection and measurement in step S 2 , the frequency f is determined based on the frequency analysis of the signal processing device 8.
Frequency f 2 when the current of the intermediate harmonic of 1 is injected
The measurement result, the frequency measurement result of f 1, each line existing frequency f 2, f 1 noise voltage while injecting an intermediate harmonic current of a frequency f 2, is detected as a current, these You may make it measure simultaneously with injection | pouring and measurement.

【0051】(他の形態)つぎに、本発明の実施の他の
形態について、図4を参照して説明する。図4は図1の
高調波計測装置2の本形態における処理手順のフローチ
ャートを示す。
(Another Embodiment) Next, another embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a flowchart of a processing procedure in this embodiment of the harmonic measurement device 2 of FIG.

【0052】そして、この実施の形態にあっては、系統
既存のノイズを精度よく計測するため、例えば、図2の
ステップS1 ,S5 に相当する図4の注入前計測,注入
後計測のステップQ1 ,Q3 において、図1の信号処理
装置8のデジタル周波数解析の結果から周波数f1 ,f
2 の中間高調波の周波数成分を検出し、系統既存の両中
間高調波のノイズの電圧,電流を複数回計測して記憶装
置11に保持する。
In this embodiment, in order to accurately measure the existing noise of the system, for example, the pre-injection measurement and the post-injection measurement in FIG. 4 corresponding to steps S 1 and S 5 in FIG. In steps Q 1 and Q 3 , the frequencies f 1 and f are determined from the digital frequency analysis result of the signal processing device 8 in FIG.
The frequency component of the second intermediate harmonic is detected, and the voltage and current of the noise of the two existing intermediate harmonics are measured a plurality of times and stored in the storage device 11.

【0053】そして、図2のステップS2 に相当する図
4の中間高調波の注入・計測のステップQ2 により、周
波数f1 ,f2 の中間高調波の電流を電流注入装置3か
ら注入点aに順次に又は同時に注入し、信号処理装置8
のデジタル周波数解析の結果から注入に基づく電力系統
1の両中間高調波の電圧,電流を計測して記憶装置11
に保持する。
Then, in step Q 2 of the injection and measurement of the intermediate harmonic in FIG. 4 corresponding to step S 2 in FIG. 2, the current of the intermediate harmonics of the frequencies f 1 and f 2 is injected from the current injection device 3 to the injection point. a into the signal processing device 8
The voltage and current of both intermediate harmonics of the power system 1 based on the injection are measured from the result of digital frequency analysis of
To hold.

【0054】さらに、ステップQ4 の平均値の算出によ
り、周波数f1 ,f2 の中間高調波の電流の一連の注入
が終了する毎に、その直前,直後のステップQ1 ,Q3
の計測に基づく、両中間高調波のノイズの電圧,電流の
複数回の計測結果それぞれのベクトル平均の演算を施
し、系統既存の両中間高調波のノイズの電圧,電流を平
均化してそれぞれの平均値のベクトルを求める。
[0054] Further, by calculating the average value of the step Q 4, the frequency f 1, each time a series of injections of middle harmonic current of f 2 is ended, the immediately preceding, immediately after step Q 1, Q 3
Performs vector averaging for each of the measurement results of the voltage and current of the two intermediate harmonics based on the measurement of the two intermediate harmonics, and averages the voltage and current of the noise of both the intermediate harmonics existing in the system and averages each Find a vector of values.

【0055】これらの平均値のベクトルにより、電力系
統1の両中間高調波のノイズの電圧,電流は、過渡的
(瞬時的)な変動が平均化され、それぞれ1回だけ計測
する場合より精度よく求まる。
With the vectors of these average values, the transient (instantaneous) fluctuations of the noise and voltage of the two intermediate harmonics of the power system 1 are averaged, and each of them is more accurate than when measuring only once. I get it.

