JPH1123629A - Method for measuring harmonic of power system - Google Patents

Method for measuring harmonic of power system

Info

Publication number
JPH1123629A
JPH1123629A JP19780797A JP19780797A JPH1123629A JP H1123629 A JPH1123629 A JP H1123629A JP 19780797 A JP19780797 A JP 19780797A JP 19780797 A JP19780797 A JP 19780797A JP H1123629 A JPH1123629 A JP H1123629A
Authority
JP
Japan
Prior art keywords
harmonic
current
point
measurement
equivalent circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19780797A
Other languages
Japanese (ja)
Inventor
Isao Koda
勲 香田
Masakazu Tsukamoto
政和 塚本
Soji Nishimura
荘治 西村
Katsuhiko Uno
克彦 鵜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP19780797A priority Critical patent/JPH1123629A/en
Priority to US09/110,997 priority patent/US6326796B1/en
Publication of JPH1123629A publication Critical patent/JPH1123629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the harmonic characteristics of a power system by setting harmonic measuring points on a plurality of branches in the in the downstream or upstream of a harmonic injecting point of a system and determining the admittance of an equivalent circuit for an interesting harmonic in the downstream or upstream of these measuring points. SOLUTION: Based on the output from an synchronizing unit 13, currents of two frequencies f1 , f2 , higher and lower than an interesting harmonic and not equal to integer times of the basic frequency of the system, are injected as intermediate harmonic currents into a harmonic injecting point 9 from a current injector 11 and a harmonic measuring unit 15 is provided at each harmonic measuring point (b) in the downstream or upstream of the injecting point (a) of a system 1. The unit 15 analyzes the frequency of current and voltage at each measuring point (b) in synchronism with the output from the synchronizing unit 13. Current and voltage having the frequencies f1 , f2 are then detected at a measuring point (b) based on the analysis and the admittance of an equivalent circuit is determined for the intermediate harmonic. The admittance of the equivalent circuit is then determined from both admittances by interpolation for the interesting harmonic in the downstream and upstream of each measuring point (b) and the harmonic characteristics are measured for the interesting harmonic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統の所定の
高調波注入点より下位又は上位の複数の分枝路等におけ
るn次の高調波(着目高調波)についての特性(高調波
特性)を個別に測定する電力系統の高調波測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a characteristic (harmonic characteristic) of an n-th harmonic (harmonic of interest) in a plurality of branches or the like lower or higher than a predetermined harmonic injection point of a power system. The present invention relates to a method for measuring harmonics of an electric power system for individually measuring the following.

【0002】[0002]

【従来の技術】従来、電力の送,配電系統においては、
高調波を低減することが重要である。
2. Description of the Related Art Conventionally, in power transmission and distribution systems,
It is important to reduce harmonics.

【0003】また、高調波を低減する観点からは、各需
要家での高調波レベルを一定以下に抑制することも重要
である。そして、n次(n=1,2,…の整数)の高調
波(第n調波)は、系統基本波周波数fsの整数倍であ
り、代表的な第5調波の周波数は5×fsである。
[0003] From the viewpoint of reducing harmonics, it is also important to suppress the level of harmonics in each customer to a certain level or less. The nth-order (n = 1, 2,..., Integer) harmonic (nth harmonic) is an integral multiple of the system fundamental frequency fs, and a typical fifth harmonic frequency is 5 × fs. It is.

【0004】この高調波の低減は、高調波レベル(電圧
レベル)を予測し、その周波数のフィルタ設備をコンデ
ンサ設備に付設等して行われる。
[0004] The reduction of harmonics is performed by estimating a harmonic level (voltage level) and attaching filter equipment of the frequency to a capacitor equipment.

【0005】そして、高調波レベルを予測する場合、電
力系統の例えば前記フィルタ設備の接続点より下位(下
流)の高調波特性を把握してその等価回路(高調波等価
回路)を求める必要があり、その際、前記接続点より下
位が複数の系統又は需要家設備に分枝しているときは、
系統の分枝或いは需要家毎に高調波特性を把握すること
が必要になる。
[0005] When predicting the harmonic level, it is necessary to find out the lower harmonics (downstream) of the power system, for example, from the connection point of the filter equipment, and to find its equivalent circuit (harmonic equivalent circuit). Yes, at that time, if the lower than the connection point is branched to a plurality of systems or customer equipment,
It is necessary to grasp the harmonic characteristics for each branch of the system or for each customer.

【0006】ところで、この高調波等価回路は、ノート
ンの定理で表現した場合、アドミタンスと電流源との並
列回路とみなすことができる。
By the way, when this harmonic equivalent circuit is expressed by Norton's theorem, it can be regarded as a parallel circuit of admittance and a current source.

【0007】そして、電気学会論文誌B,101巻8
号,p.451−458,(昭56−8)には、配電線
系統の第5調波についての高調波等価回路を求める際、
系統の基本波の電圧,電流を計測し、その結果から高調
波等価回路のアドミタンス,電流源の大きさ、位相等を
算出して推定することが記載されている。
[0007] The Transactions of the Institute of Electrical Engineers of Japan, B, 101, 8
No., p. 451-458, (Showa 56-8), when obtaining a harmonic equivalent circuit for the fifth harmonic of the distribution line system,
It describes that the voltage and current of the fundamental wave of the system are measured, and the admittance of the harmonic equivalent circuit, the magnitude and phase of the current source, etc. are calculated and estimated from the results.

【0008】[0008]

【発明が解決しようとする課題】前記論文誌に記載の高
調波測定方法で電力系統の高調波等価回路を求める場
合、系統の基本波電圧・電流値を計測し、その計測結果
から高調波アドミタンス、高調波電流源の大きさ、位相
を推定するため、電力系統の高調波等価回路のアドミタ
ンス等を精度よく求めることができない。
When a harmonic equivalent circuit of a power system is obtained by the harmonic measurement method described in the above-mentioned journal, the fundamental voltage and current values of the system are measured, and the harmonic admittance is measured from the measurement result. Since the size and phase of the harmonic current source are estimated, it is not possible to accurately determine the admittance of the harmonic equivalent circuit of the power system.

【0009】すなわち、前記従来の高調波測定方法の場
合、着目高調波のアドミタンスや電流源を実測結果から
求めたわけではなく、基本波の計測情報に基づき、基本
波の大きさ(ベクトル値)から着目高調波の大きさ(ベ
クトル値)を推定するに過ぎないため、その高調波等価
回路を精度よく求めることができない。
That is, in the case of the conventional harmonic measurement method, the admittance and current source of the harmonic of interest are not determined from the actual measurement results, but are determined from the magnitude (vector value) of the fundamental wave based on the measurement information of the fundamental wave. Since only the magnitude (vector value) of the harmonic of interest is estimated, the harmonic equivalent circuit cannot be obtained with high accuracy.

