JP2003344463A - Method for detecting frequency fluctuation occurring in electric power system, method for measuring frequency deviation in electric power system, and method for measuring electric power system frequency - Google Patents

Method for detecting frequency fluctuation occurring in electric power system, method for measuring frequency deviation in electric power system, and method for measuring electric power system frequency

Info

Publication number
JP2003344463A
JP2003344463A JP2002158246A JP2002158246A JP2003344463A JP 2003344463 A JP2003344463 A JP 2003344463A JP 2002158246 A JP2002158246 A JP 2002158246A JP 2002158246 A JP2002158246 A JP 2002158246A JP 2003344463 A JP2003344463 A JP 2003344463A
Authority
JP
Japan
Prior art keywords
frequency
phase
power system
deviation
sampling time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002158246A
Other languages
Japanese (ja)
Other versions
JP3805718B2 (en
Inventor
Koichi Nakamura
光一 中村
Hiroyuki Ukai
裕之 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002158246A priority Critical patent/JP3805718B2/en
Publication of JP2003344463A publication Critical patent/JP2003344463A/en
Application granted granted Critical
Publication of JP3805718B2 publication Critical patent/JP3805718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Measuring Phase Differences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring frequency fluctuation and its deviation in an electric power system with high accuracy in an earlier stage than before. <P>SOLUTION: Instantaneous voltage values of an electric power system are measured at sampling time points for a predetermined sampling time length Ts. Then, recursive discrete Fouriertransformation is performed based on the instantaneous voltage values to find recursive voltage phasors. Frequency components about twice as high as the fundamental frequency are removed from the voltage phasors by using a filter. Phase deviation of phase components (ϕl, r) at a certain sampling time point from phase components (ϕl, r-l or ϕl, r+l) at a sampling time point immediately before or after the sampling time point is calculated from the voltage phasors from which the frequency components about twice as high as the fundamental frequency are removed. A time point when the phase deviation is produced is detected as the occurrence of frequency fluctuation. A frequency deviation Δf at a certain sampling time point is measured based on the phase deviation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統の周波数
変動の発生の検出方法、周波数偏差の計測方法及び周波
数の計測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the occurrence of frequency fluctuations in a power system, a method for measuring frequency deviation, and a method for measuring frequency.

【0002】[0002]

【従来の技術】従来、電力系統の周波数検出は、波形の
ゼロクロス間の時間を検出し、その逆数から求める手法
が用いられている[「高速サンプリングを適用した電力
系統用高精度電圧検出方式の検討」電気学会論文集B、
113巻5号、pp553/561(1993)]。し
かしながら、この手法では周波数は1周期または半周期
毎に検出される。近年、パワーエレクトロニクス機器な
どでは、高速な応答性を有する制御系が電力系統分野に
導入されつつある。そのため応答速度に同期した連続的
な周波数変動(周波数変動の発生、周波数偏差、変動し
た周波数)の検出精度の向上は、さらに機器の制御性能
の向上をもたらすことが分かっている。
2. Description of the Related Art Conventionally, a method for detecting the time between zero crossings of a waveform has been used for the frequency detection of a power system, and a method of obtaining the reciprocal of the time is used. Examination "Proceedings of the Institute of Electrical Engineers of Japan B,
113, No. 5, pp 553/561 (1993)]. However, in this method, the frequency is detected every one cycle or half cycle. In recent years, in power electronics devices and the like, control systems having high-speed response are being introduced into the field of power systems. Therefore, it has been known that the improvement of the detection accuracy of continuous frequency fluctuations (frequency fluctuation occurrence, frequency deviation, fluctuated frequency) synchronized with the response speed further improves the control performance of the device.

【0003】従来技術の一手法として、正相分検出式P
LL(Phase Locked Loop)を用いて位相と周波数を求め
る手法が提案されている[「電力系統事故時の異常電圧
に対処したPLLおよび周波数検出法」電気学会論文集
B、118巻9号、pp955/961(199
8)]。この手法は、異常電圧耐性が優れている反面、
演算による無駄時間、フィードバック制御系の遅れなど
が存在する。一方、近年デジタル信号処理技術の応用が
この分野にも積極的に試みられ、DFT(Discrete Four
ier Transform)を用いた位相検出法が提案されている
[「DFT実時間位相検出の誤差評価と補正法」電気学
会論文集B、120巻12号、pp1682/1690
(2000)]。この論文では、DFTの設計周波数に
対する系統周波数の偏差によって生じる位相検出誤差の
評価とその補正法を検討している。しかしながら周波数
自体を検出する手法については議論がない。
As one of the conventional techniques, a positive phase detection type P
A method of obtaining a phase and a frequency by using LL (Phase Locked Loop) has been proposed ["PLL and frequency detection method for coping with abnormal voltage at power system accident", IEEJ Transactions B, Vol. 118, No. 9, pp955. / 961 (199
8)]. Although this method has excellent resistance to abnormal voltage,
There are dead time due to calculation, delay of feedback control system, and the like. On the other hand, in recent years, the application of digital signal processing technology has been actively tried in this field, and DFT (Discrete Four
Phase detection method using (ier Transform) has been proposed
[Error evaluation and correction method of DFT real-time phase detection] IEEJ Transactions B, Volume 120, No. 12, pp1682 / 1690
(2000)]. In this paper, the evaluation of the phase detection error caused by the deviation of the system frequency from the design frequency of the DFT and its correction method are examined. However, there is no discussion about the method of detecting the frequency itself.

【0004】[0004]

【発明が解決しようとする課題】従来のいずれの技術で
も、周波数の変動の発生を早期に且つ高い精度で検出す
ることができない問題がある。また従来の技術では、簡
単に周波数の偏差の検出精度を高めることができない問
題がある。更に従来の技術では、演算が複雑になるた
め、ソフトウエアによる処理が必ずしも容易ではないと
いう問題がある。
However, any of the conventional techniques has a problem that the occurrence of frequency fluctuation cannot be detected early and with high accuracy. Further, the conventional technique has a problem that the detection accuracy of the frequency deviation cannot be easily improved. Further, the conventional technique has a problem that the processing by software is not always easy because the calculation becomes complicated.

【0005】本発明の目的は、早期に周波数変動の発生
を検出できる電力系統周波数変動発生検出方法を提供す
ることにある。
An object of the present invention is to provide a power system frequency fluctuation occurrence detection method capable of detecting the occurrence of frequency fluctuation at an early stage.

【0006】本発明の他の目的は、早期に且つ高い精度
を持って電力系統の周波数偏差を計測できる方法を提供
することにある。
Another object of the present invention is to provide a method capable of measuring the frequency deviation of a power system at an early stage and with high accuracy.

【0007】本発明の更に他の目的は、早期に且つ高い
精度を持って電力系統の周波数を計測できる方法を提供
することにある。
Still another object of the present invention is to provide a method capable of measuring the frequency of a power system early and with high accuracy.

