JP2006276006A - Harmonic analysis method in power system - Google Patents

Harmonic analysis method in power system Download PDF

Info

Publication number
JP2006276006A
JP2006276006A JP2006051587A JP2006051587A JP2006276006A JP 2006276006 A JP2006276006 A JP 2006276006A JP 2006051587 A JP2006051587 A JP 2006051587A JP 2006051587 A JP2006051587 A JP 2006051587A JP 2006276006 A JP2006276006 A JP 2006276006A
Authority
JP
Japan
Prior art keywords
frequency
power system
voltage
error
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006051587A
Other languages
Japanese (ja)
Inventor
Takeshi Kanazawa
剛 金澤
Mutsumi Aoki
睦 青木
Hiroyuki Ukai
裕之 鵜飼
Koichi Nakamura
光一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2006051587A priority Critical patent/JP2006276006A/en
Publication of JP2006276006A publication Critical patent/JP2006276006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an accurate measuring method of an effective value including harmonics and phase angle of the voltage and current in a power system. <P>SOLUTION: In this method, a recursive DFT operation is applied to sampling data in a voltage and current waveform with two different setting frequencies in the power system, and weighted average according to the frequency deviation between the frequency of the power system and the set frequencies of the DFT operation is applied to each operation result. Thus, the operation error is corrected, and fundamental wave effective values and harmonic effective values of voltage and current is measured at high accuracy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電力系統における電圧・電流に対し,高調波を含む実効値・位相角の高精度な計測方法に関するものである。   The present invention relates to a highly accurate measurement method for effective values and phase angles including harmonics with respect to voltage and current in a power system.

周期的な信号波形に含まれる周波数成分を分析する方法としてフーリエ変換がある。これをディジタル信号処理によって求める場合には,信号波形を等間隔にサンプリングし,得られたデータ列に対して演算を行う。この演算を離散フーリエ変換(以下,「DFT」とする)という。電力系統においては,電圧や電流波形に含まれる高調波成分を解析する場合に用いられる。   There is a Fourier transform as a method for analyzing frequency components contained in a periodic signal waveform. When this is obtained by digital signal processing, the signal waveform is sampled at equal intervals, and an operation is performed on the obtained data string. This operation is called discrete Fourier transform (hereinafter referred to as “DFT”). In the power system, it is used to analyze harmonic components contained in voltage and current waveforms.

具体的に,下記の数式1で表される電圧波形を例にして,その波形の実効値Veと位相角φ0を求める計算について説明する。ここでは,基本波成分について説明するが,高調波成分も同様の考え方で求めることができる。 Specifically, the calculation for obtaining the effective value V e and the phase angle φ 0 of the waveform represented by the following Equation 1 will be described as an example. Here, the fundamental wave component will be described, but the harmonic component can be obtained in the same way.

ここで,fは測定した電力系統の電圧波形の周波数である(以下,「系統周波数」という)。図1は,波形1周期をサンプリング数N=12としてサンプリングする場合を示したものである。TS[s]はサンプリング周期である。このようにサンプリングを行うと,次のデータ列を得る。 Here, f is the frequency of the measured voltage waveform of the power system (hereinafter referred to as “system frequency”). FIG. 1 shows a case where sampling is performed with one waveform period as the sampling number N = 12. T S [s] is a sampling period. When sampling is performed in this way, the following data string is obtained.

v0,v1,・・・,v10,v11 (2)
このデータ列に対し,下記の数式2に従ってDFT演算を行うと,複素数値V11を得る。
v 0 , v 1 , ..., v 10 , v 11 (2)
When a DFT operation is performed on this data string according to the following Equation 2, a complex value V 11 is obtained.

f0はフーリエ変換の基本周波数(以下,「設定周波数」とする)を表しており,f0=1/(N・TS)の関係がある。系統周波数fと設定周波数f0が等しければ,数式2の計算結果はV11=Ve・exp(jφ0)となるので,DFT演算によって実効値Veと位相角φ0を求めることができる。 f 0 represents a fundamental frequency of Fourier transform (hereinafter referred to as “set frequency”), and has a relationship of f 0 = 1 / (N · T S ). If the system frequency f is equal to the set frequency f 0 , the calculation result of Equation 2 is V 11 = V e · exp (jφ 0 ), and therefore the effective value V e and the phase angle φ 0 can be obtained by DFT calculation. .