【0010】そのため、電力系統の例えばフィルタ設備
の接続点より下位の高調波特性を正確に把握して適当な
フィルタ設備を設けることができず、高調波レベルを良
好に低減できなかった。
For this reason, it is not possible to accurately determine the lower harmonic characteristics of the power system, for example, below the connection point of the filter equipment, to provide an appropriate filter equipment, and to reduce the harmonic level satisfactorily.

【0011】そこで、本出願人は特願平8−31019
2号の出願により、電力系統の高調波注入点に測定調波
(着目高調波)の上,下両側の基本波の非整数倍周波数
の電流それぞれを注入し、その注入点における注入周波
数の電圧及び注入点の上位,下位に流れる注入周波数の
電流の実測結果に基づき、系統の注入点より下位又は上
位につき、着目高調波の上,下両側それぞれの注入周波
数についての等価回路のアドミタンスを求め、それらの
補間処理により着目高調波についての等価回路のアドミ
タンスを決定してその高調波特性を測定することを既に
発明している。
Therefore, the present applicant has filed Japanese Patent Application No. 8-31019.
According to the application of No. 2, a current having a non-integer multiple of the fundamental wave above and below the measurement harmonic (harmonic of interest) is injected into the harmonic injection point of the power system, and the voltage of the injection frequency at the injection point is injected. And admittance of an equivalent circuit for the injection frequency on each of the upper and lower sides of the harmonic of interest for lower or higher than the injection point of the system, based on the actual measurement results of the injection frequency current flowing in the upper and lower injection points. It has already been invented to determine the admittance of the equivalent circuit for the harmonic of interest by means of these interpolation processes and measure the harmonic characteristics.

【0012】この場合、注入周波数の電流が系統に本来
存在しない基本波の非整数倍の周波数の電流であり、注
入周波数の等価回路のアドミタンスが実測により精度よ
く求まるため、この結果を用いて着目高調波についての
高調波特性を精度よく把握し得る。
In this case, the current at the injection frequency is a current having a frequency that is a non-integer multiple of the fundamental wave that does not originally exist in the system, and the admittance of the equivalent circuit of the injection frequency can be accurately determined by actual measurement. Higher harmonic characteristics of harmonics can be accurately grasped.

【0013】しかし、前記既出願の測定方法は、高調波
注入点と高調波測定点とが一致し、注入点の下位又は上
位の系統全体についての高調波特性の測定しか行えず、
例えば、注入点より下位の複数の分枝路等について個別
に高調波特性を測定することができない問題点がある。
However, according to the measurement method of the above-mentioned application, the harmonic injection point coincides with the harmonic measurement point, and only the harmonic characteristics of the entire lower or upper system of the injection point can be measured.
For example, there is a problem that it is not possible to individually measure the harmonic characteristics of a plurality of branches below the injection point.

【0014】本発明は、高調波注入点より下位又は上位
の分枝路等毎の高調波特性を個別に測定し得るようにす
ることを技術的課題とする。
It is a technical object of the present invention to be able to individually measure the harmonic characteristics of each branch or the like lower or higher than the harmonic injection point.

【0015】[0015]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の電力系統の高調波測定方法においては、
系統の高調波注入点に電流注入装置を接続し、同期装置
の系統基本波に同期した出力に基づき、電流注入装置か
ら高調波注入点に測定対象のn次の着目高調波(周波数
n×fs)を挟む系統基本周波数fsの非整数倍の2周
波数f1 ,f2 (f1 <n×fs<f2 )の電流を中間
高調波の電流としてそれぞれ注入し、系統の高調波注入
点より下位又は上位の複数の分枝路等に高調波計測点を
設定し、各高調波計測点それぞれに高調波計測装置を設
け、各高調波計測装置により各高調波計測点それぞれの
計測電流,計測電圧を前記同期装置の出力に同期して周
波数解析し、この周波数解析により各高調波計測点での
周波数f1 ,f2 それぞれの電流,電圧を検出して各高
調波計測点より下位又は上位の周波数f1 ,f2 の中間
高調波についての等価回路のアドミタンスを求め、この
両アドミタンスから各高調波計測点それぞれの下位又は
上位の着目高調波についての等価回路のアドミタンスを
補間演算して決定し、着目高調波についての高調波特性
を測定する。
In order to solve the above-mentioned problems, a method for measuring harmonics of a power system according to the present invention comprises the steps of:
A current injection device is connected to the harmonic injection point of the system, and based on the output synchronized with the system fundamental wave of the synchronizer, the current injection device places the n-th target harmonic of interest (frequency n × fs) at the harmonic injection point. ) Are injected as intermediate harmonic currents at two frequencies f 1 and f 2 (f 1 <n × fs <f 2 ), which are non-integer multiples of the system fundamental frequency fs. Harmonic measurement points are set for a plurality of lower or upper branch paths, etc., and a harmonic measurement device is provided for each harmonic measurement point, and the measurement current and measurement for each harmonic measurement point are performed by each harmonic measurement device. The voltage is frequency-analyzed in synchronization with the output of the synchronizer, and by this frequency analysis, the current and voltage of each of the frequencies f 1 and f 2 at each harmonic measurement point are detected, and the lower or higher frequency is measured from each harmonic measurement point etc. for the frequency f 1, the middle harmonic of f 2 Obtain the admittance of the circuit, determine the admittance of the equivalent circuit for the lower or upper harmonic of interest at each harmonic measurement point from each of these admittances, determine the admittance of the equivalent circuit, and measure the harmonic characteristics of the harmonic of interest. .

【0016】したがって、同期装置の出力に基づき、電
流注入装置から高調波注入点に、系統基本波に同期した
その周波数fsの非整数倍の系統に本来存在しない周波
数f1 ,f2 の中間高調波の電流がそれぞれ注入され
る。
Therefore, based on the output of the synchronizer, the intermediate harmonics of the frequencies f 1 and f 2 which do not exist in the system which is a non-integer multiple of the frequency fs synchronized with the system fundamental wave from the current injection device to the harmonic injection point. Wave currents are injected respectively.

【0017】また、例えば高調波注入点の下位の測定対
象の各分枝路に高調波計測点が設定され、各計測点に高
調波計測装置が設けられる。
Also, for example, a harmonic measurement point is set in each branch of the measurement object below the harmonic injection point, and a harmonic measurement device is provided at each measurement point.

【0018】そして、この計測装置により各高調波計測
点の計測電流,計測電圧を周波数解析して各高調波計測
点での周波数f1 ,f2 の中間高調波それぞれの電流,
電圧が検出され、この検出に基づき、測定対象の各分枝
路の周波数f1 ,f2 の中間高調波についての等価回路
のアドミタンスが分枝路単位で個別に求められる。
Then, the measurement current and the measurement voltage at each harmonic measurement point are frequency-analyzed by this measuring device, and the currents of the intermediate harmonics of the frequencies f 1 and f 2 at each harmonic measurement point are calculated.
The voltage is detected, and based on this detection, the admittance of the equivalent circuit with respect to the intermediate harmonics of the frequencies f 1 and f 2 of each branch to be measured is individually obtained for each branch.

【0019】さらに、周波数f1 ,f2 の中間高調波に
ついての等価回路のアドミタンスを用いた補間演算によ
り、周波数f1 ,f2 の間の着目高調波についての等価
回路のアドミタンスが算出されて決定され、高調波注入
点の下位の各分枝路等につき、着目高調波についての高
調波特性が個別に精度よく測定される。
Furthermore, by interpolation using the admittance of an equivalent circuit of the intermediate harmonics of frequencies f 1, f 2, it is calculated admittance of an equivalent circuit of the interest harmonics between the frequencies f 1, f 2 The harmonic characteristics of the determined harmonic are individually and accurately measured with respect to each of the lower branches of the determined harmonic injection point.

【0020】したがって、例えば高調波注入点の下位の
複数の分枝路或いは各需要家につき、それぞれ着目高調
波についての特性を個別に精度よく測定し得る。
Therefore, for example, the characteristic of the harmonic of interest can be individually and accurately measured with respect to a plurality of branches below the harmonic injection point or each customer.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態について、図
1ないし図3を参照して説明する。 (第1の形態)まず、本発明の実施の第1の形態につ
き、図1を参照して説明する。図1は測定の対象となる
電力系統1の単線表記の等価回路を示し、図中のaは電
力系統1の適当な位置,例えば高調波電流低減用のフィ
ルタ装置が接続される位置に選定された高調波注入点で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. (First Embodiment) First, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows an equivalent circuit in a single line notation of the power system 1 to be measured. In the figure, a is selected at an appropriate position of the power system 1, for example, at a position to which a filter device for reducing harmonic current is connected. This is the harmonic injection point.

【0022】そして、電力系統1には系統基本波の周波
数fsの整数倍の周波数n×fs(nは1,2,…の整
数)の種々の高調波が存在し、これらの高調波に対し
て、高調波注入点aからみた左側の上位(上流)は例え
ばトランスインピーダンス2,上位側線路インピーダン
ス3,遮断器4を介して上位側の等価回路5が接続され
た状態にある。
The power system 1 has various harmonics having a frequency n × fs (n is an integer of 1, 2,...) Which is an integral multiple of the frequency fs of the system fundamental wave. The upper (upstream) position on the left side as viewed from the harmonic injection point a is in a state where the upper equivalent circuit 5 is connected via the transimpedance 2, the upper line impedance 3, and the circuit breaker 4, for example.

【0023】また、高調波注入点aの右側の下位(下
流)は、例えば複数の枝路に分枝し、各枝路の等価回路
6が並列に接続された状態にある。
The lower part (downstream) on the right side of the harmonic injection point a is branched into a plurality of branches, for example, and the equivalent circuits 6 of the respective branches are connected in parallel.

【0024】このとき、等価回路5,6をノートンの定
理で表現すると、上位の等価回路5はアドミタンス7と
電流源8との並列回路とみなすことができ、下位の各等
価回路6もそれぞれアドミタンス9と電流源10との並
列回路とみなすことができる。
At this time, if the equivalent circuits 5 and 6 are expressed by Norton's theorem, the upper equivalent circuit 5 can be regarded as a parallel circuit of the admittance 7 and the current source 8, and the lower equivalent circuits 6 also have respective admittances. 9 and the current source 10 can be regarded as a parallel circuit.

【0025】なお、とくに下位の各電流源10は、通
常、実際に電流源が存在するのではなく、負荷による電
流歪み等に起因して発生したものである。
It is to be noted that, particularly, each of the lower current sources 10 does not usually have a current source, but is generated due to current distortion or the like due to a load.

【0026】そして、第5調波(n=5)等の電力系統
1の所定の高調波を着目高調波とし、着目高調波につい
ての下位の各等価回路6の時々刻々変化する回路定数を
個々に求めてそれぞれの高調波特性を測定する場合、ま
ず、高調波注入点aにPLL制御発振器構成の電流注入
装置11を接続する。
Then, a predetermined harmonic of the power system 1 such as the fifth harmonic (n = 5) is set as a target harmonic, and the circuit constant of the lower equivalent circuit 6 for the target harmonic that changes every moment is individually determined. In order to measure the respective harmonic characteristics, the current injection device 11 having a PLL control oscillator configuration is connected to the harmonic injection point a.

【0027】また、電力系統1に接続した計器用変圧器
12の2次側出力を同期装置13に供給し、この同期装
置13により系統基本波に同期した同期信号を形成し、
この同期信号を、例えば有線通信手段としての通信ケー
ブル14を介して注入指令信号として電流注入装置11
に周期的又は連続的に供給する。
Further, the secondary side output of the instrument transformer 12 connected to the power system 1 is supplied to a synchronizer 13, and the synchronizer 13 forms a synchronization signal synchronized with the system fundamental wave.
This synchronization signal is used as an injection command signal via a communication cable 14 as a wired communication means, for example, as a current injection device 11
Is supplied periodically or continuously.

【0028】この同期信号の供給に基づき、電流注入装
置11は系統基本波に同期して動作し、着目高調波を挟
む系統基本周波数fsの非整数倍の2周波数,すなわ
ち、着目高調波の周波数n×fsの下側,上側の周波数
1 ,f2 (f1 <n×fs<f2 )の中間高調波の電
流を、例えば30分の測定周期毎に一定期間ずつ出力し
て高調波注入点aに注入する。
Based on the supply of the synchronizing signal, the current injection device 11 operates in synchronization with the system fundamental wave, and has two non-integer multiples of the system fundamental frequency fs sandwiching the harmonic of interest, ie, the frequency of the harmonic of interest. An intermediate harmonic current of lower and upper frequencies f 1 , f 2 (f 1 <n × fs <f 2 ) on the lower and upper sides of n × fs is output for a predetermined period, for example, at every 30-minute measurement cycle. Inject at injection point a.

【0029】なお、着目高調波を第5調波(n=5,周
波数5×fs)とすると、周波数f1 ,f2 の中間高調
波の電流は具体的には、例えば着目高調波から0.5調
波ずれた4.5調波(n=4.5,周波数4.5×f
s),5.5調波(n=5.5,周波数5.5×fs)
の電流であり、いずれも電力系統1には本来存在しない
周波数の電流である。
Assuming that the target harmonic is the fifth harmonic (n = 5, frequency 5 × fs), the current of the intermediate harmonic of the frequencies f 1 and f 2 is, for example, 0% from the target harmonic. 4.5 harmonics shifted by 4.5 harmonics (n = 4.5, frequency 4.5 × f)
s), 5.5 harmonics (n = 5.5, frequency 5.5 × fs)
These are currents at frequencies that do not originally exist in the power system 1.

【0030】そして、高調波注入点aに注入されてその
下位に流れる周波数f1 ,f2 の中間高調波の電流
1 ,I2 は、下位の#1,…,#m−1,#mのm個
の分枝路に、それぞれの負荷状態に応じた割合いで分流
する。
Then, the currents I 1 and I 2 of the intermediate harmonics of the frequencies f 1 and f 2 injected into the harmonic injection point a and flowing thereunder are lower # 1,..., # M−1, # The flow is divided into m branch paths of m at a ratio corresponding to the respective load states.

【0031】この分流により各分枝路は周波数f1 の中
間高調波の電流I11,…,I1m-1,I1mが流れてその中
間高調波の電圧V11,…,V1m-1,V1mが発生し、同様
に、周波数f2 の中間高調波の電流I21,…,I2m-1
2mが流れてその中間高調波の電圧V21,…,V2m-1
2mが発生する。
Due to this branching, the respective branches pass through the intermediate harmonic currents I 11 ,..., I 1m-1 , I 1m of the frequency f 1 , and the intermediate harmonic voltages V 11 ,. , V 1 m is generated, similarly, the middle harmonic current I 21 of the frequency f 2, ..., I 2m- 1,
I 2m flows and the voltage of the intermediate harmonic V 21 ,..., V 2m-1 ,
V 2m is generated.

【0032】このとき、周波数f1 ,f2 の中間高調波
が電力系統1に本来存在しないため、周波数f1 ,f2
についての各分枝路のノートンの定理で表現した等価回
路は、等価回路6から電流源10を除いたアドミタンス
9のみの回路に等しくなる。
[0032] At this time, since the intermediate harmonic frequency f 1, f 2 does not exist originally power system 1, the frequency f 1, f 2
The equivalent circuit expressed by Norton's theorem for each branch of is equivalent to a circuit having only the admittance 9 excluding the current source 10 from the equivalent circuit 6.

【0033】そのため、例えば#1の分枝路において、
周波数f1 の中間高調波の電流I11及び電圧V11を計測
すれば、その等価回路のアドミタンスY11がつぎの数1
の式の演算から、簡単に、しかも、精度よく求まる。
Therefore, for example, in the branch road # 1,
By measuring the current I 11 and the voltage V 11 of the intermediate harmonic frequency f 1, the number of the admittance Y 11 Katsuki of the equivalent circuit 1
Can be easily and accurately obtained from the calculation of the expression.

【0034】[0034]

【数1】Y11=I11/V11 ## EQU1 ## Y 11 = I 11 / V 11

【0035】また、数1の式の演算と同様の演算によ
り、周波数f2 の中間高調波についての等価回路のアド
ミタンスY21も求まる。
The admittance Y 21 of the equivalent circuit for the intermediate harmonic of the frequency f 2 is also obtained by the same operation as the operation of the equation (1).

【0036】そして、周波数f1 ,f2 の中間高調波に
ついてのアドミタンスY11,Y21が求まれば、最も簡単
には、例えば(Y11+Y21)/2の補間演算により、そ
の中間の周波数n×fsの着目高調波についてのアドミ
タンス9がアドミタンスY1(n)として求まる。
When the admittances Y 11 and Y 21 of the intermediate harmonics of the frequencies f 1 and f 2 are obtained, the simplest method is, for example, an interpolation calculation of (Y 11 + Y 21 ) / 2. The admittance 9 for the target harmonic of the frequency n × fs is obtained as the admittance Y 1 (n).

【0037】さらに、着目高調波についてのアドミタン
スY1(n)が求まると、#1の分枝路を流れる着目高調波
の電流,電圧の実測値I1(n),V1(n)に基づき、着目高
調波についての等価回路6の電流源10がつぎの数2の
式の演算から、電流源IG1(n) として求まる。
Further, when the admittance Y 1 (n) of the harmonic of interest is determined, the measured values I 1 (n) and V 1 (n) of the current and voltage of the harmonic of interest flowing through the branch of # 1 are obtained. based from calculation of expression 2 the current source 10 Katsuki equivalent circuit 6 of interest harmonics, obtained as a current source I G1 (n).

【0038】[0038]

【数2】IG1(n) =I1(n)−V1(n)・Y1(n)[Number 2] I G1 (n) = I 1 (n) -V 1 (n) · Y 1 (n)

【0039】そして、残りの各分枝路6それぞれについ
ても、#1の分枝路6と同様の計測,演算から着目高調
波についてのアドミタンス9及び電流源10の値が求ま
る。
The values of the admittance 9 and the current source 10 for the harmonic of interest are determined for the remaining branches 6 from the same measurements and calculations as those of the branch 6 of # 1.

【0040】したがって、本形態においては、各分枝路
6の分枝端部それぞれに高調波計測点bを設定する。
Therefore, in this embodiment, a harmonic measurement point b is set at each branch end of each branch path 6.

【0041】そして、各分枝路6の高調波特性を順に測
定する場合、例えば#1の分枝路6を測定するときは、
電流注入装置11と別個独立の高調波計測装置15を#
1の分枝路6の高調波計測点bに位置させる。
When measuring the harmonic characteristics of each branch 6 sequentially, for example, when measuring the branch 6 of # 1,
The harmonic measuring device 15 which is independent and independent of the current injection device 11 is #
The first branch 6 is located at the harmonic measurement point b.

【0042】つぎに、この高調波計測点bに高調波計測
装置15の計器用変圧器16の1次側を接続するととも
に、計測点bの下位側近傍に計器用変流器17を設け、
高調波計測点bの電圧及びこの計測点bを通流する系統
電流を計測する。
Next, the primary side of the instrument transformer 16 of the harmonic measuring device 15 is connected to the harmonic measuring point b, and an instrument current transformer 17 is provided near the lower side of the measuring point b.
The voltage at the harmonic measurement point b and the system current flowing through the measurement point b are measured.

【0043】そして、計器用変圧器16の系統電圧の検
出出力,計器用変流器17の系統電流の検出出力を高調
波計測装置15の計測回路部18に設けたA/D変換器
19に供給し、このA/D変換器19によりそれぞれサ
ンプリングしてデジタルの計測データに変換する。
Then, the detection output of the system voltage of the instrument transformer 16 and the detection output of the system current of the instrument current transformer 17 are sent to the A / D converter 19 provided in the measurement circuit section 18 of the harmonic measurement device 15. The data is supplied, sampled by the A / D converter 19, and converted into digital measurement data.

【0044】このとき、後段の周波数解析を正確に行う
ため、A/D変換器19のサンプリングを、高調波注入
点aの中間高調波の電流注入時に系統基本波に同期した
タイミングで行う必要がある。
At this time, the sampling of the A / D converter 19 needs to be performed at a timing synchronized with the system fundamental wave at the time of the current injection of the intermediate harmonic at the harmonic injection point a in order to accurately perform the subsequent frequency analysis. is there.

【0045】そのため、同期装置13の同期信号が例え
ば有線通信手段としての通信ケーブル20を介してA/
D変換器19に計測指令信号として伝送され、この計測
指令信号のタイミング制御に基づき、高調波注入点aに
周波数f1 ,f2 の中間高調波の電流が流入されたとき
に、A/D変換器19は系統基本波すなわち両中間高調
波に同期して計器用変圧器16,計器用変流器17の検
出出力をサンプリングする。
For this reason, the synchronizing signal of the synchronizing device 13 is transmitted to the A / A
The signal is transmitted to the D converter 19 as a measurement command signal, and based on the timing control of the measurement command signal, when an intermediate harmonic current of frequencies f 1 and f 2 flows into the harmonic injection point a, the A / D The converter 19 samples the detection output of the instrument transformer 16 and the instrument current transformer 17 in synchronization with the system fundamental wave, that is, both intermediate harmonics.

【0046】なお、A/D変換器19のサンプリング周
波数は周波数f1 ,f2 それぞれより十分高い周波数で
ある。
The sampling frequency of the A / D converter 19 is sufficiently higher than the frequencies f 1 and f 2 .

【0047】そして、A/D変換器19から出力された
系統電圧,系統電流の計測データが信号処理装置21に
供給され、この信号処理装置21はDFT解析,FFT
解析等のデジタル周波数解析により、系統電圧,系統電
流の計測データに含まれた高調波計測点bの周波数
1 ,f2 それぞれの中間高調波の電圧V11, 21及び
電流I11,I21を検出する。
Then, the measurement data of the system voltage and the system current output from the A / D converter 19 are supplied to the signal processing device 21. The signal processing device 21 performs the DFT analysis and the FFT.
The digital frequency analysis such as analysis, system voltage, the voltage V 11 of frequency f 1, f 2 each intermediate harmonics of the harmonic measurement point b contained in the measurement data of the system current, V 21 and the current I 11, I 21 is detected.

【0048】この電圧V11, 21,電流I11,I21のデ
ータが演算処理装置22に供給され、演算処理装置22
は電圧V11, 21,電流I11,I21に基づき、前記数1
の式の演算から#1の分枝路6のアドミタンスY11,Y
12を求める。
The data of the voltages V 11, V 21 and the currents I 11 , I 21 are supplied to the arithmetic processing unit 22,
Based on the voltage V 11, V 21, current I 11, I 21, the number 1
The admittances Y 11 and Y of the branch 6 of # 1 are calculated from the calculation of the expression
Ask for 12 .

【0049】このとき、周波数f1 ,f2 の中間高調波
が電力系統1に本来存在しないため、それらの注入電流
量が微小であってもアドミタンスY11,Y21は正確に求
まる。
At this time, since the intermediate harmonics of the frequencies f 1 and f 2 do not originally exist in the power system 1, the admittances Y 11 and Y 21 can be accurately obtained even if their injected current amounts are small.

【0050】そのため、電流注入装置11は電流容量の
小さい小型の装置でよく、全体の装置構成を小型,軽
量,安価にできる。
Therefore, the current injection device 11 may be a small device having a small current capacity, and the entire device configuration can be reduced in size, weight, and cost.

【0051】つぎに、演算処理装置22はアドミタンス
11,Y21を用いた前記の補間演算により、#1の分枝
路6の着目高調波についてのアドミタンス9,すなわち
アドミタンスY1(n)を決定し、#1の分枝路6の高調波
特性を測定する。
Next, the arithmetic processing unit 22 calculates the admittance 9 of the target harmonic of the branch 6 of # 1, that is, the admittance Y 1 (n), by the above-described interpolation operation using the admittances Y 11 and Y 21. Then, the harmonic characteristic of the branch 6 of # 1 is measured.

【0052】ところで、この実施の形態にあっては、高
調波特性の測定により、電流源10も決定して等価回路
6を完全に同定する。
In the present embodiment, the current source 10 is also determined by measuring the harmonic characteristics, and the equivalent circuit 6 is completely identified.

【0053】そのため、高調波計測装置15は同期装置
13からの同期信号の受信停止等により周波数f1 ,f
2 の中間高調波の電流注入の終了を検知すると、A/D
変換器19の計測データに基づく信号処理装置21の周
波数分析により#1の分枝路6に存在する着目高調波の
電流I1(n),電圧V1(n)を実測する。
Therefore, the harmonic measurement device 15 stops receiving the synchronization signal from the synchronization device 13 or the like, so that the frequencies f 1 , f
When the end of the current injection of the second harmonic is detected, the A / D
The current I 1 (n) and the voltage V 1 (n) of the harmonic of interest existing in the branch 6 of # 1 are actually measured by the frequency analysis of the signal processing device 21 based on the measurement data of the converter 19.

【0054】さらに、決定したアドミタンスY1(n)と実
測した電流I1(n),電圧V1(n)とに基づき、演算処理装
置22により前記数2の式の演算から#1の分枝路6の
着目高調波についての電流源10を電流源IG1(n) とし
て決定し、アドミタンスY1(n)及び電流源IG1(n) によ
り等価回路6を完全に同定する。
Further, based on the determined admittance Y 1 (n) and the actually measured current I 1 (n) and voltage V 1 (n), the arithmetic processing unit 22 calculates the value of # 1 from the calculation of the equation (2). determining a current source 10 for focusing the harmonic branch 6 as a current source I G1 (n), the admittance Y 1 (n) and the current source I G1 (n) to identify the equivalent circuit 6 completely.

【0055】そして、周波数f1 ,f2 の中間高調波の
電流が注入される毎に、前記と同様にしてアドミタンス
1(n),電流源IG1(n) が求められ、#1の分枝路6の
着目高調波についての最新の等価回路6がくり返し同定
される。
Each time the current of the intermediate harmonic of the frequencies f 1 and f 2 is injected, the admittance Y 1 (n) and the current source I G1 (n) are obtained in the same manner as described above. The latest equivalent circuit 6 for the target harmonic of the branch 6 is repeatedly identified.

【0056】さらに、その結果は、表示部23に例えば
図1のような等価回路図でモニタ表示されるとともに、
記憶部24に記録情報として保持される。
Further, the result is displayed on the display unit 23 in the form of an equivalent circuit diagram as shown in FIG.
The information is stored in the storage unit 24 as recording information.

【0057】そして、他の分枝路6を測定するときも、
測定対象の分枝路6の高調波計測点bに高調波計測装置
15を設け、この装置15により、同期装置13から通
信ケーブル20を介して伝送された同期信号に基づき、
前記#1の分枝路6の場合と同様にして、着目高調波に
ついてのアドミタンス9,電流源10を決定し、その等
価回路6を同定する。
When measuring the other branch path 6,
A harmonic measurement device 15 is provided at the harmonic measurement point b of the branch 6 to be measured, and based on the synchronization signal transmitted from the synchronization device 13 via the communication cable 20 by this device 15,
As in the case of the branch path # 1 described above, the admittance 9 and the current source 10 for the target harmonic are determined, and the equivalent circuit 6 is identified.

【0058】したがって、電流注入装置11を共通の電
流注入装置として、電流注入装置11と別個の高調波計
測装置15により、高調波注入点aの下位の各分枝路6
それぞれの高調波特性を個別に測定することができる。
Therefore, the current injection device 11 is used as a common current injection device, and each of the lower branches 6 of the harmonic injection point a is provided by the harmonic measurement device 15 separate from the current injection device 11.
Each harmonic characteristic can be measured individually.

【0059】その際、電力系統1に本来は存在しない周
波数f1 ,f2 の中間高調波の電流を注入し、その実測
結果から周波数n×fs(f1 <n×fs<f2 )の着
目高調波についてのアドミタンス9,電流源10を決定
して等価回路6を同定するため、実測に基づいて各分枝
路6の高調波特性を精度よく測定できる。
At this time, a current of an intermediate harmonic of frequencies f 1 and f 2 , which does not originally exist, is injected into the power system 1, and from the measurement result, the frequency n × fs (f 1 <n × fs <f 2 ) Since the admittance 9 and the current source 10 for the target harmonic are determined and the equivalent circuit 6 is identified, the harmonic characteristics of each branch 6 can be accurately measured based on actual measurement.

【0060】また、高調波計測装置15のA/D変換器
19,信号処理装置21,演算処理装置22はマイクロ
コンピュータのソフトウェアで実現することができる。
The A / D converter 19, signal processing device 21, and arithmetic processing device 22 of the harmonic measurement device 15 can be realized by software of a microcomputer.

【0061】そのため、高調波計測装置15は計器用変
圧器16,計器用変流器17を除き、いわゆる携帯型の
パソコン等で形成することができ、測定対象の各分枝路
6の高調波計測点bに容易に持ち運ぶことができる。
Therefore, the harmonic measuring device 15 can be formed by a so-called portable personal computer or the like except for the instrument transformer 16 and the instrument current transformer 17, and the harmonics of each branch 6 to be measured can be formed. It can be easily carried to the measurement point b.

【0062】そして、各分枝路6の一部又は全部につい
て一括して高調波特性を測定するときは、測定対象の各
分枝路6の高調波計測点bにそれぞれ高調波計測装置1
5を設け、測定対象の各分枝路6につき、同時にそれぞ
れの高調波特性を測定すればよい。
When the harmonic characteristic is measured collectively for a part or all of each branch 6, the harmonic measurement device 1 is placed at the harmonic measurement point b of each branch 6 to be measured.
5 may be provided to simultaneously measure the respective harmonic characteristics of each branch 6 to be measured.

【0063】ところで、同期装置13と電流注入装置1
1,高調波計測装置15との間の同期信号の通信手段
は、無線,有線の種々の手段であってよいのは勿論であ
る。
Incidentally, the synchronizer 13 and the current injection device 1
1, of course, the communication means of the synchronization signal with the harmonic measuring device 15 may be various means of wireless and wired.

【0064】また、同期装置13は電力系統1のどの位
置にあってもよく、場合によっては、同期装置13を電
流注入装置11又は高調波計測装置15と一体に形成し
てもよく、この場合は例えば通信ケーブル14又は20
が省ける利点がある。さらに、演算処理装置22の補間
演算は、重み付け平均の演算等であってもよい。
In addition, the synchronizer 13 may be located at any position in the power system 1, and in some cases, the synchronizer 13 may be formed integrally with the current injection device 11 or the harmonic measurement device 15. Is, for example, the communication cable 14 or 20
There is an advantage that can be omitted. Further, the interpolation calculation of the arithmetic processing unit 22 may be a calculation of a weighted average or the like.

【0065】つぎに、高調波注入点a及び高調波計測点
bは、測定目的等にしたがって電力系統1に任意に設定
できるのは勿論である。
Next, the harmonic injection point a and the harmonic measurement point b can be arbitrarily set in the power system 1 according to the purpose of measurement.

【0066】そして、高調波注入点aに複数の上位系統
から供給される場合、高調波計測点bを各上位の分枝路
に個別に設定し、図1の場合と同様の計測、演算を行う
ことにより、図1の各分枝路6の場合と同様、各上位系
統につき、個別に等価回路6と同様の等価回路について
のアドミタンス,電流源を決定し、その等価回路を精度
よく同定することができる。
When the harmonic injection point a is supplied from a plurality of higher systems, the higher harmonic measurement point b is set individually for each higher branch, and the same measurement and calculation as in FIG. 1 are performed. By doing so, the admittance and the current source of the equivalent circuit similar to the equivalent circuit 6 are individually determined for each higher-level system as in the case of each branch path 6 in FIG. 1, and the equivalent circuit is identified with high accuracy. be able to.

【0067】(第2の形態)つぎに、本発明の第2の形
態につき、図2を参照して説明する。図2は各需要家の
高調波特性の測定に適用した場合を示し、この場合、電
力系統(配電系統)1’の配電用変電所25の給電端に
高調波注入点aが設定され、系統端末の測定対象の各需
要家26の受電端が高調波計測点bに設定される。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 shows a case where the present invention is applied to the measurement of the harmonic characteristics of each customer. In this case, a harmonic injection point a is set at the power supply end of the distribution substation 25 of the power system (distribution system) 1 ′, The receiving end of each customer 26 to be measured by the system terminal is set to the harmonic measurement point b.

【0068】なお、図2において、図1と同一符号は同
一もしくは相当するものを示し、27は需要家26の受
電点である。
In FIG. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and reference numeral 27 denotes a power receiving point of the customer 26.

【0069】そして、電流注入装置11から高調波注入
点aに周波数f1 ,f2 の中間高調波の電流が注入され
ると、高調波計測点bに設けた高調波計測装置15によ
り、図1の場合と同様にして、各需要家26における着
目高調波についての等価回路のアドミタンス及び電流源
が決定されてその等価回路が固定される。
When the current of the intermediate harmonic having the frequencies f 1 and f 2 is injected from the current injection device 11 to the harmonic injection point a, the harmonics are measured by the harmonic measurement device 15 provided at the harmonic measurement point b. As in the case of 1, the admittance and current source of the equivalent circuit for the target harmonic in each customer 26 are determined, and the equivalent circuit is fixed.

【0070】この結果から、各需要家26は自家設備が
高調波発生源となっているか否か等を自己診断し、必要
な措置をとること等ができる。
From this result, each customer 26 can make a self-diagnosis as to whether or not the own facility is a source of harmonics and take necessary measures.

【0071】(第3の形態)つぎに、本発明の実施の第
3の形態につき、図3を参照して説明する。図3は最も
上位の母線M1 から各バンクトランスTrを介して下位
の各母線M2 ,…,M3 ,M4 ,…に分枝している電力
系統1”の高調波測定に適用した場合を示す。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. Figure 3 is the highest level of the bus M 1 from the bus M 2 lower through each bank transformers Tr, ..., is applied to the harmonic measurement of M 3, M 4, power system 1 that branches ... binary " Show the case.

【0072】この場合、例えば母線M4 の下位の各下位
系統l1 ,l2 ,l3 ,…の高調波特性を測定する際
は、例えば、母線M3 ,M4 間の測定対象の下位系統l
1 に近いバンクトランスTrの負荷側に高調波注入点a
を設定し、母線M4 と測定対象の下位系統l1 との間の
バンクトランスTrの負荷側に高調波計測点bを設定す
る。
In this case, for example, when measuring the harmonic characteristics of each of the lower systems l 1 , l 2 , l 3 ,... Below the bus M 4 , for example, the measurement target between the buses M 3 , M 4 Subsystem l
Harmonic injection point a on the load side of bank transformer Tr close to 1
Set to set the harmonic measurement point b on the load side of the bank transformer Tr between the busbar M 4 and lower lines l 1 to be measured.

【0073】そして、電流注入装置11から高調波注入
点aに周波数f1 ,f2 の中間高調波の電流を注入し、
高調波計測点bに設けられた高調波計測装置15によ
り、前記図1の場合と同様にして、下位系統l1 の着目
高調波についての等価回路のアドミタンス及び電流を決
定してその等価回路を同定する。
Then, an intermediate harmonic current having frequencies f 1 and f 2 is injected from the current injection device 11 to the harmonic injection point a,
As in the case of FIG. 1, the admittance and current of the equivalent circuit for the target harmonic of the lower system l 1 are determined by the harmonic measurement device 15 provided at the harmonic measurement point b, and the equivalent circuit is determined. Identify.

【0074】なお、母線M4 の複数の下位系統を一括し
て測定するときは、母線M4 と測定対象の各下位系統と
の間のバンクトランスTrそれぞれの負荷側に高調波計
測点bを設定し、各高調波計測点bに高調波計測装置1
5を設ければよく、この場合、電流注入装置11を共用
して各下位系統の高調波特性を一括して測定できる。
When a plurality of sub-systems of the bus M 4 are collectively measured, a harmonic measurement point b is placed on each load side of the bank transformer Tr between the bus M 4 and each sub-system to be measured. Set the harmonic measurement device 1 at each harmonic measurement point b.
5 can be provided, and in this case, the harmonic characteristics of each lower system can be collectively measured using the current injection device 11 in common.

【0075】[0075]

【発明の効果】本発明は、以下に記載する効果を奏す
る。同期装置13の出力に基づき、電流注入装置11か
ら高調波注入点aに、系統基本波に同期したその周波数
fsの非整数倍の系統に本来存在しない周波数f1,f
2 の中間高調波の電流をそれぞれ注入し、また、例えば
高調波注入点aの下位の測定対象の分枝路等に高調波計
測点bを設定し、各計測点bに高調波計測装置15を設
け、この計測装置15により各高調波計測点bの計測電
流,計測電圧を周波数解析してその点での周波数f1
2 の中間高調波それぞれの電流,電圧を検出したた
め、この検出に基づき、測定対象の各分枝路等の周波数
1 ,f 2 の中間高調波についての等価回路のアドミタ
ンスを分枝路等毎に個別に求めることができる。
The present invention has the following effects.
You. Based on the output of the synchronizer 13, the current injection device 11
At the harmonic injection point a, the frequency synchronized with the system fundamental wave
Frequency f which does not originally exist in the system of non-integer multiple of fs1, F
TwoOf each of the intermediate harmonics of
Harmonic meter on the branch, etc. of the measurement object below the harmonic injection point a
Measurement points b are set, and a harmonic measurement device 15 is installed at each measurement point b.
The measuring device 15 measures the electric power at each harmonic measurement point b.
Analysis of current and measured voltage, and frequency f at that point1,
fTwoCurrent and voltage of each intermediate harmonic of
Therefore, based on this detection, the frequency of each branch
f1, F TwoOf the equivalent circuit for the intermediate harmonics
Can be obtained individually for each branch path.

【0076】さらに、周波数f1 ,f2 の中間高調波に
ついての等価回路のアドミタンスを用いた補間演算によ
り、周波数f1 ,f2 の間の着目高調波についての等価
回路のアドミタンスを算出して決定したため、高調波注
入点aの下位の各高調波計測点につき、それらの下位の
着目高調波についての高調波特性を個別に精度よく測定
することができる。
[0076] Further, by interpolation using the admittance of an equivalent circuit of the intermediate harmonics of frequencies f 1, f 2, and calculates the admittance of an equivalent circuit of the interest harmonics between the frequencies f 1, f 2 Since the determination has been made, the harmonic characteristics of the lower harmonics of interest can be individually and accurately measured for each lower harmonic measurement point below the harmonic injection point a.

【0077】したがって、例えば高調波注入点bの下位
の各分枝路或いは各需要家につき、それぞれ着目高調波
についての特性を個別に精度よく測定することができ、
高調波注入点bの上位に各高調波計測点bを設けたとき
も同様の効果を得ることができる。
Therefore, for example, for each branch or each customer below the harmonic injection point b, the characteristic of the harmonic of interest can be individually and accurately measured.
The same effect can be obtained when each harmonic measurement point b is provided above the harmonic injection point b.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1の形態の回路結線図であ
る。
FIG. 1 is a circuit connection diagram according to a first embodiment of the present invention.