【0008】[0008]

【課題を解決するための手段】本発明では、通常のDF
T(Discrete Fourier Transform)に比べて計算量を大幅
に削減できる再帰的DFTを用いるフェーザ計測法を用
いて、周波数の変動の発生を検出し、また周波数偏差を
計測し、更に周波数を計測する。フェーザ計測法につい
ては、"Improved Control and Protection of Power Sy
stems ThroughSynchronized Phasor Measurement"と題
してControl and Dynamic Systems、Vol.43、pp.335/37
6(1991)に掲載されており、また「DSPとGPSを用
いた高機能電力系統状態量同時計測システム」と題して
高速信号処理応用技術学会誌(電子技術9月号)、3巻
3号、pp20/25(2000)にも掲載されてい
る。
According to the present invention, a normal DF is used.
A phasor measurement method using a recursive DFT that can significantly reduce the amount of calculation compared to T (Discrete Fourier Transform) is used to detect the occurrence of frequency fluctuation, measure the frequency deviation, and further measure the frequency. For phasor measurement, see "Improved Control and Protection of Power Sy".
Stems ThroughSynchronized Phasor Measurement ", Control and Dynamic Systems, Vol.43, pp.335 / 37
6 (1991), and entitled "High-performance Simultaneous Measurement System for State of Power System Using DSP and GPS", Journal of High Speed Signal Processing Applied Technology (Electronic Technology September issue), Vol. 3, No. 3. , Pp 20/25 (2000).

【0009】周波数の計測という観点から見れば、本発
明の特徴は、DFTの設計周波数に対する系統周波数の
偏差によって生じる位相の動揺を再帰的DFTより算出
し、逆算して周波数を求めることにある。そして単相電
力系統であれば、含有する基本波の約2倍の周波数とな
る動揺成分を移動平均フィルタ等のデジタルフィルタに
より除去することで、連続的に周波数検出が実現でき
る。
From the point of view of frequency measurement, the feature of the present invention is that the phase fluctuation caused by the deviation of the system frequency from the design frequency of the DFT is calculated by the recursive DFT and is inversely calculated to obtain the frequency. In the case of a single-phase power system, the frequency component can be continuously detected by removing the fluctuation component having a frequency about twice that of the contained fundamental wave by a digital filter such as a moving average filter.

【0010】具体的には、まず単相電力系統における周
波数(f)が基本周波数(f)からある偏差分だけ変
動したときを周波数変動発生時として検出する電力系統
周波数変動発生検出方法では、次のステップを行う。な
お基本周波数とは、我が国では50Hzまたは60Hz
である。
Specifically, in the power system frequency fluctuation occurrence detection method, first, when the frequency (f) in the single-phase power system fluctuates by a certain deviation from the fundamental frequency (f 0 ) is detected as the frequency fluctuation occurrence time, Take the following steps: The basic frequency is 50Hz or 60Hz in Japan.
Is.

【0011】最初に予め定めたサンプリング時間(T
s)で各サンプリング時刻[r×Ts(rは1以上の正
の整数)]における単相電力系統の電圧瞬時値νrを測
定する。基本周波数の1周期をN回のサンプリング数で
サンプリングすると仮定した場合、サンプリング時間T
sは、Ts=1/(fN)となる。Nが100で基本
周波数が60Hzであれば、Tsは約0.00017秒
である。
First, a predetermined sampling time (T
In s), the voltage instantaneous value νr of the single-phase power system at each sampling time [r × Ts (r is a positive integer of 1 or more)] is measured. Assuming that one cycle of the fundamental frequency is sampled N times, the sampling time T
s becomes Ts = 1 / (f 0 N). If N is 100 and the fundamental frequency is 60 Hz, Ts is about 0.00017 seconds.

【0012】次に、順次測定した電圧瞬時値νに基づい
て再帰的ディスクリート・フーリエ変換を行って再帰的
電圧フェーザを求める。再帰的ディスクリート・フーリ
エ変換で正確な演算を行うためには、周知のように、予
め定めたサンプリング回数分のデータの蓄積が必要であ
り、概念的には1回のサンプリングが行われると蓄積し
た予め定めたサンプリング回数分のデータの最初のサン
プリングデータが捨てられて、新規のサンプリングデー
タが加えられる演算が実行されることになる。
Next, the recursive discrete Fourier transform is performed on the basis of the instantaneous voltage value ν measured sequentially to obtain the recursive voltage phasor. As is well known, in order to perform an accurate calculation by the recursive discrete Fourier transform, it is necessary to accumulate data for a predetermined number of sampling times, and conceptually, it is accumulated when one sampling is performed. The first sampling data of the data for the predetermined number of samplings is discarded, and the operation of adding new sampling data is executed.

【0013】再帰的電圧フェーザには、基本周波数を含
まずに偏差Δf分を含む成分と、基本周波数(f)の
約2倍の周波数成分及び偏差Δfを含んで変動する変動
成分とが含まれる。そこで再帰的電圧フェーザから、移
動平均フィルタ等のフィルタを用いて基本周波数
(f)の約2倍の周波数成分を含む変動成分を除去
し、併せてこのフィルタ処理によって量子化誤差に伴う
ノイズも除去する。
The recursive voltage phasor includes a component that does not include the fundamental frequency but includes the deviation Δf, and a fluctuation component that includes the frequency component that is approximately twice the fundamental frequency (f 0 ) and the deviation Δf. Be done. Therefore, from the recursive voltage phasor, a fluctuation component including a frequency component about twice the fundamental frequency (f 0 ) is removed by using a filter such as a moving average filter, and noise caused by a quantization error is also generated by this filtering process. Remove.

【0014】次に、基本周波数(f)の約2倍の周波
数成分を除去した再帰的電圧フェーザから、あるサンプ
リング時刻における位相成分(φ1,r)とそのサンプリン
グ時刻の直前又は直後のサンプリング時刻における位相
成分(φ1,r-1またはφ1,r+1)とをそれぞれ求め、それら
の差即ち位相偏差を演算により求める。そして位相偏差
が発生したときを周波数変動発生として検出する。前述
のように、再帰的電圧フェーザに基づいてあるアンプリ
ング時刻における偏差を正確に計測するためには、予め
定めサンプリング回数分(好ましくは基本周波数の半周
期または1周期分)のサンプリング値の収集が必要であ
る。しかしながら周波数変動が発生すると、直ちに位相
偏差の演算結果には変動が現れる。したがってこの位相
偏差の発生の有無を位相偏差と予め定めた閾値との比較
として観察すれば、周波数変動の発生時(具体的には時
刻)を早期に検出することができ、従来よりも電力系統
の制御系における応答速度を速めることが可能になる。
Next, from the recursive voltage phasor from which the frequency component of about twice the fundamental frequency (f 0 ) is removed, the phase component (φ1, r) at a certain sampling time and the sampling time immediately before or after the sampling time are obtained. And the phase component (φ1, r-1 or φ1, r + 1) in each of them are calculated, and the difference between them, that is, the phase deviation is calculated. Then, when the phase deviation occurs, it is detected as the frequency variation. As described above, in order to accurately measure the deviation at a certain ampling time based on the recursive voltage phasor, sampling values for a predetermined number of samplings (preferably half cycle or one cycle of the fundamental frequency) are collected. is necessary. However, when the frequency fluctuation occurs, the fluctuation immediately appears in the calculation result of the phase deviation. Therefore, by observing the presence / absence of the occurrence of this phase deviation as a comparison between the phase deviation and a predetermined threshold value, it is possible to detect the occurrence of frequency fluctuation (specifically, the time) earlier, and the electric power system It is possible to speed up the response speed in the control system.

