JPH11159827A - Heat storage equipment add operating method thereof - Google Patents

Heat storage equipment add operating method thereof

Info

Publication number
JPH11159827A
JPH11159827A JP10230592A JP23059298A JPH11159827A JP H11159827 A JPH11159827 A JP H11159827A JP 10230592 A JP10230592 A JP 10230592A JP 23059298 A JP23059298 A JP 23059298A JP H11159827 A JPH11159827 A JP H11159827A
Authority
JP
Japan
Prior art keywords
heat storage
heat source
time
heat
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10230592A
Other languages
Japanese (ja)
Other versions
JP3585021B2 (en
Inventor
Seiji Inoue
誠司 井上
Osamu Otsuka
修 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23059298A priority Critical patent/JP3585021B2/en
Publication of JPH11159827A publication Critical patent/JPH11159827A/en
Application granted granted Critical
Publication of JP3585021B2 publication Critical patent/JP3585021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable effective use of electric power in a heat storage time zone and inexpensive manufacture and operation of equipment, by a simple constitution which enables computation of a daily heat load amount for tutorial, data for preestimate of a load, without using a level sensor, and enables recognition of a stored heat amount. SOLUTION: This heat storage equipment 16 is so designed that cold heat generated by a heat source unit 17 is stored in a heat storage medium 25 held in a heat storage tank 20, and that an air-conditioning operation is executed in a prescribed time zone with the stored heat of the heat storage medium 25. Start and end of operation are controlled on the basis of an operating time program and the representative temperature of the heat storage medium 25 is measured and besides, is preestimated. The heat source unit 17 is operated according to a preestimated value of this representative temperature of the heat storage medium and stopped according to the measured representative temperature of the heat storage medium 25. An operating time determined by the operation and stoppage of the heat source unit 17 is stored, a subsequent operating time program is set through the intermediary of this storage and the heat storage equipment 16 is operated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、蓄熱媒体の蓄熱
により所定時間帯に空調動作し、空調負荷の状況に応じ
て熱源機を運転する蓄熱装置及びその運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device that performs an air conditioning operation in a predetermined time zone by storing heat of a heat storage medium and operates a heat source device according to the condition of an air conditioning load, and a method of operating the same.

【0002】[0002]

【従来の技術】図11は、例えば特開平7−13394
5号公報に示された従来の蓄熱装置の回路図である。図
において、1は空冷チラー、2は蓄熱槽、3はブライン
/水熱交換器、4はブラインポンプ、5は冷水温度制御
用の二方弁、6は製氷熱交換器、7はマイクロコンピュ
ータからなり氷蓄熱ユニット全体を制御する制御装置、
8は冷水管路、9はブライン管路である。
2. Description of the Related Art FIG.
FIG. 6 is a circuit diagram of a conventional heat storage device disclosed in Japanese Patent Application Publication No. 5 (JP-A-5) In the figure, 1 is an air-cooled chiller, 2 is a heat storage tank, 3 is a brine / water heat exchanger, 4 is a brine pump, 5 is a two-way valve for controlling cold water temperature, 6 is an ice making heat exchanger, and 7 is a microcomputer. A control device that controls the entire ice storage unit,
8 is a cold water pipe, 9 is a brine pipe.

【0003】また、10は外気温度測定器、11は冷水
の出入口温度を測定する第一冷水温度測定器、12は冷
水の出入口温度を測定する第二冷水温度測定器、13は
蓄熱槽2内温度及び水位を測定する第一蓄熱槽センサ、
14は蓄熱槽2内温度及び水位を測定する第二蓄熱槽セ
ンサ、15は氷蓄熱ユニットによって構成された蓄熱装
置である。
[0003] Further, 10 is an outside air temperature measuring device, 11 is a first chilled water temperature measuring device for measuring the inlet / outlet temperature of chilled water, 12 is a second chilled water temperature measuring device for measuring the inlet / outlet temperature of chilled water, and 13 is the inside of the heat storage tank 2. First thermal storage tank sensor to measure temperature and water level,
14 is a second heat storage tank sensor for measuring the temperature and water level in the heat storage tank 2, and 15 is a heat storage device constituted by an ice heat storage unit.

【0004】なお、外気温度測定器10、第一冷水温度
測定器11、第二冷水温度測定器12、第一蓄熱槽セン
サ13、及び第二蓄熱槽センサ14の出力が制御装置7
に入力される。また、これらの入力値に基づいて負荷予
測を行うニューロ制御機能が制御装置7に設けられてい
る。
The outputs of the outside air temperature measuring device 10, the first chilled water temperature measuring device 11, the second chilled water temperature measuring device 12, the first heat storage tank sensor 13, and the second heat storage tank sensor 14 are controlled by the control device 7.
Is input to Further, the control device 7 is provided with a neuro control function for performing load prediction based on these input values.

【0005】従来の蓄熱装置は上記のように構成され、
次に述べるように運転される。すなわち、通常の氷蓄熱
ユニットと同様に一日の八時〜十八時を空調時間帯と
し、二十二時〜翌日八時までが蓄熱時間帯として設定さ
れる。そして、このような設定によって次のように制御
される。
[0005] The conventional heat storage device is configured as described above,
The operation is performed as described below. That is, similarly to a normal ice heat storage unit, 8:00 to 18:00 of the day is set as the air-conditioning time zone, and 22 o'clock to 8:00 of the next day is set as the heat storage time zone. And it is controlled as follows by such a setting.

【0006】すなわち、空調時間帯の前の零時〜八時の
最低気温から教師データを用い、ニューロ手法により当
日の熱負荷量を八時に予測する。また、ピークカット時
間帯を十三時〜十五時と考えて、その間のチラーの運転
を行わないとして全負荷量をカバーするようにチラーの
運転時間を決める。
That is, the heat load of the day is predicted at 8:00 by a neuro-technique using the teacher data from the lowest temperature between 00:00 and 8:00 before the air conditioning time zone. Further, considering the peak cut time period from 13 o'clock to 15 o'clock, the operation time of the chiller is determined so as to cover the entire load amount without operating the chiller during that time.

【0007】このときに、 (1) チラーの稼働時間=〔(日量負荷予測量)×0.
8〕−蓄熱量〕/(チラー冷却能力) (2) 運転開始時刻=空調開始時刻 として設定される。
At this time, (1) chiller operating time = [(daily load forecast amount) × 0.
8] -Amount of heat storage] / (chiller cooling capacity) (2) Operation start time is set as air conditioning start time.

【0008】[0008]

【発明が解決しようとする課題】上記のような従来の蓄
熱装置において、蓄熱槽2内水位から各時刻の蓄熱量を
演算して、これと空冷チラー1の冷却能力とから各時刻
の熱負荷を演算し、これを積算して日量熱負荷量が算出
される。このため、負荷予測用教師データとしての日量
熱負荷量の演算及び蓄熱量の把握のために高価な第二蓄
熱槽センサ14、すなわち水位センサーが必要になり、
蓄熱装置の製造費が嵩むという問題点があった。
In the conventional heat storage device as described above, the amount of heat stored at each time is calculated from the water level in the heat storage tank 2 and the heat load at each time is calculated from the calculated amount and the cooling capacity of the air-cooled chiller 1. Is calculated, and this is integrated to calculate the daily heat load. Therefore, an expensive second heat storage tank sensor 14, that is, a water level sensor is required for calculating the daily heat load amount as the load prediction teacher data and grasping the heat storage amount,
There is a problem that the manufacturing cost of the heat storage device increases.

【0009】また、従来の蓄熱装置は一日の負荷パター
ンが空調時間帯に一つだけピークを持つような負荷パタ
ーンを前提として制御されていたので、一日に複数回先
鋭的なピークが発生する負荷に対しては十分な熱源機出
力の低減が図れないという問題点があった。
Further, since the conventional heat storage device is controlled on the premise that the load pattern of the day has only one peak during the air-conditioning time period, a sharp peak occurs several times a day. There is a problem that it is not possible to sufficiently reduce the output of the heat source device for a load that does.

【0010】さらに、従来の蓄熱装置は熱源機として氷
蓄熱槽と一体で設計された熱源機のみ制御するだけであ
ったので、氷蓄熱装置と吸収式冷温水機、ターボ冷凍
機、空冷ヒートポンプチラー等が組合わされた構成の熱
源システムの運転制御に対しては、別に制御装置を設置
しなければならず空調システム全体が割高になってしま
うという問題点があった。
[0010] Further, the conventional heat storage device only controls a heat source device which is designed integrally with the ice heat storage tank as a heat source device. Therefore, the ice heat storage device and the absorption type chiller / heater, the turbo chiller, and the air-cooled heat pump chiller are used. For the operation control of the heat source system having such a configuration, a separate control device has to be installed, and there is a problem that the entire air conditioning system becomes expensive.

【0011】この発明は、かかる問題点を解消するため
になされたものであり、水位センサーなしに負荷予測用
教師データ用の日量熱負荷量演算でき、また蓄熱量が把
握できる蓄熱装置及び蓄熱装置の運転方法を得ることを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem. A heat storage device and a heat storage device capable of calculating a daily heat load amount for load prediction teacher data without a water level sensor and capable of grasping a heat storage amount. The object is to obtain a method of operating the device.

【0012】[0012]

【課題を解決するための手段】この発明に係る蓄熱装置
においては、熱源機で発生した冷温熱を蓄熱槽に収容さ
れた蓄熱媒体に蓄えて、蓄熱媒体の蓄熱により所定時間
帯に空調動作する蓄熱装置に対して、運転開始及び運転
終了を運転時間計画に基づいて制御すると共に、蓄熱媒
体の代表温度を判定する蓄熱媒体代表温度判定機能、蓄
熱媒体代表温度を予測する蓄熱媒体代表温度予測機能、
この蓄熱媒体代表温度予測機能の予測値によって熱源機
の運転を制御する熱源機運転制御機能、蓄熱媒体代表温
度判定機能の判定値によって熱源機の運転を停止する熱
源機停止制御機能、熱源機運転制御機能及び熱源機停止
制御機能による運転時間を記憶する運転時間実績値記憶
機能及びこの運転時間実績値記憶機能の記憶を介して次
の運転時間計画を設定する運転時間計画設定機能を有す
る制御装置が設けられる。
In the heat storage device according to the present invention, the cooling / heating heat generated by the heat source unit is stored in the heat storage medium accommodated in the heat storage tank, and the air conditioning operation is performed in a predetermined time zone by the heat storage of the heat storage medium. For the heat storage device, the operation start and the operation end are controlled based on the operation time plan, the heat storage medium representative temperature determination function for determining the representative temperature of the heat storage medium, and the heat storage medium representative temperature prediction function for predicting the heat storage medium representative temperature. ,
A heat source device operation control function that controls the operation of the heat source device based on the predicted value of the heat storage medium representative temperature prediction function, a heat source device stop control function that stops the operation of the heat source device based on the determination value of the heat storage medium representative temperature determination function, a heat source device operation A control device having an operation time actual value storage function for storing the operation time by the control function and the heat source device stop control function, and an operation time plan setting function for setting the next operation time plan through the storage of the operation time actual value storage function Is provided.

【0013】また、この発明に係る蓄熱装置において
は、熱源機で発生した冷温熱を蓄熱槽に収容された蓄熱
媒体に蓄えて蓄熱媒体の蓄熱により所定時間帯に空調動
作する蓄熱装置において、運転開始及び運転終了を運転
時間計画に基づいて制御し、蓄熱媒体の代表温度を判定
し、蓄熱媒体の代表温度を予測して、この蓄熱媒体代表
温度の予測値によって熱源機を運転し、蓄熱媒体の代表
温度判定値によって熱源機を停止し、熱源機の運転及び
停止による運転時間を記憶して、この記憶を介して次の
運転時間計画が設定されて蓄熱装置が運転される。
Further, in the heat storage device according to the present invention, the cooling / heating heat generated by the heat source device is stored in the heat storage medium accommodated in the heat storage tank, and the air conditioner is operated in a predetermined time zone by the heat storage medium. The start and end of operation are controlled based on the operation time plan, the representative temperature of the heat storage medium is determined, the representative temperature of the heat storage medium is predicted, and the heat source device is operated based on the predicted value of the representative temperature of the heat storage medium. The heat source device is stopped according to the representative temperature determination value, the operation time of the operation and stop of the heat source device is stored, and the next operation time plan is set via this storage to operate the heat storage device.

【0014】また、この発明に係る蓄熱装置において
は、熱源機の一日の実際の運転時間を判定する熱源機運
転時間判定機能及び一日の実際の熱源機の運転時間を記
憶する熱源機運転時間実績値記憶機能が設けられて、こ
の熱源機運転時間実績値記憶機能の記憶を介して次の運
転時間計画を設定する運転時間計画設定機能を有する制
御装置が設けられる。
Further, in the heat storage device according to the present invention, the heat source device operation time determination function for determining the actual operation time of the heat source device in one day and the heat source device operation for storing the actual operation time of the heat source device in one day A control device is provided which has a time actual value storage function and has an operation time plan setting function for setting the next operation time plan via the storage of the heat source unit operation time actual value storage function.

【0015】また、この発明に係る蓄熱装置において
は、熱源機で発生した冷温熱を蓄熱槽に収容された蓄熱
媒体に蓄えて蓄熱媒体の蓄熱により所定時間帯に空調動
作する蓄熱装置において、運転開始及び運転終了を運転
時間計画に基づいて制御すると共に、蓄熱媒体の代表温
度を判定する蓄熱媒体代表温度判定機能、蓄熱媒体代表
温度を予測する蓄熱媒体代表温度予測機能、この蓄熱媒
体代表温度予測機能の予測値によって熱源機の運転を制
御する熱源機運転制御機能、蓄熱媒体代表温度判定機能
の判定値によって熱源機の運転を停止する熱源機停止制
御機能、熱源機運転制御機能及び熱源機停止制御機能に
基づく運転時間計画値を記憶する運転時間計画値記憶機
能、熱源機の一日の実際の運転時間を判定する熱源機運
転時間判定機能、一日の実際の熱源機の運転時間を記憶
する熱源機運転時間実績値記憶機能、負荷との相関が強
い外気温度を含む外的条件を判定する外的条件判定機
能、この外的条件判定機能の判定を記憶する外的条件判
定値記憶機能、外的条件の当日の予測値を算出する外的
条件予測機能及び外的条件の当日の予測値を入力する外
的条件入力機能のいずれか一方、一日の運転終了後に記
憶されている過去の数日分の熱源機の運転時間の計画値
と実績値の差及び外的条件の判定値との関係を学習する
学習機能並びにこの学習機能の学習結果を基に当日の熱
源機の運転時間計画値を外的条件の実績値及び当日の予
測値のいずれかから算出する運転時間計画値演算機能を
有する制御装置が設けられる。
Further, in the heat storage device according to the present invention, the cooling / heating heat generated in the heat source device is stored in the heat storage medium accommodated in the heat storage tank, and the air conditioner is operated in a predetermined time zone by the heat storage medium. The start and end of the operation are controlled based on the operation time plan, the heat storage medium representative temperature determination function for determining the representative temperature of the heat storage medium, the heat storage medium representative temperature prediction function for predicting the heat storage medium representative temperature, and the heat storage medium representative temperature prediction Heat source unit operation control function that controls the operation of the heat source unit based on the predicted value of the function, heat source unit stop control function that stops the operation of the heat source unit based on the judgment value of the heat storage medium representative temperature judgment function, heat source unit operation control function, and heat source unit stop An operation time plan value storage function for storing an operation time plan value based on the control function, a heat source device operation time determination function for determining the actual operation time of the heat source device for one day, The actual operation time of the heat source unit is stored.The actual operation time of the heat source unit is stored.The external condition determination function is used to determine the external condition including the outside air temperature that has a strong correlation with the load. Either one of an external condition determination value storage function of storing the external condition determination value storing function of calculating the predicted value of the external condition on the same day, and an external condition input function of inputting the predicted value of the external condition on the same day. A learning function for learning the relationship between the difference between the planned value and the actual value of the operation time of the heat source unit for the past several days stored after the operation of the day and the judgment value of the external condition, and the learning result of this learning function A control device having an operation time plan value calculation function for calculating the operation time plan value of the heat source unit on the day based on either the actual value of the external condition or the predicted value of the day based on the operation time is provided.

【0016】また、この発明に係る蓄熱装置において
は、蓄熱槽からの負荷側出口温度が蓄熱媒体の代表温度
として判定される。
Further, in the heat storage device according to the present invention, the load-side outlet temperature from the heat storage tank is determined as the representative temperature of the heat storage medium.

【0017】また、この発明に係る蓄熱装置において
は、蓄熱媒体の蓄熱槽内の所定位置における温度が蓄熱
媒体の代表温度として判定される。
In the heat storage device according to the present invention, the temperature of the heat storage medium at a predetermined position in the heat storage tank is determined as the representative temperature of the heat storage medium.

【0018】また、この発明に係る蓄熱装置において
は、熱源機の運転時間計画値に基づきピークカット時間
帯を除く空調時間帯に前詰めで熱源機の運転計画を立て
て、この運転計画に応じて熱源機を運転/停止する制御
機能を有する制御装置が設けられる。
Further, in the heat storage device according to the present invention, the operation plan of the heat source unit is set up in advance in the air conditioning time period excluding the peak cut time period based on the operation time plan value of the heat source unit. And a control device having a control function of operating / stopping the heat source device.

【0019】また、この発明に係る蓄熱装置において
は、熱源機の運転時間計画値を蓄熱時間帯と空調時間帯
に分けて、それぞれ算出する算出機能を有する制御装置
が設けられる。
Further, in the heat storage device according to the present invention, there is provided a control device having a calculation function for calculating the planned operation time of the heat source unit into the heat storage time zone and the air conditioning time zone, respectively.

【0020】また、この発明に係る蓄熱装置において
は、熱源機の運転時間計画値を蓄熱時間帯と空調時間帯
に分けてそれぞれ算出する算出機能及び蓄熱時間帯の運
転時間が最大となるように、蓄熱時間帯の熱源機の能力
と空調時間帯の熱源機の能力との差を考慮して運転時間
計画値を設定する設定機能を有する制御装置が設けられ
る。
Further, in the heat storage device according to the present invention, a calculation function for separately calculating the planned operation time of the heat source unit into the heat storage time zone and the air conditioning time zone, and the operation time in the heat storage time zone is maximized. In addition, a control device having a setting function of setting an operation time plan value in consideration of a difference between the capacity of the heat source device in the heat storage time zone and the capacity of the heat source device in the air conditioning time zone is provided.

【0021】また、この発明に係る蓄熱装置において
は、蓄熱槽からの負荷側出口温度が空調終了時点で所定
の設定温度以上になるとの予測結果が得られた場合に蓄
熱量不足と判断して、熱源機の運転時間計画値を使い切
った後の空調時間帯に熱源機を強制的に運転する制御機
能を有する制御装置が設けられる。
In the heat storage device according to the present invention, it is determined that the heat storage amount is insufficient when a prediction result that the load-side outlet temperature from the heat storage tank becomes equal to or higher than a predetermined set temperature at the end of air conditioning is obtained. In addition, a control device having a control function of forcibly operating the heat source unit during the air conditioning time period after the planned operation time of the heat source unit is used up is provided.

【0022】また、この発明に係る蓄熱装置において
は、蓄熱槽からの負荷側出口温度が空調終了時点で第一
設定温度以上になるとの予測結果が得られた場合に蓄熱
量不足と判断して、熱源機の運転時間計画値を使い切っ
た後の空調時間帯に熱源機を強制的に運転し、この強制
運転継続中に蓄熱槽からの負荷側出口温度が空調終了時
点で第二設定温度以下になるとの予測結果が得られたと
きに強制運転を終了する制御機能を有する制御装置が設
けられる。
Further, in the heat storage device according to the present invention, it is determined that the heat storage amount is insufficient when a prediction result that the load-side outlet temperature from the heat storage tank becomes equal to or higher than the first set temperature at the end of air conditioning is obtained. During the air-conditioning period after the planned operating time of the heat source unit is exhausted, the heat source unit is forcibly operated, and the load-side outlet temperature from the heat storage tank is equal to or lower than the second set temperature at the end of air conditioning during the forced operation. And a control device having a control function of terminating the forced operation when a prediction result indicating that the condition is satisfied is obtained.

【0023】また、この発明に係る蓄熱装置において
は、蓄熱槽からの負荷側出口温度が空調終了時点で第一
設定温度以上になるとの予測結果が複数回連続して得ら
れた場合に蓄熱量不足と判断して、熱源機の運転時間計
画値を使い切った後の空調時間帯に熱源機を強制的に運
転し、この強制運転継続中に蓄熱槽からの負荷側出口温
度が空調終了時点で第二設定温度以下になるとの予測結
果が複数回連続して得られたときに強制運転を終了する
制御機能を有する制御装置が設けられる。
Further, in the heat storage device according to the present invention, the heat storage amount is determined when the predicted result that the load-side outlet temperature from the heat storage tank becomes equal to or higher than the first set temperature at the end of air conditioning is obtained a plurality of times in succession. Judging that it is insufficient, the heat source unit is forcibly operated during the air conditioning time period after the operation time plan value of the heat source unit has been used up, and the temperature of the load side outlet from the heat storage tank at the end of air conditioning during the forced operation is continued. A control device is provided which has a control function of terminating the forced operation when a prediction result that the temperature becomes equal to or lower than the second set temperature is obtained continuously plural times.

【0024】また、この発明に係る蓄熱装置において
は、蓄熱媒体の代表温度である空調終了時点における蓄
熱槽からの負荷側出口温度の予測値が、現在及び数分前
の時刻における実測値の二点から直線補完によって演算
される。
Further, in the heat storage device according to the present invention, the predicted value of the load-side outlet temperature from the heat storage tank at the end of air conditioning, which is the representative temperature of the heat storage medium, is the actual measured value at the current time and several minutes before. It is calculated by linear interpolation from points.

【0025】また、この発明に係る蓄熱装置において
は、空調時間帯の空調終了時刻までの残り時間が残氷判
定時間よりも少なくなった時点で、蓄熱槽からの負荷側
出口温度が残氷検知温度以下であり、かつ熱源機の運転
計画時間を使い切っていない場合には、蓄熱過剰と判断
して熱源機の運転時間計画値に関わらず熱源機を停止さ
せる制御機能を有する制御装置が設けられる。
Further, in the heat storage device according to the present invention, when the remaining time until the air conditioning end time in the air conditioning time period becomes shorter than the remaining ice determination time, the temperature of the load-side outlet from the heat storage tank is detected as remaining ice. When the temperature is equal to or lower than the predetermined value and the operation planning time of the heat source device is not used up, a control device having a control function of determining that heat storage is excessive and stopping the heat source device regardless of the planned operation time of the heat source device is provided. .

【0026】また、この発明に係る蓄熱装置において
は、外気温度の予測値及び蓄熱槽からの負荷側出口温度
に基づいて、熱源機の蓄熱時間帯の能力積算値の差と、
熱源機の空調時間帯の能力積算値の差と、一日の運転前
後の残蓄熱量差の参照日と当日の差と、空調時間帯の外
気温度差に伴う空調熱負荷積算値の参照日と当日の差と
を予測して、蓄熱時間帯開始直前に当日の熱源機の運転
時間計画値を設定する設定機能を有する制御装置が設け
られる。
Further, in the heat storage device according to the present invention, based on the predicted value of the outside air temperature and the temperature of the load side outlet from the heat storage tank, the difference between the integrated value of the capacity of the heat source unit in the heat storage time zone and
Difference in the accumulated value of the capacity of the heat source unit during the air-conditioning period, the difference between the reference day of the difference in the residual heat storage amount before and after the operation before and after the day, and the reference date of the accumulated value of the air-conditioning heat load due to the outside air temperature difference during the air-conditioning period And a control device having a setting function of predicting the difference between the day and the day and setting the planned operating time of the heat source unit on the day immediately before the start of the heat storage time zone.

【0027】また、この発明に係る蓄熱装置において
は、外気温度の予測値が、蓄熱時間帯の平均値及び空調
時間帯の平均値として設定される。
In the heat storage device according to the present invention, the predicted value of the outside air temperature is set as the average value of the heat storage time zone and the average value of the air conditioning time zone.

【0028】また、この発明に係る蓄熱装置において
は、外気温度の蓄熱時間帯の平均及び空調時間帯の平均
の予測値が、前日の外気温度の蓄熱時間帯の平均及び空
調時間帯の平均の実測値として設定される。
Further, in the heat storage device according to the present invention, the predicted value of the average of the outside air temperature heat storage time zone and the average of the air conditioning time zone is the average of the previous day's outside air temperature heat storage time zone and the average of the air conditioning time zone. It is set as an actual measurement value.

【0029】また、この発明に係る蓄熱装置において
は、一日の任意の時刻において、外気温度の予測値及び
実績値のいずれか並びに蓄熱槽からの負荷側出口温度に
基づいて、熱源機の蓄熱時間帯の能力積算値の差と、熱
源機の空調時間帯の能力積算値の差と、一日の運転前後
の残蓄熱量差の参照日と当日の差と、空調時間帯の外気
温度差に伴う空調熱負荷積算値の参照日と当日の差とを
予測又は実測し、当日の上記任意時刻までの熱源機の運
転時間実測値とによって、熱源機の運転時間計画値を設
定する設定機能を有する制御装置が設けられる。
Further, in the heat storage device according to the present invention, at any time of the day, the heat storage of the heat source unit is performed based on one of the predicted value and the actual value of the outside air temperature and the load-side exit temperature from the heat storage tank. Difference in capacity integrated value in the time zone, difference in capacity integrated value in the air conditioning time zone of the heat source unit, difference between reference day and day of the remaining heat storage difference before and after operation of one day, and difference in outside air temperature in the air conditioning time zone A setting function that predicts or measures the difference between the reference date of the air-conditioning heat load integrated value and the difference of the day, and sets the planned operation time of the heat source device based on the measured value of the operation time of the heat source device until the above-mentioned arbitrary time on the day. Is provided.

【0030】また、この発明に係る蓄熱装置において
は、任意の時刻が午前八時、午前十時及び正午として設
定される。
In the heat storage device according to the present invention, the arbitrary time is set to 8:00 am, 10:00 am and noon.

【0031】また、この発明に係る蓄熱装置において
は、氷厚センサにより蓄熱充満を検知した場合に熱源機
を強制的に停止し、熱源機の運転時間計画値を減少修正
し、かつ熱源機の運転再開まで所定時間にわたって熱源
機の停止を継続する制御機能を有する制御装置が設けら
れる。
Further, in the heat storage device according to the present invention, when the heat storage device is detected by the ice thickness sensor, the heat source device is forcibly stopped, the planned operation time of the heat source device is reduced, and the heat source device is corrected. A control device having a control function of continuing to stop the heat source device for a predetermined time until the operation is restarted is provided.

【0032】また、この発明に係る蓄熱装置において
は、負荷と相関の強い外的条件である外気温度の空調時
間帯の平均値の当日と参照日との差と、この参照日の負
荷を基準とした当日の負荷の増減に相当する熱源機の運
転時間との間の関係を、空調時間帯終了直後から次の日
の熱源機の運転時間計画値を算出するまでの間に毎日学
習すると共に、毎日の蓄熱時間帯開始直前における運転
時間計画値算出時に当日の外気温度の空調時間帯の平均
値の予測値を基に運転時間計画値を算出する算出機能を
有する制御装置が設けられる。
In the heat storage device according to the present invention, the difference between the current day and the reference date of the average value of the air-conditioning time zone of the outside air temperature, which is an external condition strongly correlated with the load, and the load on the reference day are used as a reference. The relationship between the operation time of the heat source unit corresponding to the increase and decrease of the load on the day is learned every day from immediately after the end of the air-conditioning period until the operation time plan value of the heat source unit on the next day is calculated. In addition, a control device having a calculating function of calculating an operation time plan value based on a predicted value of an average value of an air conditioning time period of the outside air temperature of the day when the operation time plan value is calculated immediately before the start of the daily heat storage time zone is provided.

【0033】また、この発明に係る蓄熱装置において
は、一日に複数回が設定されて熱源機を運転して蓄熱槽
に蓄熱する蓄熱時間帯、一日に複数回が設定され熱源機
を運転して熱源機の負荷からの戻り蓄熱媒体を利用して
蓄熱槽内の蓄熱使用量を抑制する追いかけ時間帯及び熱
源機の運転を禁止するピークカット時間帯が設けられ
て、それぞれの時間帯における負荷の状況に対応して熱
源機を制御すると共に、負荷が所定値よりも小さくなっ
たときに熱源機による蓄熱運転を開始し、負荷が所定値
よりも大きくなったときに蓄熱運転を終了して蓄熱利用
運転及び熱源機の負荷からの戻り蓄熱媒体を利用して蓄
熱槽内の蓄熱使用量を抑制する追いかけ運転が行われ
る。
Further, in the heat storage device according to the present invention, a heat storage time zone in which the heat source device is operated a plurality of times a day and heat is stored in the heat storage tank, and the heat source device is operated a plurality of times a day is set. A chase time period for suppressing the amount of heat storage in the heat storage tank using the return heat storage medium from the load of the heat source device and a peak cut time period for prohibiting the operation of the heat source device are provided. The heat source unit is controlled according to the load condition, and the heat storage operation by the heat source unit is started when the load becomes smaller than a predetermined value, and the heat storage operation is terminated when the load becomes larger than the predetermined value. In this manner, a heat storage utilization operation and a chasing operation for suppressing the amount of heat storage in the heat storage tank using the return heat storage medium from the load of the heat source device are performed.

【0034】また、この発明に係る蓄熱装置において
は、一日の運転時間計画値に基づいて熱源機を運転し一
日の空調作用終了時点で熱源機に対応した蓄熱槽の蓄熱
量が零のときは一日の翌日において一日の運転時間計画
値を継続し、一日の空調作用終了時点で蓄熱量に余剰が
あるときは翌日における運転時間計画値を減少し、一日
の空調作用終了時点で蓄熱量が不足したときは翌日のお
ける運転時間計画値を増大する運転が行われる。
Further, in the heat storage device according to the present invention, the heat source device is operated based on the daily operation time plan value, and the heat storage amount of the heat storage tank corresponding to the heat source device at the end of the air conditioning operation for one day is zero. At the end of the day, the planned operating time for the day is continued on the next day.If there is excess heat storage at the end of the air conditioning operation for the day, the planned operating time for the next day is reduced, and the air conditioning operation for the day ends. When the heat storage amount is insufficient at the time, the operation is performed to increase the operation time plan value for the next day.

【0035】また、この発明に係る蓄熱装置において
は、運転時間計画値に基づいて運転される熱源機に対応
した蓄熱槽の出口温度を所定の時間間隔ごとに検定して
一日の空調作用終了時点での出口温度を予測し、空調作
用終了時点での出口温度が第一設定温度以上になる予測
結果が三回連続したときには停止中の熱源機を強制運転
し、熱源機の強制運転中に空調作用終了時点での出口温
度が第二設定温度以下になる予測結果が三回連続したと
きには熱源機の強制運転を終了するする運転が行われ
る。
Further, in the heat storage device according to the present invention, the outlet temperature of the heat storage tank corresponding to the heat source device operated based on the operation time plan value is verified at predetermined time intervals, and the air conditioning operation for one day is completed. The outlet temperature at the time point is predicted, and when the predicted result that the outlet temperature at the time of the end of the air-conditioning operation becomes equal to or higher than the first set temperature is continuously three times, the stopped heat source unit is forcibly operated. When the prediction result that the outlet temperature at the time of the end of the air conditioning operation becomes equal to or lower than the second set temperature is repeated three times, an operation for terminating the forced operation of the heat source device is performed.

【0036】[0036]

【発明の実施の形態】実施の形態1.図1〜図3は、こ
の発明の実施の形態の一例を示す図で、図1は蓄熱装置
の回路図、図2は図1の蓄熱装置の蓄熱不足時の熱源機
の強制運転の状態を示すグラフ、図3は図1の蓄熱装置
の蓄熱不足判定を説明するグラフである。図において、
16は氷蓄熱ユニットからなる蓄熱装置、17は熱源
機、18は熱源機17に内蔵されたブライン熱交換器、
19は熱源機17に内蔵された水熱交換器、20は氷蓄
熱槽からなる蓄熱槽である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 1 to 3 are diagrams showing an example of an embodiment of the present invention. FIG. 1 is a circuit diagram of a heat storage device, and FIG. 2 shows a state of a forced operation of a heat source device when the heat storage device of FIG. FIG. 3 is a graph illustrating the determination of insufficient heat storage of the heat storage device of FIG. In the figure,
16 is a heat storage device composed of an ice heat storage unit, 17 is a heat source unit, 18 is a brine heat exchanger built in the heat source unit 17,
19 is a water heat exchanger built in the heat source unit 17, and 20 is a heat storage tank composed of an ice heat storage tank.