【図2】本発明の実施の第2の形態の回路結線図であ
る。
FIG. 2 is a circuit connection diagram according to a second embodiment of the present invention.

【図3】本発明の実施の第3の形態の回路結線図であ
る。
FIG. 3 is a circuit connection diagram according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1’,1” 電力系統 11 電流注入装置 13 同期装置 15 高調波計測装置 a 高調波注入点 b 高調波計測点 1, 1 ', 1 "power system 11 current injection device 13 synchronizer 15 harmonic measurement device a harmonic injection point b harmonic measurement point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 荘治 京都市右京区梅津高畝町47番地 日新電機 株式会社内 (72)発明者 鵜野 克彦 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Nishimura, 47, Umezu Takaune-cho, Ukyo-ku, Kyoto-shi, Nissin Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 系統の高調波注入点に電流注入装置を接
続し、 同期装置の系統基本波に同期した出力に基づき、前記電
流注入装置から前記高調波注入点に測定対象のn次の着
目高調波(周波数n×fs)を挟む系統基本周波数fs
の非整数倍の2周波数f1 ,f2 (f1 <n×fs<f
2 )の電流を中間高調波の電流としてそれぞれ注入し、 系統の前記高調波注入点より下位又は上位の複数の分枝
路等に高調波計測点を設定し、 該各高調波計測点にそれぞれ高調波計測装置を設け、 該各高調波計測装置により前記各高調波計測点それぞれ
の計測電流,計測電圧を前記同期装置の出力に同期して
周波数解析し、 該周波数解析により前記各高調波計測点での前記周波数
1 ,f2 それぞれの電流,電圧を検出して前記各高調
波計測点より下位又は上位の前記周波数f1 ,f2 の中
間高調波についての等価回路のアドミタンスを求め、 該両アドミタンスから前記各高調波計測点それぞれの下
位又は上位の前記着目高調波についての等価回路のアド
ミタンスを補間演算して決定し、前記着目高調波につい
ての高調波特性を測定することを特徴とする電力系統の
高調波測定方法。
1. A current injection device is connected to a harmonic injection point of a system, and based on an output synchronized with a system fundamental wave of a synchronizer, an n-th focus of a measurement object from the current injection device to the harmonic injection point. System fundamental frequency fs sandwiching harmonics (frequency n × fs)
F 1 , f 2 (f 1 <n × fs <f
2 ) Inject the currents respectively as intermediate harmonic currents, set harmonic measurement points on a plurality of branches or the like lower or higher than the harmonic injection point of the system, and respectively set the respective harmonic measurement points. A harmonic measuring device is provided, and the harmonic current is measured by the harmonic measuring devices in synchronization with the output of the synchronizer. Detecting the current and voltage of each of the frequencies f 1 and f 2 at a point to determine the admittance of an equivalent circuit for intermediate harmonics of the frequencies f 1 and f 2 lower or higher than the respective harmonic measurement points; Interpolating and determining the admittance of the equivalent circuit for the lower or upper harmonic of interest of each of the harmonic measurement points from the both admittances, and determining the harmonic characteristics of the harmonic of interest. Harmonic measurement method of the power system characterized by.
JP19780797A 1997-07-07 1997-07-07 Method for measuring harmonic of power system Pending JPH1123629A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19780797A JPH1123629A (en) 1997-07-07 1997-07-07 Method for measuring harmonic of power system
US09/110,997 US6326796B1 (en) 1997-07-07 1998-07-06 Harmonic measuring method and a current injection device for harmonic measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19780797A JPH1123629A (en) 1997-07-07 1997-07-07 Method for measuring harmonic of power system

Publications (1)

Publication Number Publication Date
JPH1123629A true JPH1123629A (en) 1999-01-29

Family

ID=16380683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19780797A Pending JPH1123629A (en) 1997-07-07 1997-07-07 Method for measuring harmonic of power system

Country Status (1)

Country Link
JP (1) JPH1123629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014120A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Instrument for measuring higher harmonics
CN102445606A (en) * 2010-09-30 2012-05-09 上海华建电力设备股份有限公司 Method for optimizing functions of electrical power monitoring terminal
CN110687377A (en) * 2019-10-12 2020-01-14 广东电网有限责任公司 Online monitoring data processing method and device for distributed energy system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014120A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Instrument for measuring higher harmonics
CN102445606A (en) * 2010-09-30 2012-05-09 上海华建电力设备股份有限公司 Method for optimizing functions of electrical power monitoring terminal
CN110687377A (en) * 2019-10-12 2020-01-14 广东电网有限责任公司 Online monitoring data processing method and device for distributed energy system
CN110687377B (en) * 2019-10-12 2021-07-30 广东电网有限责任公司 Online monitoring data processing method and device for distributed energy system

Similar Documents

Publication Publication Date Title
Corsi et al. A real-time voltage instability identification algorithm based on local phasor measurements
US7720620B2 (en) System and method for determining harmonic contributions from non-linear loads without disconnecting any load
JP2015180185A (en) Distribution system analysis using meter data
RU2536772C1 (en) Method and device for determination of distance to place of phase to ground short circuit
US6326796B1 (en) Harmonic measuring method and a current injection device for harmonic measurement
US9423434B2 (en) Method and system for measuring electrical quantity in electrical network
Al-Dabbagh et al. Using instantaneous values for estimating fault locations on series compensated transmission lines
Salor Spectral correction-based method for interharmonics analysis of power signals with fundamental frequency deviation
Reis et al. Influence of instrument transformers and anti-aliasing filters on the performance of fault locators
Mekhamer et al. Fault location in long transmission lines using synchronized phasor measurements from both ends
RU2328004C1 (en) Method for determination of current parameters of power line for arrangement of its u-like adaptive model (variants)
CN106546943B (en) Method and device for measuring error and loss self-test
JP2004184346A (en) Insulation state measuring apparatus
JPH1123629A (en) Method for measuring harmonic of power system
Javaid et al. High pass filter based traveling wave method for fault location in VSC-Interfaced HVDC system
KR20160096364A (en) An Estimation Method of Line Parameter based on Synchrophasor Measurements in Power System
EP3770615A1 (en) Electrical network impedance determination
Salor et al. Mobile monitoring system to take nationwide PQ measurements on electricity transmission systems
Jiao et al. Accurate location of evolving faults on transmission lines using sparse wide area measurements
RU2028634C1 (en) Method of and device for insulation resistance measurement in alternating-current lines incorporating static converters
JPH1123626A (en) Current injector for measuring harmonic
JP2001004685A (en) Method for measuring harmonic characteristics of electric power system
JPH1114674A (en) Method for measuring higher harmonics of power system
JP4040800B2 (en) Single operation detector for distributed power supply
JPH1123624A (en) Method for measuring harmonic in power system