【0015】基本周波数(f)からの偏差Δfを計測
するためには、前述の位相偏差を利用すればよい。具体
的には、[(φ1,r)−(φ1,r-1またはφ1,r+1)]/2π
Tsの演算を実行することにより、偏差を求めることが
できる。なお前述の通り、再帰的ディスクリート・フー
リエ変換で正確な演算を行うためには、予め定めたサン
プリング回数分のデータの蓄積が必要であるので、実際
にはこの予め定めたサンプリング回数分のデータの蓄積
後の演算結果を用いる。
In order to measure the deviation Δf from the fundamental frequency (f 0 ), the above-mentioned phase deviation may be used. Specifically, [(φ1, r) − (φ1, r-1 or φ1, r + 1)] / 2π
The deviation can be obtained by executing the calculation of Ts. As described above, in order to perform an accurate calculation by the recursive discrete Fourier transform, it is necessary to store the data for the predetermined number of samplings, so in reality, the data for the predetermined number of samplings is stored. The calculation result after accumulation is used.

【0016】更に電力系統の周波数を求める場合には、
前述のようにして求めた偏差Δfを基本周波数fに加
算すればよい。
Further, when obtaining the frequency of the power system,
The deviation Δf obtained as described above may be added to the fundamental frequency f 0 .

【0017】三相電力系統における周波数変動の発生、
位相偏差及び周波数の計測を行う場合には、予め定めた
サンプリング時間(Ts)で各サンプリング時刻[r×
Ts(rは1以上の正の整数)]における前記三相電力
系統の各相の電圧瞬時値をそれぞれ測定し、その各相の
電圧瞬時値に基づいて再帰的ディスクリート・フーリエ
変換を行って各相の再帰的電圧フェーザを求め、各相の
再帰的電圧フェーザを用いて対称座標法により正相電圧
フェーザを求める。そしてこの正相電圧フェーザから、
あるサンプリング時刻における位相成分とそのサンプリ
ング時刻の直前又は直後のサンプリング時刻における位
相成分との位相偏差を演算する。正相電圧フェーザの演
算過程において、偏差Δfを含んで変動する変動成分が
互いに打ち消されてしまうので、三相電力系統における
周波数変動の発生、位相偏差及び周波数の計測を行う場
合には、原理的には移動平均フィルタ等によるフィルタ
処理は不要である。
Occurrence of frequency fluctuations in the three-phase power system,
When measuring the phase deviation and the frequency, at each sampling time [r ×
Ts (r is a positive integer of 1 or more)], the voltage instantaneous value of each phase of the three-phase power system is measured, and the recursive discrete Fourier transform is performed based on the voltage instantaneous value of each phase. The phase recursive voltage phasor is obtained, and the positive phase voltage phasor is obtained by the symmetric coordinate method using the recursive voltage phasor of each phase. And from this positive phase voltage phasor,
The phase deviation between the phase component at a certain sampling time and the phase component at the sampling time immediately before or after the sampling time is calculated. In the calculation process of the positive phase voltage phasor, the fluctuation components including the deviation Δf cancel each other out. Therefore, when the frequency fluctuation is generated in the three-phase power system and the phase deviation and the frequency are measured, it is theoretically necessary. Does not require a filtering process such as a moving average filter.

【0018】[0018]

【発明の実施の形態】以下図面を参照して本発明の方法
の実施の形態について説明する。図1は、単相電力系統
における周波数(f)が基本周波数(f)からある偏
差分だけ変動したときを周波数変動発生時として検出す
る本発明の電力系統周波数変動発生検出方法を実施する
場合の実施の形態のステップを図示したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method of the present invention will be described below with reference to the drawings. FIG. 1 shows a case in which the power system frequency fluctuation occurrence detection method of the present invention is performed, in which the frequency fluctuation occurrence detection method of the present invention detects when the frequency (f) in the single-phase power system fluctuates from the basic frequency (f 0 ) by a certain deviation. 7 illustrates steps of the embodiment.

【0019】この実施の形態では、再帰的ディスクリー
ト・フーリエ変換により、電圧瞬時値νに基づいて再帰
的ディスクリート・フーリエ変換を行って再帰的電圧フ
ェーザ(ベクトルとして表現されるXr)を求める。こ
こでまず再帰的電圧フェーザを求める場合には、演算回
数が少なくて済むことを説明する。まず1周期分の電圧
瞬時値νをディスクリート・フーリエ変換すると、サン
プリング時刻[r×Ts(rはサンプリングの位置を示
す数で1以上の正の整数)]における電圧フェーザは下
記の(1)式に従って求めることができる。
In this embodiment, the recursive discrete Fourier transform is performed on the basis of the voltage instantaneous value ν to obtain the recursive voltage phasor (Xr represented as a vector). First, it will be explained that when the recursive voltage phasor is obtained, the number of calculations is small. First, when the voltage instantaneous value ν for one cycle is subjected to the discrete Fourier transform, the voltage phasor at the sampling time [r × Ts (r is a positive integer greater than or equal to 1 indicating the sampling position)] is expressed by the following equation (1). Can be asked according to.

【0020】[0020]

【数1】 上記(1)式において、fは設計周波数または基本周
波数であり、我が国では50Hzまたは60Hzであ
る。またTsはサンプリング時間であり、N(=1/
(fTs)は基本周波数の1周期分のサンプリング数
である。この電圧フェーザを用いて表現される電圧瞬時
値νを再帰的ディスクリート・フーリエ変換して得られ
る再帰的電圧フェーザ(ベクトルとして表現されるX
r)は、下記(2)式の通りである。
[Equation 1] In the above formula (1), f 0 is a design frequency or a fundamental frequency, which is 50 Hz or 60 Hz in Japan. Further, Ts is a sampling time, and N (= 1/1 /
(F 0 Ts) is the number of samplings for one cycle of the fundamental frequency. A recursive voltage phasor (X represented as a vector) obtained by recursively discrete Fourier transforming an instantaneous voltage value ν represented using this voltage phasor.
r) is as in the following expression (2).

【0021】[0021]

【数2】 上記(2)式に上記(1)式を代入して、時刻(r+
1)Tsにおける再帰的電圧フェーザを求めると下記
(3)式のように表すことができる。
[Equation 2] Substituting the equation (1) into the equation (2), the time (r +
1) When the recursive voltage phasor at Ts is obtained, it can be expressed by the following equation (3).