【0037】21はブラインポンプ、22は負荷側熱交
換器、23は氷蓄熱槽20側から冷温水を負荷へ供給す
るポンプ、24は三方弁、25は水からなる蓄熱媒体、
26はブライン管路で、ブライン熱交換器18に接続さ
れ、またブラインポンプ21が設けられている。なお、
ブライン管路26の一部は蓄熱槽20内で熱交換器27
を形成し、ブラインポンプ21に接続されてブライン回
路を構成する。
21 is a brine pump, 22 is a load side heat exchanger, 23 is a pump for supplying cold / hot water to the load from the ice heat storage tank 20 side, 24 is a three-way valve, 25 is a heat storage medium made of water,
Reference numeral 26 denotes a brine pipeline connected to the brine heat exchanger 18 and provided with a brine pump 21. In addition,
A part of the brine pipe 26 is connected to the heat exchanger 27 in the heat storage tank 20.
Is formed and connected to the brine pump 21 to form a brine circuit.

【0038】28は水熱交換器19と負荷側熱交換器2
2出口の間に設けられた第一水管路、29は水熱交換器
19と三方弁24の第二口との間に設けられた第二水管
路、30は第二水管路29の途中と蓄熱槽20の間に設
けられた第三水管路で、負荷側熱交換器22からの水の
一部又は全部が蓄熱槽20に還流される。31は蓄熱槽
20の出口と三方弁24の第一口との間に設けられた第
四水管路、32は第四水管路31の中間に設けられた第
一水温センサである。
Reference numeral 28 denotes the water heat exchanger 19 and the load side heat exchanger 2
A first water pipe provided between the two outlets, 29 is a second water pipe provided between the water heat exchanger 19 and the second port of the three-way valve 24, and 30 is a part of the second water pipe 29. In the third water pipe provided between the heat storage tanks 20, a part or all of the water from the load side heat exchanger 22 is returned to the heat storage tank 20. 31 is a fourth water pipe provided between the outlet of the heat storage tank 20 and the first port of the three-way valve 24, and 32 is a first water temperature sensor provided in the middle of the fourth water pipe 31.

【0039】33は三方弁24の第三口と負荷側熱交換
器22入口の間に設けられた第五水管路で、中間にポン
プ23及び第二水温センサ34が配置されて水回路を構
成している。35は蓄熱装置16に配置された外気温度
センサ、36は熱交換器27の氷厚さを検出する氷厚セ
ンサである。
Reference numeral 33 denotes a fifth water pipe provided between the third port of the three-way valve 24 and the inlet of the load-side heat exchanger 22. A pump 23 and a second water temperature sensor 34 are arranged in the middle to constitute a water circuit. doing. Reference numeral 35 denotes an outside air temperature sensor arranged in the heat storage device 16, and reference numeral 36 denotes an ice thickness sensor for detecting the ice thickness of the heat exchanger 27.

【0040】37は蓄熱装置16の運転を制御する制御
装置である。38は負荷側制御装置で、負荷側熱交換器
22側の第二水温センサ34の温度が所定値になるよう
に三方弁24の開度、すなわち水熱交換器19を経由し
た負荷側戻り水と蓄熱槽20出口の水の混合比を制御す
る。
A control device 37 controls the operation of the heat storage device 16. Reference numeral 38 denotes a load-side control device which controls the opening of the three-way valve 24, that is, the load-side return water passing through the water heat exchanger 19, so that the temperature of the second water temperature sensor 34 on the load-side heat exchanger 22 becomes a predetermined value. And the mixing ratio of water at the outlet of the heat storage tank 20 is controlled.

【0041】上記のように構成された蓄熱装置におい
て、熱源機17で発生した冷温熱は、ブラインポンプ2
1及びブライン管路26内のブラインによって蓄熱槽2
0内の熱交換器27に伝えられる。そして、冷熱蓄熱の
場合は蓄熱槽20内の回りに蓄熱媒体である蓄熱媒体2
5の一部を凍結させることによって、また温熱蓄熱の場
合は熱交換器27が設置されている蓄熱槽20内の蓄熱
媒体である蓄熱媒体25の温度を上昇させることによっ
て蓄えられる。
In the heat storage device configured as described above, the cold heat generated by the heat source unit 17 is supplied to the brine pump 2.
1 and the brine in the brine line 26
It is transmitted to the heat exchanger 27 within 0. In the case of cold heat storage, the heat storage medium 2 serving as a heat storage medium is provided around the heat storage tank 20.
The heat storage medium 5 is stored by freezing a part of the heat storage medium or, in the case of thermal heat storage, by raising the temperature of the heat storage medium 25 as the heat storage medium in the heat storage tank 20 in which the heat exchanger 27 is installed.

【0042】そして、蓄熱槽20に蓄えられた冷熱又は
温熱が、蓄熱媒体25を第四水管路31及びポンプ23
を介して空調負荷側へ供給されて、負荷側熱交換器22
により冷房作用又は暖房作用を発生する。そして、負荷
側熱交換器22で冷房作用又は暖房作用を発生して還流
する蓄熱媒体25は、水熱交換器19を経て一部が蓄熱
槽20へ、他部は三方弁24を経て蓄熱槽20から供給
される蓄熱媒体25と合流して再び負荷側熱交換器22
へ供給される。
The cold or warm heat stored in the heat storage tank 20 transfers the heat storage medium 25 to the fourth water pipe 31 and the pump 23.
Is supplied to the air-conditioning load side via the load side heat exchanger 22
As a result, a cooling action or a heating action is generated. A part of the heat storage medium 25 which generates a cooling action or a heating action in the load side heat exchanger 22 and returns to the heat storage tank 20 via the water heat exchanger 19, and the other part via the three-way valve 24. 20 and again merges with the heat storage medium 25 supplied from the load side heat exchanger 22.
Supplied to

【0043】このときに、熱源機17を運転して水熱交
換器19で還流した蓄熱媒体25を適宜に冷却又は加熱
することによって、蓄熱槽20内の蓄熱を消費量を抑制
することにより、空調終了時点で蓄熱量がちょうど零に
なるように蓄熱装置16を制御することが目標として設
定されている。
At this time, by operating the heat source unit 17 and appropriately cooling or heating the heat storage medium 25 refluxed in the water heat exchanger 19, the amount of heat stored in the heat storage tank 20 can be suppressed to reduce consumption. It is set as a target to control the heat storage device 16 so that the heat storage amount becomes exactly zero at the end of the air conditioning.

【0044】また、制御装置37の内部には、熱源機1
7の運転時間計画値を記憶する運転時間計画値記憶部
と、熱源機17の一日の実際の運転時間を計測するタイ
マカウンタ等の運転時間計測手段と、熱源機17の一日
の実際の運転時間を記憶する運転時間実績値記憶部と、
外気温度センサ35の計測結果を記憶する外気温度計測
値記憶部とが設けられている。
The heat source unit 1 is installed inside the control device 37.
7, an operation time plan value storage unit that stores the operation time plan value, an operation time measurement unit such as a timer counter that measures the actual operation time of the heat source unit 17 for one day, and an actual day of the heat source unit 17 for one day. An operation time actual value storage unit for storing the operation time;
An outside air temperature measurement value storage unit that stores a measurement result of the outside air temperature sensor 35 is provided.

【0045】次に、上記のように構成された蓄熱装置1
6の動作例として、空調負荷へ冷水を供給する冷房の場
合を説明する。なお、ここでは通常の氷蓄熱ユニットと
同様に一日の八時〜十八時を空調時間帯とし、二十二時
〜翌日八時までが蓄熱時間帯であるとし、また一日を二
十二時〜二十二時、ピークカット時間帯を十三時〜十五
時として説明する。このときの熱源機17の運転可能な
時間は、蓄熱時間帯がXnmax =10〔時間〕、空調時
間帯はXdmax =8〔時間〕である。
Next, the heat storage device 1 configured as described above
As an operation example of No. 6, a case of cooling which supplies cold water to an air conditioning load will be described. Note that, here, the air-conditioning time zone is from 8:00 to 18:00 a day, the heat storage time zone is from 22:00 to 8:00 the next day, and the day is 20 The description will be made from 2:00 to 22 o'clock and the peak cut time zone is from 13 o'clock to 15 o'clock. At this time, the operable time of the heat source unit 17 is Xnmax = 10 [hours] in the heat storage time zone and Xdmax = 8 [hours] in the air conditioning time zone.

【0046】まず、熱源機17の一日の運転時間計画値
を蓄熱時間帯(Xnt〔時間〕)と空調時間帯(Xdt
〔時間〕)に分けて設定する。また運転時間計画値は、
これから熱源機17の運転時間計画値を算定しようとし
ている日(以下当日とする)の蓄熱時間帯開始直前に算
出する。すなわち、当日の熱源機17の運転時間計画値
(蓄熱時間帯/空調時間帯)は、熱源機17の後述する
参照日の運転時間実績値(蓄熱時間帯Xnr〔時間〕/
空調時間帯Xdr〔時間〕)を基本とし、
First, the daily operation time plan value of the heat source unit 17 is stored in a heat storage time zone (Xnt [hour]) and an air conditioning time zone (Xdt).
[Time]). The operating time plan value is
From this, the operation time plan value of the heat source device 17 is calculated immediately before the start of the heat storage time zone on the day (hereinafter, referred to as the current day) for which the calculation is to be performed. In other words, the planned operation time of the heat source device 17 on the day (heat storage time zone / air conditioning time zone) is calculated as the actual operation time value of the heat source device 17 on a later-described reference day (heat storage time zone Xnr [hour]) /
Air conditioning time zone Xdr [hour])

【0047】 Xnt=Xnr (1) Xdt=Xdr (2) とする。ただし、Xnt<Xnmax かつXdt>0の場
合、蓄熱時間帯に空調時間帯の熱源機17運転をシフト
できるので、
Xnt = Xnr (1) Xdt = Xdr (2) However, in the case of Xnt <Xnmax and Xdt> 0, the operation of the heat source unit 17 during the air conditioning time period can be shifted during the heat storage time period.

【0048】 DXn=Xnmax−Xnt (3) として、次のように設定する。すなわち (1) Xdt>DXn×RQのとき、 Xnt=Xnmax (4) Xdt=Xdr−DXn×RQ (5)DXn = Xnmax−Xnt (3) The following is set. That is, (1) when Xdt> DXn × RQ, Xnt = Xnmax (4) Xdt = Xdr−DXn × RQ (5)

【0049】(2) Xdt≦DXn×RQのとき、 Xnt=Xnr+Xdr/RQ (6) Xdt=0 (7) ここで、RQ:熱源機17の昼夜能力比(蓄熱時間帯蓄
熱時間の能力)/(空調時間帯空調時間の能力)であ
る。
(2) When Xdt ≦ DXn × RQ, Xnt = Xnr + Xdr / RQ (6) Xdt = 0 (7) where, RQ: day / night capacity ratio of heat source device 17 (capacity of heat storage time in heat storage time zone) / (Air conditioning time zone air conditioning time capability).

【0050】なお、一般的に冷凍サイクルの特性とし
て、外気温度が低いほど能力が出易いことに加え、図1
〜図3の実施の形態の場合に、蓄熱時間帯の蓄熱運転で
使用するブラインの熱交換器27で発揮する能力と、空
調時間帯の空調運転で使用する水熱交換器19で発揮す
る能力とが、冷媒の蒸発温度の違いによって大きく異な
る。このため、前述のRQによる能力比率の補正が必要
になる。ただし、蓄熱運転時の熱源機17の能力と、空
調運転時の熱源機17の能力とが問題となるほど相違し
ないときは、RQ=1とし前述の式5、式6を適用する
こともできる。
In general, the characteristics of the refrigeration cycle are that the lower the outside air temperature is, the easier the performance is to be obtained.
3, the capacity exhibited by the heat exchanger 27 of the brine used in the heat storage operation during the heat storage time zone and the capacity exhibited by the water heat exchanger 19 used in the air conditioning operation during the air conditioning time zone. Greatly differ depending on the difference in the evaporation temperature of the refrigerant. For this reason, it is necessary to correct the capacity ratio by the RQ. However, when the capacity of the heat source unit 17 during the heat storage operation and the capacity of the heat source unit 17 during the air-conditioning operation are not so different as to cause a problem, it is possible to apply RQ = 1 and to use the above-described formulas 5 and 6.

【0051】なお、前述の参照日を次のように定義す
る。すなわち、制御装置37において暦日を一週間単位
で曜日ごとに分類して定義する。例として、大負荷日、
例えば祝日を除く月曜〜金曜からなる平日を曜日グルー
プA、中負荷日、例えば祝日を除く土曜日を曜日グルー
プB、低負荷日、例えば日曜及び祝日を曜日グループ
C、特異負荷日、例えばユーザ設定のイベント日を曜日
グループDのように分類する。そして、これらの分類に
従ってそれぞれ参照日が設定される。
The above-mentioned reference date is defined as follows. That is, the control device 37 classifies and defines calendar days for each day of the week on a weekly basis. For example, heavy load days,
For example, a weekday including Monday to Friday excluding holidays is a day group A, a medium load day, for example, a Saturday group excluding a holiday is a day group B, a low load day, for example, a Sunday and a holiday is a day group C, and a unique load day, for example, a user setting. Event days are classified as day group D. Then, reference dates are set according to these classifications.

【0052】また、参照日としては、例えば分類された
それぞれの参照日に対して、直近の同曜日グループを設
定する。したがって、この例では火曜日に対して月曜
日、月曜日に対しては前週の金曜日、日曜日に対しては
前週の日曜日又は直近の祝日が参照日に設定される。ま
た、例えば水曜日が定休日である店舗のような場合に、
曜日グループAとして土曜日及び日曜日を、曜日グルー
プBとして月曜日、火曜日、木曜日及び金曜日を、曜日
グループCとして水曜日をそれぞれ設定することもでき
る。
As the reference date, for example, a group of the same day of the week is set for each classified reference date. Therefore, in this example, the reference date is set to Monday for Tuesday, the previous Friday for Monday, and the previous Sunday or the latest holiday for Sunday. Also, for example, in a store where Wednesday is a regular holiday,
It is also possible to set Saturday and Sunday as day group A, Monday, Tuesday, Thursday and Friday as day group B, and Wednesday as day group C.

【0053】なお、新設された蓄熱装置16では初日の
運転時間計画値を算出するときに、参照日の熱源機17
の運転時間実測データがないので、初期値として例え
ば、蓄熱時間帯Xnt=10、空調時間帯Xdt=8を
予め設定しておく。その他、運転開始後最初の土曜日及
び日曜日等であって参照日の熱源機17の運転時間実測
データがない場合も、予め設定した値を運転時間計画値
とする。また、これらの設定値は参照日の運転時間実績
値の初期値として予め入力しておいても良いことは言う
までもない。
When calculating the planned operation time on the first day, the newly installed heat storage device 16 uses the heat source unit 17 on the reference day.
Because there is no actual operation time measurement data, for example, a heat storage time zone Xnt = 10 and an air conditioning time zone Xdt = 8 are set in advance as initial values. In addition, even when there is no actual measurement data of the operation time of the heat source device 17 on the reference day on the first Saturday and Sunday after the start of operation, the preset value is used as the planned operation time. Needless to say, these set values may be input in advance as initial values of the actual operation time values on the reference day.

【0054】この熱源機17の運転時間計画値Xnt
〔時間〕及びXdt〔時間〕を基に、ピークカット時間
を除く蓄熱時間帯及び空調時間帯に前詰めで、熱源機1
7の運転のスケジュールを立て熱源機17をその運転ス
ケジュールに従って運転する。そして、前述の例に示す
初期値の場合に、ピークカット時間帯以外の蓄熱時間帯
及び空調時間帯の全ての時間に熱源機17の運転がスケ
ジュールされることになる。
The planned operating time Xnt of the heat source unit 17
Based on [time] and Xdt [time], the heat source unit 1
The operation schedule of Step 7 is set, and the heat source unit 17 is operated according to the operation schedule. Then, in the case of the initial values shown in the above-described example, the operation of the heat source device 17 is scheduled at all times of the heat storage time zone and the air conditioning time zone other than the peak cut time zone.

【0055】このような、スケジュール運転中に蓄熱不
足が判断された場合には、熱源機17の運転時間計画値
を使い切った後に、熱源機17を強制的に運転する。ま
た、蓄熱過剰が判断された場合には、熱源機17の運転
時間計画値が残っていても、熱源機17を強制的に停止
する。以下、蓄熱不足の判断方法とそのときの対応及び
蓄熱過剰の判断方法とそのときの対応を説明する。すな
わち、蓄熱不足は次に述べる蓄熱槽20内の水温変化の
傾向から判断するが、その判断方法と蓄熱不足時の熱源
機17の制御方法を図2及び図3によって説明する。な
お、第一水温センサ32の検出値、すなわち蓄熱槽20
からの負荷側出口温度を蓄熱媒体25の代表温度とす
る。
If it is determined that the heat storage is insufficient during the scheduled operation, the heat source unit 17 is forcibly operated after the scheduled operation time of the heat source unit 17 has been used up. When it is determined that the heat storage is excessive, the heat source unit 17 is forcibly stopped even if the planned operation time of the heat source unit 17 remains. Hereinafter, the method of determining the insufficient heat storage and the corresponding measures, and the method of determining the excessive heat storage and the corresponding measures will be described. That is, the lack of heat storage is determined from the tendency of the water temperature change in the heat storage tank 20 described below. A method of the determination and a method of controlling the heat source device 17 when the heat storage is insufficient will be described with reference to FIGS. Note that the detection value of the first water temperature sensor 32, that is, the heat storage tank 20
Is the representative temperature of the heat storage medium 25.

【0056】(1) 蓄熱不足の判断方法 ある時間間隔ごとに蓄熱槽20の出口温度をサンプリン
グし、空調終了時刻、例えば十八時における蓄熱槽20
出口温度を予測する。このときの時間間隔は例えば10
分とし、また蓄熱槽20出口温度の予測については、例
えば直線補完によるものとする。また予測手法として
は、この他に時系列モデル、カオス理論を応用したも
の、ニューラルネットワークを用いた手法など、一般的
に良く知られている手法を適用することができる。
(1) Method of judging insufficient heat storage The outlet temperature of the heat storage tank 20 is sampled at certain time intervals, and the air-conditioning end time, for example, the heat storage tank 20 at 18 o'clock.
Predict outlet temperature. The time interval at this time is, for example, 10
And the prediction of the outlet temperature of the heat storage tank 20 is performed by, for example, linear interpolation. In addition, as the prediction method, a generally well-known method such as a method using a time series model, a chaos theory, or a method using a neural network can be applied.

【0057】なお、ピークカット時間帯以外の時間帯
で、熱源機17の運転時間計画値Xdtを使い切った後
の時点で、空調終了時点における蓄熱槽20出口温度が
第一設定温度以上になるとの予測結果が三回連続して得
られた場合には蓄熱量不足と判断する。この第一設定温
度は、空調終了時刻までの残り時間が少なくなるに従っ
て高くなるように変化させても良い。また、簡易化のた
めに一定値、例えば9〔°C〕と設定することも可能で
ある。
In the time period other than the peak cut time period, when the planned operating time Xdt of the heat source unit 17 is completely used, the outlet temperature of the heat storage tank 20 at the time of the end of the air conditioning becomes equal to or higher than the first set temperature. When the prediction result is obtained three times in a row, it is determined that the heat storage amount is insufficient. The first set temperature may be changed so as to increase as the remaining time until the air conditioning end time decreases. It is also possible to set a constant value, for example, 9 ° C. for simplification.

【0058】(2) 蓄熱不足が判断された場合の熱源機1
7制御方法 蓄熱量不足が判断された場合には、熱源機17を強制的
に運転する。また、この強制運転中にも前述と同様に、
空調終了時点の蓄熱槽20出口温度を予測して、その予
測値が第二設定温度以下になるとの予測結果が三回連続
して得られた場合には強制運転を終了し、強制運転中で
あった熱源機を停止する。なお、この第二設定温度も、
空調終了時刻までの残り時間が少なくなるに従って高く
なるように変化させても良い。また、簡易化のために一
定値、例えば7〔°C〕と設定することも可能である。
ただし、第二設定温度>第一設定温度として設定する。
(2) Heat source unit 1 when insufficient heat storage is determined
7 Control Method When it is determined that the heat storage amount is insufficient, the heat source device 17 is forcibly operated. Also, during this forced operation, as described above,
Predict the outlet temperature of the heat storage tank 20 at the end of the air conditioning, and if the prediction result that the predicted value becomes equal to or lower than the second set temperature is obtained three times in a row, the forced operation is terminated, and the forced operation is stopped. Stop the heat source unit that was located. In addition, this second set temperature also
It may be changed so as to increase as the remaining time until the air conditioning end time decreases. It is also possible to set a constant value, for example, 7 ° C. for simplification.
However, it is set as the second set temperature> the first set temperature.

【0059】また、蓄熱過剰についても蓄熱槽20出口
温度によって判断する。 (3) 蓄熱過剰の判断方法 空調時間帯の残り時間がある程度以下に減少した時点、
例えば残り2時間となった時点で、蓄熱槽20出口温度
Tstがほぼ0〔°C〕、例えばTst≦0.5〔°
C〕である場合で、かつ熱源機17の運転計画時間Xd
tをまだ使い切っていない場合に蓄熱過剰と判断する。
Also, the excess of heat storage is determined by the temperature of the outlet of the heat storage tank 20. (3) Judgment method of excessive heat storage When the remaining time in the air conditioning
For example, when the remaining time is 2 hours, the outlet temperature Tst of the heat storage tank 20 is substantially 0 [° C], for example, Tst ≦ 0.5 [°
C], and the operation planning time Xd of the heat source device 17
If t has not been used up yet, it is determined that the heat storage is excessive.

【0060】(4) 蓄熱過剰が判断された場合の熱源機1
7制御方法 蓄熱過剰が判断された場合に、熱源機17の運転時間計
画値を無視して熱源機17を停止させる。このとき以降
は熱源機17の運転時間計画値を使い切ったものとして
扱う。すなわち当日の熱源機17運転時間計画値をその
時点までの実績値に置き換える。これによって、万一こ
れ以降負荷が急に大きくなり蓄熱槽20出口温度が空調
終了時点、例えば十八時で、第一設定温度を越えて蓄熱
量不足になりそうな場合に備えた前述の蓄熱不足が判断
された場合の熱源機17制御に入ることができて信頼性
を確保することができる。
(4) Heat source unit 1 when excess heat storage is determined
7 Control Method When the excess heat storage is determined, the heat source device 17 is stopped ignoring the planned operation time of the heat source device 17. After this time, it is assumed that the planned operation time of the heat source device 17 has been used up. That is, the planned operation time of the heat source unit 17 on that day is replaced with the actual value up to that point. As a result, the above-described heat storage in case that the load suddenly increases thereafter and the temperature of the heat storage tank 20 outlet ends at the end of air conditioning, for example, at 18:00, and the heat storage amount is likely to be short due to exceeding the first set temperature. When the shortage is determined, the control can be started on the heat source device 17 and reliability can be ensured.

【0061】ここで、蓄熱槽20出口温度の空調終了時
刻における値を直線補完により予測する方法について図
3に示すグラフによって説明する。なお、ここでは時刻
を蓄熱運転開始時刻、例えば二十二時からの経過時間
〔分〕で表すことにする。そして、時刻t〔分〕及び時
刻t−τ〔分〕、例えばτ=10〔分〕における蓄熱槽
20出口温度をそれぞれTst(t)〔°C〕、Tst
(t−τ)〔°C〕と置く。また、時刻t〔分〕から空
調終了時刻tace〔分〕までの残り時間をtzan
〔分〕と置く。
Here, a method of predicting the value of the temperature of the outlet of the heat storage tank 20 at the air conditioning end time by linear interpolation will be described with reference to a graph shown in FIG. Here, the time is represented by the heat storage operation start time, for example, the elapsed time [minutes] from 22 o'clock. Then, the temperature of the outlet of the heat storage tank 20 at the time t [minute] and the time t−τ [minute], for example, τ = 10 [minute] is Tst (t) [° C] and Tst, respectively.
(T−τ) [° C.]. Also, the remaining time from the time t [minute] to the air conditioning end time case [minute] is tzan.
Place [minutes].

【0062】[0062]

【数1】 (Equation 1)

【0063】また、空調終了時刻における蓄熱槽20出
口温度Tst(tace)の予測値Tst(tace)
°〔°C〕は、次の式9で求める。
Further, a predicted value Tst (tace) of the temperature Tst (tace) at the exit of the heat storage tank 20 at the air conditioning end time.
° [° C] is obtained by the following equation (9).

【0064】[0064]

【数2】 (Equation 2)

【0065】そして、熱源機17の実際の運転時間は、
制御装置37のタイマカウンタ等によって自動的に計測
されて制御装置37のメモリに蓄熱時間帯、空調時間帯
別に記憶される。この熱源機運転時間実測値は熱源機運
転時間実測値記憶部に前述の曜日グループごとに、すな
わち参照日として記憶される。次に熱源機運転時間計画
値を算出する日の参照日の実績日として活用される。
The actual operation time of the heat source unit 17 is as follows:
It is automatically measured by a timer counter or the like of the control device 37 and stored in the memory of the control device 37 for each heat storage time zone and air conditioning time zone. The actual heat source device operation time measurement value is stored in the heat source device operation time actual measurement value storage unit for each day group described above, that is, as a reference date. Next, it is used as the actual date of the reference day on which the heat source device operation time plan value is calculated.

【0066】以上説明したように、図1〜図3の実施の
形態では熱源機17が参照日の熱源機運転時間実績値に
基づく当日の運転時間計画値でスケジュールが立てられ
て制御される。このため、蓄熱量を計測するための高価
な水位センサを用いる必要がなく、また蓄熱槽20に温
度センサを設ける必要がなく、蓄熱槽20の第四水管路
31に第一水温センサ32を設けることによって所要の
作用を得ることができる。したがって、蓄熱装置16の
製造費を低減することができる。
As described above, in the embodiment shown in FIGS. 1 to 3, the heat source unit 17 is controlled by setting a schedule based on the actual operation time of the reference day based on the actual operation time value of the heat source unit. Therefore, there is no need to use an expensive water level sensor for measuring the amount of heat storage, and it is not necessary to provide a temperature sensor in the heat storage tank 20, and the first water temperature sensor 32 is provided in the fourth water pipe 31 of the heat storage tank 20. Thereby, a required action can be obtained. Therefore, the manufacturing cost of the heat storage device 16 can be reduced.

【0067】また、蓄熱槽20出口温度によって蓄熱不
足及び蓄熱過剰を判断して、この判断に基づいて熱源機
17を運転時間計画値とは無関係に制御できるようにし
た。これによって万一、運転時間計画値に大幅な誤差が
あった場合にも、空調終了時点での蓄熱槽20出口温度
を、蓄熱を使い切ったと判断できる温度目標範囲内に収
めることができる。したがって、安価な蓄熱時間帯蓄熱
時間の電力を十分に利用できるので、ランニングコスト
が低減できて、しかも快適な空調作用を得ることができ
る。
Insufficient heat storage and excessive heat storage are determined based on the temperature of the heat storage tank 20 outlet, and based on this determination, the heat source unit 17 can be controlled independently of the planned operation time. Accordingly, even if there is a large error in the planned operation time, the outlet temperature of the heat storage tank 20 at the end of the air conditioning can be kept within the target temperature range in which it can be determined that the heat storage has been used up. Therefore, the power for the heat storage time in the cheap heat storage time zone can be sufficiently used, so that the running cost can be reduced and a comfortable air conditioning operation can be obtained.

【0068】実施の形態2.図4は、この発明の他の実
施の形態の一例を示す図で、蓄熱装置における熱源機の
運転時間計画を算出するフローチャートである。なお、
蓄熱装置としては前述の図1と同様に構成されている。
以下、外気温度及び蓄熱槽20出口温度を利用して熱源
機17の運転時間計画値を最適に設定する方法を説明す
る。すなわち、蓄熱装置16が設置されている現地の実
際の外気温度を外気温度センサ35で所定時間間隔で計
測して、その平均値を蓄熱時間帯、空調時間帯別に算出
して記憶する。
Embodiment 2 FIG. 4 is a view showing an example of another embodiment of the present invention, and is a flowchart for calculating an operation time plan of the heat source unit in the heat storage device. In addition,
The heat storage device has the same configuration as that of FIG.
Hereinafter, a method of optimally setting the planned operation time of the heat source device 17 using the outside air temperature and the exit temperature of the heat storage tank 20 will be described. That is, the actual outside air temperature at the site where the heat storage device 16 is installed is measured by the outside air temperature sensor 35 at predetermined time intervals, and the average value is calculated and stored for each heat storage time zone and air conditioning time zone.

【0069】さらに、蓄熱運転開始及び空調終了時刻、
又は翌日蓄熱運転開始直前における蓄熱槽20出口温度
を蓄熱槽20脇の第一水温センサ32で計測して記憶し
ておく。そして、熱源機運転時間計画値(蓄熱時間帯X
nt〔時間〕、空調時間帯Xdt〔時間〕)の基準とし
て、当日に対する参照日の熱源機運転時間実績値(蓄熱
時間帯Xnr〔時間〕、空調時間帯Xdr〔時間〕)を
取り上げる。
Further, the heat storage operation start time and the air conditioning end time,
Alternatively, the outlet temperature of the heat storage tank 20 immediately before the start of the heat storage operation on the next day is measured by the first water temperature sensor 32 on the side of the heat storage tank 20 and stored. Then, the heat source unit operation time plan value (heat storage time zone X
As reference of nt [hour] and air conditioning time zone Xdt [hour]), the actual value of the heat source unit operation time on the reference day with respect to the day (heat storage time zone Xnr [hour], air conditioning time zone Xdr [hour]) is taken.

【0070】そして、前述の値に補正値ΔXn〔時
間〕、ΔXd〔時間〕を加え、 蓄熱時間帯:Xnt=Xnr+ΔXn (10) 空調時間帯:Xdt=Xdr+ΔXd (11) とする。ただし、
Then, the correction values ΔXn [time] and ΔXd [time] are added to the above values, and the heat storage time zone: Xnt = Xnr + ΔXn (10) The air conditioning time zone: Xdt = Xdr + ΔXd (11) However,

【0071】ΔXn:参照日との蓄熱槽20出口温度差
に対する補正分+参照日との外気温度差に伴う熱源機1
7能力差に対する補正分(蓄熱時間帯)であり、 ΔXd:参照日との蓄熱槽20出口温度差に対する補正
分+参照日との外気温度差に伴う熱源機17能力差に対
する補正分+参照日との外気温度差に伴う空調熱負荷差
に対する補正分(空調時間帯)である。
ΔXn: correction amount for the difference in temperature of the heat storage tank 20 at the outlet from the reference date + heat source unit 1 due to the difference in outside air temperature from the reference date
ΔXd: correction amount for the temperature difference of the heat storage tank 20 at the outlet from the reference date + correction amount for the capacity difference of the heat source unit 17 due to the outside air temperature difference from the reference date + reference date This is a correction (air-conditioning time zone) for the air-conditioning heat load difference caused by the outside air temperature difference.

【0072】次に、補正値ΔXn及びΔXdの算出方法
について、図4に示すフローチャートによって説明す
る。なお、図4に示す制御の手順については後述する。 (1) 参照日の蓄熱時間帯運転時間実績値が最大値(Xn
r=Xnmax )の場合 参照日の運転について蓄熱時間帯の熱源機17の運転時
間Xnrが最大値Xnmax であれば、まず蓄熱時間帯の
熱源機運転時間の補正値ΔXn=0〔時間〕として空調
時間帯の運転時間の補正値ΔXd〔時間〕だけを次の式
12により求める。
Next, a method of calculating the correction values ΔXn and ΔXd will be described with reference to the flowchart shown in FIG. The control procedure shown in FIG. 4 will be described later. (1) The actual value of the heat storage time zone operation time on the reference day is the maximum value (Xn
r = Xnmax) For the operation on the reference day, if the operation time Xnr of the heat source unit 17 in the heat storage time zone is the maximum value Xnmax, the air conditioner is first set as a correction value ΔXn = 0 [hour] of the heat source unit operation time in the heat storage time zone. Only the correction value ΔXd [time] of the operation time in the time zone is obtained by the following equation 12.