ここで,下記の数式3で定義される関数Wi
を使って数式2を書き改めると,下記の数式4のようになる。
Here, the function W i defined by Equation 3 below
If we rewrite equation 2 using, it becomes like equation 4 below.

iは図2に示すように複素平面上で半径1の円周上にプロットされる点になる。この状態で,次のサンプリング時間に新たにv12の値が取り込まるとデータ列は,
v1,・・・,v11,v12 (6)
となるので,DFT演算は下記の数式5のようになる。
W i is a point plotted on the circumference of radius 1 on the complex plane as shown in FIG. In this state, the data string and the value is that taken in the newly v 12 the next sampling time,
v 1 , ..., v 11 , v 12 (6)
Therefore, the DFT operation is as shown in Equation 5 below.

数式5から数式4を引くと下記の数式6が得られる。 Subtracting Equation 4 from Equation 5 yields Equation 6 below.

図2から分かるように,W12=W0であるので,下記の数式7のように式を変形することができる。 As can be seen from FIG. 2, since W 12 = W 0 , the equation can be modified as in Equation 7 below.

この式は,直前の複素数値V11に最新の瞬時値v12を加え,1周期前の瞬時値v0を差し引くことにより,最新の複素数値V12を再帰的に求めることができることを表している。これを再帰的離散フーリエ変換(以下,「RDFT」とする)という。したがって,r番目のデータを取り込んだ場合の計算は,図3の関係を使うと下記の数式8のように書き表すことができる。 This formula shows that the latest complex value V 12 can be obtained recursively by adding the latest instantaneous value v 12 to the previous complex value V 11 and subtracting the instantaneous value v 0 of the previous cycle. Yes. This is called recursive discrete Fourier transform (hereinafter referred to as “RDFT”). Therefore, the calculation when the r-th data is taken in can be expressed as the following Equation 8 using the relationship shown in FIG.

このように電圧波形v(t)が繰り返しの波形であり,f=f0であるならば,RDFT演算によって,連続的に実効値Veと位相角φ0を求めることができる。 Thus, if the voltage waveform v (t) is a repetitive waveform and f = f 0 , the effective value V e and the phase angle φ 0 can be continuously obtained by the RDFT calculation.

しかし,電力系統の周波数は標準周波数(東日本50Hz,西日本60Hz)に対し最大±0.3Hzの幅をもって周波数が変動している。したがって,電圧波形や電流波形の周波数も時々刻々変動しているため,系統周波数fと設定周波数f0との間に偏差が生じる。この周波数偏差が生じるとVr=Ve・exp(jφ0)とならず,正確に実効値Veと位相角φ0を求めることができないという問題点がある。 However, the frequency of the power system fluctuates with a maximum width of ± 0.3 Hz with respect to the standard frequency (eastern Japan 50 Hz, western Japan 60 Hz). Therefore, since the frequency of the voltage waveform and the current waveform is also momentarily varies, deviation occurs between the set frequency f 0 and the system frequency f. When this frequency deviation occurs, V r = V e · exp (jφ 0 ) is not obtained, and there is a problem that the effective value V e and the phase angle φ 0 cannot be obtained accurately.

具体的な例として,系統周波数59.7[Hz],実効値100.0[V]の交流電圧に対して,設定周波数60.0[Hz]のRDFT演算を行った結果を図4に示す。100.0[V]の実効値の波形に対し,演算結果には誤差を含んでおり,正確に実効値を求めることができていない。   As a specific example, FIG. 4 shows a result of performing RDFT calculation at a set frequency 60.0 [Hz] on an AC voltage having a system frequency 59.7 [Hz] and an effective value 100.0 [V]. For the RMS value waveform of 100.0 [V], the calculation result includes an error, and the RMS value cannot be obtained accurately.

このような周波数偏差による誤差の補正方法を説明するため,周波数偏差と誤差の関係について説明する。系統周波数fが設定周波数f0からΔf(=f−f0)だけ偏差を持っている場合を考える。このとき,r番目のサンプリングデータは,下記の数式9で表すことができる。
In order to explain such a method for correcting an error due to a frequency deviation, the relationship between the frequency deviation and the error will be described. Consider a case where the system frequency f has a deviation of Δf (= f−f 0 ) from the set frequency f 0 . At this time, the r-th sampling data can be expressed by Equation 9 below.

このデータに対して数式8を用いてRDFT演算を行うと,下記の数式10で表される演算結果を得る。
When an RDFT operation is performed on this data using Equation 8, an operation result represented by Equation 10 below is obtained.

実効値は,複素数値Vrの大きさとして求められるので,数式10の計算結果から,下記の数式11のようになる。
Since the effective value is obtained as the magnitude of the complex value V r , the following Expression 11 is obtained from the calculation result of Expression 10.

したがって,元の波形の実効値Veと比較すると下記の数式12の結果が,周波数偏差によって生じる誤差となる。
Therefore, when compared with the effective value V e of the original waveform, the result of Equation 12 below is an error caused by the frequency deviation.