【0022】[0022]

【数3】 上記(1)式と(3)式とを対比すると分かるように、
上記(1)式によりディスクリート・フーリエ変換を用
いて電圧フェーザを求める場合には、実部及び虚部の積
和演算回数が(4N+1)回必要であるのに対して、上
記(3)式により再帰的ディスクリート・フーリエ変換
を用いて再帰的電圧フェーザを求める場合には、実部及
び虚部の積和演算回数が6回となり、大幅に演算回数が
減る。そのため再帰的ディスクリート・フーリエ変換を
用いると、ソフトウエアを用いて演算する場合の演算処
理が大幅に簡単になり、1つの演算プロセスでの処理が
可能になる。再帰的ディスクリート・フーリエ変換で正
確な演算を行うためには、周知のように、予め定めたサ
ンプリング回数分(半周期分、一周期分等)のデータの
蓄積が必要であり、概念的には1回のサンプリングが行
われると蓄積した予め定めたサンプリング回数分のデー
タの最初のサンプリングデータが捨てられて、新規のサ
ンプリングデータが加えられる演算が実行されることに
なる。これは(3)式で見ると、虚部中のνr+1が、
時刻(r+1)Tsにおける電圧瞬時値(最新のサンプ
リング値)であり、νr−N+1がN+1回前のサンプ
リングで取得した電圧瞬時値であり、再帰的ディスクリ
ート・フーリエ変換では、電圧瞬時値(νr+1とν
r−N+1)の加減算を行っていることから理解でき
る。
[Equation 3] As can be seen by comparing the above equations (1) and (3),
When the voltage phasor is obtained by using the discrete Fourier transform according to the above equation (1), the number of product-sum operations of the real part and the imaginary part needs to be (4N + 1) times, while the above equation (3) is used. When the recursive discrete phasor transform is used to obtain the recursive voltage phasor, the number of product-sum operations for the real part and the imaginary part is 6, which is a significant reduction in the number of operations. Therefore, when the recursive discrete Fourier transform is used, the arithmetic processing in the case of using software is greatly simplified, and the processing can be performed in one arithmetic process. As is well known, in order to perform an accurate calculation by the recursive discrete Fourier transform, it is necessary to accumulate data for a predetermined number of sampling times (half cycle, one cycle, etc.), and conceptually When sampling is performed once, the first sampling data of the accumulated number of sampling times of data is discarded, and an operation of adding new sampling data is executed. This is seen from equation (3), where ν r + 1 in the imaginary part is
It is the voltage instantaneous value (latest sampling value) at time (r + 1) Ts, and ν r−N + 1 is the voltage instantaneous value acquired in the sampling N + 1 times before, and in the recursive discrete Fourier transform, the voltage instantaneous value (ν r + 1 and ν
This can be understood from the fact that r-N + 1 ) is added and subtracted.

【0023】そこで本実施の形態では、予め定めたサン
プリング時間(Ts)で各サンプリング時刻[r×Ts
(rは1以上の正の整数)]における単相電力系統の電
圧瞬時値νrを測定し、順次測定した電圧瞬時値νrに
基づいて再帰的ディスクリート・フーリエ変換を行って
再帰的電圧フェーザ(ベクトルと表されるXr)を求め
る。
Therefore, in this embodiment, each sampling time [r × Ts] is set at a predetermined sampling time (Ts).
(R is a positive integer greater than or equal to 1)], the voltage instantaneous value νr of the single-phase power system is measured, and the recursive discrete Fourier transform is performed based on the sequentially measured voltage instantaneous value νr to calculate the recursive voltage phasor (vector). Xr) represented by

【0024】電圧瞬時値νrは下記(4)式のように表
される。
The instantaneous voltage value νr is expressed by the following equation (4).

【0025】[0025]

【数4】 上記(4)式において、Vは振幅であり、φは初期位
相であり、fが入力電圧波形の周波数である。入力電圧
波形の周波数fが、基本周波数fから偏差Δfだけ変
動した場合、再帰的電圧フェーザ(ベクトルとして表さ
れるXr)は、上記(1)式と(2)式とを用いテーラ
展開を行うと、下記(5)式のように変換され、最終的
には基本周波数を含まずに偏差Δf分を含む成分と、基
本周波数(f)の約2倍の周波数成分及び偏差Δfを
含んで変動する変動成分とからなる2つのベクトルの和
として表される。なお(4)式が、(5)式の最初の式
におけるνk+r−Nに代入されている。ただし(5)
式における振幅成分B1及びB2、位相成分φ1、r
びφ2、rは下記の(6)に示すとおりである。
[Equation 4] In the equation (4), V is the amplitude, φ 0 is the initial phase, and f is the frequency of the input voltage waveform. When the frequency f of the input voltage waveform fluctuates from the fundamental frequency f 0 by the deviation Δf, the recursive voltage phasor (Xr represented as a vector) is obtained by the Taylor expansion using the above equations (1) and (2). When it is performed, it is converted as shown in the following equation (5), and finally, it includes a component that does not include the fundamental frequency but includes the deviation Δf, a frequency component that is approximately twice the fundamental frequency (f 0 ), and the deviation Δf. It is expressed as the sum of two vectors consisting of a fluctuation component that fluctuates in. The expression (4) is substituted for ν k + r−N in the first expression of the expression (5). However (5)
The amplitude components B1 and B2 and the phase components φ 1, r and φ 2, r in the equation are as shown in (6) below.

【0026】[0026]

【数5】 [Equation 5]

【数6】 また上記(5)式を最終的な2つのベクトルの和として
表現するために、下記(7)式の等比数列を用いてい
る。
[Equation 6] Further, in order to express the above equation (5) as the final sum of two vectors, the geometric progression of the following equation (7) is used.

【0027】[0027]

【数7】 次に、振幅成分B1及びB2並びに位相成分φ1、r
びφ2、rについて考える。周波数偏差Δfを±5Hz
以内にとり、(6)式でB1、B2を求めた結果を図2に
示す。図2から分かるようにB1≒1.0、B2≒0.
0となっており、これは再帰的電圧フェーザの実効値が
V/√2であることを示す。さらに、位相成分φ1、r
及びφ2、rは(6)式にあるように、時刻rTsに対し
て、それぞれ2πΔfと、2π(2f+Δf)の比例
係数を有していることがわかる。特に、2π(2f
Δf)は、基本周波数と一緒に変動する変動成分であ
る。B2が殆ど0であるとしても、この変動成分は大き
な影響を示す。そこでこのような変動成分を除去するた
めに、この実施の形態では、2fのカットオフ周波数
の(またはN/2の幅をもつ)移動平均フィルタを用い
て基本周波数(f)の約2倍の周波数成分即ち(2f
+Δf)の周波数成分を除去する。そしてこのフィル
タ処理によって量子化誤差に伴うノイズも除去される。
[Equation 7] Next, consider the amplitude components B1 and B2 and the phase components φ 1, r and φ 2, r . Frequency deviation Δf is ± 5 Hz
The results of calculating B1 and B2 by the equation (6) are shown in FIG. As can be seen from FIG. 2, B1≈1.0, B2≈0.
It is 0, which means that the effective value of the recursive voltage phasor is V / √2. Furthermore, the phase component φ 1, r
As shown in the equation (6) , φ 2 and r have a proportional coefficient of 2πΔf and a proportional coefficient of 2π (2f 0 + Δf) with respect to time rTs. In particular, 2π (2f 0 +
Δf) is a fluctuation component that fluctuates together with the fundamental frequency. Even if B2 is almost 0, this fluctuation component has a great influence. Therefore, in order to remove such a fluctuation component, in this embodiment, a moving average filter having a cutoff frequency of 2f 0 (or having a width of N / 2) is used to obtain about 2 of the fundamental frequency (f 0 ). Double frequency component, ie (2f
0 + Δf) frequency components are removed. Then, the noise associated with the quantization error is removed by this filtering process.