【0073】[0073]

【数3】 (Equation 3)

【0074】ここで、添字、t:当日(予測値、計画
値)、r:参照日(実績値) p・c・W:蓄熱槽20内の水及び蓄熱槽20自体の熱
容量[Mcal/°C]
Here, subscripts, t: current day (predicted value, planned value), r: reference date (actual value) pcW: heat capacity of water in heat storage tank 20 and heat storage tank 20 itself [Mcal / ° C]

【0075】[0075]

【数4】 (Equation 4)

【0076】[0076]

【数5】 (Equation 5)

【0077】Tst(t):蓄熱運転開始時刻、例えば二十二
時からの経過時刻tにおける蓄熱槽20出口温度〔°
C〕
Tst (t): Thermal storage operation start time, for example, the temperature at the outlet of thermal storage tank 20 at time t elapsed from 22:00 [°
C]

【0078】[0078]

【数6】 (Equation 6)

【0079】である。また、式13の右辺は、それぞれ 分子第一項:蓄熱槽20出口温度差から求められる一日
運転前後の残蓄熱量差の参照日と当日の差 [Mcal] 分子第二項:蓄熱時間帯外気温度差に伴う熱源機蓄熱時
間帯能力積算値の参照日と当日の差 [Mcal] 分子第三項:空調時間帯外気温度差に伴う熱源機空調時
間帯能力積算値の参照日と当日の差 [Mcal] 分子第四項:空調時間帯外気温度差に伴う空調熱負荷積
算値の参照日と当日の差[Mcal] 分母:当日予想される熱源機空調時間帯能力 [Mcal/h] に対応している。
Is as follows. The right-hand side of Equation 13 is the difference between the reference date and the day of the difference between the remaining heat storage amount before and after one-day operation obtained from the temperature difference at the exit of the heat storage tank 20 and the current day, respectively. Difference between the reference date of the heat source unit heat storage time zone capacity integrated value due to the outside air temperature difference and the current day [Mcal] Numerator 3: Air conditioning time zone Heat source unit air conditioning time zone capacity integrated value due to the outside air temperature difference and the day of the day Difference [Mcal] Numerator 4th term: Difference between the reference date and the day of the air conditioning heat load integrated value due to the difference in outside air temperature during the air conditioning time zone [Mcal] Denominator: To the expected heat source equipment air conditioning time zone capacity [Mcal / h] on the day Yes, it is.

【0080】また、式17における係数a及びbは、外
気温度の空調時間平均値Tad〔°C〕と空調熱負荷一
日積算値QL〔Mcal〕との関係を表す係数で、予め
現地データを収集して同定できる場合は、それぞれ所定
値が設定されている。そして、a=0、b=0とする
と、参照日の負荷=当日の負荷と見なしていることに相
当している。
The coefficients a and b in the equation (17) are coefficients representing the relationship between the air conditioning time average value Tad [° C.] of the outside air temperature and the air conditioning heat load integrated value QL [Mcal]. When the data can be collected and identified, a predetermined value is set. If a = 0 and b = 0, this corresponds to the assumption that the load on the reference day is equal to the load on the current day.

【0081】また、式18及び式19における係数c、
d、e及びfは、熱源機17能力(蓄熱時間帯平均QR
n、空調時間帯平均QRd)〔Mcal/h〕と外気温
度(蓄熱時間帯平均Tan、空調時間帯平均Tad)
〔°C〕の関係を表す係数で熱源機17の機種ごとに予
め定数又は蓄熱媒体温度の関数などで設定しておく。
Further, the coefficients c in the equations (18) and (19),
d, e and f are the capacity of the heat source unit 17 (heat storage time zone average QR
n, air conditioning time zone average QRd) [Mcal / h] and outside air temperature (heat storage time zone average Tan, air conditioning time zone average Tad)
A coefficient representing the relationship of [° C] is set in advance for each model of the heat source device 17 by a constant or a function of the heat storage medium temperature.

【0082】また、蓄熱槽20出口温度は、誤差を小さ
くするためポンプ23が運転している時間の計測値を用
いる。すなわち、Tstr(0)については参照日前日
の空調時間帯終了直前又は直後の蓄熱槽20出口温度で
代用する。また、Tstr(24)については参照日の
空調時間帯終了直前又は直後の蓄熱槽20出口温度で代
用する。また、Tstt(0)については、当日、前日
の空調時間帯終了直前又は直後の蓄熱槽20出口温度で
代用する。
As the outlet temperature of the heat storage tank 20, a measured value of the time during which the pump 23 is operating is used to reduce the error. That is, for Tstr (0), the temperature of the outlet of the heat storage tank 20 immediately before or immediately after the end of the air conditioning time zone on the day before the reference is used instead. For Tstr (24), the temperature of the heat storage tank 20 outlet immediately before or immediately after the end of the air conditioning time zone on the reference day is used instead. For Tstt (0), the exit temperature of the heat storage tank 20 immediately before or immediately after the end of the air conditioning time zone on the day or the day before is used instead.

【0083】そして、当日の外気温度については、その
平均値(蓄熱時間帯/空調時間帯)の予測値が外気温度
予測部から得られる。また、他に外部から手動又は自動
で入力できるようにしておく。また、外気温度の予測方
法は、従来からよく知られているARMAモデルやニュ
ーラルネットワーク、カオス理論を応用した方法などを
用いることができる。また、外部からの入力はキーボー
ド、タッチパネル、音声入力などの他、電話回線やイン
ターネットを利用した遠隔場所からの入力、無線を利用
した方法が考えられる。
For the outside air temperature of the day, a predicted value of the average value (heat storage time zone / air conditioning time zone) is obtained from the outside air temperature prediction section. In addition, it can be manually or automatically input from outside. As a method of predicting the outside air temperature, a conventionally well-known ARMA model, a neural network, a method applying chaos theory, or the like can be used. The input from the outside may be a keyboard, a touch panel, a voice input, etc., a remote input using a telephone line or the Internet, or a wireless method.

【0084】そして、前述の式12より、熱源機17の
運転計画時間は、 蓄熱時間帯:Xnt=Xnr=Xnmax〔時間〕 (20) 空調時間帯:Xdt=Xdr+ΔXd 〔時間〕 (21) となる。ここで、Xdt≧Xdmax の場合は、ΔXd=
Xdmax −Xdr(Xdt=Xdmax )とする。一方、
Xdt≦0の場合は、ΔXd=−Xdr(Xdt=0)
として、蓄熱時間帯の熱源機17の運転時間を減らして
蓄熱量を制御する必要がある。このときの蓄熱時間帯の
熱源機運転時間計画値は、次の式22の補正値ΔXn
(<0)から求められる。
From the above equation 12, the operation planning time of the heat source unit 17 is as follows: heat storage time zone: Xnt = Xnr = Xnmax [time] (20) Air conditioning time zone: Xdt = Xdr + ΔXd [time] (21) . Here, when Xdt ≧ Xdmax, ΔXd =
Xdmax-Xdr (Xdt = Xdmax). on the other hand,
When Xdt ≦ 0, ΔXd = −Xdr (Xdt = 0)
It is necessary to control the heat storage amount by reducing the operation time of the heat source device 17 during the heat storage time zone. At this time, the planned heat source device operating time in the heat storage time zone is calculated by using the correction value ΔXn of the following equation 22.
(<0).

【0085】[0085]

【数7】 (Equation 7)

【0086】なお、式22の分子の第五項は当日空調時
間帯の運転時間が参照日より減った分の熱量を補正する
ためのものである。したがって、Xdt≦0の場合、熱
源機17の運転時間計画値は、 蓄熱時間帯:Xnt=Xnr+ΔXn 〔時間〕 (23) 空調時間帯:Xdt=0 〔時間〕 (24) となる。
The fifth term of the numerator of the equation (22) is for correcting the amount of heat of the operation time in the air conditioning time zone of the day which is shorter than the reference day. Therefore, when Xdt ≦ 0, the planned operation time of the heat source device 17 is as follows: heat storage time zone: Xnt = Xnr + ΔXn [time] (23) Air conditioning time zone: Xdt = 0 [time] (24)

【0087】(2) 参照日の蓄熱時間帯運転時間実績値が
最大でない(Xnr<Xnmax )の場合 参照日の運転について、蓄熱時間帯の熱源機運転時間X
nrが最大値Xnmax未満であれば、前述の設定手段
とは逆にまず次の式25からΔXnを求める。
(2) In the case where the actual value of the operation time of the heat storage time zone on the reference day is not the maximum (Xnr <Xnmax) For the operation of the reference day, the operation time X of the heat source unit in the heat storage time zone
If nr is less than the maximum value Xnmax, ΔXn is first obtained from the following equation 25, contrary to the aforementioned setting means.

【0088】[0088]

【数8】 (Equation 8)

【0089】したがって、熱源機17の運転時間計画値
は、 蓄熱時間帯:Xnt=Xnr+ΔXn 〔時間〕 (26) 空調時間帯:Xdt=0 〔時間〕 (27) となる。
Therefore, the planned operation time of the heat source unit 17 is as follows: heat storage time zone: Xnt = Xnr + ΔXn [time] (26) Air conditioning time zone: Xdt = 0 [time] (27)

【0090】ただし、Xnt≦0の場合、ΔXn=−X
nr(Xnt=0)とし、当日は蓄熱時間帯、空調時間
帯とも熱源機17を運転しないことになる。また、Xn
t≧Xnmax の場合、ΔXn=Xnmax −Xnr
(Xnt=Xnmax )として、空調時間帯の熱源機17
の運転によって蓄熱量不足を補う必要がある。このとき
の空調時間帯の熱源機運転時間計画値は、次の式28に
よる補正値から求める。
However, when Xnt ≦ 0, ΔXn = −X
nr (Xnt = 0), and the heat source device 17 is not operated in the heat storage time zone and the air conditioning time zone on the day. Also, Xn
When t ≧ Xnmax, ΔXn = Xnmax−Xnr
(Xnt = Xnmax), the heat source device 17 in the air conditioning time zone
It is necessary to compensate for the shortage of heat storage by the operation of. At this time, the planned value of the heat source device operation time in the air conditioning time zone is obtained from the correction value according to the following Expression 28.

【0091】[0091]

【数9】 (Equation 9)

【0092】式28の分子の最後の項は、当日蓄熱時間
帯の運転時間が参照日から増えた分の熱量を補正するた
めのものである。したがって、ΔXn=Xnmax −Xn
rの場合、熱源機17の運転時間計画値は、 蓄熱時間帯:Xnt=Xnmax 〔時間〕 (29) 空調時間帯:Xdt=Xdr+ΔXd 〔時間〕 (30) となる。
The last term of the numerator in the equation 28 is for correcting the amount of heat generated by increasing the operation time in the heat storage time zone on the day from the reference date. Therefore, ΔXn = Xnmax−Xn
In the case of r, the planned operation time of the heat source device 17 is as follows: heat storage time zone: Xnt = Xnmax [time] (29) Air conditioning time zone: Xdt = Xdr + ΔXd [time] (30)

【0093】また、極端な出力を避けるため、ΔXnと
ΔXdにはそれぞれ上限値(DXnmax 、DXdmax
)、下限値(DXnmin 、DXdmin )を設定してお
き、これらの範囲外の値を出力しないようにすることが
できる。この場合、例えば上限値の方を下限値よりも小
さくしておくことにより、熱源機17の運転を控えめに
して蓄熱時間帯の熱源機運転時間をなるべく長く取るよ
うにすることができる。また、Xnt=Xnmax のとき
はΔXnに対しては上限値、下限値を適用せず、蓄熱時
間帯において最高限度まで熱源機17を運転するように
して、蓄熱時間帯を有効に利用する。
In order to avoid extreme output, ΔXn and ΔXd have upper limits (DXnmax, DXdmax, respectively).
) And lower limits (DXnmin, DXdmin) can be set so that values outside these ranges are not output. In this case, for example, by setting the upper limit to be smaller than the lower limit, the operation of the heat source unit 17 can be suppressed and the heat source unit operating time in the heat storage time zone can be made as long as possible. When Xnt = Xnmax, the upper limit value and the lower limit value are not applied to ΔXn, and the heat source unit 17 is operated to the maximum limit in the heat storage time zone, so that the heat storage time zone is effectively used.

【0094】以上説明した制御の手順を図4に示すフロ
ーチャートによって説明する。すなわち、ステップ10
1で当日の曜日判定を行い、ステップ102で参照日判
定を行う。そして、ステップ103で当日の蓄熱槽20
内温度Tstt(0)〔°C〕を取得し、ステップ10
4へ進んで当日の蓄熱槽20内温度Tstt(0)及び
前日の運転終了時点の蓄熱槽20内温度Tstr(2
4)をメモリに入力し、また、前日の熱源機運転時間実
績値Xns〔h〕及びXds〔h〕をメモリに入力す
る。
The control procedure described above will be described with reference to the flowchart shown in FIG. That is, step 10
In step 1, the day of the week is determined, and in step 102, the reference day is determined. Then, in step 103, the heat storage tank 20 of the day
The internal temperature Tstt (0) [° C.] is obtained, and
4 and the temperature Tstt (0) in the heat storage tank 20 on the day and the temperature Tstr (2) in the heat storage tank 20 at the end of the operation on the previous day.
4) is input to the memory, and the actual heat source unit operating time values Xns [h] and Xds [h] of the previous day are input to the memory.

【0095】次いで、ステップ105で、参照日の蓄熱
槽20内温度Tstr(0)、Tstr(24)〔°
C〕を取得し、ステップ106へ進んで参照日の熱源機
運転時間実績値Xdr及びXnr〔h〕を取得する。そ
して、ステップ107により外気温度Tant、Tad
tを予測し、ステップ108で当日の熱源機17の予想
平均能力Qrnt、Qrdt〔kcal/h〕を算出す
る。次に、ステップ109でXnr≒Xnmax であれば
ステップ110へ進み、Xnr≒Xnmax でなければス
テップ111へ進む。
Next, at step 105, the temperatures Tstr (0) and Tstr (24) [°
C], and proceeds to step 106 to acquire the actual heat source unit operating time values Xdr and Xnr [h] on the reference day. Then, in step 107, the outside air temperature Tant, Tad
At step 108, the predicted average capacity Qrnt, Qrdt [kcal / h] of the heat source device 17 on the day is calculated. Next, in step 109, if Xnr で Xnmax, the process proceeds to step 110, and if not Xnr ≒ Xnmax, the process proceeds to step 111.

【0096】そして、ステップ110で昼間の熱源機運
転時間計画補正値ΔXd〔h〕を算出し、ステップ11
2へ進んでXnt=Xnmax 、Xdt=Xdr+ΔXd
と置く。次いで、ステップ113へ進みXdt<0
〔h〕であればステップ114へ進み、でなければステ
ップ115へ進む。そして、ステップ114で夜間の熱
源機運転時間計画補正値ΔXn〔h〕を算出して、ステ
ップ116によりXnt=Xnmax +ΔXn、Xdt=
0を設定する。
Then, in step 110, a daytime heat source unit operation time plan correction value ΔXd [h] is calculated, and in step 11
Go to 2 and Xnt = Xnmax, Xdt = Xdr + ΔXd
And put. Next, the routine proceeds to step 113, where Xdt <0.
If [h], go to step 114; otherwise, go to step 115. Then, in step 114, a nighttime heat source unit operation time plan correction value ΔXn [h] is calculated, and in step 116, Xnt = Xnmax + ΔXn, Xdt =
Set 0.

【0097】そして、ステップ117へ進み熱源機運転
時間実績値カウンタをリセットとし、Xnc=0、Xd
c=0と設定する。また、ステップ115においてXd
t<0.5〔h〕であればステップ118へ進み、でな
ければステップ119へ進む。そして、ステップ118
でXnt=Xnmax 、Xdt=0と置き、ステップ11
7へ進む。
Then, the process proceeds to a step 117, wherein the actual heat source device operation time counter is reset, and Xnc = 0, Xd
Set c = 0. In step 115, Xd
If t <0.5 [h], the process proceeds to step 118; otherwise, the process proceeds to step 119. Then, step 118
And Xnt = Xnmax and Xdt = 0, and step 11
Proceed to 7.

【0098】また、ステップ119でXdt>Xdmax
であればステップ120へ進み、でなければステップ1
17へ進む。そして、ステップ120においてXdt=
Xdmax と置き、ステップ117へ進む。そして、ステ
ップ111では夜間の熱源機運転時間計画補正値ΔXn
〔h〕を算出して、ステップ121によりXnt=Xn
r+ΔXn、Xdt=0を設定し、ステップ122へ進
んで、Xnt>Xrmax であればステップ123へ進
み、でなければステップ124へ進む。
In step 119, Xdt> Xdmax
If so, proceed to Step 120; otherwise, go to Step 1
Proceed to 17. Then, in step 120, Xdt =
Xdmax and proceed to step 117. Then, in step 111, the nighttime heat source unit operation time plan correction value ΔXn
[H] is calculated, and in step 121, Xnt = Xn
r + ΔXn, Xdt = 0 are set, and the routine proceeds to step 122. If Xnt> Xrmax, the routine proceeds to step 123, and if not, the routine proceeds to step.

【0099】ステップ123で昼間の熱源機運転時間計
画補正値ΔXd〔h〕を算出して、ステップ125へ進
みXnt=Xnmax 、Xdt=ΔXdを設定し、ステッ
プ124へ進む。ステップ124においてXdt<0.
5〔h〕であればステップ126へ進み、でなければス
テップ127へ進む。そして、ステップ126でXnt
=Xnr+ΔXn、Xdt=0を設定してステップ11
7へ進む。また、ステップ127においてXdt>Xd
max であればステップ128へ進み、でなければステッ
プ117へ進む。そして、ステップ128でXdt=X
dmax を設定してステップ117へ進む。
At step 123, the daytime heat source unit operation time plan correction value ΔXd [h] is calculated, and the routine proceeds to step 125, where Xnt = Xnmax and Xdt = ΔXd are set, and the routine proceeds to step. In step 124, Xdt <0.
If it is 5 [h], the process proceeds to step 126; otherwise, the process proceeds to step 127. Then, at step 126, Xnt
= Xnr + ΔXn, Xdt = 0 and step 11
Proceed to 7. In step 127, Xdt> Xd
If it is max, go to step 128; if not, go to step 117. Then, in step 128, Xdt = X
dmax is set, and the routine proceeds to step 117.

【0100】以上説明したように、図4の実施の形態で
は外気温度の蓄熱時間帯平均値と、空調時間帯平均値の
参照日実績値及び当日予測値と、参照日の蓄熱槽20出
口温度の蓄熱開始時刻と、空調終了時刻の実績値と、当
日の蓄熱槽20出口温度の蓄熱開始時刻の実績値と、空
調終了時刻の目標値とが設定される。
As described above, in the embodiment of FIG. 4, the average value of the heat storage time zone of the outside air temperature, the actual value of the air conditioning time zone on the reference day and the predicted value of the day, the temperature of the outlet of the heat storage tank 20 on the reference day, Are set, the actual value of the heat storage start time, the actual value of the air conditioning end time, the actual value of the heat storage start time of the heat storage tank 20 outlet temperature of the day, and the target value of the air conditioning end time are set.

【0101】そして、これらの設定値に基づいて、蓄熱
機17の蓄熱時間帯の能力積算値の差と、蓄熱機17の
空調時間帯の能力積算値の差と、一日の運転前後の残蓄
熱量差における参照日と当日の差と、空調時間帯外気温
度差に伴う空調熱負荷積算値の参照日と当日の差とを予
測して、最適に熱源機17の運転時間計画値を設定する
ことができる。したがって、夜間電力を有効に利用で
き、また昼間電力のピークカットを蓄熱量の過不足なく
空調することができて、所定の空調作用を維持すると共
に運転費を低減することができる。
Then, based on these set values, the difference between the integrated capacity values of the heat storage device 17 in the heat storage time zone, the difference between the integrated capacity values of the heat storage device 17 in the air conditioning time zone, and The difference between the reference date and the current day in the heat storage amount difference and the difference between the reference date and the current day of the air-conditioning heat load integrated value accompanying the air-conditioning time zone outside air temperature difference are predicted, and the operation time plan value of the heat source unit 17 is optimally set. can do. Therefore, the nighttime electric power can be used effectively, and the peak cut of the daytime electric power can be air-conditioned without excess or shortage of the heat storage amount, so that the predetermined air-conditioning action can be maintained and the operating cost can be reduced.

【0102】また、図4の実施の形態では外気温度に関
して蓄熱時間帯の平均値及び空調時間帯の平均値の予測
値が得られるものとして、それらを基に熱源機17の能
力分と空調熱負荷に相当する熱源機17の運転時間補正
を行うものとした。しかし、外気温度の予測値が得られ
ない場合には、前日の外気温度を当日の外気温度とみな
し、前日の外気温度の平均値、すなわち蓄熱時間帯/空
調時間帯を用いて当日の予測値として制御することがで
きる。
In the embodiment shown in FIG. 4, the average value of the heat storage time zone and the predicted value of the average value of the air conditioning time zone are obtained with respect to the outside air temperature. The operation time of the heat source device 17 corresponding to the load is corrected. However, if the predicted value of the outside air temperature cannot be obtained, the outside air temperature of the previous day is regarded as the outside air temperature of the day, and the predicted value of the day using the average value of the outside air temperature of the previous day, that is, the heat storage time zone / air conditioning time zone. Can be controlled as

【0103】実施の形態3.前述の図4の実施の形態を
応用して容易に次に述べるように蓄熱装置を制御するこ
とができる。すなわち、空調時間帯に外気温度の予測が
修正された場合、また当日の蓄熱時間帯の平均時間帯の
平均外気温度が当初の予測よりも大きく異なっていた場
合などに備えて、後述するように空調時間帯に熱源機1
7の運転時間計画値を修正することができる。
Embodiment 3 By applying the embodiment of FIG. 4 described above, the heat storage device can be easily controlled as described below. That is, as will be described later, in case that the prediction of the outside air temperature is corrected in the air-conditioning time zone, or in the case where the average outside air temperature in the average time zone of the heat storage time zone of the day is significantly different from the initial prediction, etc. Heat source unit 1 during air conditioning
7 can be modified.

【0104】すなわち、外気温度予測の及び熱源機運転
時間計画値の修正を、例えば午前八時(j=1)、十時
(j=2)、十二時(j=3)に行う場合に、次のよう
な制御が行われる。なお、熱源機運転時間計画値の修正
は、前述の式18に基づいて実施される。
That is, when the outside air temperature is predicted and the heat source unit operation time plan value is corrected at, for example, 8:00 am (j = 1), 10:00 (j = 2), and 12:00 (j = 3). The following control is performed. The correction of the heat source device operation time plan value is performed based on the above-described Expression 18.

【0105】[0105]

【数10】 (Equation 10)

【0106】一方、ΔTad〔°C〕及びQRrt[Mca
l/h]の方は、各時刻で予測し直した当日空調時間帯の平
均気温Tadj 〔°C〕(j=1,2,3)が得られる
たびに計算し直す。
On the other hand, ΔTad [° C] and QRrt [Mca
l / h] who is recalculated each time the average temperature Tad j of the day conditioning time zone again predicted at each time [° C] (j = 1, 2, 3) is obtained.

【0107】そして、蓄熱運転開始時刻(二十二時)に
計算された補正値をΔXd0 、運転時間計画値をX
1 、午前八時の修正値をΔXd1 、運転時間計画値を
Xd1 、午前十時の修正値をΔXd2 、運転時間計画値
をXd2 、十二時の修正値をΔXd3 、運転時間計画値
をXd3 とする。
The correction value calculated at the heat storage operation start time (22 o'clock) is ΔXd 0 , and the planned operation time is X
d 1 , the correction value at 8:00 am is ΔXd 1 , the planned operation time is Xd 1 , the correction value at 10 am is ΔXd 2 , the planned operation time is Xd 2 , the correction value at 12:00 is ΔXd 3 , Let the time planning value be Xd 3 .

【0108】 Xdj=Xdj-1+(ΔXdj−ΔXdj-1) (34) ここに、j=1,2,3(それぞれ午前八時、十時、十
二時に対応する)ただし、前回の出力との差の絶対値
(|ΔXdj −ΔXdj-1 |;j=1,2,3)がXd
ef〔時間〕、例えばXdef=0.5以上である場合
にのみ本当に運転時間計画値Xdを修正する。
Xd j = Xd j-1 + (ΔD j −ΔX dj-1 ) (34) where j = 1, 2, 3 (corresponding to 8:00 am, 10:00, and 12:00 respectively) the absolute value of the difference between the previous output (| ΔXd j -ΔXd j-1 |; j = 1,2,3) is Xd
Only when ef [time], for example, Xdef = 0.5 or more, the operation time plan value Xd is truly corrected.

【0109】以上説明したように実施の形態3における
制御によれば、空調時間帯に熱源機17の運転時間計画
値を修正することができる。これにより、空調時間帯に
外気温度の予測が修正された場合、又は当日の蓄熱時間
帯の平均外気温度が当初の予測よりも大きく異なってい
た場合などにも、熱源機17の運転時間計画値を設定し
直して熱源機17の運転スケジュールを建て直すことが
できる。したがって、蓄熱が過剰又は不足することなく
空調作用の快適性を維持することができると共に、蓄熱
を使い切って翌日の夜間電力を有効に利用することがで
きる。
As described above, according to the control in the third embodiment, the planned operating time of the heat source unit 17 can be corrected during the air-conditioning time zone. As a result, even when the prediction of the outside air temperature is corrected during the air conditioning time period, or when the average outside air temperature during the heat storage time period of the day is significantly different from the initial prediction, the operation time plan value of the heat source device 17 is also set. Can be set again to rebuild the operation schedule of the heat source device 17. Therefore, the comfort of the air-conditioning operation can be maintained without excessive or insufficient heat storage, and the heat storage can be used up to effectively use the nighttime power of the next day.

【0110】実施の形態4.また、前述の図4の実施の
形態を応用して容易に次に述べるように蓄熱装置を制御
することができる。すなわち、蓄熱開始時刻又は空調終
了時刻において参照日又は当日の蓄熱槽20出口温度が
ほぼ0〔°C〕であり、氷が蓄熱槽20内に残存してい
ると考えられる場合に後述するように対応することがで
きる。
Embodiment 4 Further, the heat storage device can be easily controlled as described below by applying the embodiment of FIG. 4 described above. That is, as described later, when the temperature of the exit of the heat storage tank 20 on the reference day or the day at the heat storage start time or the air conditioning end time is substantially 0 [° C.], and ice is considered to remain in the heat storage tank 20, Can respond.

【0111】すなわち、当日の蓄熱運転開始時刻(二十
二時)での蓄熱槽20出口温度Tstt(0)≒0〔°
C〕、参照日の蓄熱運転開始時刻(二十二時)での蓄熱
槽20出口温度Tstr(0)≒0〔°C〕又は参照日
の空調運転終了時刻(十八時)での蓄熱槽20出口温度
Tstr(24)≒0〔°C〕の場合でも、前述の図4
の実施の形態及び実施の形態3の制御をそのまま適用し
て、ΔXn、ΔXd、ΔXnj 及びΔXdj (j=1,
2,3)を計算する。
That is, the temperature Tstt (0) ≒ 0 [° of the outlet temperature of the heat storage tank 20 at the heat storage operation start time of the day (22:00).
C], the heat storage tank 20 outlet temperature Tstr (0) ≒ 0 [° C.] at the heat storage operation start time (22 o'clock) on the reference day or the heat storage tank at the air conditioning operation end time (18 o'clock) on the reference day 20 even when the outlet temperature Tstr (24) ≒ 0 [° C.]
Control as it applies to the forms of embodiment and Embodiment 3, ΔXn, ΔXd, ΔXn j and ΔXd j (j = 1,
2, 3) is calculated.

【0112】ここで、前述の≒0〔°C〕としたのはセ
ンサの誤差等を考慮してのことであり、例えば0.5
〔°C〕以下の程度を表すものである。ただし、当日の
蓄熱運転開始時刻(二十二時)での蓄熱槽20内温度T
stt(0)については、当日の熱源機17の運転時間
を減らす方向へ持っていくために、Tstt(0)≒0
〔°C〕の場合には、便宜的にTstt(0)=−8
〔°C〕又は−4〔°C〕を代入する。
Here, the reason why the above-mentioned value is set to ≒ 0 [° C.] is to take into account the error of the sensor and the like.
[° C] indicates the following degree. However, the temperature T in the heat storage tank 20 at the heat storage operation start time of the day (22:00)
As for sttt (0), in order to reduce the operation time of the heat source unit 17 on the day, Tstt (0) ≒ 0
In the case of [° C], Tstt (0) =-8 for convenience.
[° C] or -4 [° C] is substituted.

【0113】これは、水の潜熱80〔kcal/k
g〕、8〔°C〕の水の顕熱8〔kcal/kg〕であ
ることから、蓄熱運転開始時刻(二十二時)での氷充填
率IPF≒10〔%〕又は5〔%〕を仮定していること
に相当する。また、Tstr(24)≒0〔°C〕の場
合には、Tstr(24)=−8〔°C〕又は−4〔°
C〕を代入することもできる。
This is because the latent heat of water is 80 [kcal / k].
g] and 8 [° C], the sensible heat of water is 8 [kcal / kg], so the ice filling rate IPF at the heat storage operation start time (22 o'clock) is 10% or 5%. Is equivalent to the following assumption. If Tstr (24) ≒ 0 ° C., Tstr (24) = − 8 ° C. or −4 °°.
C] can be substituted.

【0114】以上説明したように実施の形態4における
制御によれば、蓄熱開始時刻又は空調終了時刻において
参照日又は当日の蓄熱槽20出口温度がほぼ0〔°C〕
であり、氷が蓄熱槽20に残存していると考えられる場
合であっても、便宜的にマイナスの水温を代入して熱源
機17の運転時間計画値を少な目に算出するようにす
る。このため、蓄熱を使い切ることができ、翌日の夜間
電力を有効に利用することができる。
As described above, according to the control in the fourth embodiment, at the heat storage start time or the air conditioning end time, the temperature of the outlet of the heat storage tank 20 on the reference day or the day is almost 0 [° C].
Therefore, even if it is considered that ice remains in the heat storage tank 20, the operation time plan value of the heat source device 17 is calculated as a small value by substituting a negative water temperature for convenience. For this reason, the heat storage can be used up, and the nighttime power of the next day can be effectively used.

【0115】実施の形態5.また、前述の図4の実施の
形態を応用して容易に次に述べるように蓄熱装置を制御
することができる。すなわち、氷厚センサ36で蓄熱充
満を検知した場合には、熱源機17の運転時間計画値が
残っていても熱源機17を強制的に停止する。このとき
の熱源機17の運転時間計画値が後述するように修正さ
れる。
Embodiment 5 FIG. Further, the heat storage device can be easily controlled as described below by applying the embodiment of FIG. 4 described above. That is, when the heat storage fullness is detected by the ice thickness sensor 36, the heat source unit 17 is forcibly stopped even if the planned operation time of the heat source unit 17 remains. The planned operation time of the heat source device 17 at this time is corrected as described later.

【0116】(1) 蓄熱時間帯に蓄熱充満を検知した場合 (1-1) 蓄熱時間帯運転時間計画値Xnt〔時間〕は、当
日氷厚センサ36で蓄熱充満を検知するまでの運転時間
実績Xns〔時間〕に置き換え、これ以降当日の蓄熱時
間帯蓄熱時間には熱源機17は運転しない。 (1-2) 空調時間帯運転時間計画値Xdt〔時間〕は、二
十二時に計画した値に予め設定されている係数α1(0
≦α1≦1、例えばα1=0.5)をかけた値に変更
(Xdt←Xdt×α1)するか、または予め設定され
ている値β1(β1≧0、例えばβ1=3〔時間〕)を
引いた値に変更(Xdt←Xdt−β1)する。
(1) When the heat storage fullness is detected during the heat storage time zone (1-1) The thermal storage time zone operation time plan value Xnt [hour] is the actual operation time until the ice thickness sensor 36 detects the heat storage fullness on the day. Xns [hour], and thereafter, the heat source device 17 is not operated during the heat storage time zone of the day. (1-2) The air-conditioning time zone operation time plan value Xdt [hour] is a coefficient α1 (0
≦ α1 ≦ 1, for example, α1 = 0.5) (Xdt ← Xdt × α1), or a preset value β1 (β1 ≧ 0, for example, β1 = 3 [hours]) Change to the subtracted value (Xdt ← Xdt−β1).

【0117】(1-3) さらに、空調開始時刻からXman
1〔時間〕(Xman1≧0、例えばXman1=2)
経過するまでは、熱源機17を運転せずに強制的に停止
する。この例で蓄熱時間帯の終了時刻が午前八時で、仮
に午前七時半に蓄熱充満を検知した場合に、Xdt>0
であれば午前十時から空調時間帯の熱源機17の運転が
始まることになる。なお、このように制御するのは、氷
厚センサ36で蓄熱充満を検知してから暫くは空調負荷
からの戻り冷水で氷を融かすことより、すぐに再度蓄熱
充満を検知して熱源機17が運転不能になってしまうよ
うなことを防ぐためである。
(1-3) Furthermore, Xman
1 [time] (Xman1 ≧ 0, for example, Xman1 = 2)
Until the elapse, the heat source device 17 is forcibly stopped without operating. In this example, the end time of the heat storage time zone is 8:00 am, and if the heat storage fullness is detected at 7:30 am, Xdt> 0
Then, the operation of the heat source device 17 in the air conditioning time zone starts at 10 am. It should be noted that the control is performed in such a manner that, after the heat storage fullness is detected by the ice thickness sensor 36, the ice is melted with the cold water returned from the air conditioning load for a while, and then the heat storage fullness is immediately detected again and the heat source unit 17 is detected. This is to prevent the vehicle from becoming inoperable.