したがって,下記の数式13で表されるErrが実効値に対する誤差の割合となる。
Therefore, Err expressed by the following formula 13 is the ratio of the error to the effective value.

数式10に示すように,A,B,αrrは周波数偏差Δfを含む値であるので,周波数偏差Δfと誤差割合Errの関係を計算すると図5のようになる。この計算例における計算条件は,N=128,TS=1/(60Hz×128サンプル)=130.2[μs]である。図から分かるように±0.3Hzの範囲内では,周波数偏差Δfと誤差割合Errの関係は比例関係と見なすことができる。図5はr=0の場合を示したものであるが,rの値によって直線の傾きが変わるのみであり,比例関係は変わらない。 As shown in Equation 10, since A, B, α r , and β r are values including the frequency deviation Δf, the relationship between the frequency deviation Δf and the error rate Err is calculated as shown in FIG. The calculation conditions in this calculation example are N = 128, T S = 1 / (60 Hz × 128 samples) = 130.2 [μs]. As can be seen from the figure, within the range of ± 0.3 Hz, the relationship between the frequency deviation Δf and the error rate Err can be regarded as a proportional relationship. FIG. 5 shows the case where r = 0, but only the slope of the straight line changes depending on the value of r, and the proportionality does not change.

次に誤差割合Errの時間変化を計算した結果を図6に示す。図のようにErrの時間変化は振動的に変化するので,その振動周波数について説明する。数式13において,AとBは時間によって変化しない値である。そこで,(αr−βr)をθと表し,これを計算すると下記の式のようになる。 Next, FIG. 6 shows the result of calculating the time change of the error ratio Err. As shown in the figure, the time variation of Err changes in a vibration manner, so the vibration frequency will be described. In Equation 13, A and B are values that do not change with time. Therefore, (α r −β r ) is expressed as θ, and this is calculated as follows.

θ=αr−βr
=4π(f0+Δf)r・TS+2φ0−2π(f0+Δf)・(N−1)・TS (16)
この式において,第1項目中のr・TSは,r番目のデータをサンプリングした時の時間を表すので,これをtrと表記する。すなわち,第1項目は時間によって変化する項であり,第2項目と第3項目は時間によって変化しない項である。このことから,θ=ωtr+φとするとωとφはそれぞれ下記の式のように表すことができる。
θ = α r −β r
= 4π (f 0 + Δf) r · T S + 2φ 0 −2π (f 0 + Δf) · (N−1) · T S (16)
In this equation, r · T S in the first item represents the time when the r-th data is sampled, and is expressed as tr . That is, the first item is a term that changes with time, and the second item and the third item are terms that do not change with time. From this, if θ = ωt r + φ, ω and φ can be expressed by the following equations, respectively.

ω=4π(f0+Δf)=2π・2(f0+Δf)
φ=2φ0−2π(f0+Δf)・(N−1)・TS (17)
したがって,Errの振動分の周波数は,2(f0+Δf)=2fとなり,系統周波数の2倍の周波数となる。
ω = 4π (f 0 + Δf) = 2π · 2 (f 0 + Δf)
φ = 2φ 0 −2π (f 0 + Δf) · (N−1) · T S (17)
Therefore, the frequency of vibration of Err is 2 (f 0 + Δf) = 2f, which is twice the system frequency.

このように周波数偏差によって生じる誤差には,誤差の大きさが周波数偏差に比例し,誤差の振動分は系統周波数の2倍の周波数で変化するという性質がある。   As described above, the error caused by the frequency deviation has a property that the magnitude of the error is proportional to the frequency deviation, and the vibration of the error changes at twice the system frequency.

これらの誤差の性質を使って,その補正法を説明する。   The correction method is explained using the nature of these errors.

一つの電圧波形に対して,2つの異なる設定周波数でRDFT演算を同時に行う。この設定周波数をそれぞれ第1設定周波数f0a,第2設定周波数f0bとする。サンプリング数をNaとNbとすると第1設定周波数はf0a=1/(Na・TS)の関係となり,第2設定周波数はf0b=1/(Nb・TS)の関係となる。第1設定周波数f0aと第2設定周波数f0bは任意に選ぶことができるが,電力系統の周波数偏差が最大でも±0.3Hzであることを考慮して,電力系統の標準周波数の±0.4Hzを超えない程度に選ぶ。例えば,60Hzの系統の場合,第1設定周波数f0a=59.6[Hz],第2設定周波数f0b=60.4[Hz]というように選ぶ。そして下記の数式14によってRDFT演算を行うと,図7に示すように,それぞれの演算結果として複素数値VraとVrbが得られる。 For one voltage waveform, RDFT calculation is simultaneously performed at two different set frequencies. These set frequencies are defined as a first set frequency f 0a and a second set frequency f 0b , respectively. If the number of samplings is N a and N b , the first set frequency has a relationship of f 0a = 1 / (N a · T S ), and the second set frequency has a relationship of f 0b = 1 / (N b · T S ). It becomes. The first set frequency f 0a and the second set frequency f 0b can be selected arbitrarily, but considering that the frequency deviation of the power system is ± 0.3 Hz at the maximum, it is ± 0.4 Hz of the standard frequency of the power system Select so as not to exceed. For example, in the case of a 60 Hz system, the first setting frequency f 0a = 59.6 [Hz] and the second setting frequency f 0b = 60.4 [Hz] are selected. Then, when the RDFT operation is performed according to the following equation 14, complex values V ra and V rb are obtained as the respective operation results, as shown in FIG.