【0028】その結果、再帰的電圧フェーザは、下記
(8)式によって表現することができる。
As a result, the recursive voltage phasor can be expressed by the following equation (8).

【0029】[0029]

【数8】 フィルタ処理を行って求めた再帰的電圧フェーザの値を
上記(8)式に代入して逆算すれば、位相成分(φ1,r)
を求めることができる。このようにして再帰的電圧フェ
ーザからあるサンプリング時刻における位相成分(φ1,
r)とそのサンプリング時刻の直前又は直後のサンプリン
グ時刻における位相成分(φ1,r-1またはφ1,r+1)とをそ
れぞれ求め、それらの差即ち位相偏差を演算により求
め、(9)式の演算を実行すれば、周波数の偏差Δfを
求めることができる。
[Equation 8] By substituting the recursive voltage phasor value obtained by performing the filtering process into the above equation (8), the phase component (φ1, r)
Can be asked. Thus, from the recursive voltage phasor, the phase component (φ1,
r) and the phase component (φ1, r-1 or φ1, r + 1) at the sampling time immediately before or after the sampling time, respectively, and the difference between them, that is, the phase deviation is calculated, and the expression (9) By executing the calculation, the frequency deviation Δf can be obtained.

【0030】[0030]

【数9】 図3は、時刻0.033秒の時点で周波数が60Hzか
らステップ状に0.1Hz変動したときの時間と周波数
偏差Δfの関係を示すものである。図3中のデータ曲線
Aはフィルタ処理を行わない場合[(5)式で演算した
場合]の周波数偏差Δfを示しており、振動誤差を含ん
でいる。またデータ曲線Bは本実施の形態のようにフィ
ルタ処理を行った場合の周波数偏差Δfを示している。
この図から分かるように、周波数変動が発生すると、1
周期である約0.017秒を経過する前に、周波数偏差
が発生する。変動後の定常状態では、フィルタにより最
大誤差率は100%程度から0.2%以下まで低減され
ている。前述のように、再帰的電圧フェーザに基づいて
あるサンプリング時刻における偏差を正確に計測するた
めには(この例では0.1Hzの周波数偏差を計測する
ためには)、予め定めたサンプリング回数分(この例で
は1.5周期分即ち150回のサンプリング)のサンプ
リング値の収集が必要である。しかしながら時刻0.0
33秒の周波数変動が発生すると、直ちに位相偏差の演
算結果には変動が現れる。したがってこの位相偏差また
は周波数偏差の発生の有無を、位相偏差または周波数偏
差と予め定めた閾値とを比較して観察していれば、周波
数変動の発生時(具体的には時刻)を早期に検出するこ
とができる。したがって本実施の形態の計測方法を用い
れば、電力系統の制御系における応答速度を速めること
が可能になる。電力系統の周波数を求める場合には、前
述のようにして求めた偏差Δfを基本周波数fに加算
すればよい。
[Equation 9] FIG. 3 shows the relationship between the time and the frequency deviation Δf when the frequency fluctuates from 60 Hz by 0.1 Hz at the time of 0.033 seconds. A data curve A in FIG. 3 shows the frequency deviation Δf when the filter processing is not performed [when the calculation is performed by the equation (5)], and includes a vibration error. Further, the data curve B shows the frequency deviation Δf when the filter processing is performed as in the present embodiment.
As can be seen from this figure, when frequency fluctuations occur, 1
The frequency deviation occurs before the period of about 0.017 seconds elapses. In the steady state after the fluctuation, the maximum error rate is reduced from about 100% to 0.2% or less by the filter. As described above, in order to accurately measure the deviation at a certain sampling time based on the recursive voltage phasor (in this example, to measure the frequency deviation of 0.1 Hz), a predetermined number of sampling times ( In this example, it is necessary to collect sampling values for 1.5 cycles, that is, 150 samplings. However at time 0.0
When the frequency fluctuation of 33 seconds occurs, the fluctuation immediately appears in the calculation result of the phase deviation. Therefore, if the occurrence of this phase deviation or frequency deviation is observed by comparing the phase deviation or frequency deviation with a predetermined threshold value, the occurrence of frequency fluctuation (specifically time) can be detected early. can do. Therefore, by using the measuring method of the present embodiment, the response speed in the control system of the power system can be increased. When obtaining the frequency of the electric power system, the deviation Δf obtained as described above may be added to the fundamental frequency f 0 .

【0031】図4は、三相電力系統における周波数変動
の発生、位相偏差及び周波数の計測を行う場合の流れを
示す図である。この場合には、予め定めたサンプリング
時間(Ts)で各サンプリング時刻[r×Ts(rは1
以上の正の整数)]における三相電力系統の各相の電圧
瞬時値をそれぞれ測定し、その各相の電圧瞬時値に基づ
いて再帰的ディスクリート・フーリエ変換を行って各相
の再帰的電圧フェーザを求め、各相の再帰的電圧フェー
ザを用いて対称座標法により正相電圧フェーザを求め
る。三相平衡時には各相の再帰的電圧フェーザ(ベクト
ルで表されるXa,r、Xb,r、Xc,r)の位相は(2/
3)πずつの差をもち、三相対称座標変換による正相分
即ち正相電圧フェーザ(ベクトルとして表示されるXp
r)は下記の(10)式のようになる。
FIG. 4 is a diagram showing a flow in the case of generating a frequency fluctuation, measuring a phase deviation and a frequency in a three-phase power system. In this case, each sampling time [r × Ts (r is 1
The above positive integers]] are used to measure the voltage instantaneous value of each phase of the three-phase power system, and the recursive discrete Fourier transform is performed based on the voltage instantaneous value of each phase to calculate the recursive voltage phasor of each phase. Then, the positive phase voltage phasor is obtained by the symmetrical coordinate method using the recursive voltage phasor of each phase. At the time of three-phase equilibrium, the phase of the recursive voltage phasor (Xa, r, Xb, r, Xc, r represented by a vector) of each phase is (2 /
3) Positive phase component due to three-phase symmetric coordinate transformation, that is, positive phase voltage phasor (Xp displayed as a vector with a difference of π
r) is expressed by the following equation (10).

【0032】[0032]

【数10】 上記式(10)式から分かるように、正相電圧フェーザ
の演算過程において、偏差Δfを含んで変動する変動成
分が互いに打ち消されてしまうので、三相電力系統にお
ける周波数変動の発生、位相偏差及び周波数の計測を行
う場合には、原理的には移動平均フィルタ等によるフィ
ルタ処理は不要である。(10)式以降の処理は、前述
の式(9)を用いればよい。
[Equation 10] As can be seen from the above formula (10), in the calculation process of the positive phase voltage phasor, the fluctuation components that fluctuate including the deviation Δf cancel each other out, so that the occurrence of frequency fluctuations, the phase deviation and the phase deviation in the three-phase power system When measuring the frequency, in principle, filter processing such as a moving average filter is unnecessary. The processing after the equation (10) may use the above equation (9).