【0118】(2) 空調時間帯に蓄熱充満を検知した場合 (2-1) 蓄熱時間帯運転時間計画値Xnt〔時間〕は変更
しない。なお、変更する意味がない。 (2-2) 空調時間帯運転時間計画値Xdt〔時間〕は、二
十二時に計画した値に予め設定されている係数α2(0
≦α2≦1、例えばα2=0.7)をかけた値に変更
(Xdt←Xdt×α2)するか、又は或る値β2(β
2≧0、例えばβ2=2〔時間〕)を引いた値に変更
(Xdt←Xdt−β2)する。
(2) When the heat storage fullness is detected during the air conditioning time zone (2-1) The heat storage time zone operation time plan value Xnt [hour] is not changed. There is no point in changing it. (2-2) The air-conditioning time zone operation time plan value Xdt [hour] is a coefficient α2 (0
≦ α2 ≦ 1, for example, α2 = 0.7) (Xdt ← Xdt × α2) or a certain value β2 (β
2 ≧ 0, for example, β2 = 2 [hours]) is subtracted (Xdt ← Xdt−β2).

【0119】(2-3) さらに、蓄熱充満検知時刻からXm
an2〔時間〕(Xman2≧0、例えばXman2=
1)経過するまでは、熱源機17を運転せずに強制的に
停止を継続する。なお、実施の形態5ではXman1≠
Xman2、係数α1≠α2、係数β1≠β2の例を示
した。しかし、Xman1=Xman2、係数α1=α
2又は係数β1=β2とすることもできる。
(2-3) Further, Xm is calculated from the heat storage fullness detection time.
an2 [time] (Xman2 ≧ 0, for example, Xman2 =
1) Until the elapse, the heat source device 17 is forcibly stopped without operating. In the fifth embodiment, Xman1 ≠
Examples of Xman2, coefficient α1 ≠ α2, and coefficient β1 ≠ β2 are shown. However, Xman1 = Xman2, coefficient α1 = α
2 or the coefficient β1 = β2.

【0120】以上説明したように実施の形態5における
制御によれば、氷厚センサ36で蓄熱充満を検知した場
合に熱源機17を強制的に停止し、熱源機17の運転時
間計画値が小さくなる方向に修正するようにした。さら
に、熱源機17の運転再開までの或る時間において熱源
機17の停止を継続するようにした。これによって、す
ぐに再度蓄熱充満を検知して熱源機17が運転不能にな
ってしまうようなことを防ぐことができ、空調の快適性
を維持しながら蓄熱を使い切り、夜間電力を有効に利用
することができる。
As described above, according to the control in the fifth embodiment, when the ice thickness sensor 36 detects that the heat storage is full, the heat source unit 17 is forcibly stopped, and the planned operation time of the heat source unit 17 is reduced. Corrected in a certain direction. Further, the stop of the heat source device 17 is continued at a certain time until the operation of the heat source device 17 is restarted. Thereby, it is possible to prevent the heat source unit 17 from being inoperable by detecting the heat storage fullness immediately again, to exhaust the heat storage while maintaining the comfort of the air conditioning, and to effectively use the nighttime power. be able to.

【0121】実施の形態6.図5及び図6は、この発明
の他の実施の形態の一例を示す図で、図5は蓄熱装置に
おける参照日の運転実績を、当日の運転計画に利用する
手順を説明する工程図、図6は外気温度差と空調負荷の
増減関係をニューラルネットワークに対応させた要部論
理回路図である。なお、蓄熱装置としては前述の図1と
同様に構成されている。以下、外気温度と負荷熱量の関
係を蓄熱装置16が設置された現地の状況に応じて学習
し、熱源機17の運転時間計画値に反映させる方法を説
明する。
Embodiment 6 FIG. 5 and 6 are views showing an example of another embodiment of the present invention. FIG. 5 is a process chart for explaining a procedure for utilizing the operation result of the reference day in the heat storage device for the operation plan of the day. 6 is a main part logic circuit diagram in which the relationship between the outside air temperature difference and the increase / decrease of the air conditioning load is made to correspond to the neural network. The heat storage device has the same configuration as that of FIG. Hereinafter, a method of learning the relationship between the outside air temperature and the load calorific value according to the situation at the site where the heat storage device 16 is installed and reflecting the learned value on the planned operation time of the heat source device 17 will be described.

【0122】まず、図5に示すように毎日、空調時間帯
終了直後から翌日の蓄熱時間帯開始直前の運転時間計画
値設定前までの間に、当日と参照日との間の外気温度の
増減と空調負荷の増減の関係を学習する。すなわち、こ
の分の熱源機運転時間計画補正値をΔXL〔時間〕と置
き、
First, as shown in FIG. 5, every day from the end of the air-conditioning period to the setting of the operation time plan value immediately before the start of the heat storage period on the next day, the increase and decrease of the outside air temperature between the current day and the reference day are performed. Learn the relationship between the increase and decrease of the air conditioning load. That is, the heat source unit operation time plan correction value for this is set as ΔXL [hour],

【0123】[0123]

【数11】 [Equation 11]

【0124】で算出される時間ΔXLを、前述の実施の
形態2で説明した式11に加えることによって運転時間
計画値Xdt〔時間〕を算出する。 蓄熱時間帯:Xnt=Xnr+ΔXn (36) 空調時間帯:Xdt=Xdr+ΔXd+ΔXL (37) ここで用いる係数Aは、各曜日ごとに別々に設定してお
く。そして、蓄熱装置16が設置された現地の熱負荷状
況に応じて自動学習によって取得するものとする。その
取得方法は、ニューラルネットワークの学習等で一般的
な誤差逆伝播法、すなわち最急降下法を応用した次に示
すような方法である。
The planned operation time Xdt [time] is calculated by adding the time ΔXL calculated in the above to the equation 11 described in the second embodiment. Heat storage time zone: Xnt = Xnr + ΔXn (36) Air-conditioning time zone: Xdt = Xdr + ΔXd + ΔXL (37) The coefficient A used here is set separately for each day of the week. And it shall acquire by automatic learning according to the heat load situation of the field where the heat storage device 16 was installed. The acquisition method is the following method that applies a general backpropagation method, that is, a steepest descent method in neural network learning or the like.

【0125】(1) 外気温度実測値から空調時間帯平均気
温の参照日との差を算出 当日の外気温度の実測値を基に、蓄熱時間帯の平均気温
Tans 〔°C〕及び空調時間帯の平均気温Tads 〔°
C〕を算出する。また、蓄熱時間帯の外気温度の当日実
績値と参照日実績値との差ΔTans 〔h〕及び空調時間
帯の外気温度の当日実績値と参照日実績値との差ΔTad
s 〔h〕を計算し記録しておく。
(1) Calculating the difference between the average temperature of the air conditioning time zone and the reference date from the actual measured value of the outside air temperature Based on the actual measured value of the outside air temperature of the day, the average temperature Tans [° C] of the heat storage time zone and the air conditioning time zone Average temperature of Tads [°
C] is calculated. The difference ΔTans [h] between the actual value of the outside air temperature on the day of the heat storage time and the actual value of the reference date and the difference ΔTad between the actual value of the outside air temperature on the air conditioning time and the actual value of the reference day.
Calculate and record s [h].

【0126】[0126]

【数12】 (Equation 12)

【0127】(2) 外気温度予測の誤差の影響を除いた運
転時間理想計画値の算出 外気温度の予測が100%の精度であった場合に、空調負荷
の増減を考えない運転時間計画値はいくらであるべきで
ったか、以下この値を運転時間理想計画値Xdttと
し、Xdttを計算する。なお、計算式は前述の図4の
実施の形態で、当日の蓄熱運転開始時刻(二十二時)に
熱源機運転時間計画値Xnt、Xdtを算出した式を使
用する。ただし、
(2) Calculation of ideal operating time plan value excluding the influence of the outside air temperature prediction error When the outside air temperature prediction is 100% accurate, the operating time plan value that does not consider the increase or decrease of the air conditioning load is Hereafter, this value is set as an ideal operation time planned value Xdtt, and Xdtt is calculated. It should be noted that the formula used in the embodiment of FIG. 4 described above is a formula that calculates the heat source unit operation time plan values Xnt and Xdt at the heat storage operation start time (22 o'clock) on the day. However,

【0128】蓄熱時間帯平均温度の当日予測値と参照日
実績値との差ΔTanは、蓄熱時間帯平均温度の当日実績
値と参照日実績値との差ΔTans に置き換える。また、
空調時間帯平均温度の当日予測値と参照日実績値との差
ΔTadは、空調時間帯平均温度の当日実績値と参照日実
績値との差ΔTads に置き換える。また、蓄熱槽20出
口温度は、当日空調終了時点(十八時)の蓄熱槽20出
口温度実績値Tsts(24)に置き換える。
The difference ΔTan between the current day predicted value of the heat storage time zone average temperature and the reference day actual value is replaced by the difference ΔTans between the current day actual value of the heat storage time zone average temperature and the reference date actual value. Also,
The difference ΔTad between the current day predicted value of the air-conditioning time zone average temperature and the reference day actual value is replaced with the difference ΔTads between the current day actual value of the air-conditioning time zone average temperature and the reference date actual value. Further, the temperature of the heat storage tank 20 outlet is replaced with the actual value of the heat storage tank 20 outlet temperature Tsts (24) at the end of the air conditioning on that day (eighteen o'clock).

【0129】ここで、当日の空調終了時のTsts(2
4)は、目標値Tbに近いことが期待されるものの、必
ずしも目標値に一致しているわけではないので実測値を
代入する。以上の準備を行った後に、次の手順で運転時
間理想計画値を算出する。 (1) 参照日の蓄熱時間帯運転時間実績値が最大値(Xn
r=Xnmax )の場合
Here, Tsts (2
In 4), although it is expected that the value is close to the target value Tb, the measured value is substituted because it does not always coincide with the target value. After performing the above preparations, the operation time ideal plan value is calculated in the following procedure. (1) The actual value of the heat storage time zone operation time on the reference day is the maximum value (Xn
r = Xnmax)

【0130】[0130]

【数13】 (Equation 13)

【0131】なお、添字sは当日の外気温度実績値等か
ら算出又は直接計測された確定値を表す。また、図5及
び図6の実施の形態では以下、外気温度の空調時間帯平
均値Tadと空調熱負荷積算値QLとの関係を表す係数a
=0としておく。また、熱源機運転時間の理想計画値
は、 蓄熱時間帯:Xntt=Xnr=Xnmax (41) 空調時間帯:Xdtt=Xdr+ΔXdtt (42) ただし、Xdtt≧Xdmax の場合、ΔXdtt=Xd
max −Xdr Xdtt≦0の場合、ΔXdtt=−Xdrとし、
Note that the subscript s represents a determined value calculated or directly measured from the actual outside air temperature value of the day. In the embodiment of FIGS. 5 and 6, a coefficient a representing the relationship between the air-conditioning time period average value Tad of the outside air temperature and the air-conditioning heat load integrated value QL is hereinafter described.
= 0. The ideal plan value of the heat source unit operation time is as follows: Heat storage time zone: Xntt = Xnr = Xnmax (41) Air conditioning time zone: Xdtt = Xdr + ΔXdtt (42) However, when Xdtt ≧ Xdmax, ΔXdtt = Xd
max−Xdr When Xdtt ≦ 0, ΔXdtt = −Xdr,

【0132】[0132]

【数14】 [Equation 14]

【0133】により蓄熱時間帯の熱源機運転時間を少な
くする。したがって、熱源機17の運転時間理想計画値
は、 蓄熱時間帯:Xntt=Xnr+ΔXntt (44) 空調時間帯:Xdtt=0 (45) と算出される。
Accordingly, the operation time of the heat source unit in the heat storage time zone is reduced. Therefore, the ideal operating time plan value of the heat source unit 17 is calculated as follows: heat storage time zone: Xntt = Xnr + ΔXntt (44) air conditioning time zone: Xdtt = 0 (45)

【0134】(2) 参照日の蓄熱時間帯運転時間実績値が
最大値でない(Xnr<Xnmax )場合
(2) When the actual value of the operation time in the heat storage time zone on the reference day is not the maximum value (Xnr <Xnmax)

【0135】[0135]

【数15】 (Equation 15)

【0136】により熱源機17の運転時間理想計画値
は、 蓄熱時間帯:Xntt=Xnr+ΔXntt (47) 空調時間帯:Xdtt=0 (48)
Thus, the ideal planned operating time of the heat source unit 17 is as follows: heat storage time zone: Xntt = Xnr + ΔXntt (47) air conditioning time zone: Xdtt = 0 (48)

【0137】ただし、Xntt≦0の場合、ΔXntt
=−Xnr Xntt≧Xnmax の場合、ΔXntt=Xnmax −X
nrとし、
However, when Xntt ≦ 0, ΔXntt
= −Xnr Xntt ≧ Xnmax, ΔXntt = Xnmax−X
nr,

【0138】[0138]

【数16】 (Equation 16)

【0139】により空調時間帯の熱源機運転時間を長く
する。したがって、熱源機17の運転時間理想計画値
は、 蓄熱時間帯:Xntt=Xnr=Xnmax (50) 空調時間帯:Xdtt=Xdr+ΔXdtt (51) となる。
Thus, the operation time of the heat source unit in the air conditioning time period is extended. Therefore, the ideal operating time plan value of the heat source unit 17 is as follows: heat storage time zone: Xntt = Xnr = Xnmax (50) air conditioning time zone: Xdtt = Xdr + ΔXdtt (51)

【0140】(3) 当日の熱源機運転時間実績値と運転時
間理想計画値との差の算出 当日の熱源機運転時間実績値、すなわち蓄熱時間帯Xn
s〔h〕、空調時間帯Xds〔h〕と、以上のようにし
て前述の(2) で算出された理想計画値、すなわち蓄熱時
間帯Xntt〔h〕、空調時間帯Xdtt〔h〕との差
が、蓄熱装置16が設置された現地の負荷状況、すなわ
ち外気温度と負荷との関係を熱源機運転時間に反映した
ものとなり、これがΔXLとなる。
(3) Calculation of the difference between the actual value of the heat source unit operation time on the day and the ideal operation time plan value The actual value of the heat source unit operation time on the day, ie, the heat storage time zone Xn
s [h], the air-conditioning time zone Xds [h], and the ideal plan value calculated in the above (2), that is, the heat storage time zone Xntt [h] and the air-conditioning time zone Xdtt [h]. The difference reflects the load condition at the site where the heat storage device 16 is installed, that is, the relationship between the outside air temperature and the load in the operation time of the heat source device, and this is ΔXL.

【0141】[0141]

【数17】 [Equation 17]

【0142】(4) 外気温度と負荷の関係を学習 以下、前述の式35における係数Aを学習する方法を説
明する。すなわち、或る日の一日の運転が終了した時点
で、当日を含む同種日のn日分の運転実績が、表1の蓄
熱装置の学習前の記録データの一覧に示すような項目に
ついて記録されている。
(4) Learning the relationship between the outside air temperature and the load A method for learning the coefficient A in the above equation 35 will be described below. That is, at the time when the operation of one day on a certain day is completed, the operation results for n days of the same day including the current day are recorded for the items shown in the list of recording data of the heat storage device before learning in Table 1. Have been.

【0143】[0143]

【表1】 [Table 1]

【0144】第一段階 初期値A=0として、表2の学習時運転時間理想計画値
の一覧に示すようにXntti [h] 、Xdtti [h] 、ΔXL
i [h] (i=1、2、3・・・n)を計算する。
First Step Assuming that the initial value A = 0, Xntt i [h], Xdtt i [h], ΔXL
i [h] (i = 1, 2, 3,... n) is calculated.

【0145】[0145]

【表2】 [Table 2]

【0146】また、表3の学習時ダミー変数の一覧に示
すダミー変数ΔXLj ' (j=1、2、3・・・n)を用
意しておく。
Further, dummy variables ΔXL j ′ (j = 1, 2, 3,..., N) shown in the list of learning dummy variables in Table 3 are prepared.

【0147】[0147]

【表3】 [Table 3]

【0148】そして、初期値ΔXLj ' =0(j=1、
2、3・・・n)としておく。
Then, the initial value ΔXL j ′ = 0 (j = 1,
2, 3,... N).

【0149】第二段階 図6に示すように前述の式35をニューラルネットワー
クに対応させると、その結果の重みAの誤差逆伝播法に
よる学習は、良く知られているように、
Second stage As shown in FIG. 6, when the above equation 35 is made to correspond to a neural network, the learning of the resulting weight A by the backpropagation method is well known.

【0150】[0150]

【数18】 (Equation 18)

【0151】で行われる。ただし、εは固定値である。
また、
Is performed. Here, ε is a fixed value.
Also,

【0152】[0152]

【数19】 [Equation 19]

【0153】であり、図5及び図6の実施の形態の場合
に、f(x)=xと見なされるので、f’(x)=1で
ある。
Since f (x) = x in the case of the embodiment of FIGS. 5 and 6, f ′ (x) = 1.

【0154】第三段階 次に、AをA+ΔAで置き換え、Third Step Next, A is replaced with A + ΔA,

【0155】[0155]

【数20】 (Equation 20)

【0156】を計算する。 第四段階 前述の第二段階へ戻り、第三段階で求めたΔXLj ' を用
いてΔAを計算する。その後、再び第三段階を計算す
る。
Is calculated. Fourth Step Returning to the second step, ΔA is calculated using ΔXL j ′ obtained in the third step. Then, the third step is calculated again.

【0157】第五段階 以上のように、第二段階及び第三段階を繰り返して次に
示す誤差を表す評価関数
Fifth Step As described above, the second step and the third step are repeated, and the evaluation function representing the following error is obtained.

【0158】[0158]

【数21】 (Equation 21)

【0159】がある程度小さくなって、それ以上小さく
ならなくなった、すなわちΔA≒0となったところで学
習を終了する。
The learning ends when ΔA が 0 becomes smaller to some extent and no longer smaller, that is, ΔA ≒ 0.

【0160】このようにして、過去の数日分の熱源機1
7の運転状況からΔXL=A・ΔTadの関係を学習する
ことができる。そして、この結果を用いて当日の運転時
間計画値の算出の際に、当日空調時間帯の外気温度平均
値の予測値Tadt 〔°C〕と、参照日空調時間帯の外気
温度平均値の実績値Tadr 〔°C〕との差ΔTadt =T
adt −Tadr 〔°C〕から、ΔXL=A・ΔTadt のよ
うに算出する。そして、これを前述の式37に代入して
運転時間計画値を算出することができる。
Thus, the heat source units 1 for the past several days
7, the relationship of ΔXL = A · ΔTad can be learned. Then, when calculating the operation time plan value of the day using the result, the predicted value Tadt [° C] of the outside air temperature average value in the air conditioning time zone on the day and the actual outside air temperature average value in the reference day air conditioning time zone are calculated. Difference from value Tadr [° C] ΔTadt = T
From adt-Tadr [° C], it is calculated as ΔXL = A · ΔTadt. Then, by substituting this into the above-described equation 37, the operating time plan value can be calculated.

【0161】以上説明したように、図5及び図6の実施
の形態において負荷と相関の強い外的条件である外気温
度の空調時間帯の平均値の当日と参照日との差ΔTad
〔°C〕と、参照日の負荷を基準とした当日の負荷の増
減に相当する熱源機17の運転時間ΔXL〔時間〕との
関係を、蓄熱装置16が設置された現地の過去の熱源機
17の運転状況に応じて学習するようにしたものであ
る。
As described above, in the embodiment of FIGS. 5 and 6, the difference ΔTad between the current day and the reference day of the average value of the air-conditioning time zone of the outside air temperature, which is an external condition strongly correlated with the load,
The relationship between [° C] and the operation time ΔXL [hour] of the heat source device 17 corresponding to the increase / decrease of the load on the day with reference to the load on the reference day is expressed by the past heat source device on which the heat storage device 16 is installed. The learning is performed according to the 17 driving situations.

【0162】これによって、毎日の蓄熱時間帯開始直前
における運転時間計画値算出時に、当日の外気温度の空
調時間帯の平均値の予測値を入力することにより、当日
の負荷状況を参照日との比較において予測した運転時間
計画値を算出することができる。これにより、夜間電力
を有効に利用でき、また昼間電力のピークカットを蓄熱
量の過不足なく空調することができて、所要の空調作用
を維持すると共に運転費を節減することができる。
Thus, when calculating the planned operation time immediately before the start of the daily heat storage time zone, by inputting the predicted value of the average value of the air-conditioning time zone of the outside air temperature of the day, the load status of the day is compared with the reference date. An operation time plan value predicted in the comparison can be calculated. As a result, the nighttime electric power can be used effectively, and the peak power of the daytime electric power can be air-conditioned without excess or deficiency of the heat storage amount, so that the required air-conditioning action can be maintained and the operating cost can be reduced.

【0163】また、蓄熱槽20内の熱容量、熱源機17
の能力係数等、熱源機運転時間計画値を算出する際に使
用する設定値の誤差があっても、これらの誤差を含めて
一括して学習することができる。このため、熱源機17
能力の経年変化や水の蒸発又は大気中の水分の凝縮など
による水量変化にも自動的に対応でき、常に最適な運転
計画時間値を算出することができる。
The heat capacity of the heat storage tank 20 and the heat source unit 17
Even if there is an error in the set value used when calculating the heat source device operating time plan value, such as the capacity coefficient of the heat source device, it is possible to collectively learn the errors including these errors. Therefore, the heat source unit 17
It is possible to automatically cope with a change in the water amount due to a secular change of the capacity, evaporation of the water or condensation of the moisture in the atmosphere, and it is possible to always calculate an optimal operation plan time value.

【0164】また、図5及び図6の実施の形態ではニュ
ーラルネットワークの誤差逆伝播法、すなわち最急降下
法を応用した学習手法を示した。しかし、これ以外の方
法、例えば最小二乗法などを用いて外気温度と負荷の関
係を学習するようにしても同様な作用を得ることができ
る。
In the embodiments shown in FIGS. 5 and 6, a learning method using the error back propagation method of the neural network, that is, the steepest descent method is shown. However, a similar effect can be obtained by learning the relationship between the outside air temperature and the load using a method other than this, for example, the least square method.

【0165】さらに、空調負荷との関係は外気温度の空
調時間帯の平均値との間で学習させる例を示した。しか
し、一日の間で外気温度の最高値、すなわち最高気温又
は外気温度の最低値、すなわち最低気温や、相対湿度、
日射量、風速、降水確率、天気情報、曜日、月日などの
気象条件を中心とするさまざまな外的条件を用いること
ができる。
Further, an example has been shown in which the relationship with the air conditioning load is learned between the outside air temperature and the average value of the air conditioning time zone. However, during the day, the highest value of the outside temperature, that is, the highest temperature or the lowest value of the outside temperature, that is, the lowest temperature, relative humidity,
Various external conditions centering on weather conditions such as the amount of solar radiation, wind speed, probability of precipitation, weather information, day of the week, month and day can be used.

【0166】また、あまり多くのデータで学習しても遠
い過去の外気温度−負荷関係の影響が出てきて意味がな
くなる。このため、記録データ数は平日は十日分程度、
土曜、日曜は四日分程度とするのが良い。さらに、記録
データ数は負荷が比較的に安定している盛夏には七日分
程度、負荷の変動が大きい中間期には二十日分程度のよ
うに変更しても良い。
Further, even if learning is performed with too much data, the influence of the distant past outside air temperature-load relationship appears, and it becomes meaningless. Therefore, the number of recorded data is about 10 days on weekdays,
Saturday and Sunday should be about 4 days. Furthermore, the number of recorded data may be changed to about seven days in midsummer when the load is relatively stable, and about twenty days in the middle period when the load fluctuates greatly.

【0167】そして、このように制御することによって
年間のトータル学習時間をなるべく少なくしつつ、学習
の精度を確保することができる。なお、係数Aは各曜日
グループごとにそれぞれ別個に設定する。さらに、図5
及び図6の実施の形態では外気温度の増減と空調負荷の
増減を、線形関係と仮定、すなわちf(x)=xとした
が、シグモイド関数など非線形関数を用いることによっ
て、中間期などで外気温度の増減と空調負荷の増減の傾
向が変わるような時期の特性をより良く学習することが
できる。
By controlling in this manner, the accuracy of learning can be ensured while the total learning time per year is reduced as much as possible. The coefficient A is set separately for each day group. Further, FIG.
In the embodiment of FIG. 6, the increase and decrease of the outside air temperature and the increase and decrease of the air conditioning load are assumed to have a linear relationship, that is, f (x) = x. However, by using a non-linear function such as a sigmoid function, the outside air can be changed in an intermediate period or the like. It is possible to better learn the characteristics at the time when the tendency of the change in the temperature and the change in the air conditioning load change.

【0168】次に図5及び図6の実施の形態で示した手
法の特徴及び注意点を列挙する。ΔXLが教師データに
対応し、誤差(ΔXL−ΔXL’)の大きさに応じた学
習速度をもっている。また、記録されているデータの数
nは1以上のいくつであっても構わない。また、教師デ
ータの数(j)が多くなればなるほど、またεが小さけ
れば小さいほど学習に時間がかかる。逆にεが大きすぎ
ると学習がうまく収束しない。
Next, features and precautions of the method shown in the embodiment of FIGS. 5 and 6 will be enumerated. ΔXL corresponds to the teacher data, and has a learning speed according to the magnitude of the error (ΔXL−ΔXL ′). Further, the number n of the recorded data may be any number equal to or more than one. Further, as the number (j) of the teacher data increases and as ε decreases, the learning time increases. Conversely, if ε is too large, learning does not converge well.

【0169】また、一般にはεがある程度大きくないと
ローカルミニマム、すなわち局所極小に落ち込んで学習
が進まなくなることがあるが、図5及び図6の実施の形
態では、変換関数がf(x)=xの線形関係にあるの
で、そのような心配はない。また、εの値はΔTad、Δ
XLの大きさと学習データの数によって変わってくるの
で、ΔTad、ΔXLを0〜1又は−1〜1に正規化して
おいた方がよい。
In general, if ε is not large enough to some extent, learning may not proceed due to a local minimum, that is, a local minimum, but in the embodiment of FIGS. 5 and 6, the conversion function is f (x) = Since there is a linear relationship with x, there is no such concern. The value of ε is ΔTad, Δ
Since it depends on the size of XL and the number of learning data, it is better to normalize ΔTad and ΔXL to 0 to 1 or −1 to 1.

【0170】実施の形態7.以上の図1〜図6による各
実施の形態では、蓄熱媒体として水を用いる蓄熱槽20
が設置された蓄熱装置16として説明した。しかし、大
規模空調用途に一般的に用いられる水蓄熱システムであ
っても、また水以外の潜熱、顕熱媒体による蓄熱装置に
も、図1〜図6による各実施の形態を容易に適用するこ
とができ、図1〜図6による各実施の形態において得ら
れる同様の作用を得ることができる。また、冷熱のみな
らず温熱を蓄える蓄熱装置又は給湯システム等にも容易
に適用できて、図1〜図6による各実施の形態において
得られる同様の作用を得ることができる。
Embodiment 7 FIG. In each of the embodiments shown in FIGS. 1 to 6, the heat storage tank 20 using water as the heat storage medium is used.
Has been described as the heat storage device 16 in which is installed. However, the embodiments shown in FIGS. 1 to 6 can be easily applied to a water heat storage system generally used for large-scale air conditioning applications, and also to a heat storage device using a latent heat other than water and a sensible heat medium. Thus, the same operation as obtained in each of the embodiments shown in FIGS. 1 to 6 can be obtained. In addition, the present invention can be easily applied to a heat storage device or a hot water supply system that stores not only cold heat but also warm heat, and can obtain the same effect obtained in each of the embodiments shown in FIGS.

【0171】実施の形態8.図7も、この発明の他の実
施の形態の一例を示す蓄熱装置の回路図である。図にお
いて、前述の図1と同符号は相当部分を示し、39は蓄
熱槽20内に設けられた第一水温センサである。なお、
第一水温センサ39の検出値、すなわち蓄熱槽20内の
所定位置における温度を蓄熱媒体25の代表温度とす
る。前述の図1に示す蓄熱装置16では、第一水温セン
サ32により蓄熱槽20出口温度が検知される。そし
て、負荷側のポンプ23が運転されている期間に流れの
中で温度が測定されるので誤差は小さくなる。
Embodiment 8 FIG. FIG. 7 is a circuit diagram of a heat storage device showing an example of another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 described above denote corresponding parts, and reference numeral 39 denotes a first water temperature sensor provided in the heat storage tank 20. In addition,
The detected value of the first water temperature sensor 39, that is, the temperature at a predetermined position in the heat storage tank 20, is set as the representative temperature of the heat storage medium 25. In the heat storage device 16 shown in FIG. 1 described above, the outlet temperature of the heat storage tank 20 is detected by the first water temperature sensor 32. Since the temperature is measured in the flow while the load-side pump 23 is operating, the error is reduced.

【0172】しかし、図7に示すように構成された蓄熱
装置16において、蓄熱槽20内に第一水温センサ39
を設けた構成であっても、図1に示す蓄熱装置16と同
様な作用が得られる。そして、図7に示す構成において
は負荷側のポンプ23が運転されていなくても、蓄熱槽
20内温度を検知することができる。
However, in the heat storage device 16 configured as shown in FIG.
The same operation as that of the heat storage device 16 shown in FIG. Then, in the configuration shown in FIG. 7, the temperature in the heat storage tank 20 can be detected even when the pump 23 on the load side is not operating.

【0173】また、前述の実施の形態1〜7に示すチラ
ー方式でない熱回収型の蓄熱ユニットに対しても容易に
適用することができる。しかし、蓄熱槽20内には多く
の場合、蓄熱媒体の温度を均一化する攪拌装置がないの
で温度むらが生じる。したがって、第一水温センサ39
の設置位置によっては蓄熱の過不足を誤検知することが
あるので、第一水温センサ39の設定値の設定等に注意
を要する。
Further, the present invention can be easily applied to a heat recovery type heat storage unit which is not the chiller type shown in the first to seventh embodiments. However, in many cases, there is no stirrer in the heat storage tank 20 to make the temperature of the heat storage medium uniform, so that temperature unevenness occurs. Therefore, the first water temperature sensor 39
Depending on the installation position, there may be an erroneous detection of excess or deficiency of heat storage, so care must be taken in setting the set value of the first water temperature sensor 39 and the like.

【0174】実施の形態9.図8も、この発明の他の実
施の形態の一例を示す図で、蓄熱装置の運転時間帯の設
定を説明する図である。図8によって一日に複数回先鋭
的なピークが発生する負荷に対して、熱源機出力の低減
を図る場合を例とし熱源機の運転制御方法を、負荷に冷
水からなる蓄熱媒体を供給する冷房運転時について説明
する。
Embodiment 9 FIG. FIG. 8 also shows an example of another embodiment of the present invention, and is a diagram for explaining the setting of the operation time zone of the heat storage device. FIG. 8 shows an example of a case where the output of the heat source unit is reduced for a load where a sharp peak occurs several times a day. The operation will be described.

【0175】実施の形態9では、熱源機のブライン熱交
換器を運転して蓄熱槽に蓄熱する蓄熱時間帯が一日に複
数回設定される。また、熱源機の水熱交換器を運転し負
荷からの戻り蓄熱媒体を予冷又は予熱して蓄熱槽内の蓄
熱使用量を抑制する追いかけ時間帯も一日に複数回設定
される。例えば、従来の蓄熱装置では一日が22:00
〜22:00で定義されていたのに対して、図8では一
日を0:00〜0:00とし、蓄熱時間帯を0:00〜
6:00、8:00〜12:00及び16:00〜1
8:00と定義する。
In the ninth embodiment, the heat storage time period in which the brine heat exchanger of the heat source unit is operated to store heat in the heat storage tank is set a plurality of times a day. In addition, a chase time period for operating the water heat exchanger of the heat source unit and pre-cooling or pre-heating the return heat storage medium from the load to suppress the amount of heat storage in the heat storage tank is set a plurality of times a day. For example, in the conventional heat storage device, one day is 22:00.
8, the day is set to 0:00 to 0:00 and the heat storage time zone is set to 0:00 to 2:00 in FIG.
6:00, 8:00 to 12:00 and 16:00 to 1
8:00 is defined.

【0176】また、追いかけ時間帯を6:00〜8:0
0、12:00〜14:00及び18:00〜24:0
0と定義する。さらに、後述するピークカット時間帯を
14:00〜16:00と定義する。このように、一日
をある追いかけ時間帯が終了し次の蓄熱時間帯が始まる
時点から二十四時間で定義している。すなわち、実施の
形態9では一日は必ず蓄熱時間帯から始まり、追いかけ
時間帯又はピークカット時間帯で終わることになる。
In addition, the chase time zone is set between 6:00 and 8: 0.
0, 12:00 to 14:00 and 18:00 to 24: 0
Defined as 0. Further, a peak cut time zone to be described later is defined as 14:00 to 16:00. In this way, the day is defined as 24 hours from the time when one chasing time zone ends and the next heat storage time zone starts. That is, in Embodiment 9, one day always starts in the heat storage time zone and ends in the chase time zone or the peak cut time zone.