【0056】そして、ステップQ5 の図2のステップS
3 と同様のベクトル減算の処理により、ステップQ2
注入・計測で得られた両中間高調波の電圧,電流の計測
結果のベクトルから、ステップQ4 で求めたそれぞれの
系統既存のノイズの平均値のベクトルを減算して系統既
存のノイズの影響を排除し、両中間高調波の注入に基づ
く計測電圧,計測電流を得る。
[0056] Then, step S of FIG. 2 in the step Q 5
By treatment 3 with similar vector subtraction, both intermediate harmonics of the voltage obtained by injection and measurement of step Q 2, the vector of the current measurement result, the average of each strain existing noise obtained in Step Q 4 The value vector is subtracted to eliminate the influence of the existing noise in the system, and the measured voltage and measured current based on the injection of both intermediate harmonics are obtained.

【0057】さらに、これらのノイズを除去した計測電
圧,計測電流に基づき、ステップQ6 の高調波特性の演
算により、図2のステップS4 と同様にして、例えば注
入点aの負荷側の測定対象の高調波についての図1のア
ドミタンスY(n) 等の等価回路定数を決定し、同図の等
価回路10を求める。
[0057] Furthermore, these removal was measured voltage noise, based on the measured current, the calculation of the harmonic characteristics of the step Q 6, as in step S 4 in FIG. 2, for example the injection point a load side The equivalent circuit constant such as the admittance Y (n) in FIG. 1 for the harmonic to be measured is determined, and the equivalent circuit 10 in the figure is obtained.

【0058】この場合、平均化された系統既存の両中間
高調波のノイズの電圧,電流に基づき、アドミタンスY
(n) 等が前記ノイズの過渡変動等の影響を受けることな
く著しく精度よく求まり、小容量の電流注入で電力系統
1の高調波特性を極めて精度よく測定できる。
In this case, the admittance Y is determined based on the averaged voltage and current of the noise of the existing two intermediate harmonics of the system.
(n) and the like can be obtained extremely accurately without being affected by the transient fluctuation of the noise, and the harmonic characteristics of the power system 1 can be measured very accurately by injecting a small amount of current.

【0059】ところで、系統既存の両中間高調波のノイ
ズの計測回数をさらに多くして平均化の精度を向上する
場合は、ステップQ1 ,Q3 それぞれの計測回数を複数
回にしたり、ステップQ1 ,Q3 で計測するだけでな
く、ステップQ2 の周波数f1又はf2 の電流の注入終
了から周波数f1 又はf2 の電流の注入開始までの周波
数切換期間やノイズの周波数と異なる周波数の電流注入
期間にも計測すればよい。
When the accuracy of averaging is improved by further increasing the number of times of measuring the noise of both intermediate harmonics existing in the system, the number of times of measurement in each of steps Q 1 and Q 3 may be increased to a plurality of times, 1, not only measured in Q 3, a frequency different from that of the frequency switching period or noise from the injection end of the current frequency f 1 or f 2 of step Q 2 until the start of the infusion of the current frequency f 1 or f 2 May be measured also during the current injection period.

【0060】また、図4のステップQ1 ,Q3 を省き、
ステップQ2 において、周波数f1のノイズの電圧,電
流については、前記の周波数切換期間及び周波数f2
電流の注入・計測中にくり返し計測し、周波数f2 のノ
イズの電圧,電流については前記の周波数切換期間及び
周波数f1 の電流の注入・計測中にくり返し計測しても
よく、この場合、両中間高調波の電流の注入・計測と系
統既存のそれぞれの電圧,電流の計測とが同時に行え、
計測時間が短くなり、しかも、計測時間のずれによる誤
差を生じない利点がある。
Further, steps Q 1 and Q 3 in FIG.
In Step Q 2, the noise voltage of the frequency f 1, for current repeatedly measured during injection and measurement of the frequency switching period and the frequency f 2 of the current, the noise of the voltage frequency f 2, wherein for current frequency switching period and it may be repeated measured during injection and measurement of the frequency f 1 of the current, in this case, the injection and measuring the strain existing voltage of each of the two intermediate harmonic currents, and the measurement of the current at the same time Done,
There is an advantage that the measurement time is shortened and no error is caused due to the deviation of the measurement time.