【0033】図3に、正相電圧フェーザを用いた場合の
周波数偏差をデータ曲線Cとして示した。ここでは、時
刻0.033秒において60.0Hzから60.1Hz
にステップ状に変動する三相平衡電圧を用いた。N=1
00である。(10)式の正相分電圧を用いると、周波
数偏差はランプ状に変化しており、1周期で正確な周波
数偏差Δfを検出することができる。
In FIG. 3, the frequency deviation when the positive phase voltage phasor is used is shown as a data curve C. Here, 60.0 Hz to 60.1 Hz at time 0.033 seconds
A three-phase equilibrium voltage that fluctuates stepwise was used. N = 1
00. When the positive phase component voltage of the equation (10) is used, the frequency deviation changes like a ramp, and the accurate frequency deviation Δf can be detected in one cycle.

【0034】周波数変動の検出においては、変動時刻の
検出、定常までの整定時間、検出精度が重要となる。周
波数偏差の定常値の正確な検出には少なくとも変動開始
後1周期を待たなければならない。本実施の形態では、
1周期分の瞬時値をディスクリート・フーリエ変換によ
り連続的に積分平均化するため、図3のデータ曲線C
(正相分)のように、変動時刻の検出と整定時間に関し
ては理想的な特性を持つ。ただし、単相の解析では、前
述の通り、振動除去のフィルタが必要となり、半周期の
遅れを要する。また、精度に関しては、ディスクリート
・フーリエ変換が本来有している高周波遮断特性[「D
SPとGPSを用いた高機能電力系統状態量同時計測シ
ステム」と題して高速信号処理応用技術学会誌(電子技
術9月号)3巻3号、pp20/25(2000)を参
照]により、高調波や計測ノイズに対して高いS/N比
を持つ。
In detecting frequency fluctuations, detection of fluctuation time, settling time until steady state, and detection accuracy are important. In order to accurately detect the steady value of the frequency deviation, it is necessary to wait at least one cycle after the start of fluctuation. In this embodiment,
Since the instantaneous value for one cycle is continuously integrated and averaged by the discrete Fourier transform, the data curve C in FIG.
As in the case of (normal phase), it has ideal characteristics regarding the detection of the fluctuation time and the settling time. However, in the single-phase analysis, as described above, a filter for eliminating vibration is required, and a half cycle delay is required. Regarding accuracy, the high frequency cutoff characteristic originally possessed by the discrete Fourier transform [[D
High-performance power system state quantity simultaneous measurement system using SP and GPS ", High-speed Signal Processing Applied Technology Journal (September of Electronic Technology, Vol. 3, No. 3, pp 20/25 (2000)] Has a high S / N ratio against waves and measurement noise.

【0035】[0035]

【発明の効果】本発明によれば、従来よりも早期に(例
えば100マイクロ秒という極めて短い時間で)電力系
統の周波数変動の発生を検出することができ、しかも電
力系統の周波数偏差及び周波数を高い精度を持って計測
することができる。また本発明の方法を用いると、1つ
のデジタルプロセッサを用いて完全なソフトウエア処理
により計測を行うことが可能になる利点がある。
According to the present invention, the occurrence of frequency fluctuations in the power system can be detected earlier (eg, in an extremely short time of 100 microseconds), and the frequency deviation and frequency of the power system can be detected. It is possible to measure with high accuracy. The method of the present invention also has the advantage that the measurement can be performed by a complete software process using one digital processor.

【図面の簡単な説明】[Brief description of drawings]

【図1】単相電力系統における周波数が基本周波数から
ある偏差分だけ変動したときを周波数変動発生時として
検出する本発明の電力系統周波数変動発生検出方法を実
施する場合の実施の形態のステップを示す図である。
FIG. 1 shows steps of an embodiment for carrying out a power system frequency fluctuation occurrence detection method of the present invention, which detects when a frequency in a single-phase power system fluctuates by a certain deviation as a frequency fluctuation occurrence time. FIG.

【図2】周波数偏差Δfを±5Hz以内にとり、(6)
式でB1、B2を求めた結果を示す図である。
[FIG. 2] The frequency deviation Δf is set within ± 5 Hz, and (6)
It is a figure which shows the result of having calculated | required B1 and B2 by a formula.

【図3】時刻0.033秒の時点で周波数が60Hzか
らステップ状に0.1Hz変動したときの時間と周波数
偏差Δfの関係を示すものである。
FIG. 3 shows a relationship between time and frequency deviation Δf when the frequency fluctuates from 60 Hz by 0.1 Hz at a time of 0.033 seconds.