【0177】なお、実施の形態9では蓄熱時間帯でも追
いかけ時間帯でもピークカット時間帯でもない時間帯を
特に設けていないが、このような時間帯は追いかけ時間
帯又はピークカット時間帯に含めて考えることにする。
さらに、各時間帯にはそれぞれ第一〜第mの時間帯名と
各時間帯の熱源機運転の優先度が設定されている。
Although the ninth embodiment does not particularly provide a time zone that is neither the heat storage time zone, the chasing time zone nor the peak cut time zone, such a time zone is included in the chasing time zone or the peak cut time zone. I will consider it.
Further, the first to m-th time zone names and the priority of the operation of the heat source device in each time zone are set for each time zone.

【0178】すなわち、図8の例ではm=7であり、第
一時間帯である0:00〜6:00の蓄熱時間帯は熱源
機運転優先度が1、第二時間帯である6:00〜8:0
0の追いかけ時間帯は熱源機運転優先度が6のように設
定されている。この優先度は全体として、蓄熱時間帯の
方が優先度が高いので数字が小さく、また追いかけ時間
帯の方は優先度が低いので数字が大きくなっている。
That is, in the example of FIG. 8, m = 7, and the heat storage unit operation priority is 1 in the heat storage time period from 0:00 to 6:00 which is the first time period, and 6: which is the second time period. 00-8: 0
The chasing time zone of 0 is set such that the heat source device operation priority is 6. As a whole, the priority is lower in the heat storage time zone because the priority is higher, and the number is higher in the chasing time zone because the priority is lower.

【0179】これらの優先度は電力会社、ユーザーの好
み、蓄熱の導入理由等によってメーカーで予め設定して
おいたり、電力会社又はユーザーが現地でキーボード、
タッチパネル、ディップスイッチ等の外部入力装置を介
して設定できるようにしておいたりする。なお、従来又
は実施の形態1〜実施の形態8の空調時間帯という概念
は、実施の形態9では採用していない。
These priorities may be set in advance by the manufacturer according to the power company, user preferences, the reason for introducing heat storage, or the power company or the user may use a keyboard,
The setting can be made via an external input device such as a touch panel or a dip switch. The concept of the air-conditioning time zone according to the related art or the first to eighth embodiments is not adopted in the ninth embodiment.

【0180】すなわち、従来又は実施の形態1〜実施の
形態8では、前述の図1における負荷側ポンプ23を運
転して負荷を空調する時間帯と、熱源機の水熱交換器を
運転し負荷からの戻り蓄熱媒体を予冷又は予熱して蓄熱
槽内の蓄熱使用量を抑制する追いかけ時間帯とが一致し
ていたが、実施の形態9では必ずしもこれらが一致して
いなくても良い。
In other words, in the conventional or the first to eighth embodiments, the time period in which the load pump 23 in FIG. 1 is operated to air-condition the load, the water heat exchanger of the heat source unit is operated to Although the chase time period in which the amount of heat stored in the heat storage tank is suppressed by pre-cooling or pre-heating the heat storage medium returned from the heat storage tank coincides with each other, they need not necessarily coincide in the ninth embodiment.

【0181】さらに、図8では第五時間帯である14:
00〜16:00は、熱源機の運転を禁止するピークカ
ット時間帯であって便宜的に優先度を99としてある。
また図8では、例えば食堂のような施設では6:00〜
8:00の朝食時間、12:00〜14:00の昼食時
間、18:00以降の夕食時間に極端に負荷が集中する
が、それ以外の時間帯には負荷が殆どないような場合を
想定している。
Further, in FIG. 8, the fifth time zone 14:
00 to 16:00 is a peak cut time zone in which the operation of the heat source device is prohibited, and the priority is set to 99 for convenience.
In FIG. 8, for example, in a facility such as a dining room, 6:00 to 0:00
It is assumed that the load is extremely concentrated at 8:00 for breakfast, 12:00 to 14:00 for lunch, and for dinner after 18:00, but there is almost no load at other times. doing.

【0182】前述のような設定において、図1に示す熱
源機17の運転時間計画値を第一〜第mの時間帯のそれ
ぞれに対して設定する。そして、運転時間計画値はこれ
から熱源機17の運転時間計画値を算出して設定しよう
としている日、すなわち当日の第一時間帯開始直前に算
出する。
In the above setting, the planned operation time of the heat source unit 17 shown in FIG. 1 is set for each of the first to m-th time zones. The operating time plan value is calculated on the day on which the operating time plan value of the heat source device 17 is to be calculated and set, that is, immediately before the start of the first time zone of the day.

【0183】すなわち、当日の第Ti時間帯における熱
源機運転計画時間値XtTi[h]は、参照日の第Ti時
間帯の熱源機運転時間実績値XrTi[h]に補正値ΔX
Ti[h]及びΔXLTi[h]を加え、
That is, the heat source unit operation planned time value Xt Ti [h] in the Ti time zone on the current day is obtained by correcting the heat source unit operation time actual value Xr Ti [h] in the Ti time zone on the reference day to the correction value ΔX.
Add t Ti [h] and ΔXL Ti [h],

【0184】 XtTi=XrTi+ΔXtTi+ΔXLTi [h] ・・・・・(57)Xt Ti = Xr Ti + ΔXt Ti + ΔXL Ti [h] (57)

【0185】とする。ただし i=1、2、3、・・・・・、
mであり、 ΔXtTi:参照日との蓄熱槽出口水温差に対する補正分
+参照日との外気温度差に伴う熱源機能力差に対する補
正分(第Ti時間帯)[h] ΔXLTi:参照日との外気温度差に伴う空調熱負荷に対
する補正分(第Ti時間帯)[h]である。 なお、初日の運転時間計画値(初期値)は最大値として
おく。この値は二十四時間からピークカット時間帯及び
蓄熱も空調もしない時間帯の長さを引いた値で、これら
は現地での時間帯の設定によって変わる。
It is assumed that Where i = 1,2,3, ...,
ΔXt Ti : Correction for the heat storage tank outlet water temperature difference from the reference date + Correction for the heat source functional force difference due to the outside air temperature difference from the reference date (Tith time zone) [h] ΔXL Ti : Reference date (H), which is a correction amount (Ti-th time zone) for the air-conditioning heat load due to the difference in outside air temperature. In addition, the operation time plan value (initial value) on the first day is set to the maximum value. This value is a value obtained by subtracting the peak cut time zone and the length of the time zone in which neither heat storage nor air conditioning is performed from 24 hours, and these values vary depending on the time zone setting in the field.

【0186】(1) 各時間帯の未利用時間の算出 まず、第i優先の第Ti時間帯の熱源機運転時間実績値
XrTi[h]( i=1、2、3、・・・・・、m)が、各時
間帯の長さXmaxTi[h]に対してどの程度使い切っ
ていなかったを算出する。すなわち、満蓄検知などによ
って利用できるはずであったのに利用していなかった時
間、すなわち未利用時間を算出する。
[0186] (1) First, the calculation of the unused time of each time zone, the heat source equipment operation time actual value of the Ti time zone of the i-th priority Xr Ti [h] (i = 1,2,3, ···· , M) are not used up for the length Xmax Ti [h] of each time zone. That is, the time that should have been used but not used due to full storage detection or the like, that is, the unused time, is calculated.

【0187】 XmgTi=XmaxTi−XrTi [h]・・・・・(58)Xmg Ti = Xmax Ti −Xr Ti [h] (58)

【0188】ただし、タイマーカウンタの誤差や微小時
間を無視するためにXmgTi≦0.1[h]の場合は、
XmgTi=0[h]、XrTi=XmaxTi[h]とす
る。
However, in order to ignore the error of the timer counter and the minute time, when Xmg Ti ≦ 0.1 [h],
It is assumed that Xmg Ti = 0 [h] and Xr Ti = Xmax Ti [h].

【0189】(2) 未利用時間の詰め替え 本来、優先度が高い時間帯の未利用時間は、より優先度
が低い時間帯の未利用時間よりも小さくなっていなけれ
ばならない。もし、参照日についてそのようになってい
なかったら一番優先度の低い時間帯の運転時間から順番
に、優先度が高い時間帯の未利用時間に振り替える。し
かし、第Ti時間帯においてXmgTi≠0であったなら
ば、優先度の低い第m優先の第Tm時間帯から順に第T
i時間帯に参照日の熱源機運転時間実績時間Xr
Ti[h]を振り替える。
(2) Refilling Unused Time The originally unused time in the high priority time zone must be smaller than the unused time in the lower priority time zone. If this is not the case for the reference date, the operation time is changed to the unused time in the time zone with the highest priority in order from the operation time in the time zone with the lowest priority. However, if Xmg Ti ≠ 0 in the Ti-th time zone, the T-th time zone is sequentially started from the m-th-priority Tm-time zone having the lower priority.
Heat source unit operation time actual time Xr on the reference day in the i hour zone
Transfer Ti [h].

【0190】すなわち、優先度の高い時間帯から順に第
Ti時間帯( i=1、2、3、・・・・・、m-1)につい
て、優先度の低い時間帯から順に第Tk時間帯(k=
m、m-1、・・・・・, i+1; i<k)と比較して次のよう
に操作する。すなわち、 (A) 優先度が高い第Ti時間帯の未利用時間Xmg
Ti[h]と、その間に発揮された推定される熱源機能力
QRrTi[Mcal/h]とから算出される熱量[Mcal]が、
優先度の低い第Tk時間帯の参照日運転時間実績値Xr
Tk[h]に発揮されたと推定される熱源機能力QRrTk
[Mcal/h]から算出される熱量[Mcal]よりも小さい
か、又は等しい場合、すなわち
That is, for the Ti-th time zone (i = 1, 2, 3,..., M -1 ) in order from the time zone with the highest priority, the Tk time zone in the order for the time zone with the lowest priority (K =
m, m −1 ,..., i + 1; i <k) and operate as follows. (A) Unused time Xmg in the Tith time zone having a high priority
The calorific value [Mcal] calculated from Ti [h] and the estimated heat source functional force QRr Ti [Mcal / h] exerted during that time is:
Reference day operation time actual value Xr of the Tk time zone with low priority
Heat source functional force QRr Tk estimated to be exerted on Tk [h]
If the calorific value [Mcal] calculated from [Mcal / h] is less than or equal to,

【0191】[0191]

【数22】 (Equation 22)

【0192】の場合は、In the case of

【0193】[0193]

【数23】 (Equation 23)

【0194】(B) 優先度が高い第Ti時間帯の未利用時
間XmgTi[h]と、その間に発揮された推定される熱
源機能力QRrTi[Mcal/h]とから算出される熱量[Mc
al]が、優先度の低い第Tk時間帯の参照日運転時間実
績値XrTk[h]に発揮されたと推定される熱源機能力
QRrTk[Mcal/h]から算出される熱量[Mcal]よりも
大きい場合、すなわち
(B) The calorific value [calculated from the unused time Xmg Ti [h] in the Ti-th time zone having a high priority and the estimated heat source functional force QRr Ti [Mcal / h] exerted during that time. Mc
al] is calculated from the heat source functional force QRr Tk [Mcal / h] estimated to have been exerted on the reference day operation time actual value Xr Tk [h] of the Tk time zone having a low priority. Is also large, ie

【0195】[0195]

【数24】 (Equation 24)

【0196】の場合は、In the case of

【0197】[0197]

【数25】 (Equation 25)

【0198】なお、QRrTk/QRrTiは時間帯毎の外
気温度の違いと使用する熱交換器の違い、すなわち蒸発
温度の違いに伴う熱源機能力の差の分の熱源機運転時間
を補正する項に相当する。ここで、QRTiは第Ti時間
帯の熱源機能力平均値[Mcal/h]であり、蓄熱運転時と
追いかけ運転時とに分けて第Ti時間帯の平均外気温度
TaTi[C°]の関数として予め次のように設定してお
く。 蓄熱運転時: QRTi=-e・TaTi+f(i=1,2,・・・,nn) ・・・・・・(63) 追いかけ運転時:QRTi=-c・TaTi+d(i=nn+1,nn+2,・・・,m) ・・・(64)
It should be noted that QRr Tk / Qrr Ti corrects the operation time of the heat source unit corresponding to the difference in the outside air temperature and the difference in the heat exchanger used in each time zone, that is, the difference in the heat source functional power due to the difference in the evaporation temperature. Term. Here, QR Ti is the average value of the heat source functional force [Mcal / h] during the Ti-th time period, and is divided into the heat storage operation time and the chasing operation time by the average outside air temperature Ta Ti [C °] during the Ti-th time period. The function is set in advance as follows. During the thermal storage operation: QR Ti = -e · Ta Ti + f (i = 1,2, ···, nn) ······ (63) chase during operation: QR Ti = -c · Ta Ti + d (I = nn + 1, nn + 2, ..., m) ... (64)

【0199】(3) 当日運転時間の補正値ΔXtTi[h]
の算出 一日の運転終了時における熱量のバランス式は、
(3) Correction value of operation time on the day ΔXt Ti [h]
At the end of a day's operation, the heat balance equation is

【0200】[0200]

【数26】 (Equation 26)

【0201】となる。ここで、第T1時間帯から第Tnn
時間帯までが蓄熱時間帯、第Tnn+1 時間帯から第Tm
時間帯までが追いかけ時間帯である。また、ピークカッ
ト時間帯は追いかけ時間帯の最も優先度が低い時間帯に
含めて考える。なお、式65の右辺が正であれば、当日
の熱源機運転時間は参照日よりも長くなり、逆に右辺が
負であれば、当日の熱源機運転時間は参照日よりも短く
なる。
The following is obtained. Here, from the T1 time zone to the Tnn
Until the time zone, the heat storage time zone, from the Tnn + 1 time zone to the Tm
The time zone is the chase time zone. Also, the peak cut time zone is considered to be included in the time zone having the lowest priority of the chase time zone. If the right side of Expression 65 is positive, the operation time of the heat source unit on the day is longer than the reference date, and if the right side is negative, the operation time of the heat source unit on the day is shorter than the reference day.

【0202】(A) 熱源機運転時間が参照日よりも長くな
る場合、すなわち式65の右辺が正であるときは第一優
先の第T1時間帯からから優先的に運転時間を詰めてい
く。 (a) まず、第一優先の第T1時間帯について熱源機運転
時間の補正値を求める。
(A) When the operation time of the heat source unit is longer than the reference date, that is, when the right side of the equation 65 is positive, the operation time is reduced by priority from the first priority time period T1. (a) First, a correction value of the heat source unit operation time is obtained for the first priority time period T1.

【0203】[0203]

【数27】 [Equation 27]

【0204】これを、XmgT1と比較して第T1時間帯
を埋められるだけ埋める。
This is filled as much as possible to fill the T1 time zone as compared with Xmg T1 .

【0205】 ΔXtT1≧XmgT1 ・・・・・・・・・(67) の場合は、 ΔXtT1=XmgT1 ・・・・・・・・・(68) XmgT1=0 ・・・・・・・・・・・・(69) として次の(b) に進み、そうでないときは第T1時間帯
の熱源機運転時間の補正だけで十分であることを意味す
るので、 XmgT1=XmgT1−ΔXtT1 ・・・・(70) として、熱源機運転時間の補正値算出を終了する。
When ΔXt T1 ≧ Xmg T1 (67), ΔXt T1 = Xmg T1 (68) Xmg T1 = 0... (69) and proceed to the next (b). Otherwise, it means that the correction of the operation time of the heat source unit in the T1 time zone is sufficient, so that Xmg T1 = Xmg T1 -ΔXt T1 (70) The calculation of the correction value of the heat source device operation time is ended.

【0206】(b) 次に、第二優先の第T2時間帯につい
て熱源機運転時間の補正値を求める。
(B) Next, a correction value of the operation time of the heat source unit for the second priority time period T2 is obtained.

【0207】[0207]

【数28】 [Equation 28]

【0208】これを、XmgT2と比較して第T2時間帯
を埋められるだけ埋める。
This is filled as much as possible to fill the T2 time zone as compared with Xmg T2 .

【0209】 ΔXtT2≧XmgT2 ・・・・・・・・・(72) の場合は、 ΔXtT2=XmgT2 ・・・・・・・・・(73) XmgT2=0 ・・・・・・・・・・・・(74) として次の(C) に進み、そうでないときは第T1時間帯
及び第T2時間帯の熱源機運転時間の補正だけで十分で
あることを意味するので、 XmgT2=XmgT2−ΔXtT2 ・・・・(75) として、熱源機運転時間の補正値算出を終了する。
When ΔXt T2 ≧ Xmg T2 (72), ΔXt T2 = Xmg T2 (73) Xmg T2 = 0 ········································································································································ (74) If it is not, it means that only the correction of the operation time of the heat source unit in the T1 and T2 time zones is sufficient. Xmg T2 = Xmg T2 −ΔXt T2 (75) The calculation of the correction value of the operation time of the heat source unit is ended.

【0210】(C) 以下同様に、第三優先以降の第Ti時
間帯( i=3、4、5、・・・・・、m)について、熱源機
運転時間の補正値を求める。
(C) Similarly, a correction value of the heat source unit operation time is obtained for the Ti-th time zone (i = 3, 4, 5,..., M) after the third priority.

【0211】[0211]

【数29】 (Equation 29)

【0212】これを、XmgTiと比較して第Ti時間帯
を埋められるだけ埋める。
This is filled as much as possible to fill the Ti-th time zone as compared with Xmg Ti .

【0213】 ΔXTi≧XmgTi ・・・・・・・・・・(77) の場合は、 ΔXTi=XmgTi ・・・・・・・・・・(78) XmgTi=0 ・・・・・・・・・・・・(79) としてi を i+1 に置き換えてこの(C) 項を繰り返し、
そうでないときには第T1時間帯〜第Ti時間帯の熱源
機運転時間の補正だけで十分であることを意味するの
で、 XmgTi=XmgTi−ΔXTi ・・・・・(80) として、熱源機運転時間の補正値算出を終了する。
In the case of ΔX Ti ≧ X mg Ti (77), ΔX Ti = X mg Ti (78) X mg Ti = 0 (78)・ ・ ・ ・ ・ ・ ・ ・ ・ (79) This term (C) is repeated by replacing i with i + 1 as
Otherwise, it means that the correction of the operation time of the heat source device in the T1 time period to the Ti time period is sufficient, so that Xmg Ti = Xmg Ti −ΔX Ti ... (80) The calculation of the correction value of the operation time is terminated.

【0214】なお、式71及び式76の分子の最後の項
は、より優先度が高い時間帯の当日の運転時間が増えた
分の熱量を補正するためのものである。また、冷却運転
においては外気温度が低いほど冷房能力が出やすい冷凍
サイクルの特性に加え、蓄熱時間帯で使用するブライン
熱交換器で発揮する能力と、追いかけ時間帯で使用する
水熱交換器で発揮する能力とが蒸発温度の違いにより大
きく異なる。このため、上述の式71及び式76の分子
の最後の項の補正が必要になる。
Note that the last term of the numerator in the equations 71 and 76 is for correcting the amount of heat corresponding to the increase in the operation time of the day in a time zone having a higher priority. In addition, in the cooling operation, in addition to the characteristics of the refrigeration cycle in which the cooling capacity tends to be higher as the outside air temperature is lower, the capacity of the brine heat exchanger used during the heat storage time and the water heat exchanger used during the chasing time The ability to exert greatly differs depending on the difference in evaporation temperature. For this reason, it is necessary to correct the last term of the numerator of Expressions 71 and 76 described above.

【0215】(B) 熱源機運転時間が参照日よりも短くな
る場合、すなわち式65の右辺が負であるときは第m優
先の第Tm時間帯からから優先的に運転時間を切り詰め
ていく。 (a) まず、最も優先度が低い第Tm時間帯について熱源
機運転時間の補正値を求める。
(B) When the operation time of the heat source unit becomes shorter than the reference date, that is, when the right side of the equation 65 is negative, the operation time is cut down preferentially from the Tm time zone of the mth priority. (a) First, a correction value of the heat source unit operation time is obtained for the Tm time zone having the lowest priority.

【0216】[0216]

【数30】 [Equation 30]

【0217】これを、参照日の熱源機運転時間実績値X
Tmと比較して、第Tm時間帯を切り詰められるだけ切
り詰める。
The actual value of the operation time of the heat source unit on the reference day X
In comparison with r Tm , the Tm-th time zone is truncated as much as possible.

【0218】 XrTm+ΔXtTm<0 ・・・・・・・・(82) の場合は、 ΔXtTm=−XrTm ・・・・・・・・・(83) XmgTm=XmaxTm ・・・・・・・・(84) として、次の(b) に進み、そうでないときは第Tm時間
帯の熱源機運転時間の補正だけで十分であることを意味
するので、 XmgTm=XmgTm−ΔXtTm ・・・・(85) として熱源機運転時間の補正値算出を終了する。
In the case of Xr Tm + ΔXt Tm <0 (82), ΔXt Tm = −Xr Tm (83) Xmg Tm = Xmax Tm as ..... (84), proceed to the next (b), it means that the otherwise it suffices correction of the heat source machine operating time of the Tm time period, X mg Tm = X mg Tm - ΔXt Tm (85) The calculation of the correction value of the heat source device operation time is ended.

【0219】(b) 前述の(3) における(A) の(b) 、(c)
と同様に、ただし逆に優先度の低い方から順に第i優先
の第Ti時間帯について熱源機運転時間の補正値を求め
る。なお、(i=m-1、m-2、・・・・・、2、1)とす
る。
(B) (b) and (c) of (A) in the above (3)
Similarly, the correction value of the operation time of the heat source unit is determined for the Ti-th time zone of the i-th priority in the descending order of priority. Note that (i = m −1 , m −2 ,..., 2, 1).

【0220】[0220]

【数31】 (Equation 31)

【0221】これを、参照日の熱源機運転時間実績値X
Tiと比較して、第Ti時間帯を切り詰められるだけ切
り詰める。
The actual value of the heat source unit operating time X on the reference day
As compared with r Ti , the time period of the Ti-th time is truncated as much as possible.

【0222】 XrTi+ΔXtTi<0 ・・・・・・・・(87) の場合は、 ΔXtTi=−XrTi ・・・・・・・・・(88) XmgTi=XmaxTi ・・・・・・・・(89) とし、そうでないときは第Tm時間帯〜第Ti時間帯の
熱源機運転時間の補正だけで十分であることを意味する
ので、 XmgTi=XmgTi−ΔXtTi ・・・・(90) として熱源機運転時間の補正値算出を終了する。
In the case of Xr Ti + ΔXt Ti <0 (87), ΔXt Ti = −Xr Ti (88) Xmg Ti = Xmax Ti. ..... and (89), it means that when it is not it is sufficient correction of the Tm heat source machine operating time of the time zone, second Ti time zone, · Xmg Ti = Xmg Ti -ΔXt Ti (90) The calculation of the correction value of the heat source unit operation time is ended.

【0223】また、予め設定されている時刻に外気温度
の予測が修正された場合、又は当日の夜間の各時間帯に
おける平均外気温度が当初の予測よりも大きく異なって
いた場合などに備え、特定の時刻に熱源機の運転時間計
画値を修正する。なお、外気温度予測の修正及び熱源機
運転時間計画の修正は、例えば午前八時、十時及び十二
時に行う。また、現在の時刻が第i−1優先の第Ti−
1時間帯であるとすると、第i優先の第Ti時間帯以降
について、熱源機運転時間の補正値を補正演算する。
In addition, in the case where the prediction of the outside air temperature is corrected at a preset time, or the case where the average outside air temperature in each time zone of the night of the day is significantly different from the initial prediction, the identification is performed. At the time, the operation time plan value of the heat source unit is corrected. The correction of the outside air temperature prediction and the correction of the heat source device operation time plan are performed, for example, at 8:00 am, 10:00 and 12:00. In addition, the current time is the i-th Ti-th priority.
If the time period is one hour, the correction value of the heat source unit operating time is corrected and calculated for the i-th priority time zone and thereafter.

【0224】(4) 一日の運転終了時における熱量のバラ
ンスは式65で表されるが、ΔTa Tj 、QRtTj、Δ
XtTjは、j≦i−1については当日の外気温度平均値
から算出した実績値、j≧iについては各時刻で予測し
直した当日の各時間帯の、二十二時時点の値とは異なる
平均外気温度予測値から算出した予測値を用いる。この
ようにして算出した式65の右辺が正であれば、当日の
熱源機運転時間は参照日よりも長くなり、式65の右辺
が負であれば、当日の熱源機運転時間は参照日よりも短
くなる。
(4) The balance of the amount of heat at the end of the day's operation is represented by Equation 65, where ΔTa Tj , QRt Tj ,
Xt Tj is the actual value calculated from the outside air temperature average of the day for j ≦ i−1, and the value at 22 o'clock in each time zone of the day re-predicted at each time for j ≧ i. Uses a predicted value calculated from a different average outdoor temperature predicted value. If the right side of Equation 65 calculated in this way is positive, the heat source unit operation time of the day is longer than the reference date, and if the right side of Equation 65 is negative, the heat source unit operation time of the day is more than the reference day. Is also shorter.

【0225】(A) 熱源機運転時間が参照日よりも長くな
る場合、すなわち式65の右辺が正であるとき、第i優
先の第Ti時間帯から優先的に運転時間を詰めていく。
すなわち、第i時間帯から優先度が低くなる方向へ次の
式91を計算する。
(A) When the operation time of the heat source unit is longer than the reference date, that is, when the right side of the equation 65 is positive, the operation time is reduced in priority from the Ti-th time zone of the i-th priority.
That is, the following Expression 91 is calculated in the direction of decreasing priority from the i-th time zone.

【0226】[0226]

【数32】 (Equation 32)

【0227】(a) 次の式92であれば、次の式93、次
の式94とし、iを一つ増加させて再び式91を計算す
る。 ΔXtTi≧XmgTi ・・・・・・・・・(92) ΔXtTi=XmgTi ・・・・・・・・・(93) XmgTi=0 ・・・・・・・・・・・・(94)
(A) In the case of the following expression 92, the following expression 93 and the following expression 94 are obtained, and i is incremented by one, and expression 91 is calculated again. ΔXt Ti ≧ Xmg Ti (92) ΔXt Ti = Xmg Ti (93) Xmg Ti = 0 (94)

【0228】(b) 次の式95であれば、次の式96と
し、第i+1時間帯〜第m時間帯の熱源機運転時間補正
値ΔXtTj=0とする。 ΔXtTi<XmgTi ・・・・・・・・・(95) XmgTi=XmgTi−ΔXtTi ・・・・(96)
(B) In the case of the following equation 95, the following equation 96 is used, and the heat source unit operating time correction value ΔXt Tj = 0 in the (i + 1) th to m-th time zones is set. ΔXt Ti <Xmg Ti (95) Xmg Ti = Xmg Ti -ΔXt Ti (96)

【0229】(B) 熱源機運転時間が参照日よりも短くな
る場合、すなわち式65の右辺が負であるとき、第m優
先の第Tm時間帯から優先的に運転時間を切り詰めてい
く。すなわち、第m時間帯から優先度が高くなる方向へ
次の式97を計算する。
(B) When the operation time of the heat source unit becomes shorter than the reference date, that is, when the right side of the equation 65 is negative, the operation time is cut off preferentially from the Tm time zone of the mth priority. That is, the following Expression 97 is calculated from the m-th time zone in the direction in which the priority increases.

【0230】[0230]

【数33】 [Equation 33]

【0231】(a) 次の式98であれば、次の式99、次
の式100とし、kを一つ減少させて再び式97を計算
する。 XrTk+ΔXtTk<0 ・・・・・・・・・(98) ΔXtTk=−XrTk ・・・・・・・・・・(99) XmgTk=XmaxTk ・・・・・・・・(100)
(A) In the case of the following equation 98, the following equation 99 and the following equation 100 are obtained, and k is reduced by one, and equation 97 is calculated again. Xr Tk + ΔXt Tk <0 (98) ΔXt Tk = −Xr Tk (99) Xmg Tk = Xmax Tk ... (100)

【0232】(b) 次の式101であれば、次の式102
とし、第i+1時間帯〜第k−1時間帯の熱源機運転時
間補正値ΔXtTk=0とする。 XrTk+ΔXtTk≧0 ・・・・・・・・(101) XmgTk=XmgTk−ΔXtTk ・・・・(102)
(B) If the following equation 101, then the following equation 102
And the heat source unit operation time correction value ΔXt Tk = 0 in the (i + 1) th time zone to the (k−1) th time zone. Xr Tk + ΔXt Tk ≧ 0 (101) Xmg Tk = Xmg Tk -ΔXt Tk (102)

【0233】(5)次に、一日の運転終了時点で当日分を
含め過去の数日分の外気温度変化と空調熱負荷変化の関
係を学習する方法について説明する。なお、大筋として
は前述の実施の形態6と同様であるが、一部相違する部
分を中心に説明する。 (A) 外気温度の当日実測値と参照日実測値との昼間平均
差の算出。各時間帯Ti別に外気温度の当日実績値Ta
Ti[°C]と参照日実績値TarTi[°C]との差Δ
TasTi[h]を算出し記録しておく。 ΔTasTi=TasTi−TarTi ・・・(103)
(5) Next, a method of learning the relationship between a change in the outside air temperature and a change in the air conditioning heat load for the past several days, including the current day, at the end of one day of operation will be described. Although the outline is the same as that of the above-described sixth embodiment, a description will be given focusing on a part that is partially different. (A) Calculation of the daytime average difference between the actual measured value of the outside air temperature on the day and the measured value on the reference day. Actual temperature Ta of the outside air temperature for each time zone Ti
Difference Δ between s Ti [° C] and reference date actual value Tar Ti [° C]
Calculate and record Tas Ti [h]. ΔTas Ti = Tas Ti− Tar Ti (103)

【0234】これにより、昼間に含まれる時間帯を第p
時間帯から第q時間帯とし、それぞれの時間帯の長さを
Xmaxi [h](i=p〜q)として、外気温度の当
日実測値と参照日実測値との昼間平均差を算出する。
As a result, the time period included in the daytime can be changed to the p-th time zone.
From the time zone to the q-th time zone, the length of each time zone is set to Xmax i [h] (i = p to q), and the daytime average difference between the actual measured value of the outside air temperature on the day and the actual measured value on the reference day is calculated. .

【0235】[0235]

【数34】 (Equation 34)

【0236】(B) 外気温度予測の誤差の影響を除いた運
転時間負荷未学習計画値の算出。外気温度の予測精度を
100%とした場合、負荷の増減を考えない運転時間計
画値はいくらであるべきであったか、すなわち運転時間
負荷未学習計画値を計算する。計算式は当日の第一時間
帯開始時刻二十二時に熱源機運転時間計画値を算出した
計算式と同じ計算式を使う。ただし、次のように置き換
える。
(B) Calculation of the operating time load unlearned plan value excluding the influence of the error of the outside air temperature prediction. When the prediction accuracy of the outside air temperature is set to 100%, the operation time plan value that does not consider the increase or decrease of the load should be calculated, that is, the operation time load unlearned plan value is calculated. The same formula is used as the formula for calculating the heat source unit operating time plan value at 22 o'clock at the first time zone start time of the day. However, replace as follows.