【0061】そして、前記両実施の形態においては中間
高調波の電流を2周波数f1 ,f2の電流として説明し
たが、中間高調波の電流は、測定対象の高調波を挟む系
統基本波周波数fs の非整数倍の複数の周波数の電流で
あればよく、2周波数f1 ,f2 の電流に限られるもの
ではない。
In each of the above embodiments, the intermediate harmonic current is described as a current having two frequencies f 1 and f 2. However, the current of the intermediate harmonic is the system fundamental frequency between the harmonics to be measured. may be a non-integer multiple of the plurality of frequency of the current of f s, it is not limited to two frequencies f 1, f 2 currents.

【0062】また、各中間高調波の電流は、例えば図2
のステップS2 又は図4のステップQ2 において、順次
に注入する代わりに、全部又は一部ずつを同時に注入し
てもよい。
The current of each intermediate harmonic is, for example, as shown in FIG.
In step S 2 or step Q 2 in FIG. 4, instead of sequentially injected, it may be injected by all or part simultaneously.

【0063】さらに、各中間高調波の電流の注入周波数
の順序や組合わせは任意に設定すればよい。
Further, the order and combination of the injection frequencies of the currents of the respective intermediate harmonics may be set arbitrarily.

【0064】つぎに、例えば変圧器5,変流器6を注入
点aが設けられた系統(注入系統)の上位の系統又はこ
の上位の系統から分枝した同位の他の系統等の注入系統
以外の系統に設け、中間高調波の注入系統と計測系統と
を異ならせて計測してもよい。
Next, for example, the transformer 5 and the current transformer 6 are connected to an injection system such as an upper system of the system (injection system) provided with the injection point a or another system of the same level branched from the upper system. The system may be provided in a system other than the above, and measurement may be performed by making the injection system of the intermediate harmonic different from the measurement system.

【0065】この場合、例えば図2のステップS2 又は
図4のステップQ2 のノイズ除去により、注入・計測さ
れた各中間高調波の電圧,電流から計測系統の既存の各
中間高調波の成分が除去されるため、例えば注入電流が
系統間の変電所トランスで低減されて上位の計測系統に
注入されても、計測結果がノイズの影響を受けることが
なく、精度よく高調波特性を測定することができ、測定
範囲を拡大することができる。
[0065] The components of the case, for example, in step S 2 or noise removal step Q 2 in FIG. 4 in FIG. 2, each intermediate harmonics of the voltage injected and measurement, each existing intermediate harmonics from the current measurement system For example, even if the injected current is reduced by a substation transformer between systems and injected into a higher-level measurement system, the measurement results are not affected by noise, and the harmonic characteristics can be measured accurately. And the measurement range can be expanded.

【0066】そして、例えば注入点aの負荷側及び上流
側の高調波特性回路をインピーダンスと電圧源との直列
回路としてその高調波特性を測定することもでき、この
場合は、前記両実施の形態のアドミタンスをインピーダ
ンスに,電流源を電圧源に置換えて適用すればよい。
Then, for example, the harmonic characteristic circuit on the load side and the upstream side of the injection point a can be measured as a series circuit of an impedance and a voltage source, and in this case, the harmonic characteristics can be measured. The admittance of the above-described embodiment may be replaced with impedance and the current source may be replaced with a voltage source.