raとVrbに含まれる誤差割合をそれぞれErra,Errbとすると,ErraおよびErrbはそれぞれの周波数偏差ΔfaとΔfbに比例するので,図8のようになる。したがって,誤差の大きさの比(=a:b)は,2つのRDFTアルゴリズムの周波数偏差の比にほぼ等しくなる。 The error ratio included in V ra and V rb respectively Err a, When Err b, is proportional to the Err a and Err b each frequency deviation Delta] f a and Delta] f b, is shown in Figure 8. Therefore, the ratio of error magnitudes (= a: b) is approximately equal to the ratio of frequency deviations of the two RDFT algorithms.

a:b≒Δfa:Δfb (18)
周波数偏差Δfa,Δfbは文献[1]に記載の方法によって求めることができる。
文献[1] 中野,他:「同期フェーザ計測に基づく実時間電力系統周波数検出」,
電気学会論文誌C, 122,12, pp2076-2082,2002
a : b ≒ Δf a : Δf b (18)
The frequency deviations Δf a and Δf b can be obtained by the method described in the document [1].
[1] Nakano, et al .: “Real-time power system frequency detection based on synchronous phasor measurement”,
IEEJ Transaction C, 122,12, pp2076-2082,2002

また,誤差の振動分の周波数は,設定周波数に因らず系統周波数の2倍であることから,VraとVrbに含まれる誤差の振動分の周波数は等しくなる。例えば,系統周波数f=60.2[Hz],実効値100.0[V]の交流電圧に対して,第1設定周波数f0a=59.6[Hz],第2設定周波数f0b=60.4[Hz]でRDFT演算を行った結果を図9に示す。VraとVrbの振動分の周波数はお互いに等しいことが分かる。また,この場合,
a:b≒Δfa:Δfb=(60.2−59.6):(60.2−60.4)=3:−1 (19)
となっている。したがって,下記の数式15のように,a:bを重み係数としてそれぞれの実効値を加重平均することにより,誤差を相殺し,誤差を減少した複素数値Vrpを得ることができる。
Since the frequency of the error vibration is twice the system frequency regardless of the set frequency, the frequency of the error vibration included in V ra and V rb is equal. For example, for AC voltage with system frequency f = 60.2 [Hz] and effective value 100.0 [V], RDFT calculation is performed with the first set frequency f 0a = 59.6 [Hz] and the second set frequency f 0b = 60.4 [Hz]. The results of performing are shown in FIG. It can be seen that the frequencies of vibrations of V ra and V rb are equal to each other. In this case,
a: b≈Δf a : Δf b = (60.2−59.6) :( 60.2−60.4) = 3−1 (19)
It has become. Therefore, as shown in Equation 15 below, by calculating the weighted average of the respective effective values using a: b as weighting factors, it is possible to obtain a complex value V rp in which the error is canceled and the error is reduced.

周波数が変動している電力系統の電圧や電流の計測において,RDFT演算の連続性を失うことなく,簡単な四則演算による補正によって正確な実効値を求めることが可能となる。   In measuring the voltage and current of a power system whose frequency is fluctuating, it is possible to obtain an accurate effective value by correction by simple four arithmetic operations without losing the continuity of the RDFT operation.

提案法を実装した電力系統高調波解析装置を図10に示す。   Figure 10 shows a power system harmonic analyzer that implements the proposed method.