【図4】三相電力系統における周波数変動の発生と位相
偏差の計測を行う場合の流れを示す図である。
FIG. 4 is a diagram showing a flow in the case of generating a frequency fluctuation and measuring a phase deviation in a three-phase power system.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 単相電力系統における周波数(f)が基
本周波数(f)からある偏差分だけ変動したときを周
波数変動発生時として検出する電力系統周波数変動発生
検出方法であって、 予め定めたサンプリング時間(Ts)で各サンプリング
時刻[r×Ts(rは1以上の正の整数)]における単
相電力系統の電圧瞬時値νrを測定し、 その電圧瞬時値νrに基づいて再帰的ディスクリート・
フーリエ変換を行って再帰的電圧フェーザを求め、 前記再帰的電圧フェーザからデジタルフィルタを用いて
前記基本周波数(f)の約2倍の周波数成分を除去
し、 前記基本周波数(f)の約2倍の周波数成分を除去し
た前記再帰的電圧フェーザからあるサンプリング時刻に
おける位相成分(φ1,r)とそのサンプリング時刻の直前
又は直後のサンプリング時刻における位相成分(φ1,r-1
またはφ1,r+1)との位相偏差を演算し、 前記位相偏差が発生したときを前記周波数変動発生とし
て検出することを特徴とする電力系統周波数変動発生検
出方法。
1. A power system frequency fluctuation occurrence detection method for detecting when the frequency (f) in a single-phase power system fluctuates by a certain deviation from the fundamental frequency (f 0 ) as the frequency fluctuation occurrence time, which is predetermined. The instantaneous voltage value νr of the single-phase power system at each sampling time [r × Ts (r is a positive integer greater than or equal to 1)] at each sampling time (Ts) is measured, and the recursive discrete value is calculated based on the instantaneous voltage value νr.・
Calculated recursively voltage phasor performing a Fourier transform, the recursive from the voltage phasor using a digital filter to remove the approximately 2 times the frequency component of the fundamental frequency (f 0), about the fundamental frequency (f 0) From the recursive voltage phasor from which the double frequency component is removed, the phase component (φ1, r) at a certain sampling time and the phase component (φ1, r-1 at the sampling time immediately before or after the sampling time.
Or φ1, r + 1) and a phase deviation is calculated, and when the phase deviation occurs, it is detected as the frequency fluctuation occurrence.
【請求項2】 単相電力系統における周波数(f)が基
本周波数(f)からある偏差Δfだけ変動したことを
計測する電力系統周波数偏差計測方法であって、 予め定めたサンプリング時間(Ts)で各サンプリング
時刻[r×Ts(rは1以上の正の整数)]における単
相電力系統の電圧瞬時値νrを測定し、 その電圧瞬時値νrに基づいて再帰的ディスクリート・
フーリエ変換を行って再帰的電圧フェーザを求め、 前記再帰的電圧フェーザからフィルタを用いて前記基本
周波数(f)の約2倍の周波数成分を除去し、 前記基本周波数(f)の約2倍の周波数成分を除去し
た前記再帰的電圧フェーザからあるサンプリング時刻に
おける位相成分(φ1,r)とそのサンプリング時刻の直前
又は直後のサンプリング時刻における位相成分(φ1,r-1
またはφ1,r+1)との位相偏差を演算し、 前記位相偏差に基づいて前記あるサンプリング時刻にお
ける前記周波数の前記偏差Δfを計測することを特徴と
する電力系統周波数偏差計測方法。
2. A power system frequency deviation measuring method for measuring that a frequency (f) in a single-phase power system fluctuates by a certain deviation Δf from a fundamental frequency (f 0 ), and a predetermined sampling time (Ts) Then, the instantaneous voltage value νr of the single-phase power system at each sampling time [r × Ts (r is a positive integer greater than or equal to 1)] is measured, and the recursive discrete value is calculated based on the instantaneous voltage value νr.
Calculated recursively voltage phasor performing a Fourier transform, using a filter from the recursive voltage phasor removing the twice frequency component of the fundamental frequency (f 0), about 2 of the fundamental frequency (f 0) From the recursive voltage phasor with doubled frequency component removed, the phase component (φ1, r) at a certain sampling time and the phase component (φ1, r-1 at the sampling time immediately before or after the sampling time
Or φ1, r + 1), and a deviation Δf of the frequency at the certain sampling time is measured based on the phase deviation.
【請求項3】 請求項2の方法により求めた前記偏差Δ
fに基づいて、前記電力系統の周波数を計測することを
特徴とする電力系統周波数計測方法。
3. The deviation Δ obtained by the method of claim 2.
A power system frequency measuring method comprising measuring the frequency of the power system based on f.
【請求項4】 三相電力系統における周波数(f)が基
本周波数(f)からある偏差分だけ変動したときを周
波数変動発生として検出する電力系統周波数変動発生検
出方法であって、 予め定めたサンプリング時間(Ts)で各サンプリング
時刻[r×Ts(rは1以上の正の整数)]における前
記三相電力系統の各相の電圧瞬時値をそれぞれ測定し、 その各相の電圧瞬時値に基づいて再帰的ディスクリート
・フーリエ変換を行って各相の再帰的電圧フェーザを求
め、 前記各相の再帰的電圧フェーザを用いて対称座標法によ
り正相電圧フェーザを求め、 前記正相電圧フェーザからあるサンプリング時刻におけ
る位相成分とそのサンプリング時刻の直前又は直後のサ
ンプリング時刻における位相成分との位相偏差を演算
し、 前記位相偏差が発生したときを前記周波数変動発生とし
て検出することを特徴とする電力系統周波数変動発生検
出方法。
4. A power system frequency fluctuation occurrence detection method for detecting when a frequency (f) in a three-phase power system fluctuates by a certain deviation from a fundamental frequency (f 0 ) as a frequency fluctuation occurrence, which is predetermined. At each sampling time [r × Ts (r is a positive integer of 1 or more)] at each sampling time (Ts), the voltage instantaneous value of each phase of the three-phase power system is measured, and the voltage instantaneous value of each phase is obtained. Based on the recursive discrete Fourier transform to obtain the recursive voltage phasor of each phase, the recursive voltage phasor of each phase is used to obtain the positive phase phasor by the symmetrical coordinate method. The phase deviation between the phase component at the sampling time and the phase component at the sampling time immediately before or after the sampling time is calculated to generate the phase deviation. Power system frequency change occurrence detection method characterized by detecting, as the frequency variation occurs when the.
【請求項5】 三相電力系統における周波数(f)が基
本周波数(f)からある偏差Δfだけ変動したことを
計測する電力系統周波数偏差計測方法であって、 予め定めたサンプリング時間(Ts)で各サンプリング
時刻[r×Ts(rは1以上の正の整数)]における前
記三相電力系統の各相の電圧瞬時値をそれぞれ測定し、 その各相の電圧瞬時値に基づいて再帰的ディスクリート
・フーリエ変換を行って各相の再帰的電圧フェーザを求
め、 前記各相の再帰的電圧フェーザを用いて対称座標法によ
り正相電圧フェーザを求め、 前記正相電圧フェーザからあるサンプリング時刻におけ
る位相成分とそのサンプリング時刻の直前又は直後のサ
ンプリング時刻における位相成分との位相偏差を演算
し、 前記位相偏差に基づいて前記周波数の前記偏差Δfを計
測することを特徴とする電力系統周波数偏差計測方法。
5. A power system frequency deviation measuring method for measuring that a frequency (f) in a three-phase power system has fluctuated by a certain deviation Δf from a fundamental frequency (f 0 ), and a predetermined sampling time (Ts) At each sampling time [r × Ts (r is a positive integer of 1 or more)], the instantaneous voltage value of each phase of the three-phase power system is measured, and the recursive discrete value is calculated based on the instantaneous voltage value of each phase. Obtaining the recursive voltage phasor of each phase by performing Fourier transform, obtaining the positive phase voltage phasor by the symmetrical coordinate method using the recursive voltage phasor of each phase, the phase component at a certain sampling time from the positive phase phasor And a phase deviation between the phase component at the sampling time immediately before or after the sampling time, and based on the phase deviation, the deviation of the frequency. Power system frequency deviation measuring method characterized by measuring the Delta] f.
【請求項6】 請求項5の方法により求めた前記偏差Δ
fに基づいて、前記電力系統の周波数を計測することを
特徴とする電力系統周波数計測方法。
6. The deviation Δ obtained by the method according to claim 5.
A power system frequency measuring method comprising measuring the frequency of the power system based on f.
JP2002158246A 2002-05-30 2002-05-30 Power system frequency fluctuation occurrence detection method, power system frequency deviation measurement method, and power system frequency measurement method Expired - Fee Related JP3805718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158246A JP3805718B2 (en) 2002-05-30 2002-05-30 Power system frequency fluctuation occurrence detection method, power system frequency deviation measurement method, and power system frequency measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158246A JP3805718B2 (en) 2002-05-30 2002-05-30 Power system frequency fluctuation occurrence detection method, power system frequency deviation measurement method, and power system frequency measurement method

Publications (2)

Publication Number Publication Date
JP2003344463A true JP2003344463A (en) 2003-12-03
JP3805718B2 JP3805718B2 (en) 2006-08-09

Family

ID=29773668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158246A Expired - Fee Related JP3805718B2 (en) 2002-05-30 2002-05-30 Power system frequency fluctuation occurrence detection method, power system frequency deviation measurement method, and power system frequency measurement method

Country Status (1)