【0067】[0067]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1の場合は、各中間高調波の電流それ
ぞれの注入前後の電力系統1の各中間高調波の周波数の
電流を系統既存の各中間高調波のノイズの電圧,電流と
して計測し、各中間高調波の電流を注入して計測された
電力系統1の各中間高調波の電圧,電流から、それぞれ
の周波数の系統既存のノイズの電圧,電流を減算し、そ
れらの影響を除去したため、電力系統1の各中間高調波
の周波数の既存のノイズの大きさによらず、小容量の電
流注入で電力系統の各中間高調波の注入に基づく電圧,
電流を精度よく計測することができ、その高調波特性を
少ない注入容量で精度よく測定することができる。
The present invention has the following effects. First, in the case of claim 1, the current at the frequency of each intermediate harmonic of the power system 1 before and after the injection of the current of each intermediate harmonic is measured as the voltage and current of the noise of each existing intermediate harmonic in the system, The voltage and current of the existing noise at each frequency were subtracted from the voltage and current of each intermediate harmonic of the power system 1 measured by injecting the current of each intermediate harmonic, and their effects were removed. Regardless of the magnitude of the existing noise at the frequency of each intermediate harmonic of the power system 1, the voltage based on the injection of each intermediate harmonic of the power system with a small-capacity current injection,
The current can be accurately measured, and its harmonic characteristics can be accurately measured with a small injection capacity.

【0068】しかも、計測系統を注入系統の上流の系統
等の注入方法と異なる系統にしたときは、計測系統の各
中間高調波の周波数の既存のノイズの電圧,電流を計測
することにより、電流注入に基づく計測系統の各中間高
調波の電圧,電流を精度よく計測してその高調波特性を
測定することができ、測定範囲を拡大することができ
る。
Further, when the measurement system is a system different from the injection method such as the system upstream of the injection system, the voltage and current of the existing noise at the frequency of each intermediate harmonic of the measurement system are measured, so that the current is measured. The voltage and current of each intermediate harmonic in the measurement system based on injection can be accurately measured to measure its harmonic characteristics, and the measurement range can be expanded.

【0069】つぎに、請求項2の場合は、系統既存の各
中間高調波の周波数のノイズの電圧,電流を、それぞれ
複数回の計測の平均により過渡変動等を防止して一層正
確に測定することができ、小容量の電流注入で電力系統
1の各中間高調波の注入に基づく電圧,電流を一層精度
よく測定することができ、電力系統の高調波特性を少な
い注入容量で極めて精度よく測定することができるとと
もに、測定範囲を一層拡大することができる。
In the case of claim 2, the voltage and the current of the noise of the frequency of each intermediate harmonic existing in the system are more accurately measured by averaging a plurality of measurements to prevent transient fluctuations and the like. The voltage and the current based on the injection of each intermediate harmonic of the power system 1 can be measured with higher accuracy by small-capacity current injection, and the harmonic characteristics of the power system can be extremely accurately measured with a small injection capacity. Measurement can be performed, and the measurement range can be further expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の単線系統図である。FIG. 1 is a single-wire system diagram of one embodiment of the present invention.

【図2】図1の測定処理のフローチャートである。FIG. 2 is a flowchart of a measurement process of FIG. 1;

【図3】図2のノイズ除去の減算を説明するベクトル図
である。
FIG. 3 is a vector diagram illustrating subtraction of noise removal in FIG. 2;

【図4】本発明の実施の他の形態の測定処理のフロチャ
ートである。
FIG. 4 is a flowchart of a measurement process according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電力系統 2 高調波測定装置 3 電流注入装置 8 信号処理装置 9 演算処理装置 REFERENCE SIGNS LIST 1 power system 2 harmonic measurement device 3 current injection device 8 signal processing device 9 arithmetic processing device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 荘治 京都市右京区梅津高畝町47番地 日新電機 株式会社内 (72)発明者 夏田 育千 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Nishimura, 47, Takane-cho, Umezu, Ukyo-ku, Kyoto-shi Inside Nisshin Electric Co., Ltd. Inside

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に、測定対象の高調波を挟む系
統基本波周波数の非整数倍の周波数の各電流を、それぞ
れ中間高調波の電流として注入し、該注入に基づく電力
系統の各中間高調波の計測電圧,計測電流により電力系
統の各中間高調波についての等価回路定数を求め、該各
中間高調波についての等価回路定数から電力系統の測定
対象の高調波についての等価回路定数を補間演算して決
定する高調波特性測定方法において、各中間高調波の電
流それぞれの注入前後の電力系統の各中間高調波の周波
数の電圧,電流を、系統既存の各中間高調波のノイズの
電圧,電流として計測し、各中間高調波の電流の注入に
基づく電力系統の各中間高調波の計測電圧,計測電流
を、各中間高調波の前記ノイズの電圧,電流を減算して
それぞれ補正することを特徴とする高調波特性測定方
法。
1. An electric current having a frequency which is a non-integer multiple of a system fundamental frequency sandwiching a harmonic to be measured is injected into an electric power system as an intermediate harmonic current. The equivalent circuit constant for each intermediate harmonic of the power system is obtained from the measured voltage and current of the harmonic, and the equivalent circuit constant for the target harmonic of the power system is interpolated from the equivalent circuit constant for each intermediate harmonic. In the harmonic characteristic measurement method determined by calculation, the voltage and current of the frequency of each intermediate harmonic of the power system before and after the injection of the current of each intermediate harmonic are converted to the voltage of the noise of each existing intermediate harmonic in the system. , And measuring the current and correcting the measured voltage and measured current of each intermediate harmonic of the power system based on the injection of the current of each intermediate harmonic by subtracting the voltage and current of the noise of each intermediate harmonic. A method for measuring harmonic characteristics.
【請求項2】 電力系統に、測定対象の高調波を挟む系
統基本波周波数の非整数倍の周波数の各電流を、それぞ
れ中間高調波の電流として注入し、該注入に基づく電力
系統の各中間高調波の計測電圧,計測電流により電力系
統の各中間高調波についての等価回路定数を求め、該各
中間高調波についての等価回路定数から電力系統の測定
対象の高調波についての等価回路定数を補間演算して決
定する高調波特性測定方法において、各中間高調波の電
流それぞれの注入前後の電力系統の各中間高調波の周波
数の電圧,電流を系統既存の各中間高調波のノイズの電
圧,電流として複数回計測し、各中間高調波の前記ノイ
ズの電圧,電流それぞれの複数回の計測結果の平均を求
め、各中間高調波の電流の注入に基づく電力系統の各中
間高調波の計測電圧,計測電流を、各中間高調波の前記
ノイズの電流,電圧の平均を減算してそれぞれ補正する
ことを特徴とする高調波特性測定方法。
2. An electric current having a frequency which is a non-integer multiple of a system fundamental frequency sandwiching a harmonic to be measured is injected into the electric power system as an intermediate harmonic current, and each intermediate current of the electric power system based on the injection is injected. The equivalent circuit constant for each intermediate harmonic of the power system is obtained from the measured voltage and current of the harmonic, and the equivalent circuit constant for the target harmonic of the power system is interpolated from the equivalent circuit constant for each intermediate harmonic. In the harmonic characteristic measurement method determined by calculation, the voltage and current of the frequency of each intermediate harmonic of the power system before and after the injection of the current of each intermediate harmonic are converted to the voltage of the noise of each existing intermediate harmonic, The current is measured a plurality of times, the average of the measurement results of the noise voltage and the current of each of the intermediate harmonics is obtained, and the measured voltage of each intermediate harmonic of the power system based on the injection of the current of each intermediate harmonic And a measurement current is corrected by subtracting an average of the noise current and voltage of each intermediate harmonic.
JP34067697A 1997-07-14 1997-11-25 Measuring method for harmonics characteristic Pending JPH11160372A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34067697A JPH11160372A (en) 1997-11-25 1997-11-25 Measuring method for harmonics characteristic
US09/114,133 US6114859A (en) 1997-07-14 1998-07-13 Harmonic characteristic measuring method and harmonic characteristic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34067697A JPH11160372A (en) 1997-11-25 1997-11-25 Measuring method for harmonics characteristic

Publications (1)

Publication Number Publication Date
JPH11160372A true JPH11160372A (en) 1999-06-18

Family

ID=18339254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34067697A Pending JPH11160372A (en) 1997-07-14 1997-11-25 Measuring method for harmonics characteristic

Country Status (1)

Country Link
JP (1) JPH11160372A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014120A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Instrument for measuring higher harmonics
CN103149477A (en) * 2013-02-06 2013-06-12 重庆市电力公司电力科学研究院 Grounding grid defect diagnosis method and system utilizing square wave excitation source
CN104094126A (en) * 2012-02-08 2014-10-08 雷诺股份公司 Secure on-board system for charging the battery of motor vehicle from power supply network
JP2016539330A (en) * 2013-11-20 2016-12-15 アウトラム リサーチ リミティド Device used in disturbance estimation system based on disturbance extraction from electrical network

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014120A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Instrument for measuring higher harmonics
CN104094126A (en) * 2012-02-08 2014-10-08 雷诺股份公司 Secure on-board system for charging the battery of motor vehicle from power supply network
CN104094126B (en) * 2012-02-08 2016-10-19 雷诺股份公司 For the onboard safety systems battery of motor vehicles charged by supply network
CN103149477A (en) * 2013-02-06 2013-06-12 重庆市电力公司电力科学研究院 Grounding grid defect diagnosis method and system utilizing square wave excitation source
JP2016539330A (en) * 2013-11-20 2016-12-15 アウトラム リサーチ リミティド Device used in disturbance estimation system based on disturbance extraction from electrical network

Similar Documents

Publication Publication Date Title
Asiminoaei et al. A new method of on-line grid impedance estimation for PV inverter
US6208945B1 (en) Harmonic component measuring method for power system
JP3234339B2 (en) Power measuring apparatus and method
JPH11160372A (en) Measuring method for harmonics characteristic
JP3236710B2 (en) Measurement device for RMS values
JP2003344463A (en) Method for detecting frequency fluctuation occurring in electric power system, method for measuring frequency deviation in electric power system, and method for measuring electric power system frequency
JP2008064684A (en) Impedance measuring instrument for electric power system
JP4421762B2 (en) Ground resistance measuring device
KR101003462B1 (en) Apparatus and method for Frequency measurement based on modified zero-crossing
US8600687B2 (en) Signal analyzer for analyzing dynamic behavior of a target system
JPH07325636A (en) Automatic power factor adjusting device and digital quantity converting method for quantity of alternating-current electricity
JP2940605B2 (en) Harmonic characteristic measuring method and harmonic characteristic measuring device
JP2010136548A (en) Individual operation detecting apparatus for distributed power supply
CN113358922A (en) Fundamental wave, harmonic wave and inter-harmonic wave electric energy power measurement method of unsteady state power grid signal
JP2001004685A (en) Method for measuring harmonic characteristics of electric power system
CN115356581B (en) Shunt electricity stealing detection method and device, electronic equipment and storage medium
JPH11344514A (en) Three-phase wattmeter
JP2940598B2 (en) Power system harmonic measurement method
JP2001004686A (en) Method for measuring harmonic characteristics of electric power system
JP3122544B2 (en) Method and apparatus for detecting direction of generation of harmonics
JPH1123629A (en) Method for measuring harmonic of power system
JP2000055953A (en) Apparatus for measuring circuit element
JP3995578B2 (en) Storage battery internal impedance measuring device and storage battery internal impedance measuring method
JP2002168891A (en) Injection measurement method and injection measurement device
US20210231716A1 (en) Apparatus, methods and computer-readable medium for efficient electrical grid measurements