電圧入力ボックス1aには電圧変換器(PT)1を備え,DSPボード7の入力部にあるアナログ-ディジタルコンバータ(ADC)2の入力上限電圧を超えない値に降圧する。この例では,100[V]の交流電圧を1[V]の交流電圧に変換している。ADC2は,一定のサンプリング間隔でアナログデータをディジタルデータに変換している。この例で用いたADC2のサンプリング周波数は8[kHz]である。変換されたディジタルデータは,メモリ(RAM)4を経由してDSP3に取り込まれ,DSP3において上記で説明したRDFT演算と補正演算が行われる。そしてRAM4に保存された演算結果は,LANポート6を通してパソコン(PC)8へ転送され,PC8上で演算結果が表示される。   The voltage input box 1a includes a voltage converter (PT) 1 and steps down to a value that does not exceed the input upper limit voltage of the analog-digital converter (ADC) 2 in the input section of the DSP board 7. In this example, 100 [V] AC voltage is converted to 1 [V] AC voltage. The ADC 2 converts analog data into digital data at a constant sampling interval. The sampling frequency of ADC2 used in this example is 8 [kHz]. The converted digital data is taken into the DSP 3 via the memory (RAM) 4 and the above-described RDFT operation and correction operation are performed in the DSP 3. The calculation result stored in the RAM 4 is transferred to the personal computer (PC) 8 through the LAN port 6 and the calculation result is displayed on the PC 8.

このシステムを用いて波形発生器で電圧実効値100[V],周波数f=59.9[Hz]の波形を作成し,電圧入力ボックス1aにあるPT1の入力に入れた。設定周波数f0=60.15[Hz](=8[kHz]/133[サンプル])でRDFT演算を行った結果を図11に示す。この電圧波形の周波数と設定周波数に差があるので,演算結果に誤差が生じている。これに対し,第1設定周波数f0a=59.70[Hz](=8[kHz]/134[サンプル])と第2設定周波数f0b=60.15[Hz](=8[kHz]/133[サンプル])でRDFT演算を行い,上記に説明の方法で補正を行った結果を図12に示す。従来の方法に比べて大幅に誤差が低減できていることが分かる。 Using this system, a waveform generator with a voltage effective value of 100 [V] and a frequency of f = 59.9 [Hz] was created and input to the PT1 input in the voltage input box 1a. FIG. 11 shows the result of the RDFT calculation performed at the set frequency f 0 = 60.15 [Hz] (= 8 [kHz] / 133 [sample]). Since there is a difference between the frequency of the voltage waveform and the set frequency, an error occurs in the calculation result. On the other hand, the first set frequency f 0a = 59.70 [Hz] (= 8 [kHz] / 134 [sample]) and the second set frequency f 0b = 60.15 [Hz] (= 8 [kHz] / 133 [sample] FIG. 12 shows the result of performing the RDFT operation in step) and performing correction by the method described above. It can be seen that the error can be greatly reduced as compared with the conventional method.

ここで説明した誤差の補正方法は,電圧波形の基本波成分についてのものであるが,高調波成分も同じ方法で補正することができ,高い精度で実効値を求めることができる。また,電流波形についても電流変換器(CT)を用いてADCにデータを取り込むことができれば,求める実効値の大きさが変わるのみであり,同様の方法で誤差を補正することができる。   The error correction method described here is for the fundamental component of the voltage waveform, but the harmonic component can also be corrected by the same method, and the effective value can be obtained with high accuracy. If the current waveform can be taken into the ADC using the current converter (CT), only the magnitude of the effective value to be obtained can be changed, and the error can be corrected by the same method.

本実施形態において,2つの設定周波数に応じたsin関数のデータおよびcos関数のデータをあらかじめROMに記憶しておけば,DSP内で三角関数の演算を行うことなく,精度の高い実効値計算が可能になる。このため,DSPのプログラムを簡単にすることができ,サンプリング周期を短くして,高い周波数成分の計算が可能になる。   In this embodiment, if the sin function data and the cos function data corresponding to the two set frequencies are stored in the ROM in advance, high-accuracy RMS value calculation can be performed without performing trigonometric functions in the DSP. It becomes possible. For this reason, the DSP program can be simplified, the sampling cycle can be shortened, and high frequency components can be calculated.

サンプル数N=12とした場合のサンプル点Sample points when N = 12 samples (4)式の複素平面上のプロットPlot on the complex plane of equation (4) サンプル点と再帰的DFT演算タイミングSample points and recursive DFT operation timing 周波数偏差によって生じる演算誤差Calculation error caused by frequency deviation 周波数偏差と誤差割合の関係Relationship between frequency deviation and error rate 誤差割合の時間変化Time variation of error rate 2つの異なる設計周波数でRDFT演算を行うときのサンプル点と再帰的DFT演算タイミングSample points and recursive DFT operation timing when performing RDFT operation at two different design frequencies 2つの異なる設計周波数でRDFT演算を行ったときの周波数と誤差割合の関係Relationship between frequency and error rate when RDFT calculation is performed at two different design frequencies 2つの異なる設計周波数でRDFT演算を行ったときの実効値RMS value when RDFT operation is performed at two different design frequencies 電力系統高調波解析装置の構成図Configuration diagram of power system harmonic analyzer 図10の装置において誤差補正を行わない場合の実効値演算結果RMS value calculation result when error correction is not performed in the device of FIG. 図10の装置において誤差補正を行った場合の実効値演算結果RMS value calculation result when error correction is performed in the device of FIG.