Country Link
JP (1) JP3805718B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266684A (en) * 2005-03-22 2006-10-05 Meidensha Corp Higher harmonic detection apparatus
JP2006276006A (en) * 2005-03-01 2006-10-12 Nagoya Institute Of Technology Harmonic analysis method in power system
JP2006317435A (en) * 2005-04-14 2006-11-24 Tokyo Electric Power Co Inc:The Phase/amplitude detector, and method
WO2009090801A1 (en) 2008-01-15 2009-07-23 Nagasaki University, National University Corporation Frequency detection device, frequency detection method, circuit control device, circuit control method, delay circuit control method, and delay circuit system
JP2011047839A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Vector measuring device, vector measuring system, and vector measuring method
JP2011155833A (en) * 2010-01-27 2011-08-11 Ls Industrial Systems Co Ltd Apparatus and method for processing input data of protective relay
CN103344815A (en) * 2013-06-08 2013-10-09 中国农业大学 Measuring method of electric parameters with wide change range and system
JP2015111131A (en) * 2009-06-29 2015-06-18 アロイス・ヴォベン Method and device for monitoring network state
US9329214B2 (en) 2009-09-30 2016-05-03 Nagasaki University, National University Corporation Frequency judgment device, voltage comparator circuit, and frequency measurement device
CN108717141A (en) * 2018-04-26 2018-10-30 南京合智电力科技有限公司 Method, the measuring system of electrical quantity frequency are measured using single-phase voltage
CN108732424A (en) * 2018-04-26 2018-11-02 南京合智电力科技有限公司 Phasor backoff algorithm under fixed frequency sampling mode and compensation system
CN108982962A (en) * 2018-04-26 2018-12-11 南京合智电力科技有限公司 Suitable for accessing protection, measurement integral system and the method for multi-compartment electrical quantity
CN112462138A (en) * 2020-10-23 2021-03-09 南京国电南自电网自动化有限公司 Harmonic measurement method and system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276006A (en) * 2005-03-01 2006-10-12 Nagoya Institute Of Technology Harmonic analysis method in power system
JP2006266684A (en) * 2005-03-22 2006-10-05 Meidensha Corp Higher harmonic detection apparatus
JP2006317435A (en) * 2005-04-14 2006-11-24 Tokyo Electric Power Co Inc:The Phase/amplitude detector, and method
WO2009090801A1 (en) 2008-01-15 2009-07-23 Nagasaki University, National University Corporation Frequency detection device, frequency detection method, circuit control device, circuit control method, delay circuit control method, and delay circuit system
US9297842B2 (en) 2008-01-15 2016-03-29 Nagasaki University, National University Corporation Frequency detection device
EP3531141A1 (en) * 2009-06-29 2019-08-28 Wobben Properties GmbH Method and device for network condition monitoring
EP2449387B1 (en) * 2009-06-29 2019-05-15 Wobben Properties GmbH Method and device for monitoring the state of a network
US9970968B2 (en) 2009-06-29 2018-05-15 Wobben Properties Gmbh Method and device for monitoring the state of a network
JP2015111131A (en) * 2009-06-29 2015-06-18 アロイス・ヴォベン Method and device for monitoring network state
JP2011047839A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Vector measuring device, vector measuring system, and vector measuring method
US9329214B2 (en) 2009-09-30 2016-05-03 Nagasaki University, National University Corporation Frequency judgment device, voltage comparator circuit, and frequency measurement device
JP2011155833A (en) * 2010-01-27 2011-08-11 Ls Industrial Systems Co Ltd Apparatus and method for processing input data of protective relay
US8711913B2 (en) 2010-01-27 2014-04-29 Ls Industrial Systems Co., Ltd. Device and method for processing input data of protective relay
EP2355288A3 (en) * 2010-01-27 2012-05-16 LS Industrial Systems Co., Ltd Device and method for processing input data of protective relay
CN103344815A (en) * 2013-06-08 2013-10-09 中国农业大学 Measuring method of electric parameters with wide change range and system
CN108717141A (en) * 2018-04-26 2018-10-30 南京合智电力科技有限公司 Method, the measuring system of electrical quantity frequency are measured using single-phase voltage
CN108732424A (en) * 2018-04-26 2018-11-02 南京合智电力科技有限公司 Phasor backoff algorithm under fixed frequency sampling mode and compensation system
CN108982962A (en) * 2018-04-26 2018-12-11 南京合智电力科技有限公司 Suitable for accessing protection, measurement integral system and the method for multi-compartment electrical quantity
CN108732424B (en) * 2018-04-26 2020-11-20 南京合智电力科技有限公司 Phasor compensation algorithm and system in fixed-frequency sampling mode
CN108982962B (en) * 2018-04-26 2020-11-20 南京合智电力科技有限公司 Protection and measurement integrated system and method suitable for accessing multi-interval electrical quantity
CN108717141B (en) * 2018-04-26 2020-11-20 南京合智电力科技有限公司 Method and system for measuring electric quantity frequency by using single-phase voltage
CN112462138A (en) * 2020-10-23 2021-03-09 南京国电南自电网自动化有限公司 Harmonic measurement method and system

Also Published As

Publication number Publication date
JP3805718B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP2003344463A (en) Method for detecting frequency fluctuation occurring in electric power system, method for measuring frequency deviation in electric power system, and method for measuring electric power system frequency
US5514978A (en) Stator turn fault detector for AC motor
US5671112A (en) Digital integrator V/Hz relay for generator and transformer over-excitation protection
Terzija et al. A new self-tuning algorithm for the frequency estimation of distorted signals
EP1093680B1 (en) Adaptive sampling rate based on power system frequency
JP2000515253A (en) Capacitance-voltage conversion device and conversion method
JP6173721B2 (en) Frequency analysis device, signal processing device using the frequency analysis device, and high-frequency measurement device using the signal processing device
CN110568309B (en) Filter, synchronous phasor measurement system and method
JP4841511B2 (en) Frequency change rate protection relay device
JP3220327B2 (en) Frequency detection method and apparatus, and power system stabilization system
US20170146587A1 (en) Method and device for determining the fault location in the case of a fault on an electric line
KR100839436B1 (en) The method of power frequency estimation using the difference between the gain and cosine and sine filter
JP5394945B2 (en) Synchronous verification device
JP3814834B2 (en) Harmonic detection method by fixed sampling
JP4523917B2 (en) Jitter measuring apparatus and jitter measuring method
Bastos et al. Frequency retrieval from PMU data corrupted with pseudo-oscillations during off-nominal operation
JP3252641B2 (en) Phase difference measuring device
JP3182777B2 (en) Electric energy measurement method
Kumar et al. Combined Two-Point and Three-Point Interpolated DFT for Frequency Estimation
Đurić et al. Combined Fourier and Zero Crossing Technique for Frequency Measurement in Power Networks in the Presence of Harmonics.
CN111033278B (en) System and method for improving Root Mean Square (RMS) measurements
KR100964114B1 (en) Apparatus and Method for Phasor Estimation
JP2018105635A (en) Signal processing device and signal processing method
JP3612354B2 (en) Phase angle difference, frequency difference and frequency calculation method in digital type protective relay
JPH075212A (en) Frequency detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees