JP2002022783A - Method and device for measuring harmonic characteristics - Google Patents

Method and device for measuring harmonic characteristics

Info

Publication number
JP2002022783A
JP2002022783A JP2000206515A JP2000206515A JP2002022783A JP 2002022783 A JP2002022783 A JP 2002022783A JP 2000206515 A JP2000206515 A JP 2000206515A JP 2000206515 A JP2000206515 A JP 2000206515A JP 2002022783 A JP2002022783 A JP 2002022783A
Authority
JP
Japan
Prior art keywords
injection
phase
current
time
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000206515A
Other languages
Japanese (ja)
Inventor
Isao Koda
勲 香田
Masakazu Tsukamoto
政和 塚本
Toshihiko Shikata
俊彦 志方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2000206515A priority Critical patent/JP2002022783A/en
Publication of JP2002022783A publication Critical patent/JP2002022783A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measuring performance by precisely removing the noises of existing order-to-order harmonies in a system from measured values for a voltage and a current of the order-to-order harmonies in the power system during filling. SOLUTION: The noises of the existing filling frequency of the system are found from the digital frequency analysis of a voltage and a current in the power system sampled in synchronization with the system fundamental waves during non-filling at least either before or after filling. The noises are subtracted from the measured values by correcting the phase of the noises during non-filling to the phase during filling or the phase of the measured values during filling to the phase during non-filling. An equivalent circuit constant for the order-to- order harmonies of the filling frequency is calculated by removing the noises from the measured values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統に系統基
本波の非整数倍の周波数の次数間高調波の電流を注入
し、その計測結果に基づいて電力系統の高調波等価回路
を求め、その高調波特性を測定する高調波特性測定方法
に関する。
The present invention relates to a method for injecting a current of an interharmonic having a frequency that is a non-integer multiple of a system fundamental wave into a power system, and obtaining a harmonic equivalent circuit of the power system based on the measurement result. The present invention relates to a harmonic characteristic measuring method for measuring the harmonic characteristics.

【0002】[0002]

【従来の技術】従来、電力系統にあっては、家電機器,
OA機器,産業機器等から発生する高調波電流を抑制
し、系統の電圧歪みを低減することが重要な課題の1つ
であり、そのため、電力系統の時々刻々の高調波特性を
測定する必要がある。
2. Description of the Related Art Conventionally, in a power system, home electric appliances,
One of the important issues is to suppress harmonic currents generated from OA equipment, industrial equipment, etc., and to reduce voltage distortion in the system. Therefore, it is necessary to measure the momentary harmonic characteristics of the power system. There is.

【0003】そして、電力系統のn次の高調波は、系統
基本波に同期したその周波数(系統基本波)fsの整数
倍の周波数n・fsであり、代表的な5次,7次の高調
波は周波数5・fs,7・fsである。
The n-th harmonic of the power system is a frequency n · fs which is an integral multiple of the frequency (system fundamental) fs synchronized with the system fundamental wave, and is a typical fifth and seventh harmonic. The waves have frequencies of 5 · fs and 7 · fs.

【0004】これらの高調波に対する電力系統の特性
(高調波特性)を測定するため、本願出願人は、つぎに
説明する高調波特性測定方法を既に特願平8−3101
92号,特願平9−180570号等により出願してい
る。
In order to measure the characteristics (harmonic characteristics) of the power system with respect to these harmonics, the applicant of the present application has already proposed a method for measuring harmonic characteristics described below in Japanese Patent Application No. Hei 8-3101.
No. 92 and Japanese Patent Application No. 9-180570.

【0005】これらの既出願の高調波特性の測定は、電
力系統の測定対象の高調波の上,下の系統基本波の非整
数倍の周波数の電流を中間高調波,すなわち次数間高調
波の電流として電力系統に注入し、系統基本波に同期し
て注入時にサンプリングした電力系統の電圧,電流につ
いてのFFT,DFTのフーリエ演算のデジタル周波数
解析から電力系統の注入周波数の次数間高調波の電流,
電圧を検出してそれらの計測値を求め、この計測値の電
圧,電流から電力系統の各注入周波数の次数間高調波に
ついての等価回路定数であるアドミタンス又はインピー
ダンスを算出し、これらのアドミタンス又はインピーダ
ンスから測定対象の高調波についての電力系統のアドミ
タンス又はインピーダンスを補間演算して決定するもの
である。
[0005] The measurement of the harmonic characteristics of these patent applications is based on measuring a current having a frequency that is a non-integer multiple of the fundamental wave above and below the harmonic to be measured in the power system as an intermediate harmonic, ie, an interharmonic. Is injected into the power system as a current, and the frequency and the current of the power system sampled at the time of the injection in synchronization with the system fundamental wave are analyzed by digital frequency analysis of the Fourier operation of the FFT and the DFT to obtain the order harmonics of the injection frequency of the power system. Current,
The voltage is detected, the measured value is obtained, and the admittance or impedance, which is the equivalent circuit constant for the inter-order harmonic of each injection frequency of the power system, is calculated from the voltage and current of the measured value, and the admittance or impedance is calculated. , The admittance or impedance of the power system for the harmonic to be measured is determined by interpolation.

【0006】この高調波測定の場合、測定対象の高調波
の上,下の次数間高調波の電流が電力系統に本来存在し
ない系統基本周波数fsの非整数倍周波数の電流である
ため、電力系統の次数間高調波に対するアドミタンス又
はインピーダンスを、小量の電流注入で精度よく求める
ことができ、この結果を用いて電力系統の例えば5次,
7次の高調波についての時々刻々の高調波特性を精度よ
く測定して把握することができる利点がある。
In the case of this harmonic measurement, since the current of the inter-order harmonics above and below the harmonic to be measured is a current of a non-integer multiple of the system fundamental frequency fs which does not originally exist in the power system, the power system The admittance or impedance with respect to the inter-order harmonics can be accurately determined by injecting a small amount of current.
There is an advantage that the momentary harmonic characteristics of the seventh harmonic can be accurately measured and grasped.

【0007】しかし、前記の高調波特性の測定方法の場
合、電力系統に次数間高調波の周波数成分が存在してい
れば、この既存成分がノイズとなって測定誤差の要因と
なる。
However, in the case of the above-described method of measuring the harmonic characteristics, if a frequency component of the interharmonic exists in the power system, the existing component becomes noise and causes a measurement error.

【0008】そのため、次数間高調波の注入に大容量,
大型の電流注入装置が必要になり、少ない注入容量で電
力系統の高調波特性を測定できなくなる。
[0008] Therefore, a large capacity for injection of inter-order harmonics,
A large current injection device is required, and the harmonic characteristics of the power system cannot be measured with a small injection capacity.