符号の説明Explanation of symbols

1 電圧変換器(PT)
1a 電圧入力ボックス
2 アナログ-ディジタル変換器(ADC)
3 ディジタル・シグナル・プロセッサ(DSP)
4 メモリ(RAM)
5 メモリ(ROM)
6 LANポート
7 DSPボード
8 パソコン(PC)
1 Voltage converter (PT)
1a Voltage input box
2 Analog-to-digital converter (ADC)
3 Digital signal processor (DSP)
4 Memory (RAM)
5 Memory (ROM)
6 LAN port
7 DSP board
8 PC (PC)

Claims (3)

電力系統において,電圧・電流波形のサンプリングデータに対し,2つの異なる設定周波数で再帰的DFT演算を行い,それぞれの演算結果に対し,電力系統の周波数とDFT演算の設定周波数との周波数偏差に応じた加重平均を施すことによって演算誤差を補正し,電圧・電流の実効値を高い精度で計測する方法。   In the power system, recursive DFT operation is performed on the sampling data of voltage / current waveform at two different set frequencies, and each operation result depends on the frequency deviation between the power system frequency and the set frequency of DFT operation. A method of correcting the calculation error by applying a weighted average and measuring the effective value of voltage and current with high accuracy. 電力系統において,電圧・電流波形のサンプリングデータに対し,2つの異なる設定周波数で再帰的DFT演算を行い,それぞれの演算結果に対し,電力系統の周波数とDFT演算の設定周波数との周波数偏差に応じた加重平均を施すことによって演算誤差を補正し,電圧・電流の高調波実効値を高い精度で計測する方法。   In the power system, recursive DFT operation is performed on the sampling data of voltage / current waveform at two different set frequencies, and each operation result depends on the frequency deviation between the power system frequency and the set frequency of DFT operation. A method of correcting the calculation error by applying a weighted average and measuring the harmonics of voltage and current with high accuracy. 前記請求項1,請求項2に記載の計測方法を備えた電力系統高調波解析装置。   A power system harmonic analysis apparatus comprising the measurement method according to claim 1 or 2.
JP2006051587A 2005-03-01 2006-02-28 Harmonic analysis method in power system Pending JP2006276006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051587A JP2006276006A (en) 2005-03-01 2006-02-28 Harmonic analysis method in power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005056412 2005-03-01
JP2006051587A JP2006276006A (en) 2005-03-01 2006-02-28 Harmonic analysis method in power system

Publications (1)

Publication Number Publication Date
JP2006276006A true JP2006276006A (en) 2006-10-12

Family

ID=37210905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051587A Pending JP2006276006A (en) 2005-03-01 2006-02-28 Harmonic analysis method in power system

Country Status (1)

Country Link
JP (1) JP2006276006A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401858A (en) * 2011-08-22 2012-04-04 哈尔滨工业大学 Method for detecting fundamental component and harmonic component of voltage of power grid
CN102508026A (en) * 2011-10-21 2012-06-20 江苏技术师范学院 Harmonic wave analysis method for electric energy quality harmonic wave analyzer
CN102628894A (en) * 2012-04-12 2012-08-08 浙江大学 Selective harmonic wave extracting method
KR101197807B1 (en) 2008-03-26 2012-11-05 엔페이즈 에너지, 인코포레이티드 Method and apparatus for measuring ac voltages
CN103063916A (en) * 2012-12-19 2013-04-24 华北电力大学 Constant-voltage transformer (CVT) harmonic testing method based on capacitance currents
CN103969507A (en) * 2011-10-21 2014-08-06 江苏理工学院 Power quality harmonic analysis method
CN103983852A (en) * 2011-10-21 2014-08-13 江苏理工学院 Harmonic analysis method of power quality harmonic analyzer
CN104020350A (en) * 2014-06-23 2014-09-03 哈尔滨同为电气股份有限公司 Voltage fundamental component detection method for overcoming frequency perturbation
CN105137184A (en) * 2015-09-21 2015-12-09 广东电网有限责任公司东莞供电局 10kV bus harmonic monitoring method based on feeder line protection
CN105467208A (en) * 2015-12-01 2016-04-06 河南许继仪表有限公司 Frequency adaptive harmonic or inter-harmonic metering method for specific AC components
CN105606892A (en) * 2015-12-17 2016-05-25 西安理工大学 Power grid harmonic and inter-harmonic analysis method based on SST transformation
CN106324345A (en) * 2016-11-17 2017-01-11 广东电网有限责任公司珠海供电局 Detecting method and device for electrical equipment fault
CN108982966A (en) * 2015-05-19 2018-12-11 江苏理工学院 Humorous phase angle analysis method based on linear correction algorithm
CN109444515A (en) * 2018-09-26 2019-03-08 徐文涛 A kind of idle, uneven and harmonic detecting method based on SDFT algorithm
CN109444506A (en) * 2018-09-28 2019-03-08 广东雅达电子股份有限公司 A kind of AC system voltage measurement and calculation method
CN110471018A (en) * 2019-09-19 2019-11-19 中南大学 A kind of spectrum correcting method
CN112462138A (en) * 2020-10-23 2021-03-09 南京国电南自电网自动化有限公司 Harmonic measurement method and system
CN117169590A (en) * 2023-08-15 2023-12-05 嘉兴市科讯电子有限公司 Power harmonic analysis method and device based on software variable sampling rate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118609A (en) * 1986-11-07 1988-05-23 Hitachi Ltd Signal selecting circuit
JPH0560808A (en) * 1991-09-03 1993-03-12 Rohm Co Ltd Period measuring instrument, frequency measuring instrument, period and frequency measuring method, and meter driving device
JPH06194395A (en) * 1992-12-22 1994-07-15 Nissin Electric Co Ltd Method for analyzing higher harmonic component and negative-phase component in power system
JP2001327079A (en) * 2000-05-17 2001-11-22 Tokyo Electric Power Co Inc:The Synchronous phase modifier controller
JP2002117017A (en) * 2000-08-02 2002-04-19 Victor Co Of Japan Ltd Recursive discrete fourier transform device
JP2002186167A (en) * 2000-12-15 2002-06-28 Chubu Electric Power Co Inc Sampling data processing method, and relay using the same method
JP2003344463A (en) * 2002-05-30 2003-12-03 Japan Science & Technology Corp Method for detecting frequency fluctuation occurring in electric power system, method for measuring frequency deviation in electric power system, and method for measuring electric power system frequency
JP2004064980A (en) * 2002-07-31 2004-02-26 Takeshi Funaki Control system of self-excitation converter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118609A (en) * 1986-11-07 1988-05-23 Hitachi Ltd Signal selecting circuit
JPH0560808A (en) * 1991-09-03 1993-03-12 Rohm Co Ltd Period measuring instrument, frequency measuring instrument, period and frequency measuring method, and meter driving device
JPH06194395A (en) * 1992-12-22 1994-07-15 Nissin Electric Co Ltd Method for analyzing higher harmonic component and negative-phase component in power system
JP2001327079A (en) * 2000-05-17 2001-11-22 Tokyo Electric Power Co Inc:The Synchronous phase modifier controller
JP2002117017A (en) * 2000-08-02 2002-04-19 Victor Co Of Japan Ltd Recursive discrete fourier transform device
JP2002186167A (en) * 2000-12-15 2002-06-28 Chubu Electric Power Co Inc Sampling data processing method, and relay using the same method
JP2003344463A (en) * 2002-05-30 2003-12-03 Japan Science & Technology Corp Method for detecting frequency fluctuation occurring in electric power system, method for measuring frequency deviation in electric power system, and method for measuring electric power system frequency
JP2004064980A (en) * 2002-07-31 2004-02-26 Takeshi Funaki Control system of self-excitation converter

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197807B1 (en) 2008-03-26 2012-11-05 엔페이즈 에너지, 인코포레이티드 Method and apparatus for measuring ac voltages
CN102401858A (en) * 2011-08-22 2012-04-04 哈尔滨工业大学 Method for detecting fundamental component and harmonic component of voltage of power grid
CN102508026A (en) * 2011-10-21 2012-06-20 江苏技术师范学院 Harmonic wave analysis method for electric energy quality harmonic wave analyzer
CN103983852B (en) * 2011-10-21 2017-04-12 江苏理工学院 Harmonic analysis method of power quality harmonic analyzer
CN102508026B (en) * 2011-10-21 2014-08-06 江苏理工学院 Harmonic wave analysis method for electric energy quality harmonic wave analyzer
CN103969507A (en) * 2011-10-21 2014-08-06 江苏理工学院 Power quality harmonic analysis method
CN103983852A (en) * 2011-10-21 2014-08-13 江苏理工学院 Harmonic analysis method of power quality harmonic analyzer
CN102628894A (en) * 2012-04-12 2012-08-08 浙江大学 Selective harmonic wave extracting method
CN103063916A (en) * 2012-12-19 2013-04-24 华北电力大学 Constant-voltage transformer (CVT) harmonic testing method based on capacitance currents
CN104020350A (en) * 2014-06-23 2014-09-03 哈尔滨同为电气股份有限公司 Voltage fundamental component detection method for overcoming frequency perturbation
CN109142866B (en) * 2015-05-19 2020-10-09 江苏理工学院 Harmonic phase angle analysis method based on linear correction algorithm
CN108982966A (en) * 2015-05-19 2018-12-11 江苏理工学院 Humorous phase angle analysis method based on linear correction algorithm
CN109142866A (en) * 2015-05-19 2019-01-04 江苏理工学院 A kind of humorous phase angle analysis method based on linear correction algorithm
CN105137184A (en) * 2015-09-21 2015-12-09 广东电网有限责任公司东莞供电局 10kV bus harmonic monitoring method based on feeder line protection
CN105467208A (en) * 2015-12-01 2016-04-06 河南许继仪表有限公司 Frequency adaptive harmonic or inter-harmonic metering method for specific AC components
CN105606892A (en) * 2015-12-17 2016-05-25 西安理工大学 Power grid harmonic and inter-harmonic analysis method based on SST transformation
CN106324345A (en) * 2016-11-17 2017-01-11 广东电网有限责任公司珠海供电局 Detecting method and device for electrical equipment fault
CN109444515A (en) * 2018-09-26 2019-03-08 徐文涛 A kind of idle, uneven and harmonic detecting method based on SDFT algorithm
CN109444515B (en) * 2018-09-26 2021-01-26 徐文涛 Reactive power, imbalance and harmonic detection method based on SDFT algorithm
CN109444506A (en) * 2018-09-28 2019-03-08 广东雅达电子股份有限公司 A kind of AC system voltage measurement and calculation method
CN109444506B (en) * 2018-09-28 2021-09-21 广东雅达电子股份有限公司 Alternating current system voltage measurement and calculation method
CN110471018A (en) * 2019-09-19 2019-11-19 中南大学 A kind of spectrum correcting method
CN112462138A (en) * 2020-10-23 2021-03-09 南京国电南自电网自动化有限公司 Harmonic measurement method and system
CN117169590A (en) * 2023-08-15 2023-12-05 嘉兴市科讯电子有限公司 Power harmonic analysis method and device based on software variable sampling rate
CN117169590B (en) * 2023-08-15 2024-03-29 嘉兴市科讯电子有限公司 Power harmonic analysis method and device based on software variable sampling rate

Similar Documents

Publication Publication Date Title
JP2006276006A (en) Harmonic analysis method in power system
CN110632387B (en) Harmonic voltage measuring method based on alternating-current quantum voltage
JP2007033286A (en) Method and device for measuring impedance
JP4664837B2 (en) Voltage and other effective value calculation circuit and measuring instrument
CN113791268A (en) Method and device for measuring effective value of high-frequency alternating voltage and storage medium
JP2009192536A (en) Measuring apparatus, test apparatus, program and electronic device
US6232760B1 (en) Method for determining and compensating the transmission function of a measurement apparatus, in particular of a spectrum analyzer
JP2011080986A (en) Phasor measuring device
KR940002724B1 (en) Ac evaluation equipment and the mehtod for an ic tester
CN105807128A (en) Method and system for measuring alternating voltages by applying multicycle strategy to digital-to-analogue conversion
JP5394945B2 (en) Synchronous verification device
CN106501582B (en) Signal base line processing method and signal base line processing equipment
JP4225651B2 (en) Phase error correction method for circuit element measuring instrument
RU2363005C1 (en) Method of spectral analysis of polyharmonic signals and device to this end
JP3053002B2 (en) Frequency measurement method and device
RU2256928C2 (en) Method for measuring non-stability of frequency and device for realization of said method
JPH0339270B2 (en)
JPH07325115A (en) Correction method for pq operation
Georgakopoulos Uncertainties in the measurement of AC voltage using a programmable Josephson voltage standard and a phase-sensitive null detector
Kyriazis Estimating parameters of complex modulated signals from prior information about their arbitrary waveform components
Savin et al. The automation of a resonant perturbation method to research electrodynamic characteristics of microwave devices
Kampik Measurement system for investigation and calibration of digital sources of low-frequency AC voltage
JP3138315B2 (en) Asynchronous calibration circuit and frequency detection circuit
US6775628B2 (en) Low distortion frequency tracking technique
US9876697B2 (en) Stochastic jitter measuring device and method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070808

A521 Written amendment

Effective date: 20070809

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Effective date: 20090115

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A131 Notification of reasons for refusal

Effective date: 20110906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A02