【0009】そこで、本願出願人は、特願平9−340
676号の出願により、各次数間高調波の電流それぞれ
の注入前後の電力系統の各次数間高調波の周波数の電
圧,電流を系統既存の各次数間高調波のノイズの電圧,
電流として計測し、各次数間高調波の電流の注入に基づ
く電力系統の各次数間高調波の計測電圧,計測電流を、
前記のノイズの電圧,電流を減算してそれぞれ補正し、
それらの影響を除去することも、既に出願している。
Therefore, the applicant of the present application has filed Japanese Patent Application No. 9-340.
According to the application of No. 676, the voltage and current of the frequency of each inter-harmonic of the power system before and after the injection of the current of each inter-harmonic are converted into the voltage of the noise of the existing inter-harmonic,
The measured voltage and measured current of each interharmonic of the power system based on the injection of the interharmonic current are measured as current.
The voltage and current of the noise are subtracted and corrected respectively,
Eliminating those effects has already been filed.

【0010】[0010]

【発明が解決しようとする課題】前記従来のように各次
数間高調波の電流それぞれの注入前後の非注入時の電力
系統の各次数間高調波の電圧,電流の計測値を系統既存
のノイズとし、このノイズをそのまま注入時の電力系統
の各次数間高調波の電圧,電流の計測値から減算して除
去すると、系統基本波に同期して非注入時及び注入時の
サンプリングを開始しても、次数間高調波が系統基本波
の周波数の非整数倍の周波数であり、しかも、系統基本
波の周期変動も無視できないことから、非注入時にサン
プリングされたノイズの位相と注入時の計測値に含まれ
るノイズの位相とがずれ、非注入時と注入時とのノイズ
の位相関係のずれが生じる。
As described above, the measured values of the voltage and current of each interharmonic of the power system before and after the injection of each interharmonic current before and after the injection of each interharmonic current are used as the conventional noise. When this noise is subtracted from the measured values of the voltage and current of each interharmonic of the power system at the time of injection and removed as it is, sampling at the time of non-injection and at the time of injection is started in synchronization with the system fundamental wave. Also, since the interharmonic frequency is a non-integer multiple of the frequency of the system fundamental wave, and the periodic fluctuation of the system fundamental wave cannot be ignored, the phase of the noise sampled during non-injection and the measured value during injection , The phase of the noise included in the non-injection differs from the phase of the noise during the non-injection.

【0011】そのため、注入時の各次数間高調波の計測
値から系統既存のノイズを精度よく除去することができ
なくなり、精度の高い高調波特性の測定が行えなくなる
問題点がある。
Therefore, it is impossible to accurately remove the existing noise in the system from the measured values of the interharmonics at the time of the injection, and there is a problem that it is not possible to measure the harmonic characteristics with high accuracy.

【0012】本発明は、注入時の電力系統の次数間高調
波の電圧,電流の計測値から系統既存の次数間高調波の
ノイズを精度よく除去して測定性能の向上を図ることを
課題とする。
An object of the present invention is to improve the measurement performance by accurately removing the noise of the inter-order harmonics existing in the system from the measured values of the voltage and current of the inter-order harmonics of the power system at the time of injection. I do.

【0013】[0013]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1に係る高調波特性測定方法においては、
各注入周波数の次数間高調波それぞれにつき、注入時の
前,後の少なくとも一方の非注入時に系統基本波に同期
してサンプリングした電力系統の電圧,電流のデジタル
周波数解析から系統既存の注入周波数のノイズを求め、
非注入時のノイズの位相の注入時の位相への補正又は注
入時の計測値の位相の非注入時の位相への補正を施して
前記計測値から前記ノイズを減算し、計測値からノイズ
を除去して注入周波数の次数間高調波についての等価回
路定数を算出する。
According to a first aspect of the present invention, there is provided a method for measuring harmonic characteristics, comprising the steps of:
For each interharmonic of each injection frequency, digital frequency analysis of the voltage and current of the power system sampled in synchronization with the system fundamental wave at least one of before and after non-injection at the time of injection, and Find noise,
Correction of the phase of the noise at the time of non-injection to the phase at the time of injection or correction of the phase of the measurement value at the time of injection to the phase at the time of non-injection, subtracting the noise from the measurement value, and subtracting the noise from the measurement value After removal, the equivalent circuit constant for the interharmonic of the injection frequency is calculated.

【0014】したがって、非注入時に測定して求められ
た電力系統の次数間高調波のノイズの位相と、注入時に
計測して求められた電力系統の次数間高調波の計測値に
含まれたノイズの位相とが一致するように、ノイズ又は
計測値の位相が補正され、補正後の計測値からノイズが
減算され、注入時の計測値から系統既存のノイズが精度
よく除去されて精度の高い高調波特性の測定が行える。
Therefore, the phase of the noise of the inter-order harmonic of the power system measured and measured at the time of non-injection and the noise included in the measured value of the inter-harmonic of the power system measured and measured at the time of injection are determined. The phase of the noise or the measured value is corrected so that it matches the phase of the noise, the noise is subtracted from the corrected measured value, and the existing noise is accurately removed from the measured value at the time of injection, resulting in a high-precision harmonic. Wave characteristics can be measured.

【0015】また、請求項2に係る高調波特性測定方法
においては、非注入時のノイズの位相,注入時の計測値
の位相のいずれか一方を補正対象の位相とし、
Further, in the harmonic characteristic measuring method according to the present invention, one of a phase of a noise at the time of non-injection and a phase of a measured value at the time of injection is set as a phase to be corrected.

【0016】補正対象の位相に、サンプリング間隔の位
相角と非注入時又は注入時のサンプリング数と次数間高
調波の次数との積の移相量を加減算して前記補正対象の
位相の補正を施す。
The phase to be corrected is added to or subtracted from the phase to be corrected by the phase angle of the sampling interval and the product of the product of the sampling number during non-injection or injection and the order of the interharmonic, thereby correcting the phase to be corrected. Apply.

【0017】この場合、注入時及び非注入時の期間が系
統基本波の周期変動等によって時々刻々変化しても、サ
ンプリング間隔の位相角は一定で変わらないため、この
位相角とサンプリングパルス数と次数間高調波の次数と
の積から次数間高調波の位相の補正量(移相量)が精度
よく求まり、この移相量の位相補正により、非注入時に
求められたノイズの位相と、注入時に求められた計測値
のノイズの位相とが精度よく一致し、注入時の計測値か
ら系統既存のノイズが極めて精度よく除去される。
In this case, even if the period during the injection and the period during the non-injection change every moment due to the periodic fluctuation of the system fundamental wave, the phase angle of the sampling interval is constant and does not change. The correction amount (phase shift amount) of the inter-harmonic phase can be accurately determined from the product of the inter-harmonic order and the product of the inter-harmonic order. The phase of the noise of the measured value obtained at the time matches the phase of the noise with high accuracy, and the existing noise of the system is extremely accurately removed from the measured value at the time of injection.

【0018】さらに、請求項3に係る高調波特性測定装
置においては、系統基本波に同期したサンプリングパル
スを出力するPLLパルス発生手段と、
Further, in the harmonic characteristic measuring apparatus according to the third aspect, PLL pulse generating means for outputting a sampling pulse synchronized with the system fundamental wave;

【0019】サンプリングパルスに基づき,各注入周波
数の次数間高調波それぞれの注入時の前,後の少なくと
も一方の非注入時にサンプリングした電力系統の電圧,
電流の前記デジタル周波数解析から系統既存の注入周波
数のノイズを求める手段と、
On the basis of the sampling pulse, the voltage of the power system sampled before and / or after the non-injection of at least one of the interharmonics of each injection frequency,
Means for determining the noise of the existing injection frequency from the digital frequency analysis of the current,

【0020】非注入時のノイズ又は注入時の計測値の位
相とのいずれか一方を補正対象の位相とし,補正対象の
位相にサンプリングパルスの間隔の位相角と非注入時又
は注入時の前記サンプリングパルスの数と次数間高調波
の次数との積の移相量を加減算して前記補正対象の位相
を注入時の位相又は非注入時の位相に補正する手段とを
備える。
Either the noise at the time of non-injection or the phase of the measured value at the time of injection is taken as the phase to be corrected, and the phase angle of the sampling pulse interval and the sampling at the time of non-injection or injection are taken as the phase to be corrected. Means for correcting the phase to be corrected to a phase at the time of injection or a phase at the time of non-injection by adding or subtracting a phase shift amount of a product of the number of pulses and the order of the interharmonic.

【0021】したがって、請求項1及び請求項2の測定
方法を実現する具体的な高調波特性測定装置を提供する
ことができる。
Therefore, it is possible to provide a specific harmonic characteristic measuring apparatus which realizes the measuring methods of the first and second aspects.

【0022】[0022]

【発明の実施の形態】本発明の実施の1形態について、
図1〜図3を参照して説明する。図1は高調波特性測定
装置の構成を示した単線系統図であり、測定対象の電力
系統1の次数間高調波の電流の注入点aに高調波特性測
定装置2のインバータ等で形成された電流注入装置3が
接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described.
This will be described with reference to FIGS. FIG. 1 is a single-line system diagram showing the configuration of the harmonic characteristic measuring device, which is formed by an inverter or the like of the harmonic characteristic measuring device 2 at an injection point a of the inter-order harmonic current of the power system 1 to be measured. The connected current injection device 3 is connected.

【0023】そして、測定対象の高調波を周波数n・f
sの第n調波とすると、電流注入装置3は、この高調波
の上,下の系統基本の非整数倍の周波数の各次数間高調
波の電流を順次に発生して注入点aに注入することを周
期的にくり返す。
Then, the harmonic to be measured is converted to a frequency n · f
Assuming that the s is the n-th harmonic, the current injection device 3 sequentially generates currents of inter-order harmonics having a frequency of a non-integer multiple of the upper and lower harmonics of the harmonic and injects the current into the injection point a. To do it periodically.

【0024】この注入点aの注入電流が計器用の変流器
4により計測され、電力系統1の電圧が計器用の変圧器
5により計測され、電力系統1の注入点aの負荷側の電
流が計器用の変流器6により計測される。
The injection current at the injection point a is measured by the current transformer 4 for the meter, the voltage of the power system 1 is measured by the transformer 5 for the meter, and the current on the load side of the injection point a of the power system 1 is measured. Is measured by the current transformer 6 for the instrument.

【0025】そして、変流器4,6及び変圧器5のアナ
ログの計測出力が測定装置2のA/D変流器7に供給さ
れ、変圧器5の計測出力はPLLパルス発生器8にも供
給される。
Then, the analog measurement outputs of the current transformers 4 and 6 and the transformer 5 are supplied to the A / D current transformer 7 of the measuring device 2, and the measurement output of the transformer 5 is also supplied to the PLL pulse generator 8. Supplied.

【0026】このPLLパルス発生器8はPLLパルス
発生手段を形成し、電力系統1の系統基本波の電圧に同
期した例えば3.9MHzのサンプリングパルスを形成
し、このサンプリングパルスをA/D変換器7及びその
後段の信号処理装置9,演算処理装置10に供給する。
The PLL pulse generator 8 forms PLL pulse generating means, forms a sampling pulse of, for example, 3.9 MHz synchronized with the voltage of the system fundamental wave of the power system 1, and converts this sampling pulse to an A / D converter. 7 and the subsequent signal processing device 9 and arithmetic processing device 10.

【0027】そして、A/D変換器7はサンプリングパ
ルスに基づき、変換器4,6により変換器4,6により
計測された注入電流,電力系統1の電流及び変圧器5に
計測された電力系統1の電圧をサンプリングしてデジタ
ル信号に変換し、これらのデジタル信号を信号処理装置
装置8に送る。
The A / D converter 7 performs the injection current measured by the converters 4 and 6 by the converters 4 and 6 based on the sampling pulse, the current of the power system 1, and the power system measured by the transformer 5. 1 is sampled and converted into digital signals, and these digital signals are sent to the signal processing device 8.

【0028】つぎに、信号処理装置9はそれらのデジタ
ル信号につき、FFT,DFTのフーリエ演算のデジタ
ル周波数解析を実行し、電力系統1の各注入周波数の次
数間高調波の電流,電圧(ベクトル値)を検出して求め
る。
Next, the signal processing device 9 performs a digital frequency analysis of the Fourier operation of the FFT and the DFT on the digital signals, and obtains the current and voltage (vector values) of the interharmonics of each injection frequency of the power system 1. ) Is detected and determined.

【0029】さらに、信号処理装置7の解析結果の電
圧,電流のベクトル値が演算処理装置10に送られ、こ
の処理装置10は後述の系統既存のノイズの減算及び高
調波特性の演算を実行し、例えば注入点aの下流側(負
荷側)の測定対象の高調波についての等価回路(高調波
等価回路)11を求めて決定する。
Further, the vector values of the voltage and the current as an analysis result of the signal processing device 7 are sent to the arithmetic processing device 10, and this processing device 10 executes the subtraction of the existing noise of the system and the calculation of the harmonic characteristic which will be described later. Then, for example, an equivalent circuit (harmonic equivalent circuit) 11 for the harmonic to be measured on the downstream side (load side) of the injection point a is obtained and determined.

【0030】ところで、系統既存の各次数間高調波のノ
イズの電圧,電流は、通常、微小であり、各次数間高調
波の電流それぞれの注入前,後のデジタル周波数の解析
から求まる注入周波数の電圧,電流が、系統既存の各次
数間高調波のノイズの電圧,電流になる。
By the way, the voltage and current of the noise of each inter-order harmonic existing in the system are usually very small, and the injection frequency of the injection frequency obtained from the analysis of the digital frequency before and after the injection of the current of each inter-harmonic is usually small. The voltage and the current become the voltage and the current of the noise of each inter-order harmonic existing in the system.

【0031】すなわち、順次に注入する各次数間高調波
の周波数をf1,f2,f3 ,…とすると、例えば、周波
数f2 の次数間高調波の電流の注入前,後の周波数
1,f3の次数間高調波の電流の注入期間の計測結果の
デジタル周波数解析から求まる周波数f2の電圧、電流
が系統既存の周波数f2のノイズの電圧,電流になる。
That is, assuming that the frequencies of the inter-harmonics sequentially injected are f 1 , f 2 , f 3 ,..., For example, the frequency f before and after the injection of the current of the inter-harmonic of frequency f 2 1, the measurement result of the voltage of the frequency f 2 obtained from the digital frequency analysis of the infusion period interharmonic current of f 3, the voltage of the current strains existing frequency f 2 noise becomes current.

【0032】このとき、周波数fsの系統基本波及び注
入周波数f2 の次数間高調波の波形は、例えば図2に示
すようになる。なお、図2は位相関係を示したものであ
り、それぞれの振幅は実際と異なる。
[0032] At this time, the system fundamental and interharmonic waveform of the injection frequency f 2 of the frequency fs, for example, as shown in FIG. FIG. 2 shows the phase relationship, and the respective amplitudes are different from the actual ones.

【0033】そして、図2の実線イは周波数fsの系統
基本波であり、実線ロは周波数f2の次数間高調波であ
る。
[0033] Then, the solid line b in FIG. 2 is a system fundamental frequency fs, the solid line b is interharmonic frequency f 2.

【0034】また、図中のta,tb,tcは周波数f
2 の次数間高調波の注入前,注入時,注入後の計測開始
点のタイミングであり、ta〜tbの全期間又は一部の
期間に周波数f1 の次数間高調波の電流が注入され、t
b〜tcの全期間又は一部の期間に周波数f2の次数間
高調波の電流が注入される。そして、系統基本波は連続
するが、その位相が周期変動等で変化する。
Further, ta, tb and tc in the figure are the frequencies f
Between 2 orders before injection of the harmonic, the time of injection, a timing of the measurement starting point after injection, current Lifetime or interharmonic frequency f 1 to a part of the period of ta~tb is injected, t
Current Lifetime or interharmonic of frequency f 2 in a part of the period is the injection of B~tc. Although the system fundamental wave is continuous, its phase changes due to periodic fluctuations and the like.

【0035】また、次数間高調波は系統既存の位相と注
入位相とが一致しないため、注入時とその前,後とで不
連続になり、しかも、系統既存の次数間高調波の成分で
あっても、例えばtaとtbとでは位相が異なる。
Further, since the inter-order harmonics do not coincide with the existing phase of the system and the injection phase, they become discontinuous at the time of injection and before and after the injection, and are the components of the inter-order harmonics existing in the system. However, for example, the phases of ta and tb are different.

【0036】一方、PLLパルス発生器8のサンプリン
グパルスは、系統基本波の一周期で位相が360度ず
れ、系統基本波の一周期にP個(例えば3.9×106
個)発生することから、その間隔(サンプリング間隔)
τ当りの位相角は、系統基本波の周期変動等によらず、
360度/Pの一定値になる。
On the other hand, the phase of the sampling pulse of the PLL pulse generator 8 is shifted by 360 degrees in one cycle of the system fundamental wave, and P sampling pulses (for example, 3.9 × 10 6 ) in one cycle of the system fundamental wave.
), The interval (sampling interval)
The phase angle per τ does not depend on the period variation of the system fundamental wave, etc.
It becomes a constant value of 360 degrees / P.

【0037】そして、注入周波数の次数間高調波の次数
をmとし、ta〜tbの注入前のサンプリングパルス数
をP1,tb〜tcの注入時のサンプリング数をP2と
すると、ta〜tbの時間での次数間高調波の移相量は
(360度/P)・P1・mから求まり、tb〜tcの
時間でのその移相量は(360度/P)・P2・mから
求まる。
If the order of the interharmonic of the injection frequency is m, the number of sampling pulses before the injection of ta to tb is P1, and the sampling number at the time of injection of tb to tc is P2, the time of ta to tb Is obtained from (360 degrees / P) · P1 · m, and the phase shift amount during the time from tb to tc is obtained from (360 degrees / P) · P2 · m.

【0038】したがって、ta〜tb,tb〜tc,…
の時間がどのようであっても、サンプリング間隔(サン
プリングパルスの間隔)の位相角と,その間のサンプリ
ング数と,次数間高調波の次数との積から、それらの時
間における注入周波数,例えばf2の次数間高調波の移
相量が求まる。
Therefore, ta to tb, tb to tc,...
Whatever the time is, the injection frequency at those times, for example, f 2 , is obtained from the product of the phase angle of the sampling interval (interval of the sampling pulse), the number of samples in the interval, and the order of the interharmonic. Is obtained.

【0039】そして、周波数f2 の次数間高調波につ
き、デジタル周波数解析によって得られた電圧,電流の
ベクトル値から求まる注入前のノイズのtaでの位相が
θa,注入時の計測値のtbでの位相がθb,注入後の
ノイズのtcでの位相がθcであったとする。
For the interharmonics of the frequency f 2 , the phase at ta of the noise before injection obtained from the voltage and current vector values obtained by digital frequency analysis is θa, and the measured value at injection is tb at tb. Is assumed to be θb, and the phase of the noise after injection at tc is θc.

【0040】このとき、ノイズの位相θa,θcは、注
入時には、前記の移相量より進み,遅れすることから、
注入前,後のノイズの位相θa,θcの注入時の位相θ
a’,θc’への補正が、つぎの数1の2式加減演算で
行える。
At this time, the phases θa and θc of the noise advance and lag the phase shift amount at the time of injection.
Phase θ at the time of injection of phases θa and θc of noise before and after injection
Correction to a ′ and θc ′ can be performed by the following two equation addition / subtraction operation of the following equation (1).

【0041】[0041]

【数1】θa’=θa+(360度/P)・P1・m θc’=θc−(360度/P)・P2・mEquation 1 θa ′ = θa + (360 ° / P) · P1 · m θc ′ = θc− (360 ° / P) · P2 · m

【0042】そして、この補正演算により、注入前,後
の非注入時の計測から求められた系統既存のノイズの位
相を注入時の位相に補正し、補正した非注入時のノイズ
を注入時の計測値から減算すれば、注入時の次数間高調
波の計測値から不要な系統既存の成分が精度よく除去さ
れる。
Then, by this correction operation, the phase of the existing noise in the system obtained from the measurement before and after the non-injection is corrected to the phase at the time of the injection, and the corrected noise at the time of the non-injection is corrected. By subtracting from the measured value, unnecessary existing components in the system are accurately removed from the measured value of the interharmonic at the time of injection.

【0043】このとき、注入時の計測値から減算するノ
イズは、注入前,後のいずれか一方の計測から求めたノ
イズであってもよいが、このノイズの時間変動等を考慮
すると、注入前,後の両方の計測から求めたノイズの平
均であることが望ましく、具体的には、注入前,後の両
方の計測から求めたノイズを数1の2式の演算によって
位相補正した後、平均化処理し、この平均化処理で得ら
れたノイズを前記の補正した非注入時のノイズとして注
入側の計測値から減算することが好ましい。
At this time, the noise to be subtracted from the measured value at the time of the injection may be noise obtained from one of the measurements before and after the injection. , It is desirable to average the noises obtained from both measurements after injection. Specifically, the noises obtained from both the measurements before injection and after injection are phase-corrected by the calculation of Equation 2 and then averaged. Preferably, the noise obtained by the averaging process is subtracted from the measured value on the injection side as the corrected non-injection noise.

【0044】また、非注入時のノイズの位相θa,θc
を、補正対象の位相として、注入時の位相θa’,θ
c’に補正する代わりに、注入時の計測値の位相θb
を、補正対象の位相として、非注入時の位相θb’に補
正してもよい。
Further, the phases θa and θc of the noises during non-injection
Are the phases θa ′, θ at the time of injection as phases to be corrected.
Instead of correcting to c ', the phase θb of the measured value at the time of injection
May be corrected to the phase θb ′ at the time of non-injection as a phase to be corrected.

【0045】そして、計測値の位相θbを注入前の位相
θb’に補正するときは、注入後のノイズの位相θcも
注入前の位相θc”に補正し、注入前,後のノイズの位
相θa,θc及び注入時の計測値の位相θbを全て注入
前の位相に遅れ方向に補正すればよく、位相θb’,θ
c”はつぎの数2の2式の演算から求まる。
When the phase θb of the measured value is corrected to the phase θb ′ before the injection, the phase θc of the noise after the injection is also corrected to the phase θc ″ before the injection, and the phase θa of the noise before and after the injection is corrected. , Θc and the phase θb of the measured value at the time of injection may be corrected to the phase before the injection in the lag direction, and the phases θb ′, θ
c ″ is obtained from the following operation of the two equations of Expression 2.

【0046】[0046]

【数2】θb’=θb−(360度/P)・P2・m θc”=θc−(360度/P)・(P1+P2)・mΘb ′ = θb− (360 ° / P) · P2 · m θc ″ = θc− (360 ° / P) · (P1 + P2) · m

【0047】また、計測値の位相θbを注入後の位相θ
b”に進み方向に補正するときは、注入前のノイズの位
相θaも注入後の位相θa”に進み方向に補正すればよ
く、この場合、位相θa”,θb”はつぎの数3の2式
の演算から求まる。
The phase θb of the measured value is used as the phase θb after the injection.
When correcting in the leading direction to b ″, the phase θa of the noise before the injection may be corrected in the leading direction to the phase θa ″ after the injection. In this case, the phases θa ″ and θb ″ are expressed by the following equation (3). From the calculation of

【0048】[0048]

【数3】 θa”=θa+(360度/P)・(P1+P2)・m θb”=θb+(360度/P)・P2・mEquation 3 θa ″ = θa + (360 ° / P) · (P1 + P2) · m θb ″ = θb + (360 ° / P) · P2 · m

【0049】そして、計測装置2は図3の処理手順のフ
ローチャートに示すように動作し、ステップS1の注
入,計測により一連の注入周波数f1,f2,f3,…の
電流を順位に注入し、その間に電力系統1の電圧,電流
を計測してサンプリングし、収集して記憶装置12に保
持する。
[0049] Then, the measuring apparatus 2 operates as shown in the flowchart of the procedure of FIG. 3, the injection of the step S 1, a series of injection frequency f 1 by the measurement, f 2, f 3, ... current rank of During the injection, the voltage and current of the power system 1 are measured and sampled during the injection, collected, and stored in the storage device 12.

【0050】つぎに、ステップS2 に移行し、記憶装置
12に保持されたサンプリング結果に基づき、信号処理
装置9によりPLLパルス発生器8のサンプリングパル
スに基づいて、サンプリング結果のデジタル周波数解析
を実行し、例えば注入周波数f2 の次数間高調波につ
き、その注入前,後の非注入時及び注入時の電圧,電流
を求め、他の注入周波数の次数間高調波についても、そ
れぞれ非注入時及び注入時の電圧,電流を求める。
Next, the process proceeds to step S 2, where the digital frequency analysis of the sampling result is executed by the signal processing device 9 based on the sampling pulse of the PLL pulse generator 8 based on the sampling result held in the storage device 12. For example, with respect to the interharmonics of the injection frequency f 2 , the voltages and currents before and after the non-injection and after the injection are obtained, and the interharmonics of the other injection frequencies are also calculated during the non-injection and the non-injection, respectively. Find the voltage and current at the time of injection.

【0051】つぎに、演算処理装置10の処理に移り、
ステップS3 により、各注入周波数の次数間高調波の電
流,電圧につき、それぞれの非注入時のノイズの位相θ
a,θcを検出し、ステップS4 により、数1の2式の
演算から、位相θa,θcを注入時の位相θa’,θ
c’に補正する。
Next, the process proceeds to the operation of the arithmetic processing unit 10.
In step S 3, interharmonic current of each injection frequency, per voltage, phase θ of the respective non-injection when the noise
a, θc are detected, and in step S 4 , the phases θa ′, θc when the phases θa, θc are injected are calculated based on the calculation of the two equations in Equation 1.
Correct to c '.

【0052】さらに、ステップS5 により、各注入回路
の次数間高調波につき、位相θa’,θc’のノイズの
平均を求め、この平均のノイズを系統既存の次数間高調
波のノイズとして注入時の計測値から減算(ベクトル演
算)し、電力系統1の注入に基づく各次数間高調波の電
圧,電流を、系統既存のノイズの影響を排除して求め
る。
[0052] Further, in step S 5, per interharmonic each injection circuit, phase .theta.a ', .theta.c' obtains the average of the noise, the time of injection the average noise as noise of the system between existing orders harmonics Is subtracted (vector operation) from the measured values of (1) and (2), and the voltage and current of each interharmonic based on the injection of the power system 1 are obtained without the influence of the existing noise of the system.

【0053】そして、ステップS6の高調波特性の演算
により、まず、ステップS5で求められて各次数間高調
波の電圧,電流から、電力系統1のの各次数間高調波に
ついてのアドミタンス又はインピーダンスを等価回路定
数として算出し、これらの等価回路定数のアドミタンス
又はインピーダンスから測定対象の高調波についての等
価回路10の定数(等価回路定数),すなわちアドミタ
ンスY(n) を補間演算し、電流源IG(n)も求めて高調
波特性を決定する。
By calculating the harmonic characteristics in step S 6 , first, the admittance of each inter-harmonic of the power system 1 is obtained from the voltage and current of each inter-harmonic obtained in step S 5. Alternatively, the impedance is calculated as an equivalent circuit constant, and the constant (equivalent circuit constant) of the equivalent circuit 10 for the harmonic to be measured, that is, the admittance Y (n) is interpolated from the admittance or impedance of these equivalent circuit constants, and the current is calculated. The source IG (n) is also determined to determine the harmonic characteristics.

【0054】なお、測定結果は記憶装置12に記憶され
るとともに、CRT等の表示装置13に画面表示され
る。
The measurement results are stored in the storage device 12 and displayed on a display device 13 such as a CRT.

【0055】また、注入点aの上流側についても、同様
の手法で測定対象の高調波についてのアドミタンス,電
流源を求めて高調波特性を測定することができる。
Also, on the upstream side of the injection point a, the admittance and the current source for the harmonic to be measured can be obtained by the same method to measure the harmonic characteristics.

【0056】そして、注入前,後に計測した各注入周波
数の系統既存のノイズを注入時の位相に補正し、各注入
周波の次数間高調波の電流,電圧の注入時の計測値から
位相補正したノイズを減算したため、注入時の各次数間
高調波の計測値から系統既存のノイズを精度よく除去し
て精度の高い高調波特性の測定が行える。
The existing noise of each injection frequency measured before and after the injection is corrected to the phase at the time of injection, and the phase is corrected from the measured values of the currents and voltages of the interharmonics of each injection frequency at the time of injection. Since the noise is subtracted, the existing noise in the system can be accurately removed from the measured value of each interharmonic at the time of injection, and the harmonic characteristics can be measured with high accuracy.

【0057】この場合、注入時の各次数間高調波の計測
値のS/Nが高くなり、周波数分解能が高くなることか
ら、電力系統1が注入する各次数間高調波の電流をより
少なくして高調波特性の測定が行え、電流注入装置3を
一層小容量,小型にすることができ、測定装置2の軽量
化,小型化が図られる利点もある。
In this case, since the S / N of the measured value of each interharmonic at the time of injection increases and the frequency resolution increases, the current of each interharmonic injected by the power system 1 is reduced. In addition, there is an advantage that the current injection device 3 can be further reduced in capacity and size, and the measurement device 2 can be reduced in weight and size.

【0058】ところで、図2のステップS4 において、
数1の2式の演算を行う代わりに、数2又は数3の2式
の演算を行って位相の補正を施すようにしても、前記と
同様の効果が得られるのは勿論である。
[0058] By the way, in step S 4 in FIG. 2,
The same effect as described above can of course be obtained by performing the operation of the expression 2 or the expression 3 to correct the phase instead of the operation of the expression 2 of the expression 1.

【0059】つぎに、前記実施の形態にあっては、注入
時の直前,後段の他の次数間高調波が注入,計測される
ときを、その次数間高調波の非注入時としたが、非注入
時は注入時の直前,直後に限られるものではない。
In the above-described embodiment, the time immediately before the injection and the time when the other inter-harmonics are injected and measured at the subsequent stage are the time when the inter-harmonics are not injected. The time of non-injection is not limited to immediately before and immediately after injection.

【0060】また、次数間高調波は、測定対象の高調波
の上,下に少なくとも1つ設定すればよい。
In addition, at least one inter-order harmonic may be set above and below the harmonic to be measured.

【0061】さらに、変圧器5,変流器6を、注入点a
が設けられた系統(注入系統)の上位の系統又はこの上
位の系統から分枝した同位の他の系統等の注入系統以外
の系統に設け、中間高調波の注入系統と計測系統とを異
ならせて計測する場合にも本発明を同様に適用できるの
は勿論である。
Further, the transformer 5 and the current transformer 6 are connected to the injection point a.
Is provided in a system other than the injection system such as a system higher than the system provided with (injection system) or another system of the same level branched from the higher system, so that the injection system of the intermediate harmonic and the measurement system are different. It goes without saying that the present invention can be similarly applied to the case where the measurement is performed by using the above method.

【0062】[0062]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1の高調波特性測定方法及び高調波特
性測定装置場合は、非注入時に計測して求められた電力
系統1の次数間高調波のノイズの位相と、注入時に計測
して求められた電力系統1の次数間高調波の計測値に含
まれたノイズの位相とが一致するように、ノイズ又は計
測値の位相を補正し、この補正後に計測値からノイズを
減算したため、注入時の計測値から系統既存のノイズを
精度よく除去することができ、高調波特性の測定性能を
向上することができる。
The present invention has the following effects. First, in the case of the harmonic characteristic measuring method and the harmonic characteristic measuring device according to claim 1, the phase of the noise of the inter-order harmonic of the power system 1 determined by measuring at the time of non-injection is measured at the time of injection. Since the phase of the noise or the measured value was corrected so that the phase of the noise included in the measured value of the inter-order harmonic of the power system 1 was found, and the noise was subtracted from the measured value after this correction, the injection was performed. The existing noise in the system can be accurately removed from the measured value at the time, and the measurement performance of the harmonic characteristics can be improved.

【0063】また、請求項2の高調波特性測定方法の場
合は、非注入時に計測された電力系統1の次数間高調波
のノイズの位相,注入時に計測された電力系統1の計測
値の位相のいずれか一方を補正対象の位相とし、この位
相に、サンプリング間隔の位相角と,非注入時又は注入
時のサンプリング数と,次数間高調波の次数と積の移相
量を加減算して補正対象の位相の補正を施したため、注
入時及び非注入時の期間が系統基本波の周期変動等によ
って時々刻々変化しても、サンプリング間隔の位相角は
一定であり、この位相角と,サンプリングパルス数と,
次数間高調波の次数との積から、次数間高調波の位相の
補正量(移相量)が精度よく求まり、この移相量の位相
補正により、非注入時の前記ノイズの位相と、注入時の
前記計測値のノイズの位相とを精度よく一致させること
ができ、注入時の前記計測値から系統既存のノイズを極
めて精度よく除去することができる。
In the case of the method of measuring harmonic characteristics according to claim 2, the phase of the noise of the inter-order harmonics of the power system 1 measured at the time of non-injection and the measured value of the power system 1 at the time of injection are measured. One of the phases is set as a phase to be corrected, and the phase angle of the sampling interval, the sampling number during non-injection or injection, and the phase shift amount of the product of the order of the interharmonic and the product are added to or subtracted from this phase. Since the phase to be corrected is corrected, the phase angle of the sampling interval is constant even if the period during injection and the period during non-injection change every moment due to the periodic fluctuation of the system fundamental wave. The number of pulses and
A phase correction amount (phase shift amount) of the inter-harmonic phase is accurately obtained from a product of the inter-harmonic order and the order of the inter-harmonic harmonic. The phase of the noise of the measured value at the time can be accurately matched with the phase of the noise, and the existing noise of the system can be removed very accurately from the measured value at the time of injection.

【0064】つぎに、請求項3の高調波特性測定装置の
場合、系統基本波に同期したサンプリングパルスを発生
するPLLパルス発生手段(PLLパルス発生器8)
と、このサンプリングパルスに基づいて非注入時にサン
プリングした電力系統の電圧,電流のデジタル周波数解
析から系統既存の注入周波数のノイズを求める手段(演
算処理装置9)と、非注入時のノイズの位相又は注入時
の計測値の位相のいずれか一方にサンプリングパルスの
間隔の位相角と非注入時又は注入時のサンプリングパル
スの数と次数間高調波の次数との積の移相量を加減算し
て補正する手段(演算処理装置10)とを備えたため、
請求項1,2の測定方法により高調波特性を測定する高
調波特性測定装置を提供することができる。
Next, in the case of the harmonic characteristic measuring device according to the third aspect, PLL pulse generating means (PLL pulse generator 8) for generating a sampling pulse synchronized with the system fundamental wave.
Means for calculating the noise of the existing injection frequency of the system from digital frequency analysis of the voltage and current of the power system sampled at the time of non-injection based on the sampling pulse (arithmetic processing device 9); Correction is made by adding or subtracting the phase shift of the product of the phase angle of the sampling pulse interval and the number of sampling pulses during non-injection or injection and the order of the interharmonic to one of the phases of the measured value during injection. (Operation processing device 10)
According to the first and second measuring methods, a harmonic characteristic measuring apparatus for measuring harmonic characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の回路ブロック図であ
る。
FIG. 1 is a circuit block diagram of one embodiment of the present invention.

【図2】図1の電力系統の次数間高調波の波形図であ
る。
FIG. 2 is a waveform diagram of inter-order harmonics of the power system of FIG.

【図3】図1の処理説明用のフローチャートである。FIG. 3 is a flowchart for explaining the process of FIG. 1;

【符号の説明】[Explanation of symbols]

1 電力系統 3 電流注入装置 8 PLLパルス発生器 9 信号処理装置 10 演算処理装置 11 等価回路 12 記憶装置 13 表示装置 Reference Signs List 1 power system 3 current injection device 8 PLL pulse generator 9 signal processing device 10 arithmetic processing device 11 equivalent circuit 12 storage device 13 display device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚本 政和 名古屋市東区東新町1番地 中部電力株式 会社内 (72)発明者 志方 俊彦 京都市右京区梅津高畝町47番地 日新電機 株式会社内 Fターム(参考) 2G028 BF03 CG08 DH01 DH04 GL07 MS01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masakazu Tsukamoto 1 Higashi-Shinmachi, Higashi-ku, Nagoya-shi Inside Chubu Electric Power Company (72) Inventor Toshihiko 47-47 Umezu-Takaune-cho, Ukyo-ku, Kyoto-shi F-term ( Reference) 2G028 BF03 CG08 DH01 DH04 GL07 MS01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に、系統基本波の非整数倍の周
波数の次数間高調波の電流を注入し、 系統基本波に同期して注入時にサンプリングした電力系
統の電圧,電流についてのフーリエ演算のデジタル周波
数解析から電力系統の注入周波数の次数間高調波の電
圧,電流の計測値を求め、 前記測定値の電圧,電流から注入電流に基づく電力系統
の注入周波数の次数間高調波についての等価回路定数を
算出し、 測定対象の高調波の上,下の各注入周波数の次数間高調
波についての前記等価回路定数から電力系統の前記測定
対象の高調波についての等価回路定数を補間演算して決
定する高調波特性測定方法において、 各注入周波数の次数間高調波それぞれにつき、 注入時の前,後の少なくとも一方の非注入時に系統基本
波に同期してサンプリングした電力系統の電圧,電流の
前記デジタル周波数解析から系統既存の注入周波数のノ
イズを求め、 非注入時の前記ノイズの位相の注入時の位相への補正又
は注入時の前記計測値の位相の非注入時の位相への補正
を施して前記計測値から前記ノイズを減算し、 前記計測値から前記ノイズを除去して注入周波数の次数
間高調波についての等価回路定数を算出することを特徴
とする高調波特性測定方法。
1. A Fourier operation on a voltage and a current of a power system sampled at the time of injection in synchronization with the system fundamental wave by injecting a current of an interharmonic having a frequency that is a non-integer multiple of the system fundamental wave into the power system. From the digital frequency analysis of the above, the measured values of the voltage and current of the interharmonic of the injection frequency of the power system are obtained, and the equivalent of the interharmonic of the injection frequency of the power system based on the injected current from the measured values of voltage and current is obtained. The circuit constants are calculated, and the equivalent circuit constants for the harmonics to be measured in the power system are interpolated from the equivalent circuit constants for the inter-order harmonics of the upper and lower harmonics of the measurement target. In the harmonic characteristic measurement method to be determined, for each inter-order harmonic of each injection frequency, sampling is performed in synchronization with the system fundamental wave when at least one of before and after injection is not injected. The noise at the existing injection frequency of the system is obtained from the digital frequency analysis of the voltage and current of the power system, and the phase of the noise is corrected to the phase at the time of injection or the phase of the measured value at the time of injection is determined Correcting the phase at the time of injection, subtracting the noise from the measured value, removing the noise from the measured value, and calculating an equivalent circuit constant for the interharmonic of the injection frequency. Harmonic characteristics measurement method.
【請求項2】 非注入時のノイズの位相,注入時の計測
値の位相のいずれか一方を補正対象の位相とし、 前記補正対象の位相に、サンプリング間隔の位相角と非
注入時又は注入時のサンプリング数と次数間高調波の次
数との積の移相量を加減算して前記補正対象の位相の補
正を施すことを特徴とする請求項1記載の高調波特性測
定方法。
2. One of a noise phase at the time of non-injection and a phase of a measured value at the time of injection is set as a phase to be corrected. 2. The harmonic characteristic measuring method according to claim 1, wherein the phase to be corrected is corrected by adding or subtracting a phase shift amount of a product of the number of samplings and the order of the inter-harmonic.
【請求項3】 電流注入装置から電力系統に、系統基本
波の非整数倍の周波数の次数間高調波の電流を注入し、 系統基本波に同期して注入時にサンプリングした電力系
統の電圧,電流についての信号処理装置のフーリエ演算
のデジタル周波数解析から電力系統の注入周波数の次数
間高調波の電圧,電流の計測値を求め、 前記測定値の電圧,電流から注入電流に基づく電力系統
の注入周波数の次数間高調波についての等価回路定数を
算出し、 測定対象の高調波の上下の各注入周波数の次数間高調波
についての前記等価回路定数から電力系統の前記測定対
象の高調波についての等価回路定数を補間演算して決定
する高調波特性測定装置において、 系統基本波に同期したサンプリングパルスを出力するP
LLパルス発生手段と、 前記サンプリングパルスに基づき,各注入周波数の次数
間高調波それぞれの注入時の前,後の少なくとも一方の
非注入時にサンプリングした電力系統の電圧,電流の前
記デジタル周波数解析から系統既存の注入周波数のノイ
ズを求める手段と、 非注入時の前記ノイズ又は注入時の前記計測値の位相の
いずれか一方を補正対象の位相とし,前記補正対象の位
相に前記サンプリングパルスの間隔の位相角と非注入時
又は注入時の前記サンプリングパルスの数と次数間高調
波の次数との積の移相量を加減算して前記補正対象の位
相を注入時の位相又は非注入時の位相に補正する手段と
を備えたことを特徴とする高調波特性測定装置。
3. An electric current of an interharmonic having a frequency that is a non-integer multiple of a system fundamental wave is injected from a current injection device into a power system, and the voltage and current of the power system sampled at the time of injection in synchronization with the system fundamental wave. From the digital frequency analysis of the Fourier operation of the signal processor of the power system, obtains the measured value of the voltage and current of the interharmonic of the injection frequency of the power system, and calculates the injection frequency of the power system based on the injected current from the voltage and current of the measured value. Calculate the equivalent circuit constants for the inter-order harmonics, and calculate the equivalent circuit for the harmonics to be measured in the power system from the equivalent circuit constants for the inter-order harmonics of the injection frequencies above and below the harmonics to be measured. In a harmonic characteristic measuring apparatus that determines a constant by interpolation, a sampling pulse synchronized with a system fundamental wave is output.
LL pulse generating means; and a system based on the digital frequency analysis of the voltage and current of the power system sampled at least one of before and after non-injection of each interharmonic of each injection frequency based on the sampling pulse. Means for determining noise at an existing injection frequency; and one of the noise at the time of non-injection and the phase of the measurement value at the time of injection as a phase to be corrected. The phase to be corrected is corrected to the phase at the time of injection or the phase at the time of non-injection by adding or subtracting the phase shift amount of the product of the angle and the number of the sampling pulses at the time of non-injection or at the time of injection and the order of the interharmonic. Means for measuring harmonic characteristics.
JP2000206515A 2000-07-07 2000-07-07 Method and device for measuring harmonic characteristics Pending JP2002022783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206515A JP2002022783A (en) 2000-07-07 2000-07-07 Method and device for measuring harmonic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206515A JP2002022783A (en) 2000-07-07 2000-07-07 Method and device for measuring harmonic characteristics

Publications (1)

Publication Number Publication Date
JP2002022783A true JP2002022783A (en) 2002-01-23

Family

ID=18703430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206515A Pending JP2002022783A (en) 2000-07-07 2000-07-07 Method and device for measuring harmonic characteristics

Country Status (1)

Country Link
JP (1) JP2002022783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086030A (en) * 2005-09-26 2007-04-05 Univ Nihon Analyzer and method for analyzing electrical signal
CN112240988A (en) * 2019-07-17 2021-01-19 株式会社电装 Battery monitoring system and method and transportation system with same
CN115598416A (en) * 2022-09-16 2023-01-13 珠海多创科技有限公司(Cn) Method and system for processing station area sampling signal, storage medium and computer equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086030A (en) * 2005-09-26 2007-04-05 Univ Nihon Analyzer and method for analyzing electrical signal
CN112240988A (en) * 2019-07-17 2021-01-19 株式会社电装 Battery monitoring system and method and transportation system with same
CN115598416A (en) * 2022-09-16 2023-01-13 珠海多创科技有限公司(Cn) Method and system for processing station area sampling signal, storage medium and computer equipment
CN115598416B (en) * 2022-09-16 2024-01-30 珠海多创科技有限公司 Processing method, system, storage medium and computer equipment for area sampling signal

Similar Documents

Publication Publication Date Title
EP3006947B1 (en) Leakage current calculation device and method for calculating leakage current
KR101688824B1 (en) Ac impedance measuring device
CN108896820B (en) Phase modulator startup protection phasor calculation method suitable for starting static frequency converter
JP6173721B2 (en) Frequency analysis device, signal processing device using the frequency analysis device, and high-frequency measurement device using the signal processing device
CN109521275B (en) Synchronous phasor determination method, system, device and readable storage medium
US10527657B2 (en) Electrical quality measuring apparatus and electrical quality measuring method
JP2002107392A (en) Jitter-measuring device and method therefor, and testing device
JP2010190645A (en) Method for detecting leakage current, leakage current detector, and system monitor
EP2397864A1 (en) Electricity meter and method for determining a quantity
CN104181391A (en) Harmonic detection method of digital power meter
JP3805718B2 (en) Power system frequency fluctuation occurrence detection method, power system frequency deviation measurement method, and power system frequency measurement method
JPH06273458A (en) Apparatus and method for measurement of electric power
Salor Spectral correction-based method for interharmonics analysis of power signals with fundamental frequency deviation
JP2006317435A (en) Phase/amplitude detector, and method
JP4707161B2 (en) AC power measuring apparatus and program
CN103543331A (en) Method for calculating harmonics and inter-harmonics of electric signal
JP2002022783A (en) Method and device for measuring harmonic characteristics
CN103592513B (en) Electric power signal harmonic analysis method and device
JP2011080986A (en) Phasor measuring device
Serov et al. Features of application of frequency measurement technique based on spectral analysis for real electrical power networks
KR101003462B1 (en) Apparatus and method for Frequency measurement based on modified zero-crossing
JPH06308167A (en) Measurement device of effective value
JP2011149915A (en) Synchronization detecting apparatus
JPH1114674A (en) Method for measuring higher harmonics of power system
JPH11160372A (en) Measuring method for harmonics characteristic