【0237】・外気温度平均値の当日予測値→外気温度
平均値の当日実績値TasTi[°C] ・外気温度平均値の当日予測値と参照日実績値との差Δ
TaTi[°C]→外気温度平均値の当日実績値と参照日
実績値との差ΔTasTi[°C] ・蓄熱槽出口温度Tstt(24)→当日運転終了時点
の実績値Tsts(24)[°C] 以上の置き換えを行った上で前述の式65を基に第i優
先の第Ti時間帯について、熱源機運転時間の補正値が
いくらであるべきであったか、すなわち運転時間負荷未
学習補正値を求める。 (a) 式65の右辺が正の場合、i=1、2、3、・・・・
・、mに対して、
The day-to-day predicted value of the average outside air temperature → the actual value of the day-to-day external air temperature average Tas Ti [° C.] The difference Δ between the day-to-day predicted value of the average outside air temperature and the actual value of the reference day
Ta Ti [° C] → difference between actual value of the outside air temperature average value on the day and actual value on the reference day ΔTas Ti [° C] · Thermal storage tank outlet temperature Tstt (24) → actual value Tsts (24) at the end of operation on the day [° C] After the above replacement, the correction value of the operation time of the heat source unit should have been determined for the i-th priority time zone based on the above equation 65, that is, the operation time load unlearned. Find the correction value. (a) When the right side of Expression 65 is positive, i = 1, 2, 3,...
・ For m

【0238】[0238]

【数35】 (Equation 35)

【0239】これを、XmgTiと比較して第Ti時間帯
を埋められるだけ埋める。なお、後述の式106の場合
は、式107、式108としてiを一つ増加させて再度
式105を計算する。 ΔXttTi≧XmgTi ・・・・・・・・・(106) ΔXttTi=XmgTi ・・・・・・・・・(107) XmgTi=0 ・・・・・・・・・・・・・(108)
This is filled as much as possible to fill the Tith time zone as compared with Xmg Ti . In the case of Expression 106 described later, i is increased by one as Expression 107 and Expression 108, and Expression 105 is calculated again. ΔXtt Ti ≧ Xmg Ti (106) ΔXtt Ti = Xmg Ti (107) Xmg Ti = 0・ (108)

【0240】また、後述の式109の場合は第Ti時間
帯の熱源機運転時間の補正だけで十分であることを意味
するので、後述の式110として熱源機運転時間の未学
習補正値の算出を終了する。 ΔXttTi<XmgTi ・・・・・・・・・(109) XmgTi=XmgTi−ΔXttTi ・・・・(110)
Further, in the case of the expression 109 described later, it means that the correction of the operation time of the heat source unit in the Ti-th time zone is sufficient. To end. ΔXtt Ti <Xmg Ti (109) Xmg Ti = Xmg Ti -ΔXtt Ti (110)

【0241】(b) 式65の右辺が負の場合、i=m-1
-2、・・・・・、1に対して、
(B) If the right side of equation 65 is negative, i = m −1 ,
For m -2 , ..., 1

【0242】[0242]

【数36】 [Equation 36]

【0243】これを、参照日の熱源機運転時間実績値X
Tiと比較して第Ti時間帯を切りつめられるだけ切り
つめる。なお、後述の式112の場合は、式113、式
114としてiを減少させて再度式111を計算する。 XrTi+ΔXttTi<0 ・・・・・・・・(112) ΔXttTi=−XrTi ・・・・・・・・・(113) XmgTi=XmaxTi ・・・・・・・・・(114)
The actual value of the heat source unit operating time X on the reference day
The time period Ti is reduced as much as possible in comparison with r Ti . In the case of Expression 112 described below, Expression 111 is calculated again by decreasing i as Expressions 113 and 114. Xr Ti + ΔXtt Ti <0 (112) ΔXtt Ti = −Xr Ti (113) Xmg Ti = Xmax Ti (13) 114)

【0244】また、後述する式115の場合は、第m時
間帯〜第Ti時間帯の熱源機運転時間の補正だけで十分
であることを意味するので、後述の式116として熱源
機運転時間の補正値算出を終了する。 XrTi+ΔXttTi≧0 ・・・・・・・・(115) XmgTi=XmgTi−ΔXttTi ・・・・(116)
In the case of the expression 115 described later, it means that it is sufficient to correct only the operation time of the heat source device in the m-th time period to the Ti-th time period. The correction value calculation ends. Xr Ti + ΔXtt Ti ≧ 0 ········ (115) Xmg Ti = Xmg Ti -ΔXtt Ti ···· (116)

【0245】(C) 当日の負荷増分ΔQXLの算出 当日の熱源機運転時間実績値XsTi[h]と前述の(B)
で算出された負荷未学習計画値XttTi[h]との差が
現地の負荷状況、すなわち外気温度と負荷との関係を反
映したものとなる。これを熱源機の能力差分だけ補正し
て負荷熱相当量に置き換えΔQXL[Mcal]と置く。
(C) Calculation of the load increment ΔQXL of the day The actual heat source unit operation time Xs Ti [h] of the day and the above-mentioned (B)
The difference from the load unlearned plan value Xtt Ti [h] calculated in step (1) reflects the local load condition, that is, the relationship between the outside air temperature and the load. This is corrected by the difference in capacity of the heat source unit, replaced with the load heat equivalent, and set as ΔQXL [Mcal].

【0246】[0246]

【数37】 (37)

【0247】ここで、QRsTi[Mcal/h]は当日の第T
i時間帯の外気温度実績値を用いて算出された熱源機能
力実績値である。
Here, QRs Ti [Mcal / h] is the Tth of the day.
It is a heat source functional force actual value calculated using the outdoor air temperature actual value in the i-time zone.

【0248】(D) 外気温度と負荷の関係を学習 前述の(A) で算出した当日昼間の平均気温実測値と参照
日昼間の平均気温実測値との差ΔTads[°C]と、
前述の(C) で算出した外気温度の増減ΔTads[°
C]に伴う負荷増減分ΔQXL[Mcal]の間に、次の式
118の関係を近似的に仮定する。このΔQXL[Mca
l]を各時間帯の熱源機能力で割って運転時間計画の補
正に加える。
(D) Learning the relationship between the outside air temperature and the load The difference ΔTads [° C] between the actual measured value of the daytime average temperature and the measured actual daytime temperature of the reference day calculated in the above (A) is as follows:
Increase / decrease of the outside air temperature calculated in the above (C) ΔTads [°
C], the following equation 118 is approximately assumed between the load increase and decrease ΔQXL [Mcal]. This ΔQXL [Mca
l] is divided by the heat source functional capacity in each time zone to add to the correction of the operation time plan.

【0249】なお、ここで用いる係数Aは平日、土曜
日、日曜日ごとにそれぞれ設定し、また昼間とは八時〜
十八時などと設定する。また、これ以降における係数A
の学習方法は、前述の実施の形態6と同じであるので説
明を省略する。
The coefficient A used here is set for each of weekdays, Saturdays, and Sundays.
Set as 18:00. In addition, the coefficient A
Is the same as in the above-described sixth embodiment, and a description thereof will not be repeated.

【0250】 ΔQXL=A・ΔTads ・・・・・(118)ΔQXL = A · ΔTads (118)

【0251】なお、実施の形態9では一日を複数の時間
帯に予め分割して設定し、それぞれの時間帯ごとに熱源
機の運転時間計画値を算出して、この算出値に基づいて
熱源機が運転される。しかし、負荷がある程度小さくな
った時点で蓄熱運転を始め、負荷がある程度大きくなっ
た時点で蓄熱運転を終了して蓄熱利用運転又は蓄熱を利
用しながら追いかけ運転するようにすることも可能であ
る。
In the ninth embodiment, the day is divided into a plurality of time zones in advance and set, and the operating time plan value of the heat source unit is calculated for each time zone, and the heat source is calculated based on the calculated value. Machine is driven. However, it is also possible to start the heat storage operation when the load is reduced to some extent, to end the heat storage operation when the load is increased to some extent, and to perform the chase operation using the heat storage operation or the heat storage.

【0252】なお、負荷側空調室内機まで冷媒を循環さ
せる直接膨張式空調機の場合には、熱源機側では熱源機
内の圧縮機運転周波数や運転電流などによって、また負
荷側では室内機運転台数、ファン回転数、吸い込み空気
温度と空調設定温度との差などによって、それぞれ負荷
を推定することができる。
In the case of a direct expansion type air conditioner in which refrigerant is circulated to the load side air conditioner indoor unit, the heat source unit has a compressor operating frequency and an operating current in the heat source unit, and the load side has the number of operating indoor units. The load can be estimated based on the fan rotation speed, the difference between the intake air temperature and the air-conditioning set temperature, and the like.

【0253】また、前述の実施の形態1〜実施の形態8
で説明したような負荷側空調室内機へ水を循環させる水
方式空調の場合には、熱源機側では負荷側からの戻り温
度、負荷側送り温度と戻り温度との温度差、負荷側ポン
プ吐き出し流量、負荷側ポンプ運転周波数、負荷側ポン
プ運転電流などによって、また負荷側では室内機運転台
数、ファン回転数、吸い込み空気温度と空調設定温度と
の差などによって、それぞれ負荷を推定することができ
る。
In the first to eighth embodiments described above.
In the case of water-based air conditioning that circulates water to the load-side air-conditioning indoor unit as described in, the heat source unit has a return temperature from the load, a temperature difference between the load-side feed temperature and the return temperature, and a load-side pump discharge. The load can be estimated based on the flow rate, the load-side pump operating frequency, the load-side pump operating current, and the like, and on the load side, the number of indoor units operated, the number of fans, the difference between the intake air temperature and the air-conditioning set temperature, and the like. .

【0254】以上説明したように実施の形態9において
は、負荷が集中する時間帯よりも負荷が集中しない時間
帯の方が長い場所に対しても、蓄熱を導入することによ
って熱源機容量を非蓄熱空調設備に比べて節減すること
ができ、電力の基本契約料を低減することができる。ま
た、実施の形態9のように通常の定義では夜間蓄熱時間
帯である6:00〜8:00に負荷が集中するような場
合に、従来の氷蓄熱ユニットを導入すると、実質的な蓄
熱時間帯は通常22:00〜8:00の十時間に対して
0:00〜6:00の六時間になる。
As described above, in the ninth embodiment, heat storage is introduced even in a place where the time period during which the load is not concentrated is longer than the time period during which the load is concentrated, thereby reducing the capacity of the heat source device. It is possible to save money as compared with the thermal storage air conditioning equipment, and it is possible to reduce the basic contract fee for electric power. In addition, in the case where the load is concentrated at 6:00 to 8:00 which is the nighttime heat storage time zone according to the normal definition as in the ninth embodiment, if the conventional ice heat storage unit is introduced, a substantial heat storage time is obtained. The band usually lasts 10 hours from 22:00 to 8:00 and lasts 6 hours from 0:00 to 6:00.

【0255】このため、熱源機、氷蓄熱槽とも比較的大
きな容量を必要とし、イニシァルコスト増加分をランニ
ングコスト低減分で回収するのに要する期間、いわゆる
ペイバック期間が長くなるので、蓄熱空調設備の導入に
よる作用が少なくなる。また、従来の氷蓄熱ユニットは
一日のうち蓄熱運転できる時間帯が一つしか設定できな
かったため、昼間に極端に負荷が小さくなるような時間
帯が存在する場合であっても昼間に蓄熱運転することに
よって熱源機容量を低減することができなかった。
For this reason, both the heat source unit and the ice heat storage tank require relatively large capacities, and the period required to recover the increased initial cost by the reduced running cost, that is, the so-called payback period, becomes longer. The effect of the introduction of is reduced. In addition, since the conventional ice heat storage unit can set only one time period during which heat storage operation can be performed in a day, even when there is a time period in which the load becomes extremely small during daytime, the heat storage operation during daytime is performed. By doing so, the heat source equipment capacity could not be reduced.

【0256】しかし、実施の形態9では負荷が小さいこ
とを検知して、その時間帯に熱源機能力の余裕分で蓄熱
することができる。したがって、負荷の多寡に係わらず
熱源機を定常運転する時間帯が長くなるので、熱源機出
力を低減することが可能になり契約電力料金及び従量料
金を低減することができる。
However, in the ninth embodiment, the fact that the load is small is detected, and heat can be stored in the time zone with an allowance of the heat source functional capacity. Therefore, the time period during which the heat source unit is steadily operated irrespective of the load becomes longer, so that the output of the heat source unit can be reduced, and the contracted electricity rate and the metered rate can be reduced.

【0257】また、実施の形態9は食堂等の他に、寮、
集合住宅、一戸建て住宅、ビル、市場、工場、学校、保
養施設、病院、冷蔵冷凍倉庫等、負荷が集中する時間帯
が比較的に短く、また負荷が小さい時間帯が長い場所の
空調、冷却、加熱に適用することによって、夜間のみな
らず昼間の負荷が小さい時間帯にも蓄熱することができ
る。したがって、熱源機出力を小さくすることができ契
約電力量をより小さくしたり、負荷の増加に対しても契
約電力の増加なしに対応したりすることができる。
In the ninth embodiment, a dormitory,
Air conditioning, cooling, etc. in apartments, detached houses, buildings, markets, factories, schools, recreation facilities, hospitals, refrigerated warehouses, etc., where the load is concentrated for a relatively short time and the load is small for a long time By applying to heating, heat can be stored not only at night but also during a time when the load during the day is small. Therefore, the output of the heat source device can be reduced, the contracted power amount can be reduced, and an increase in load can be dealt with without increasing the contracted power.

【0258】実施の形態10.前述の実施の形態9にお
ける蓄熱装置を次に述べるように制御することができ
る。すなわち、一日に複数回先鋭的なピークが発生する
負荷に対して、熱源機容量の低減を図る場合の熱源機の
制御方法を、例として負荷に温水を供給する暖房時につ
いて説明する。暖房についても冷房と同様に、第Ti時
間帯の熱源機能力平均値QRTi[Mcal/h]を、蓄熱運転
時と追いかけ運転時とに分けて第Ti時間帯の平均外気
温度TaTi[°C]の関数として予め設定しておく。 蓄熱運転時: QRTi=e'・TaTi+f'(i=1,2,・・・,nn) ・・・・・・(119) 追いかけ運転時: QRTi=c'・TaTi+d'(i=nn+1,nn+2,・・・,m) ・・(120)
Embodiment 10 FIG. The heat storage device according to Embodiment 9 described above can be controlled as described below. That is, a method of controlling the heat source device in a case where the capacity of the heat source device is reduced for a load in which a sharp peak occurs a plurality of times a day will be described as an example of a heating operation in which hot water is supplied to the load. Similarly to the cooling, the average heat source functional force value QR Ti [Mcal / h] in the Ti time zone is divided into the heat storage operation and the chase operation, and the average outside air temperature Ta Ti [° in the Ti time zone. C] in advance. During heat storage operation: QR Ti = e '• Ta Ti + f' (i = 1,2, ..., nn) ... (119) During chase operation: QR Ti = c '* Ta Ti + d '(i = nn + 1, nn + 2, ..., m) ... (120)

【0259】以降、熱源機の運転時間計画値の算出方
法、熱源機の運転時間計画値の修正方法、外気温度と負
荷の関係の学習方法など、全ての操作は冷房運転時と同
様である。ただし、各式においてc=−c’、e=−
e’の置き換えが必要である。
Thereafter, all operations such as a method of calculating the planned operation time of the heat source unit, a method of correcting the planned operation time of the heat source unit, and a method of learning the relationship between the outside air temperature and the load are the same as those in the cooling operation. However, in each formula, c = −c ′, e = −
e 'needs to be replaced.

【0260】実施の形態11.図9及び図10も、この
発明の他の実施の形態の一例を示す図で、図9は蓄熱装
置の回路図、図10は蓄熱装置の運転時間帯の設定を説
明する図である。図において、16は氷蓄熱ユニットか
らなる蓄熱装置、17は熱源機、18は熱源機17に内
蔵されたブライン熱交換器、19は熱源機17に内蔵さ
れた水熱交換器、20は氷蓄熱槽からなる蓄熱槽であ
る。
Embodiment 11 FIG. FIGS. 9 and 10 also show an example of another embodiment of the present invention. FIG. 9 is a circuit diagram of the heat storage device, and FIG. 10 is a diagram for explaining the setting of the operation time zone of the heat storage device. In the figure, 16 is a heat storage device comprising an ice heat storage unit, 17 is a heat source device, 18 is a brine heat exchanger built in the heat source device 17, 19 is a water heat exchanger built in the heat source device 17, and 20 is ice heat storage. It is a heat storage tank consisting of a tank.

【0261】21はブラインポンプ、22は負荷側熱交
換器、23は氷蓄熱槽20側から冷温水を負荷へ供給す
るポンプ、24は三方弁、25は水からなる蓄熱媒体、
26はブライン管路で、ブライン熱交換器18に接続さ
れ、またブラインポンプ21が設けられている。なお、
ブライン管路26の一部は蓄熱槽20内で熱交換器27
を形成し、ブラインポンプ21に接続されてブライン回
路を構成する。
Reference numeral 21 denotes a brine pump, 22 denotes a load side heat exchanger, 23 denotes a pump for supplying cold / hot water to the load from the ice heat storage tank 20 side, 24 denotes a three-way valve, 25 denotes a heat storage medium made of water,
Reference numeral 26 denotes a brine pipeline connected to the brine heat exchanger 18 and provided with a brine pump 21. In addition,
A part of the brine pipe 26 is connected to the heat exchanger 27 in the heat storage tank 20.
Is formed and connected to the brine pump 21 to form a brine circuit.

【0262】28は水熱交換器19と負荷側熱交換器2
2出口の間に設けられた第一水管路、29は水熱交換器
19と三方弁24の第二口との間に設けられた第二水管
路、30は第二水管路29の途中と蓄熱槽20の間に設
けられた第三水管路で、負荷側熱交換器22からの水の
一部又は全部が蓄熱槽20に還流される。31は蓄熱槽
20の出口と三方弁24の第一口との間に設けられた第
四水管路、32は第四水管路31の中間に設けられた第
一水温センサである。
Reference numeral 28 denotes the water heat exchanger 19 and the load side heat exchanger 2
A first water pipe provided between the two outlets, 29 is a second water pipe provided between the water heat exchanger 19 and the second port of the three-way valve 24, and 30 is a part of the second water pipe 29. In the third water pipe provided between the heat storage tanks 20, a part or all of the water from the load side heat exchanger 22 is returned to the heat storage tank 20. 31 is a fourth water pipe provided between the outlet of the heat storage tank 20 and the first port of the three-way valve 24, and 32 is a first water temperature sensor provided in the middle of the fourth water pipe 31.

【0263】33は三方弁24の第三口と負荷側熱交換
器22入口の間に設けられた第五水管路で、中間にポン
プ23及び第二水温センサ34が配置されて水回路を構
成している。35は蓄熱装置16に配置された外気温度
センサ、36は熱交換器27の氷厚さを検出する氷厚セ
ンサである。
Reference numeral 33 denotes a fifth water pipe provided between the third port of the three-way valve 24 and the inlet of the load side heat exchanger 22. A pump 23 and a second water temperature sensor 34 are disposed in the middle to constitute a water circuit. doing. Reference numeral 35 denotes an outside air temperature sensor arranged in the heat storage device 16, and reference numeral 36 denotes an ice thickness sensor for detecting the ice thickness of the heat exchanger 27.

【0264】37は蓄熱装置16の運転を制御する制御
装置である。38は負荷側制御装置で、負荷側熱交換器
22側の第二水温センサ34の温度が所定値になるよう
に三方弁24の開度、すなわち水熱交換器19を経由し
た負荷側戻り水と蓄熱槽20出口の水の混合比を制御す
る。39は熱源ユニットで、吸収式冷温水機、ターボ冷
凍機、空冷ヒートポンプチラー等によって構成された熱
源機40が設けられている。
A control device 37 controls the operation of the heat storage device 16. Reference numeral 38 denotes a load-side control device which controls the opening of the three-way valve 24, that is, the load-side return water passing through the water heat exchanger 19, so that the temperature of the second water temperature sensor 34 on the load-side heat exchanger 22 becomes a predetermined value. And the mixing ratio of water at the outlet of the heat storage tank 20 is controlled. Reference numeral 39 denotes a heat source unit, which is provided with a heat source unit 40 including an absorption chiller / heater, a turbo refrigerator, an air-cooled heat pump chiller, and the like.

【0265】41は熱源機40内の熱交換器42の入口
側に接続された第六水管路、43は負荷側熱交換器22
の出口側水管路で、第一水管路28と第六水管路41に
分岐されている。44は負荷側熱交換器22の入口側水
管路で、第五水管路33と熱源ユニット39に至る第七
水管路45に分岐されている。46はポンプで、第七水
管路45に設けられて熱源ユニット39外に配置されて
熱搬送を行う。
Reference numeral 41 denotes a sixth water pipe connected to the inlet side of the heat exchanger 42 in the heat source unit 40, and reference numeral 43 denotes a load side heat exchanger 22.
Are branched into a first water pipe 28 and a sixth water pipe 41. Reference numeral 44 denotes an inlet-side water pipe of the load-side heat exchanger 22, which is branched into a fifth water pipe 33 and a seventh water pipe 45 reaching the heat source unit 39. A pump 46 is provided in the seventh water pipe 45 and disposed outside the heat source unit 39 to carry out heat transfer.

【0266】上記のように構成された蓄熱装置におい
て、熱源機17で発生した冷温熱は、ブラインポンプ2
1及びブライン管路26内のブラインによって蓄熱槽2
0内の熱交換器27に伝えられる。そして、冷熱蓄熱の
場合は蓄熱槽20内の熱交換器27の回りに水からなる
蓄熱媒体25の一部を凍結させることによって、また温
熱蓄熱の場合は熱交換器27が設置されている蓄熱槽2
0内の水からなる蓄熱媒体25の温度を上昇させること
によって蓄えられる。
In the heat storage device configured as described above, the cold heat generated by the heat source unit 17 is supplied to the brine pump 2.
1 and the brine in the brine line 26
It is transmitted to the heat exchanger 27 within 0. Then, in the case of cold heat storage, a part of the heat storage medium 25 made of water is frozen around the heat exchanger 27 in the heat storage tank 20, and in the case of warm heat storage, the heat storage in which the heat exchanger 27 is installed is used. Tank 2
It is stored by raising the temperature of the heat storage medium 25 consisting of water within zero.

【0267】そして、蓄熱槽20に蓄えられた冷熱又は
温熱が、蓄熱媒体25を第四水管路31及びポンプ23
を介して空調負荷側へ供給されて、負荷側熱交換器22
により冷房作用又は暖房作用を発生する。そして、負荷
側熱交換器22で冷房作用又は暖房作用を発生して還流
する蓄熱媒体25は、水熱交換器19を経て一部が蓄熱
槽20へ、他部は三方弁24を経て蓄熱槽20から供給
される蓄熱媒体25と合流して再び負荷側熱交換器22
へ供給される。
Then, the cold or warm heat stored in the heat storage tank 20 transfers the heat storage medium 25 to the fourth water pipe 31 and the pump 23.
Is supplied to the air-conditioning load side via the load side heat exchanger 22
As a result, a cooling action or a heating action is generated. A part of the heat storage medium 25 which generates a cooling action or a heating action in the load side heat exchanger 22 and returns to the heat storage tank 20 via the water heat exchanger 19, and the other part via the three-way valve 24. 20 and again merges with the heat storage medium 25 supplied from the load side heat exchanger 22.
Supplied to

【0268】一方、負荷側熱交換器22で冷房作用又は
暖房作用を発生して還流する蓄熱媒体25の他部は、熱
源機40内の熱交換器42を通って冷却又は加熱され、
ポンプ46で負荷側熱交換器22へ送り出されて、蓄熱
装置16を通ってきた蓄熱媒体25と合流して再び負荷
側熱交換器22へ供給される。
On the other hand, the other part of the heat storage medium 25 that returns by generating a cooling action or a heating action in the load side heat exchanger 22 is cooled or heated through the heat exchanger 42 in the heat source unit 40,
The heat is sent out to the load side heat exchanger 22 by the pump 46, merges with the heat storage medium 25 that has passed through the heat storage device 16, and is again supplied to the load side heat exchanger 22.

【0269】また、制御装置37には、熱源機17の運
転時間計画値を算出する運転時間計画値演算部と、熱源
機17の運転時間計画値を記憶する運転時間計画値記憶
部と、熱源装置16の一日の実際の運転時間を計測する
タイマカウンタ等の熱源機運転時間計測手段と、熱源機
17の一日の実際の運転時間を記憶する熱源機運転時間
実績値記憶部と、外気温度センサ35の計測結果を記憶
する外気温度計測値記憶部と、外気温度の予測値を演算
する外気温度予測手段が設けられている。
The control device 37 includes an operation time plan value calculation unit for calculating the operation time plan value of the heat source unit 17, an operation time plan value storage unit for storing the operation time plan value of the heat source unit 17, and a heat source unit. A heat source device operating time measuring means such as a timer counter for measuring the actual operating time of the device 16 per day; a heat source device operating time actual value storage unit for storing the actual operating time of the heat source device 17 for one day; An outside air temperature measurement value storage unit that stores the measurement result of the temperature sensor 35 and an outside air temperature prediction unit that calculates a predicted value of the outside air temperature are provided.

【0270】上記のような蓄熱装置では、前述の実施の
形態1と同様に熱源機17及び熱源機40を運転し、水
熱交換器19及び熱交換器42で戻り蓄熱媒体25を適
宜に、冷却又は加熱することによって蓄熱槽20内の蓄
熱の消費量を制御している。また、前述の実施の形態1
〜実施の形態9では熱源機が一台であったが、実施の形
態11では熱源機17及び熱源機40の二台であるもの
の、単に熱源機と概括して考えれば、実施の形態1〜実
施の形態9と同様に蓄熱装置16内の制御装置37によ
って複数の熱源機を制御する方式とすることができる。
In the heat storage device as described above, the heat source device 17 and the heat source device 40 are operated in the same manner as in the first embodiment, and the return heat storage medium 25 is appropriately returned to the water heat exchanger 19 and the heat exchanger 42. The amount of heat stored in the heat storage tank 20 is controlled by cooling or heating. In addition, the first embodiment described above
In Embodiment 9, the number of the heat source units is one. However, in Embodiment 11, the number of the heat source units 17 and the number of the heat source units 40 are two. As in the ninth embodiment, a method in which a plurality of heat source devices are controlled by the control device 37 in the heat storage device 16 can be adopted.

【0271】この制御における基本的な考え方は、蓄熱
槽20内に氷が残っていればピーク負荷に対して熱源側
の能力は足りるし、蓄熱槽20内に氷が残っていなけれ
ばピーク負荷に対して熱源側の能力が不足するという氷
蓄熱システムの基本特性に基づいている。そして、ある
一日の運転時間計画値に基づいて熱源機を運転し、空調
終了時点で蓄熱量がちょうど零になっていれば、その日
の熱源機運転時間計画値が適正であったと判断し、翌日
の運転時間計画値は増減しない。
The basic concept of this control is that if ice remains in the heat storage tank 20, the capacity of the heat source side is sufficient for the peak load, and if no ice remains in the heat storage tank 20, the peak load is reduced. On the other hand, it is based on the basic characteristics of the ice heat storage system that the capacity on the heat source side is insufficient. Then, the heat source unit is operated based on the planned operation time of a certain day, and if the heat storage amount is just zero at the end of the air conditioning, it is determined that the planned heat source device operation time of the day was appropriate, The next day's planned operation time does not increase or decrease.

【0272】また、蓄熱を使い切れなかったらその日の
熱源機の蓄熱運転が過剰であったと判断して翌日の運転
時間計画値を少なくする。逆に、蓄熱を使い過ぎたり、
運転時間計画値よりも余計に熱源機を運転したりしたと
きには、その日の熱源機運転時間計画値が過小であった
と判断し、翌日の運転時間計画値を増加する。以下この
ような蓄熱装置の制御方法を、冷房運転を例として説明
する。
If the heat storage has not been used up, it is determined that the heat storage operation of the heat source unit on that day was excessive, and the planned operation time for the next day is reduced. Conversely, too much heat storage,
When the heat source unit is operated more than the planned operation time, it is determined that the heat source unit operation time plan value for the day is too small, and the operation time plan value for the next day is increased. Hereinafter, a control method of such a heat storage device will be described by taking a cooling operation as an example.

【0273】すなわち、実施の形態9にならって一日に
複数の蓄熱時間帯と複数の追いかけ時間帯とを分けて設
定する。さらに、熱源機17及び熱源機40の優先順と
時間帯の優先順とを考慮して、各時間帯における各熱源
機の運転優先度を例えば図10に示すように予め設定し
ておく。すなわち、第一時間帯の0:00〜6:00に
おける熱源機17の蓄熱運転が最も優先度が高く、次い
で同時間帯の熱源機40の冷却運転、第六時間帯の1
6:00〜18:00における熱源機17の蓄熱運転、
同時間帯の熱源機40の冷却運転と優先度が設定され
る。
That is, according to the ninth embodiment, a plurality of heat storage time zones and a plurality of chase time zones are set separately for one day. Furthermore, in consideration of the priority order of the heat source devices 17 and the heat source devices 40 and the priority order of the time zones, the operation priority of each heat source device in each time zone is set in advance, for example, as shown in FIG. In other words, the heat storage operation of the heat source device 17 at 0:00 to 6:00 in the first time zone has the highest priority, and then the cooling operation of the heat source device 40 in the same time zone, and the 1st operation in the sixth time zone.
Heat storage operation of the heat source device 17 from 6:00 to 18:00,
The cooling operation and the priority of the heat source device 40 in the same time zone are set.

【0274】また、14:00〜16:00の第五時間
帯のピークカットが熱源機運転の優先度としては最低に
設定されている。なお、時間帯の数としては熱源機の台
数分だけ増えて2m個ある。以上の複数熱源機の運転優
先度は、前述の実施の形態9と同様にメーカで予め設定
しておくか、ユーザ、電力会社などが現地でキーボー
ド、タッチパネル、ディップスイッチ等の外部入力装置
を介して設定する。
Further, the peak cut in the fifth time period from 14:00 to 16:00 is set to the lowest priority of the operation of the heat source unit. The number of time zones is 2 m, which is increased by the number of heat source devices. The operation priorities of the plurality of heat source units are set in advance by a maker in the same manner as in the above-described ninth embodiment, or a user, an electric power company, or the like locally transmits the operation priority through an external input device such as a keyboard, a touch panel, or a dip switch. To set.

【0275】このように、各時間帯に対して各熱源機の
運転優先度を設定し、実施の形態9と同様に各熱源機の
参照日の各熱源機運転時間実績値を基にした運転時間計
画値に基づいて運用する。すなわち、熱源機17及び熱
源機40の運転時間計画値は、第一時間帯〜第2m時間
帯のそれぞれに対して設定する。
In this manner, the operation priority of each heat source unit is set for each time zone, and the operation based on the actual operation time value of each heat source unit on the reference date of each heat source unit is set as in the ninth embodiment. Operate based on time plan values. That is, the planned operation time of the heat source device 17 and the heat source device 40 is set for each of the first time zone to the second m time zone.

【0276】また、運転時間計画値は、これから熱源機
の運転時間計画値を算出して設定しようとしている日、
すなわち当日の第一時間帯開始直前に算出する。すなわ
ち、当日の第Ti時間帯における熱源機の運転時間計画
値XtTi及びXtTi[h]は、参照日の第Ti時間帯の
熱源機の運転時間実績値XrTi[h]に補正値ΔXtTi
[h]及びΔXLTi[h]を加え、 XtTi=XrTi+ΔXtTi+ΔXLTi [h] ・・・・(121) とする。ただし、i=1、2、3、・・・・・、2mであ
り、ΔXtTi及びΔXLTiの定義は実施の形態9と同一
である。なお、初日の運転時間計画値(初期値)は、最
大値(24時間からピークカット時間帯及び蓄熱も空調
もしない時間帯の長さを引いた値、これらは現地の時間
帯の設定によって変わる)としておく。
The planned operating time is calculated on the day when the planned operating time of the heat source unit is to be calculated and set,
That is, it is calculated immediately before the start of the first time zone of the day. That is, the planned operation time values Xt Ti and Xt Ti [h] of the heat source device in the Ti time zone of the day are corrected to the actual operation time value Xr Ti [h] of the heat source device in the Ti time zone of the reference day by the correction value ΔXt. Ti
[H] and ΔXL Ti [h] are added to obtain Xt Ti = Xr Ti + ΔXt Ti + ΔXL Ti [h] (121) However, i = 1, 2, 3,..., 2m, and the definitions of ΔXt Ti and ΔXL Ti are the same as in the ninth embodiment. Note that the planned operating time on the first day (initial value) is a maximum value (a value obtained by subtracting the length of the peak cut time zone and the time zone in which neither heat storage nor air conditioning is performed from 24 hours, and these values vary depending on the local time zone setting). ).

【0277】(1) 各時間帯の未利用時間の算出 まず、第i優先の第Ti時間帯の熱源機運転時間実績値
XrTi[h](i=1、2、3、 、2m)が、各時間
帯の長さXmaxTi[h]に対してどの程度使い切って
いなかったを算出する。すなわち、満蓄検知などによっ
て利用できるはずであったのに利用していなかった未利
用時間を算出する。 XmgTi=XmaxTi−XrTi [h] ・・・・・(122) ただし、タイマーカウンタの誤差や微小時間を無視する
ため、XmgTi≦0.1[h]の場合はXmgTi=0
[h]、XrTi=XmaxTi[h]とする。
(1) Calculation of Unused Time in Each Time Zone First, the actual heat source unit operating time value Xr Ti [h] (i = 1, 2, 3, 2, m) in the i-th priority Ti time zone is calculated. And how much of the time zone has not been used up for the length Xmax Ti [h]. That is, the unused time that should have been used but not used due to full storage detection or the like is calculated. Xmg Ti = Xmax Ti −Xr Ti [h] (122) However, in order to ignore the error and the minute time of the timer counter, Xmg Ti = 0 when Xmg Ti ≦ 0.1 [h].
[H], Xr Ti = Xmax Ti [h].

【0278】(2) 未利用時間の詰め替え 実施の形態9にならい参照日について、一番優先度の低
い時間帯の運転時間から順番に優先度が高い時間帯の未
利用時間に振り替える。もし、第Ti時間帯のXmgTi
≠0のときには優先度の低い第2m優先の第T2m時間
帯から順に第Ti時間帯に参照日の熱源機運転時間実績
値XrTi[h]を振り替える。この詰め替え方法は実施
の形態9と同じであるが、熱源機の能力QRTi[Mcal/
h]が時間帯の優先度により、使用する熱源機が変わる
ためこれらの応じた性能式を予め設定しておく。 熱源機2蓄熱運転時:QRTi=−e・TaTi+f ・・・・・(123) 熱源機2追いかけ運転時:QRTi=−c・TaTi+d ・・・(124) 熱源機42冷却運転時:QRTi=−g・TaTi+h ・・・・(125)
(2) Refilling of Unused Time As in the ninth embodiment, the reference date is sequentially changed from the operation time in the time zone with the lowest priority to the unused time in the time zone with the highest priority. If Xmg Ti during Ti
When ≠ 0, the heat source unit operating time actual value Xr Ti [h] on the reference day is transferred to the Ti-th time zone in order from the 2m-time T2m time zone having the lower priority. This refilling method is the same as that of the ninth embodiment, except that the capacity of the heat source unit QR Ti [Mcal /
h] is different depending on the priority of the time zone, and the heat source device to be used changes. Heat source unit 2 during heat storage operation: QR Ti = −e · Ta Ti + f (123) Heat source unit 2 following operation: QR Ti = −c · Ta Ti + d (124) Heat source unit 42 during the cooling operation: QR Ti = -g · Ta Ti + h ···· (125)

【0279】(3) 当日運転時間の補正値ΔXtTi[h]
の算出 一日の運転終了時における熱量のバランス式は、
(3) Correction value of operation time on the day ΔXt Ti [h]
At the end of a day's operation, the heat balance equation is

【0280】[0280]

【数38】 (38)

【0281】となる。式126の右辺が正であれば当日
の熱源機運転時間は参照日よりも長くなり、逆に右辺が
負であれば当日の熱源機運転時間は参照日よりも短くな
る。また、前述の実施の形態のように熱源機が一台であ
れば、式126の右辺第二項は前述の式65の右辺第二
項+第三項と等価となる。
Is obtained. If the right side of Expression 126 is positive, the heat source unit operation time of the day is longer than the reference date, and if the right side is negative, the heat source unit operation time of the day is shorter than the reference day. If the number of heat source units is one as in the above-described embodiment, the second term on the right side of Expression 126 is equivalent to the second term + third term on the right side of Equation 65 described above.

【0282】(A) 熱源機運転時間が参照日よりも長くな
る場合、すなわち式126の右辺が正であるときは第1
優先の第T1時間帯から優先的に運転時間を詰めてい
く。 (a) まず、第1優先の第T1時間帯について熱源機運転
時間の補正値を求める。
(A) When the operation time of the heat source unit becomes longer than the reference date, that is, when the right side of the expression 126 is positive, the first
The operation time is reduced in priority from the priority T1 time zone. (a) First, a correction value of the heat source unit operation time is obtained for the first priority T1 time zone.

【0283】[0283]

【数39】 [Equation 39]

【0284】これを、XmgT1比較して第T1時間帯を
埋められるだけ埋める。また、次に述べる式128の場
合は式129、式130として後述する(b) に進み、そ
うでないときは第T1時間帯の熱源機運転時間の補正だ
けで十分であることを意味するので、次の式131とし
て熱源機運転時間の補正値算出を終了する。 ΔXtT1≧XmgT1 ・・・・・・・・・(128) ΔXtT1=XmgT1 ・・・・・・・・・(129) XmgT1=0 ・・・・・・・・・・・・(130) XmgT1=XmgT1−ΔXtT1 ・・・・(131)
[0284] This is compared with Xmg T1 to fill the T1 time zone as much as possible. In the case of the following equation 128, the procedure proceeds to (b) described later as equations 129 and 130. Otherwise, it means that the correction of the operation time of the heat source unit in the T1 time zone is sufficient. The calculation of the correction value of the operation time of the heat source unit is ended as the following Expression 131. ΔXt T1 ≧ Xmg T1 (128) ΔXt T1 = Xmg T1 (129) Xmg T1 = 0 (130) Xmg T1 = Xmg T1 −ΔXt T1 (131)

【0285】(b) 次に、第2優先の第T2時間帯につい
て熱源機運転時間の補正値を求める。
(B) Next, a correction value of the operation time of the heat source unit for the second priority T2 time zone is obtained.

【0286】[0286]

【数40】 (Equation 40)

【0287】これを、XmgT2比較して第T2時間帯を
埋められるだけ埋める。そして、次に述べる式133の
場合は、次の式134、式135として後述する(c) に
進み、そうでないときは第T1時間帯及び第T2時間帯
の熱源機運転時間の補正だけで十分であることを意味す
るので、次の式136として熱源機運転時間の補正値算
出を終了する。 ΔXtT2≧XmgT2 ・・・・・・・・・(133) ΔXtT2=XmgT2 ・・・・・・・・(134) XmgT2=0 ・・・・・・・・・・・(135) XmgT2=XmgT2−ΔXtT2 ・・・・(136)
[0287] This is compared with Xmg T2 , and the time period T2 is filled as much as possible. Then, in the case of Expression 133 described below, the process proceeds to (c) described below as Expressions 134 and 135. Otherwise, it is sufficient to correct only the operation time of the heat source unit in the T1 and T2 time zones. Therefore, the calculation of the correction value of the operation time of the heat source unit is ended as the following Expression 136. ΔXt T2 ≧ Xmg T2 (133) ΔXt T2 = Xmg T2 ... (134) Xmg T2 = 0 (135) ) Xmg T2 = Xmg T2 −ΔXt T2 (136)

【0288】(c) 以下同様に、第3優先以降の第Ti時
間帯(i=3、4、5、 、2m)について熱源機運転
時間の補正値を求める。
(C) Similarly, a correction value of the operation time of the heat source unit is calculated for the Ti-th time zone (i = 3, 4, 5, 2, 2m) after the third priority.

【0289】[0289]

【数41】 [Equation 41]

【0290】これを、XmgTiと比較して第Ti時間帯
を埋められるだけ埋める。そして、次に述べる式138
の場合は、次の式139、式140としてiをi+1に
置き換え、この(c) 項を繰り返し、そうでないときは第
T1時間帯〜第Ti時間帯の熱源機運転時間の補正だけ
で十分であることを意味するので、次の式141として
熱源機運転時間の補正値算出を終了する。 ΔXTi≧XmgTi ・・・・・・・・・・(138) ΔXTi=XmgTi ・・・・・・・・・・(139) XmgTi=0 ・・・・・・・・・・・・(140) XmgTi=XmgTi−ΔXTi ・・・・・(141)
This is filled as much as possible to fill the Ti-th time zone as compared with Xmg Ti . Then, the following expression 138
In the case of (1), i is replaced with i + 1 as the following Expressions 139 and 140, and this term (c) is repeated. Otherwise, it is sufficient to correct only the operation time of the heat source unit in the T1 to Ti time periods. Therefore, the calculation of the correction value of the operation time of the heat source unit is ended as the following Expression 141. ΔX Ti ≧ Xmg Ti (138) ΔX Ti = Xmg Ti (139) Xmg Ti = 0 (13)・ ・ (140) Xmg Ti = Xmg Ti −ΔX Ti・ ・ ・ ・ ・ (141)

【0291】(B) 熱源機運転時間が参照日よりも短くな
る場合、すなわち式126の右辺が負であるときは第m
優先の第Tm時間帯から優先的に運転時間を詰めてい
く。 (a) まず、最も優先度が低い第m時間帯について熱源機
運転時間の補正値を求める。
(B) If the operation time of the heat source unit becomes shorter than the reference date, that is, if the right side of Expression 126 is negative, the m-th
The operation time is preferentially reduced from the priority Tm time zone. (a) First, a correction value of the heat source unit operation time is obtained for the m-th time zone having the lowest priority.

【0292】[0292]

【数42】 (Equation 42)

【0293】これを、参照日の熱源機運転時間実績値X
rTm比較して第Tm時間帯を切り詰められるだけ切り詰
める。また、次に述べる式143の場合は式144、式
145として後述する(b) に進み、そうでないときは第
Tm時間帯の熱源機運転時間の補正だけで十分であるこ
とを意味するので、次の式146として熱源機運転時間
の補正値算出を終了する。 XrTm+ΔXtTm<0 ・・・・・・・・(143) ΔXrTm=−XrTm ・・・・・・・・・(144) XmgTm=XmaxTm ・・・・・・・・(145) XmgTm=XmgTm−ΔXtTm ・・・・(146)
[0293] This is converted to the actual heat source unit operation time value X on the reference day.
As compared with rTm, the Tm-th time zone is truncated as much as possible. In the case of the following equation 143, the procedure proceeds to (b) described later as equations 144 and 145. Otherwise, it means that only the correction of the heat source unit operation time in the Tm time zone is sufficient. The calculation of the correction value of the operation time of the heat source device is ended as Expression 146. Xr Tm + ΔXt Tm <0 (143) ΔXr Tm = −Xr Tm (144) Xmg Tm = Xmax Tm (145) ) Xmg Tm = Xmg Tm -ΔXt Tm (146)

【0294】(b) 前述の(3) における(A) の(b) 、(c)
と同様に、ただし逆に優先度の低い方から順に第i優先
の第Ti時間帯について熱源機運転時間の補正値を求め
る。(i=2m-1 2m-2 、・・・・・、2、1)
(B) (b) and (c) of (A) in the above (3)
Similarly, the correction value of the operation time of the heat source unit is determined for the Ti-th time zone of the i-th priority in the descending order of priority. (I = 2m-1 2m-2, ..., 2,1)

【0295】[0295]

【数43】 [Equation 43]

【0296】これを、参照日の熱源機運転時間実績値X
Ti比較して第Ti時間帯を切り詰められるだけ切り詰
める。また、次に述べる式148の場合は式149、式
150とし、そうでないときは第Tm時間帯〜第Ti時
間帯の熱源機運転時間の補正だけで十分であることを意
味するので、次の式151として熱源機運転時間の補正
値算出を終了する。 XrTi+ΔXtTi<0 ・・・・・・・・・(148) ΔXtTi=−XrTi ・・・・・・・・・・(149) XmgTi=XmaxTi ・・・・・・・・・(150) XmgTi=XmgTi−ΔXtTi ・・・・・(151)
[0296] This is calculated by comparing the actual operation time X of the heat source unit on the reference day.
r Ti Ti is cut off as much as possible in the Ti time zone. In the case of the following expression 148, the expression 149 and expression 150 are used. Otherwise, the correction of the operation time of the heat source unit in the Tm time period to the Ti time period is sufficient. The calculation of the correction value of the heat source device operation time is ended as Expression 151. Xr Ti + ΔXt Ti <0 (148) ΔXt Ti = −Xr Ti (149) Xmg Ti = Xmax Ti (.) · (150) Xmg Ti = Xmg Ti- ΔXt Ti · · · (151)

【0297】以上説明したように、ある一日の運転時間
計画値に基づいて熱源機を運転し、空調終了時点で蓄熱
量がちょうど零になっていれば、その日の熱源機運転時
間計画値が適正であったと判断し、翌日の運転時間計画
値は増減しない。また、蓄熱を使い切れなかったらその
日の熱源機の蓄熱運転が過剰であったと判断して翌日の
運転時間計画値を少なくする。
As described above, when the heat source unit is operated based on the operation time plan value for a certain day, and the heat storage amount is exactly zero at the end of air conditioning, the heat source unit operation time plan value for that day is changed to zero. Judgment was appropriate, and the planned operating time for the next day does not increase or decrease. If the heat storage has not been used up, it is determined that the heat storage operation of the heat source unit on that day was excessive, and the planned operation time for the next day is reduced.

【0298】逆に、蓄熱を使い過ぎたり、運転時間計画
値よりも余計に熱源機を運転したりしたときには、その
日の熱源機運転時間計画値が過小であったと判断し、翌
日の運転時間計画値を増加するように蓄熱装置が制御さ
れる。したがって、熱源機の運転時間計画値を外気の状
況に応じて、適切に補正することができ安価な蓄熱時間
帯の電力を有効に利用することができる。
Conversely, if the heat storage is excessively used or the heat source unit is operated more than the planned operation time, it is determined that the heat source unit operation time plan value for the day is too small, and the next day operation time plan is determined. The heat storage device is controlled to increase the value. Therefore, the planned operation time of the heat source unit can be appropriately corrected according to the situation of the outside air, and the power in the cheap heat storage time zone can be effectively used.

【0299】実施の形態12.前述の実施の形態11に
おける蓄熱装置を次に述べるように制御することができ
る。すなわち、一日に複数の時間帯が設定されている場
合を例として、前述の実施の形態1と同様に蓄熱槽出口
水温により蓄熱過剰又は蓄熱不足を判断する方法と、そ
の判断に基づいて複数の熱源機を強制停止又は強制運転
する制御を説明する。なお、一日の定義及び時間帯の定
義は前述の実施の形態9と同様に、前述の図8又は図1
0に示す場合を例として説明する。
Embodiment 12 FIG. The heat storage device according to Embodiment 11 can be controlled as described below. In other words, as an example in which a plurality of time zones are set for one day, a method of determining excess heat storage or insufficient heat storage based on the temperature of the heat storage tank outlet water as in the first embodiment, and a plurality of methods based on the determination. The control for forcibly stopping or forcibly operating the heat source device will be described. It should be noted that the definition of the day and the definition of the time period are the same as in the above-described ninth embodiment, as shown in FIG.
The case of 0 is described as an example.

【0300】(1) 蓄熱不足の判断方法 ある時間間隔ごとに蓄熱槽出口温度をサンプリングして
当日最後の追いかけ時間帯終了時刻(24:00)にお
ける蓄熱槽出口温度を予測する。そして、時間間隔は例
えば10分とし、蓄熱槽出口温度の予測は実施の形態1
と同様に図3の直線補完に基づいても良いし、その他、
実施の形態1に列記した形態を適用しても良い。
(1) Method of judging insufficient heat storage The temperature of the heat storage tank outlet is sampled at certain time intervals, and the temperature of the heat storage tank outlet at the end of the last chase time zone of the day (24:00) is predicted. The time interval is, for example, 10 minutes, and the prediction of the heat storage tank outlet temperature is performed according to the first embodiment.
3 may be based on the linear interpolation of FIG.
The modes listed in Embodiment 1 may be applied.

【0301】また、ピークカット時間帯以外の時間帯で
複数の熱源機のいずれか一つの運転時間計画値を使い切
り、その後における当日最後の追いかけ時間帯終了時点
における蓄熱槽出口温度が、第一設定温度以上になると
予測結果が三回連続して得られた場合には蓄熱量不足と
判断する。なお、この第一設定温度は当日最後の追いか
け時間帯終了時刻までの残り時間に応じて変化させても
良いし、単純化のため一定値、例えば9[°C]として
も良い。
[0301] Further, in any time period other than the peak cut time period, the operation time plan value of any one of the plurality of heat source units is used up, and the heat storage tank outlet temperature at the end of the last chase time period of the day thereafter is set to the first setting. When the prediction result is obtained three times in succession when the temperature becomes equal to or higher than the temperature, it is determined that the heat storage amount is insufficient. The first set temperature may be changed according to the remaining time until the end time of the last chase time zone of the day, or may be set to a constant value, for example, 9 ° C. for simplification.

【0302】(2) 蓄熱不足が判断された場合の熱源機制
御方法 蓄熱不足が判断された場合に運転時間計画値を使い切っ
て停止している熱源機を強制的に運転する。このときに
熱源機が実施の形態9〜実施の形態10のように一台だ
けのときは、その一台の熱源機に対して運転指令を出せ
ば良い。また、実施の形態11のように複数台あるとき
は、予め設定されている熱源機強制運転優先度に応じて
運転時間計画値を使い切って停止している熱源機に一台
ずつ運転指令を出す。
(2) Method of controlling heat source device when insufficient heat storage is determined When the insufficient heat storage is determined, the stopped heat source device is forcibly operated by using up the operation time plan value. At this time, when there is only one heat source device as in the ninth and tenth embodiments, an operation command may be issued to the one heat source device. When there are a plurality of heat source units as in the eleventh embodiment, an operation command is issued to each of the stopped heat source units one by one using the planned operation time according to the preset heat source unit forced operation priority. .

【0303】そして、最初の一台に対して運転指令を出
した後は、一定時間経過後再び前述の蓄熱不足かどうか
を判断し、再度蓄熱不足と判断された場合には強制運転
優先度が次に高く、運転時間計画値を使い切って停止し
ている熱源機に対して強制運転指令を出す。このよう
に、一定時間間隔ごとに蓄熱不足かどうかの判断を繰り
返して、当日の最後の追いかけ時間帯の終了時点におけ
る蓄熱槽出口水温の予測が第一設定温度よりも下回ると
判断されるまで運転時間計画値を使い切って停止してい
る熱源機に一台ずつ追加運転していく。
After the operation command is issued to the first unit, it is again determined whether or not the above-mentioned heat storage is insufficient after a lapse of a predetermined time. If it is determined that the heat storage is insufficient again, the forced operation priority is changed. Next, a forced operation command is issued to a heat source unit that has stopped using up the planned operation time. In this manner, the determination as to whether the heat storage is insufficient is repeated at regular time intervals, and the operation is performed until the prediction of the heat storage tank outlet water temperature at the end of the last chase time zone of the day is determined to be lower than the first set temperature. The heat source units that have stopped using up the time plan values are additionally operated one by one.

【0304】ここで、一定時間経過後とは、例えば20
分後などであり、また各熱源機の再起動禁止時間を基準
に設定することもできる。一方、この強制運転継続中に
当日最後の追いかけ時間帯終了時点での蓄熱槽出口温度
が第二設定温度以下になるとの予測結果が三回連続して
得られ場合には、強制運転を終了して、強制運転中であ
った熱源機の全てを停止させる。また、この第二設定温
度も空調終了時刻までの残り時間に応じて変化させても
よいが、単純化のため一定値、例えば7[°C]として
も良い。なお、第二設定温度≦第一設定温度の関係にあ
る。
Here, after the elapse of a predetermined time, for example, 20
Minutes or the like, or the restart prohibition time of each heat source unit can be set as a reference. On the other hand, if the prediction result that the heat storage tank outlet temperature at the end of the last chase time zone of the day becomes equal to or lower than the second set temperature is obtained three consecutive times during the forced operation, the forced operation is terminated. Then, all the heat source units that were in the forced operation are stopped. Further, the second set temperature may be changed according to the remaining time until the air conditioning end time, but may be set to a constant value, for example, 7 [° C.] for simplification. Note that there is a relationship of second set temperature ≦ first set temperature.

【0305】また、上述の第一設定温度及び第二設定温
度ともに一つの温度を設定していたが、これらの温度を
複数にすることも可能である。すなわち、第一設定温度
を第一A、第一B、 、また第二設定温度を第二A、第
二B、・・・・・、と設定する。そして、例えば、熱源機が
三台の場合に第一Aの設定温度を9°C、第一Bの設定
温度を9.5°C、第一Cの設定温度を10°Cと設定
し、また、第二Aの設定温度を7°C、第二Bの設定温
度を7.5°C、第二Cの設定温度を8°Cと設定す
る。
Although one temperature is set for both the first set temperature and the second set temperature, it is also possible to set a plurality of these temperatures. That is, the first set temperature is set as first A, first B,..., And the second set temperature is set as second A, second B,. Then, for example, when the number of heat source devices is three, the set temperature of the first A is set to 9 ° C., the set temperature of the first B is set to 9.5 ° C., and the set temperature of the first C is set to 10 ° C. The second set temperature is set at 7 ° C., the second B set temperature is set at 7.5 ° C., and the second C set temperature is set at 8 ° C.

【0306】ピークカット時間帯以外の時間帯で、熱源
機の運転時間計画値を使い切った後の時点において、当
日最後の追いかけ時間帯終了時点での蓄熱槽出口温度が
第一Aの設定温度以上になるとの予測結果が三回連続し
て得られた場合には、蓄熱量不足と判断して、強制運転
優先度が最も高い熱源機を一台運転する。
In a time period other than the peak cut time period, after the operating time of the heat source unit has been used up, the outlet temperature of the heat storage tank at the end of the last chasing time period on the day is equal to or higher than the first A set temperature. If the prediction result of "" is obtained three times in a row, it is determined that the heat storage amount is insufficient, and one heat source unit having the highest forced operation priority is operated.

【0307】その後、一定時間経過後に当日最後の追い
かけ時間帯終了時点での蓄熱槽出口温度が第一Bの設定
温度以上になるとの予測結果が三回連続して得られた場
合には、再び蓄熱量不足と判断して、強制運転優先度が
二番目に高い熱源機を一台運転する。そして、この制御
を熱源機台数分繰り返す。
[0307] After that, if the prediction result that the heat storage tank outlet temperature at the end of the last chase time zone on the day after the certain time has elapsed becomes equal to or higher than the first B set temperature is obtained three times in succession, again, It is determined that the heat storage amount is insufficient, and one heat source unit having the second highest forced operation priority is operated. This control is repeated for the number of heat source devices.

【0308】また、上述の逆に強制運転中において当日
最後の追いかけ時間帯終了時点での蓄熱槽出口温度が第
二Cの設定温度以下になるとの予測結果が三回連続して
得られた場合には、強制運転優先度が三番目の熱源機の
運転を停止する。その後の一定時間経過後に当日最後の
追いかけ時間帯終了時点での蓄熱槽出口温度が第二Bの
設定温度以下になるとの予測結果が三回連続して得られ
た場合には、強制運転優先度が二番目の熱源機の運転を
停止する。そして、この制御を熱源機台数分繰り返す。
[0308] Conversely, when the prediction result that the heat storage tank outlet temperature at the end of the last chase time zone of the day falls below the second C set temperature during forced operation is obtained three times in a row. , The operation of the heat source device having the third compulsory operation priority is stopped. If a prediction result that the heat storage tank outlet temperature at the end of the last chase time zone of the day becomes equal to or lower than the second B set temperature is obtained three consecutive times after a lapse of a predetermined time thereafter, the forced operation priority is set. Stops the operation of the second heat source unit. This control is repeated for the number of heat source devices.

【0309】以上のような制御を繰り返すことによっ
て、強制運転優先度が低い熱源機は蓄熱槽出口温度予測
値がより高い状態で運転するようにすることができ、蓄
熱装置全体の電気料金を節約することができる。なお、
上述の例では熱源機が三台の場合について説明した。
By repeating the above-described control, the heat source unit having a low forced operation priority can be operated in a state in which the predicted value of the temperature at the outlet of the heat storage tank is higher, thereby saving the electricity bill of the entire heat storage device. can do. In addition,
In the above example, the case where the number of heat source devices is three has been described.

【0310】しかし、例えば氷蓄熱装置に付属した熱源
機が一台、吸収式冷凍機が一台、ターボ冷凍機が一台で
構成された蓄熱装置のときには、強制運転優先度が最も
高いのは吸収式冷凍機、次がターボ冷凍機、最後が氷蓄
熱装置に付属した熱源機のように、電気使用量の小さい
順又は熱効率の良い順に設定することによって電気料金
をより節約することができる。
However, for example, in the case of a heat storage device including one heat source unit, one absorption chiller, and one turbo chiller attached to the ice heat storage device, the forced operation priority is the highest. Electricity charges can be further reduced by setting the order of decreasing the amount of electricity used or the order of increasing thermal efficiency, such as an absorption refrigerator, a turbo refrigerator, and a heat source attached to an ice storage device at the end.

【0311】また、上述の他に各熱源機の出力が異なる
場合には、強制運転優先度は最も出力が小さい熱源機か
ら出力が大きい熱源機へ優先度が下がるように設定する
ことによって、小さな負荷変動に対しても熱源機がハン
チングすることなく安定して追随する作用を得ることが
できる。
In addition to the above, when the output of each heat source unit is different, the forced operation priority is set so that the priority is lowered from the heat source unit with the smallest output to the heat source unit with the large output, so that the priority is reduced. It is possible to obtain an operation in which the heat source device stably follows the load fluctuation without hunting.

【0312】以上説明したように実施の形態12では、
当日最後の追いかけ時間帯終了時点の蓄熱槽出口温度の
予測値を基に蓄熱不足を判断するようにした。しかし、
複数設定された追いかけ時間帯のうち、現在時刻以降の
直近の追いかけ時間帯終了時点の蓄熱槽出口温度を予測
し、この予測を基に蓄熱不足を判断して熱源機を強制運
転すると一層良好な作用を得ることができる。
As described above, in the twelfth embodiment,
Insufficient heat storage is determined based on the predicted value of the heat storage tank outlet temperature at the end of the last chase time zone on the day. But,
It is more preferable to predict the heat storage tank outlet temperature at the end of the latest chasing time zone after the current time among the plurality of chasing time zones, determine the heat storage shortage based on this prediction, and forcibly operate the heat source unit. Action can be obtained.

【0313】例えば、現時刻以降の直近の追いかけ時間
帯の終了時点における蓄熱槽出口温度が第一設定温度以
上になるとの予測結果が三回連続して得られた場合に
は、蓄熱量不足と判断する。そして、その時点で停止し
ている熱源機について、現在時刻以降の直近の追いかけ
時間帯終了時点までの運転時間計画値を全て使い切って
いたときには、停止している熱源機のうち強制運転の優
先度が高い順に強制運転する。このようにすることによ
って、複数の蓄熱時間帯が設定されている場合でも蓄熱
不足に伴う空調快適性の喪失を未然に防ぐことができ
る。
For example, when three consecutive predictions that the heat storage tank outlet temperature at the end of the latest chasing time zone after the current time is equal to or higher than the first set temperature are obtained, it is determined that the heat storage amount is insufficient. to decide. Then, for the heat source units stopped at that time, when all the operation time plan values up to the end of the latest chasing time zone after the current time have been used up, the priority of the forced operation among the stopped heat source units is Operation is performed in descending order. In this way, even when a plurality of heat storage time zones are set, loss of air conditioning comfort due to insufficient heat storage can be prevented.

【0314】一方、蓄熱過剰の判断も蓄熱槽出口温度に
よって行う。すなわち、 (1) 蓄熱過剰の判断方法 当日最後の追いかけ時間帯の残り時間がある程度以下に
少なくなった時点、例えば残り2時間で、蓄熱槽出口温
度がほぼ0[°C]、例えばTst≦0.5[°C]で
ある場合であって、かつ熱源機の運転計画時間をまだ使
い切っていないときに蓄熱過剰と判断する。
On the other hand, the judgment of excessive heat storage is also made based on the temperature of the outlet of the heat storage tank. That is, (1) Method of judging excess heat storage When the remaining time in the last chase time zone on the day becomes less than a certain level, for example, 2 hours, the outlet temperature of the heat storage tank is almost 0 [° C], for example, Tst ≦ 0. It is determined that the heat storage is excessive when the temperature is 0.5 [° C] and the operation planning time of the heat source unit has not been used up yet.

【0315】(2) 蓄熱過剰が判断された場合の熱源機制
御方法 蓄熱過剰が判断された場合に熱源機の運転時間計画値を
無視して全ての熱源機を停止させる。又は蓄熱過剰が判
断された場合に強制運転優先度が最も低い熱源機を運転
時間計画値を無視し先ず停止させる。その後の一定時間
経過後、再び蓄熱過剰が判断されれば強制運転優先度が
次に低い熱源機を停止させるか、又は強制運転優先度が
低い方の熱源機から順に停止させる。
(2) Heat source device control method when excess heat storage is determined When the excess heat storage is determined, all the heat source devices are stopped ignoring the planned operation time of the heat source device. Alternatively, when it is determined that the heat storage is excessive, the heat source unit having the lowest forced operation priority is stopped first ignoring the operation time plan value. After the elapse of a predetermined time, if excess heat storage is determined again, the heat source units having the next lower priority in forced operation are stopped, or the heat source units having lower priority in forced operation are sequentially stopped.

【0316】そして、このとき以降はそれぞれの熱源機
の運転時間計画値を使い切ったものとして扱う。例え
ば、蓄熱過剰が判断されて熱源機を一台停止した後、蓄
熱槽出口温度が0°C以上、7°C以下の状態がしばら
く続いた後、蓄熱不足が判断されたときには停止してい
る熱源機の中から強制運転優先度が最も高い熱源機を運
転する。
[0316] Thereafter, it is assumed that the planned operation time of each heat source unit has been used up. For example, after one heat source unit is stopped due to the judgment of excessive heat storage, the state where the heat storage tank outlet temperature is 0 ° C. or more and 7 ° C. or less continues for a while, and when the heat storage shortage is determined, the operation is stopped. The heat source unit having the highest forced operation priority among the heat source units is operated.

【0317】以上説明したように、蓄熱過剰が判断され
た場合には熱源機の運転時間計画値を無視して強制的に
熱源機を停止することができる。このため、電力負荷の
平準化、電力消費の夜間移行、熱源機出力の積極的低減
を図ることができる。また、万一熱源機の強制停止後に
依然として負荷が大きく、蓄熱槽出口温度が当日最後の
追いかけ時間帯終了時点(24:00)において、第一
設定温度を越えて蓄熱量不足になりそうな場合でも停止
熱源機の運転時間計画値を使い切ったもとしている。し
たがって、前述の蓄熱不足に対する熱源機強制運転制御
に入ることができて蓄熱装置制御における信頼性を維持
することができる。
As described above, when it is determined that the heat storage is excessive, the heat source unit can be forcibly stopped ignoring the planned operation time of the heat source unit. For this reason, the power load can be leveled, the power consumption can be shifted at night, and the output of the heat source device can be positively reduced. Also, in the event that the load is still large after the forced stop of the heat source unit and the temperature of the heat storage tank outlet exceeds the first set temperature at the end of the last chase time zone (24:00) on the day, and the heat storage amount is likely to be insufficient. However, it is based on using up the planned operating time of the stopped heat source unit. Therefore, it is possible to start the heat source device forced operation control for the heat storage shortage described above, and to maintain the reliability in the heat storage device control.

【0318】[0318]

【発明の効果】この発明は以上説明したように、熱源機
で発生した冷温熱を蓄熱槽に収容された蓄熱媒体に蓄え
て蓄熱媒体の蓄熱により所定時間帯に空調動作する蓄熱
装置に対して、運転開始及び運転終了を運転時間計画に
基づいて制御すると共に、蓄熱媒体の代表温度を判定す
る蓄熱媒体代表温度判定機能、蓄熱媒体代表温度を予測
する蓄熱媒体代表温度予測機能、この蓄熱媒体代表温度
予測機能の予測値によって熱源機の運転を制御する熱源
機運転制御機能、蓄熱媒体代表温度判定機能の判定値に
よって熱源機の運転を停止する熱源機停止制御機能、熱
源機運転制御機能及び熱源機停止制御機能による運転時
間を記憶する運転時間実績値記憶機能及びこの運転時間
実績値記憶機能の記憶を介して次の運転時間計画を設定
する運転時間計画設定機能を有する制御装置を設けたも
のである。
As described above, the present invention relates to a heat storage device that stores cold / hot heat generated by a heat source unit in a heat storage medium accommodated in a heat storage tank and performs air conditioning operation in a predetermined time zone by storing heat of the heat storage medium. , The start and end of operation are controlled based on the operation time plan, the representative temperature of the thermal storage medium for determining the representative temperature of the thermal storage medium, the representative temperature of the thermal storage medium for predicting the representative temperature of the thermal storage medium, and the representative function of the thermal storage medium. Heat source device operation control function that controls the operation of the heat source device based on the predicted value of the temperature prediction function, heat source device stop control function that stops the operation of the heat source device based on the determination value of the heat storage medium representative temperature determination function, heat source device operation control function, and heat source An operation time actual value storage function for storing the operation time by the machine stop control function and an operation time plan for setting the next operation time plan through the storage of the operation time actual value storage function It is provided with a control device having a constant function.

【0319】このように、当日以前の熱源機運転時間実
績値に基づいて当日の熱源機の運転時間計画が、蓄熱媒
体代表温度、蓄熱媒体代表温度予測等を介して設定され
る。したがって、簡易な構成によって安価な蓄熱時間帯
蓄熱時間の電力を有効に利用して所要の空調作用を得る
ことができる。このため、蓄熱装置の製造費を節減で
き、また運転費を低減する効果がある。
As described above, the operation time plan of the heat source unit on the day is set based on the heat storage medium representative temperature, the heat storage medium representative temperature prediction, and the like based on the actual heat source unit operation time value before the day. Therefore, the required air-conditioning effect can be obtained by effectively utilizing the power in the heat storage time in the cheap heat storage time zone with a simple configuration. For this reason, the manufacturing cost of the heat storage device can be reduced, and the operation cost can be reduced.

【0320】また、この発明は以上説明したように、熱
源機で発生した冷温熱を蓄熱槽に収容された蓄熱媒体に
蓄えて蓄熱媒体の蓄熱により所定時間帯に空調動作する
蓄熱装置において、運転開始及び運転終了を運転時間計
画に基づいて制御し、蓄熱媒体の代表温度を判定し、ま
た蓄熱媒体の代表温度を予測して、この蓄熱媒体代表温
度の予測値によって熱源機を運転し、蓄熱媒体の代表温
度判定値によって熱源機を停止し、熱源機の運転及び停
止による運転時間を記憶して、この記憶を介して次の運
転時間計画を設定して蓄熱装置を運転するものである。
Further, as described above, the present invention relates to a heat storage device which stores cold / hot heat generated by a heat source unit in a heat storage medium accommodated in a heat storage tank and air-conditions during a predetermined time period by storing heat of the heat storage medium. The start and end of operation are controlled based on the operation time plan, the representative temperature of the heat storage medium is determined, and the representative temperature of the heat storage medium is predicted. The heat source device is stopped according to the representative temperature determination value of the medium, the operation time of the operation and stop of the heat source device is stored, and the next operation time plan is set via the storage to operate the heat storage device.

【0321】このように、当日以前の熱源機運転時間実
績値に基づいて当日の熱源機の運転時間計画が、蓄熱媒
体代表温度、蓄熱媒体代表温度予測等を介して設定され
る。したがって、簡易な構成によって安価な蓄熱時間帯
蓄熱時間の電力を有効に利用して所要の空調作用を得る
ことができる。このため、蓄熱装置の製造費を節減で
き、また運転費を低減する効果がある。
As described above, the operation time plan of the heat source unit on the day is set based on the heat storage medium representative temperature, the heat storage medium representative temperature prediction, and the like based on the actual heat source unit operation time value before the day. Therefore, the required air-conditioning effect can be obtained by effectively utilizing the power in the heat storage time in the cheap heat storage time zone with a simple configuration. For this reason, the manufacturing cost of the heat storage device can be reduced, and the operation cost can be reduced.

【0322】また、この発明は以上説明したように、熱
源機の一日の実際の運転時間を判定する熱源機運転時間
判定機能及び一日の実際の熱源機の運転時間を記憶する
熱源機運転時間実績値記憶機能が設けられて、この熱源
機運転時間実績値記憶機能の記憶を介して次の運転時間
計画を設定する運転時間計画設定機能を有する制御装置
を設けたものである。
Further, as described above, the present invention relates to a heat source unit operation time determination function for determining the actual operation time of a heat source unit for one day and a heat source unit operation for storing the actual operation time of the heat source unit for one day. The control device is provided with a time actual value storage function, and has an operation time plan setting function for setting the next operation time plan through the storage of the heat source unit operation time actual value storage function.

【0323】このように、熱源機が当日以前の熱源機運
転時間実績値に基づいて当日の熱源機の運転時間計画
が、蓄熱媒体代表温度、蓄熱媒体代表温度予測、熱源機
運転時間実績値記憶機能等を介して設定される。したが
って、簡易な構成によって安価な蓄熱時間帯蓄熱時間の
電力を有効に利用して、所要の空調作用を得ることがで
きる。このため、蓄熱装置の製造費を節減でき、また運
転費を低減する効果がある。
As described above, the operation time plan of the heat source unit on the day based on the actual operation time value of the heat source unit before the day is determined by the heat storage medium representative temperature, the heat storage medium representative temperature prediction, and the heat source unit operation time actual value storage. It is set via a function or the like. Therefore, the required air-conditioning effect can be obtained with a simple configuration by effectively using the power of the heat storage time in the cheap heat storage time zone. For this reason, the manufacturing cost of the heat storage device can be reduced, and the operation cost can be reduced.

【0324】また、この発明は以上説明したように、熱
源機で発生した冷温熱を蓄熱槽に収容された蓄熱媒体に
蓄えて蓄熱媒体の蓄熱により所定時間帯に空調動作する
蓄熱装置において、運転開始及び運転終了を運転時間計
画に基づいて制御すると共に、蓄熱媒体の代表温度を判
定する蓄熱媒体代表温度判定機能、蓄熱媒体代表温度を
予測する蓄熱媒体代表温度予測機能、この蓄熱媒体代表
温度予測機能の予測値によって熱源機の運転を制御する
熱源機運転制御機能、蓄熱媒体代表温度判定機能の判定
値によって熱源機の運転を停止する熱源機停止制御機
能、熱源機運転制御機能及び熱源機停止制御機能に基づ
く運転時間計画値を記憶する運転時間計画値記憶機能、
熱源機の一日の実際の運転時間を判定する熱源機運転時
間判定機能、一日の実際の熱源機の運転時間を記憶する
熱源機運転時間実績値記憶機能、負荷との相関が強い外
気温度を含む外的条件を判定する外的条件判定機能、こ
の外的条件判定機能の判定を記憶する外的条件判定値記
憶機能、外的条件の当日の予測値を算出する外的条件予
測機能及び外的条件の当日の予測値を入力する外的条件
入力機能のいずれか一方、一日の運転終了後に記憶され
ている過去の数日分の熱源機の運転時間の計画値と実績
値の差及び外的条件の判定値との関係を学習する学習機
能並びにこの学習機能の学習結果を基に、当日の熱源機
の運転時間計画値を外的条件の実績値及び当日の予測値
のいずれかから算出する運転時間計画値演算機能を有す
る制御装置を設けたものである。
Further, as described above, the present invention relates to an operation of a heat storage device that stores cold / hot heat generated by a heat source unit in a heat storage medium accommodated in a heat storage tank and air-conditions in a predetermined time zone by storing heat of the heat storage medium. The start and end of the operation are controlled based on the operation time plan, the heat storage medium representative temperature determination function for determining the representative temperature of the heat storage medium, the heat storage medium representative temperature prediction function for predicting the heat storage medium representative temperature, and the heat storage medium representative temperature prediction Heat source unit operation control function that controls the operation of the heat source unit based on the predicted value of the function, heat source unit stop control function that stops the operation of the heat source unit based on the judgment value of the heat storage medium representative temperature judgment function, heat source unit operation control function, and heat source unit stop An operation time plan value storage function for storing an operation time plan value based on the control function,
Heat source unit operation time determination function to determine the actual operation time of the heat source unit per day, heat source unit operation time actual value storage function to store the actual heat source unit operation time per day, outdoor temperature that is strongly correlated with load An external condition determination function for determining an external condition including an external condition determination value storage function for storing the determination of the external condition determination function, an external condition prediction function for calculating a predicted value of the external condition on the day, and One of the external condition input functions for inputting the predicted value of the external condition on the day, the difference between the planned value and the actual value of the operating time of the heat source unit for the past several days stored after the end of the day's operation And a learning function for learning the relationship between the judgment value of the external condition and the learning result of the learning function. A control device with a function to calculate the operating time plan calculated from It is intended.

【0325】このように、外気温度を含む外的条件の予
測値により熱源機の蓄熱時間帯の能力積算値の差と、熱
源機の空調時間帯の能力積算値の差と、熱源機の一日運
転前後の残蓄熱量差の参照日と当日の差と、空調時間帯
外気温度差に伴う空調熱負荷積算値の参照日と当日の差
とを予測して、最適に熱源機の運転時間計画値が設定さ
れる。したがって、夜間電力を有効に利用でき、また昼
間電力のピークカットを蓄熱量の過不足なく空調するこ
とができて、所要の空調作用を維持すると共に運転費を
低減する効果がある。
As described above, the difference between the integrated value of the capacity of the heat source unit in the heat storage time zone, the difference of the integrated value of the capacity in the air conditioning time zone of the heat source unit, and the The difference between the reference date of the residual heat storage difference before and after daily operation and the day of the day and the difference between the reference date of the air conditioning heat load integrated value due to the outside air temperature difference during the air conditioning time zone and the day of the day, and optimally the operation time of the heat source unit Plan values are set. Therefore, the nighttime electric power can be used effectively, and the peak cut of the daytime electric power can be air-conditioned without excess or shortage of the heat storage amount, so that the required air-conditioning action is maintained and the operation cost is reduced.

【0326】また、この発明は以上説明したように、蓄
熱槽からの負荷側出口温度を蓄熱媒体の代表温度として
判定するものである。
Further, as described above, the present invention determines the load-side outlet temperature from the heat storage tank as the representative temperature of the heat storage medium.

【0327】このように、当日以前の熱源機運転時間実
績値に基づいて当日の熱源機の運転時間計画が、蓄熱媒
体の代表温度である蓄熱槽からの負荷側出口温度、蓄熱
媒体代表温度予測等を介して設定される。したがって、
簡易な構成によって安価な蓄熱時間帯蓄熱時間の電力を
有効に利用して所要の空調作用を得ることができる。こ
のため、蓄熱装置の製造費を節減でき、また運転費を低
減する効果がある。
As described above, the operation time plan of the heat source unit on the day based on the actual value of the operation time of the heat source unit before the day is calculated by predicting the load-side exit temperature from the heat storage tank, which is the representative temperature of the heat storage medium, and the heat storage medium representative temperature. And so on. Therefore,
With a simple configuration, it is possible to obtain a required air-conditioning effect by effectively utilizing the power of the heat storage time in the cheap heat storage time zone. For this reason, the manufacturing cost of the heat storage device can be reduced, and the operation cost can be reduced.

【0328】また、この発明は以上説明したように、蓄
熱媒体の蓄熱槽内の所定位置における温度を蓄熱媒体の
代表温度として判定するものである。
Further, as described above, the present invention determines the temperature of the heat storage medium at a predetermined position in the heat storage tank as the representative temperature of the heat storage medium.

【0329】このように、当日以前の熱源機運転時間実
績値に基づいて当日の熱源機の運転時間計画が、蓄熱媒
体の代表温度である蓄熱媒体の蓄熱槽内の所定位置にお
ける温度、蓄熱媒体代表温度予測等を介して設定され
る。したがって、簡易な構成によって安価な蓄熱時間帯
蓄熱時間の電力を有効に利用して所要の空調作用を得る
ことができる。このため、蓄熱装置の製造費を節減で
き、また運転費を低減する効果がある。
As described above, the operation time plan of the heat source unit on the day based on the actual value of the operation time of the heat source unit before the day is determined based on the temperature of the heat storage medium at the predetermined position in the heat storage tank, which is the representative temperature of the heat storage medium. It is set via a representative temperature prediction or the like. Therefore, the required air-conditioning effect can be obtained by effectively utilizing the power in the heat storage time in the cheap heat storage time zone with a simple configuration. For this reason, the manufacturing cost of the heat storage device can be reduced, and the operation cost can be reduced.

【0330】また、この発明は以上説明したように、熱
源機の運転時間計画値に基づきピークカット時間帯を除
く空調時間帯に前詰めで熱源機の運転計画を立てて、こ
の運転計画に応じて熱源機を運転/停止する制御機能を
有する制御装置を設けたものである。
As described above, according to the present invention, the operation plan of the heat source unit is set up in advance in the air conditioning time period excluding the peak cut time period based on the operation time plan value of the heat source unit, And a control device having a control function of operating / stopping the heat source unit.

【0331】このように、熱源機の運転時間計画値を設
定し直し熱源機の運転計画を立て直すことができ、蓄熱
が不足することなく所要の空調作用を維持することがで
きる。このため、蓄熱を使いきり翌日の夜間電力を有効
に利用することができて運転費を低減する効果がある。
As described above, the operation time plan value of the heat source unit can be reset and the operation plan of the heat source unit can be reestablished, and required air conditioning can be maintained without shortage of heat storage. For this reason, the heat storage can be used up, and the nighttime electric power of the next day can be used effectively, which has the effect of reducing the operating cost.

【0332】また、この発明は以上説明したように、熱
源機の運転時間計画値を蓄熱時間帯と空調時間帯に分け
てそれぞれ算出する算出機能を有する制御装置を設けた
ものである。
Further, as described above, the present invention is provided with a control device having a calculating function of calculating the planned operating time of the heat source unit separately for the heat storage time zone and the air conditioning time zone.

【0333】このように、熱源機の運転時間計画値を蓄
熱時間帯と空調時間帯に分けて最適に設定することがで
きる。したがって、夜間電力の有効利用と昼間電力のピ
ークカットを蓄熱量の過不足なしに実施することがで
き、所要の空調作用を維持すると共に運転費を低減する
効果がある。
As described above, the planned operating time of the heat source unit can be optimally set separately for the heat storage time zone and the air conditioning time zone. Therefore, the effective use of the nighttime power and the peak cut of the daytime power can be performed without excess or deficiency of the heat storage amount, and there is an effect that the required air conditioning operation is maintained and the operation cost is reduced.

【0334】また、この発明は以上説明したように、熱
源機の運転時間計画値を蓄熱時間帯と空調時間帯に分け
てそれぞれ算出する算出機能及び蓄熱時間帯の運転時間
が最大となるように、蓄熱時間帯の熱源機の能力と空調
時間帯の熱源機の能力との差を考慮して運転時間計画値
を設定する設定機能を有する制御装置を設けたものであ
る。
In addition, as described above, the present invention separately calculates the planned operation time of the heat source unit into the heat storage time zone and the air conditioning time zone so that the operation time in the heat storage time zone is maximized. And a control device having a setting function of setting an operation time plan value in consideration of a difference between the capacity of the heat source device in the heat storage time zone and the capacity of the heat source device in the air conditioning time zone.

【0335】このように、熱源機の運転時間計画値を蓄
熱時間帯と空調時間帯に分けて最適に設定することがで
き、また蓄熱時間帯の熱源機の運転時間が最大となるよ
うに、熱源機の運転時間計画値が設定される。したがっ
て、夜間電力の有効利用と昼間電力のピークカットを蓄
熱量の過不足なしに実施することができ、所要の空調作
用を維持すると共に運転費を低減する効果がある。
As described above, the planned operation time of the heat source unit can be optimally set separately for the heat storage period and the air conditioning period, and the operation time of the heat source unit in the heat storage period is maximized. The planned operation time of the heat source unit is set. Therefore, the effective use of the nighttime power and the peak cut of the daytime power can be performed without excess or deficiency of the heat storage amount, and there is an effect that the required air conditioning operation is maintained and the operation cost is reduced.

【0336】また、この発明は以上説明したように、蓄
熱槽からの負荷側出口温度が空調終了時点で所定の設定
温度以上になるとの予測結果が得られた場合に蓄熱量不
足と判断して、熱源機の運転時間計画値を使い切った後
の空調時間帯に熱源機を強制的に運転する制御機能を有
する制御装置を設けたものである。
As described above, according to the present invention, when it is determined that the load-side outlet temperature from the heat storage tank becomes equal to or higher than the predetermined set temperature at the end of air conditioning, it is determined that the heat storage amount is insufficient. And a control device having a control function of forcibly operating the heat source unit during the air conditioning time period after the planned operation time of the heat source unit has been used up.

【0337】このように、蓄熱槽からの負荷側出口温度
を介して蓄熱量不足を判断し、熱源機の運転時間計画値
を使い切った後の空調時間帯に熱源機が強制的に運転さ
れる。したがって、熱源機が必要に応じて運転されて運
転時間計画値に誤差があった場合にも所要の空調作用を
維持する効果がある。
As described above, the shortage of heat storage is determined based on the load-side outlet temperature from the heat storage tank, and the heat source unit is forcibly operated during the air conditioning time period after the operation time plan value of the heat source unit has been used up. . Therefore, even when the heat source unit is operated as required and there is an error in the planned operation time, there is an effect of maintaining the required air conditioning operation.

【0338】また、この発明は以上説明したように、蓄
熱槽からの負荷側出口温度が空調終了時点で第一設定温
度以上になるとの予測結果が得られた場合に蓄熱量不足
と判断して、熱源機の運転時間計画値を使い切った後の
空調時間帯に熱源機を強制的に運転し、この強制運転継
続中に蓄熱槽からの負荷側出口温度が空調終了時点で第
二設定温度以下になるとの予測結果が得られたときに強
制運転を終了する制御機能を有する制御装置を設けたも
のである。
As described above, according to the present invention, when it is determined that the load-side outlet temperature from the heat storage tank will be equal to or higher than the first set temperature at the end of air conditioning, it is determined that the heat storage amount is insufficient. During the air-conditioning period after the planned operating time of the heat source unit is exhausted, the heat source unit is forcibly operated, and the load-side outlet temperature from the heat storage tank is equal to or lower than the second set temperature at the end of air conditioning during the forced operation. And a control device having a control function of terminating the forced operation when a prediction result indicating that the condition is satisfied is obtained.

【0339】このように、蓄熱槽からの負荷側出口温度
を介して蓄熱量不足を判断し、熱源機の運転時間計画値
を使い切った後の空調時間帯に熱源機が強制的に運転さ
れる。また、熱源機の強制運転中に蓄熱量過剰を判断し
たときには熱源機の強制運転が終了する。したがって、
熱源機が必要に応じて運転されて運転時間計画値に誤差
があった場合にも所要の空調作用を維持すると共に運転
費を低減する効果がある。
As described above, the shortage of the heat storage amount is determined based on the load-side exit temperature from the heat storage tank, and the heat source unit is forcibly operated during the air conditioning time period after the operation time plan value of the heat source unit has been used up. . When it is determined that the heat storage amount is excessive during the forced operation of the heat source unit, the forced operation of the heat source unit ends. Therefore,
Even when the heat source unit is operated as needed and there is an error in the planned operation time, there is an effect that the required air conditioning operation is maintained and the operation cost is reduced.

【0340】また、この発明は以上説明したように、蓄
熱槽からの負荷側出口温度が空調終了時点で第一設定温
度以上になるとの予測結果が複数回連続して得られた場
合に蓄熱量不足と判断して、熱源機の運転時間計画値を
使い切った後の空調時間帯に熱源機を強制的に運転し、
この強制運転継続中に蓄熱槽からの負荷側出口温度が空
調終了時点で第二設定温度以下になるとの予測結果が複
数回連続して得られたときに強制運転を終了する制御機
能を有する制御装置を設けたものである。
Further, as described above, the present invention can be applied to the case where the prediction result that the load-side outlet temperature from the heat storage tank becomes equal to or higher than the first set temperature at the end of air conditioning is obtained plural times continuously. Judging that it is insufficient, forcibly operate the heat source unit during the air-conditioning time period after using the planned operation time of the heat source unit,
A control having a control function of terminating the forced operation when a prediction result that the load-side outlet temperature from the heat storage tank becomes equal to or lower than the second set temperature at the end of the air conditioning is continuously obtained a plurality of times while the forced operation is continued. A device is provided.

【0341】このように、蓄熱槽からの負荷側出口温度
を介して複数回の蓄熱量不足を判断し、熱源機の運転時
間計画値を使い切った後の空調時間帯に熱源機が強制的
に運転される。また、熱源機の強制運転中に複数回の蓄
熱量過剰を判断したときには熱源機の強制運転が終了す
る。したがって、高精度で熱源機が必要に応じて運転さ
れて運転時間計画値に誤差があった場合にも所要の空調
作用を維持すると共に運転費を低減する効果がある。
In this way, the shortage of heat storage is judged a plurality of times based on the load-side exit temperature from the heat storage tank, and the heat source unit is forcibly activated during the air conditioning time period after the operation time plan value of the heat source unit has been used up. Be driven. In addition, when it is determined that the heat storage amount is excessive plural times during the forced operation of the heat source device, the forced operation of the heat source device ends. Therefore, even when the heat source device is operated as required with high accuracy and there is an error in the operation time plan value, the required air conditioning operation is maintained and the operation cost is reduced.

【0342】また、この発明は以上説明したように、蓄
熱媒体の代表温度である空調終了時点における蓄熱槽か
らの負荷側出口温度の予測値を、現在及び数分前の時刻
における実測値の二点から直線補完によって演算するも
のである。
As described above, according to the present invention, the predicted value of the load-side outlet temperature from the heat storage tank at the end of air conditioning, which is the representative temperature of the heat storage medium, is calculated based on the actual measured value at the present and several minutes before. The calculation is performed by linear interpolation from the points.

【0343】このように、空調終了時点における蓄熱槽
出口温度の予測値が、現在及び数分前の時刻における実
測値の二点から直線補完によって演算されて、この予測
値によって、蓄熱過不足が判断される。そして、この判
断により熱源機が運転時間計画値に関わらず制御され
る。このため、運転時間計画値に誤差があった場合にも
良好に所要の空調作用を維持すると共に運転費を低減す
る効果がある。
As described above, the predicted value of the heat storage tank outlet temperature at the time of the end of the air conditioning is calculated by linear interpolation from the two points of the actual measured value at the current time and a few minutes before, and the predicted value indicates whether the heat storage is excessive or insufficient. Is determined. By this determination, the heat source device is controlled regardless of the planned operation time. For this reason, even if there is an error in the planned operation time, there is an effect that the required air-conditioning action is favorably maintained and the operation cost is reduced.

【0344】また、この発明は以上説明したように、空
調時間帯の空調終了時刻までの残り時間が残氷判定時間
よりも少なくなった時点で、蓄熱槽からの負荷側出口温
度が残氷検知温度以下であり、かつ熱源機の運転計画時
間を使い切っていない場合には、蓄熱過剰と判断して熱
源機の運転時間計画値に関わらず熱源機を停止させる制
御機能を有する制御装置を設けたものである。
In addition, as described above, when the remaining time until the air conditioning end time in the air conditioning time period is shorter than the remaining ice determination time, the temperature of the load-side outlet from the heat storage tank is detected as remaining ice. If the temperature is lower than or equal to, and the operation planning time of the heat source device has not been used up, a control device having a control function of determining that heat storage is excessive and stopping the heat source device regardless of the operation time planning value of the heat source device is provided. Things.

【0345】このように、空調終了時刻までの残り時間
が残氷判定時間よりも少なくなった時点で、蓄熱槽出口
温度が残氷検知温度以下であり、かつ熱源機の運転計画
時間を使い切っていない場合に、蓄熱過剰と判断して運
転時間計画値に関わらず熱源機を停止する。このため、
運転時間計画値に誤差があった場合にも所要の空調作用
を維持すると共に運転費を低減する効果がある。
As described above, when the remaining time until the air conditioning end time becomes shorter than the remaining ice determination time, the heat storage tank outlet temperature is equal to or lower than the remaining ice detection temperature and the operation planning time of the heat source unit is exhausted. If not, it is determined that the heat storage is excessive, and the heat source device is stopped regardless of the planned operation time. For this reason,
Even when there is an error in the planned operation time, there is an effect that the required air conditioning operation is maintained and the operation cost is reduced.

【0346】また、この発明は以上説明したように、外
気温度の予測値及び蓄熱槽からの負荷側出口温度に基づ
いて、熱源機の蓄熱時間帯の能力積算値の差と、熱源機
の空調時間帯の能力積算値の差と、一日の運転前後の残
蓄熱量差の参照日と当日の差と、空調時間帯の外気温度
差に伴う空調熱負荷積算値の参照日と当日の差とを予測
して、蓄熱時間帯開始直前に当日の熱源機の運転時間計
画値を設定する設定機能を有する制御装置を設けたもの
である。
As described above, according to the present invention, based on the predicted value of the outside air temperature and the load-side outlet temperature from the heat storage tank, the difference between the integrated value of the capacity of the heat source unit in the heat storage time zone and the air conditioning of the heat source unit The difference between the capacity integrated value in the time zone, the difference between the reference date of the remaining heat storage amount difference before and after one day of operation and the day of the day, and the difference between the reference date of the air conditioning heat load integrated value due to the outside air temperature difference in the air conditioning time zone and the day. And a control device having a setting function of setting the operation time plan value of the heat source unit on the day immediately before the start of the heat storage time zone.

【0347】このように、能力積算値の差、残蓄熱量差
と空調熱負荷積算値の参照日と当日の差の予測により、
蓄熱時間帯開始直前に当日の熱源機の運転時間計画値が
設定される。このため、夜間電力を有効に利用でき、ま
た昼間電力のピークカットを蓄熱量の過不足なく空調す
ることができて、所要の空調作用を維持すると共に運転
費を低減する効果がある。
As described above, the difference between the capacity integrated value, the difference in the residual heat storage amount, and the difference between the reference date and the current day of the air-conditioning heat load integrated value is predicted.
Immediately before the start of the heat storage time zone, the operation time plan value of the heat source device on that day is set. Therefore, the nighttime power can be used effectively, and the peak cut of the daytime power can be air-conditioned without excess or shortage of heat storage amount, and the required air-conditioning operation is maintained and the operation cost is reduced.

【0348】また、この発明は以上説明したように、外
気温度の予測値を、蓄熱時間帯の平均値及び空調時間帯
の平均値として設定するものである。
As described above, the present invention sets the predicted value of the outside air temperature as the average value of the heat storage time zone and the average value of the air conditioning time zone.

【0349】このように、蓄熱時間帯の平均値及び空調
時間帯の平均値を外気温度の予測値として設定して、能
力積算値の差、残蓄熱量差と空調熱負荷積算値の参照日
と当日の差の予測により、蓄熱時間帯開始直前に当日の
熱源機の運転時間計画値が設定される。このため、夜間
電力を有効に利用でき、また昼間電力のピークカットを
蓄熱量の過不足なく空調することができて、所要の空調
作用を維持すると共に運転費を低減する効果がある。
As described above, the average value of the heat storage time zone and the average value of the air conditioning time zone are set as the predicted values of the outside air temperature, and the difference between the integrated capacity value, the difference in the remaining heat storage amount, and the reference date of the air conditioning heat load integrated value are set. Based on the prediction of the difference between the day and the day, the planned operation time of the heat source device on the day is set immediately before the start of the heat storage time zone. Therefore, the nighttime power can be used effectively, and the peak cut of the daytime power can be air-conditioned without excess or shortage of heat storage amount, and the required air-conditioning operation is maintained and the operation cost is reduced.

【0350】また、この発明は以上説明したように、外
気温度の蓄熱時間帯の平均及び空調時間帯の平均の予測
値を、前日の外気温度の蓄熱時間帯の平均及び空調時間
帯の平均の実測値として設定するものである。
As described above, according to the present invention, the predicted values of the average of the outside air temperature heat storage time zone and the average of the air conditioning time zone are calculated by comparing the average of the outside air temperature heat storage time zone and the average of the air conditioning time zone on the previous day. This is set as an actual measurement value.

【0351】このように、前日の外気温度の蓄熱時間帯
の平均及び空調時間帯の平均の実測値を外気温度の蓄熱
時間帯の平均及び空調時間帯の平均の予測値として設定
して、能力積算値の差、残蓄熱量差と空調熱負荷積算値
の参照日と当日の差の予測により、蓄熱時間帯開始直前
に当日の熱源機の運転時間計画値が設定される。このた
め、夜間電力を有効に利用でき、また昼間電力のピーク
カットを蓄熱量の過不足なく空調することができて、所
要の空調作用を維持すると共に運転費を低減する効果が
ある。
As described above, the actual measured value of the average of the outside air temperature heat storage time zone and the average of the air conditioning time zone of the previous day is set as the predicted value of the average of the outside air temperature heat storage time zone and the average of the air conditioning time zone, and Based on the prediction of the difference between the accumulated value difference, the remaining heat storage amount difference, and the reference date of the air-conditioning heat load integrated value, and the current day, the operation time plan value of the heat source device on that day is set immediately before the start of the heat storage time zone. Therefore, the nighttime power can be used effectively, and the peak cut of the daytime power can be air-conditioned without excess or shortage of heat storage amount, and the required air-conditioning operation is maintained and the operation cost is reduced.

【0352】また、この発明は以上説明したように、一
日の任意の時刻において、外気温度の予測値及び実績値
のいずれか並びに蓄熱槽からの負荷側出口温度に基づい
て、熱源機の蓄熱時間帯の能力積算値の差と、熱源機の
空調時間帯の能力積算値の差と、一日の運転前後の残蓄
熱量差の参照日と当日の差と、空調時間帯の外気温度差
に伴う空調熱負荷積算値の参照日と当日の差とを予測又
は実測し、当日の上記任意時刻までの熱源機の運転時間
実測値とによって、熱源機の運転時間計画値を設定する
設定機能を有する制御装置を設けたものである。
As described above, according to the present invention, at any time of day, the heat storage of the heat source unit is performed based on either the predicted value or the actual value of the outside air temperature and the load side exit temperature from the heat storage tank. Difference in capacity integrated value in the time zone, difference in capacity integrated value in the air conditioning time zone of the heat source unit, difference between reference day and day of the remaining heat storage difference before and after operation of one day, and difference in outside air temperature in the air conditioning time zone A setting function that predicts or measures the difference between the reference date of the air-conditioning heat load integrated value and the difference of the day, and sets the planned operation time of the heat source device based on the measured value of the operation time of the heat source device until the above-mentioned arbitrary time on the day. Is provided.

【0353】このように、能力積算値の差、残蓄熱量差
の参照日と当日の差、空調熱負荷積算値の参照日と当日
の差とを予測又は実測し、また当日の上記任意時刻まで
の上記熱源機の運転時間実測値により熱源機の運転時間
計画値が設定される。したがって、夜間電力を有効に利
用でき、また昼間電力のピークカットを蓄熱量の過不足
なく空調することができて、所要の空調作用を維持する
と共に運転費を低減する効果がある。
As described above, the difference between the integrated capacity value, the difference between the reference date of the residual heat storage amount difference and the day, and the difference between the reference date and the integrated air-conditioning heat load value and the day are predicted or measured. The operation time plan value of the heat source device is set based on the actual operation time value of the heat source device up to the above. Therefore, the nighttime electric power can be used effectively, and the peak cut of the daytime electric power can be air-conditioned without excess or shortage of the heat storage amount, so that the required air-conditioning action is maintained and the operation cost is reduced.

【0354】また、この発明は以上説明したように、任
意の時刻を午前八時、午前十時及び正午として設定する
ものである。
In the present invention, as described above, the arbitrary time is set to 8:00 am, 10:00 am and noon.

【0355】このように、任意の時刻を午前八時、午前
十時及び正午として設定し、能力積算値の差、残蓄熱量
差の参照日と当日の差、空調熱負荷積算値の参照日と当
日の差とを予測又は実測し、また当日の上記任意時刻ま
での上記熱源機の運転時間実測値により熱源機の運転時
間計画値が設定される。したがって、夜間電力を有効に
利用でき、また昼間電力のピークカットを蓄熱量の過不
足なく空調することができて、所要の空調作用を維持す
ると共に運転費を低減する効果がある。
As described above, the arbitrary times are set as 8:00 am, 10:00 am and noon, and the difference of the integrated capacity value, the difference between the reference day of the remaining heat storage amount difference and that day, and the reference date of the air conditioning heat load integrated value are set. And the difference between the day and the day are predicted or measured, and the operation time plan value of the heat source unit is set based on the actually measured value of the operation time of the heat source unit up to the arbitrary time on the day. Therefore, the nighttime electric power can be used effectively, and the peak cut of the daytime electric power can be air-conditioned without excess or shortage of the heat storage amount, so that the required air-conditioning action is maintained and the operation cost is reduced.

【0356】また、この発明は以上説明したように、氷
厚センサにより蓄熱充満を検知した場合に熱源機を強制
的に停止し、熱源機の運転時間計画値を減少修正し、か
つ熱源機の運転再開まで所定時間にわたって熱源機の停
止を継続する制御機能を有する制御装置を設けたもので
ある。
In addition, as described above, the present invention forcibly stops the heat source unit when the ice thickness sensor detects that the heat storage is full, reduces and corrects the planned operation time of the heat source unit, and reduces the heat source unit. A control device having a control function of continuously stopping the heat source device for a predetermined time until the operation is restarted is provided.

【0357】このように、蓄熱充満を検知した場合に熱
源機が強制停止し、熱源機の運転時間計画値が減少修正
され、かつ熱源機の運転再開まで所定時間中は熱源機の
停止が継続される。このため、蓄熱充満の検知後、すぐ
に再度蓄熱充満を検知することにより熱源機が運転不能
になることを防ぐことができる。したがって、所要の空
調作用を維持した状態で蓄熱を使い切って、夜間電力を
有効に利用でき運転費を低減する効果がある。
As described above, when the heat storage unit is detected, the heat source unit is forcibly stopped, the planned operation time of the heat source unit is reduced and corrected, and the stop of the heat source unit is continued for a predetermined time until the operation of the heat source unit is restarted. Is done. For this reason, it is possible to prevent the heat source device from becoming inoperable by detecting the heat storage charge again immediately after the detection of the heat storage charge. Therefore, there is an effect that nighttime electric power can be effectively used by using up the heat storage while maintaining the required air-conditioning function, thereby reducing the operating cost.

【0358】また、この発明は以上説明したように、負
荷と相関の強い外的条件である外気温度の空調時間帯の
平均値の当日と参照日との差と、この参照日の負荷を基
準とした当日の負荷の増減に相当する熱源機の運転時間
との間の関係を、空調時間帯終了直後から次の日の熱源
機の運転時間計画値を算出するまでの間に毎日学習する
と共に、毎日の蓄熱時間帯開始直前における運転時間計
画値算出時に当日の外気温度の空調時間帯の平均値の予
測値を基に運転時間計画値を算出する算出機能を有する
制御装置を設けたものである。
As described above, according to the present invention, the difference between the current day of the average value of the air-conditioning time zone of the outside air temperature, which is an external condition having a strong correlation with the load, and the reference date, and the load on the reference day are used as a reference. The relationship between the operation time of the heat source unit corresponding to the increase and decrease of the load on the day is learned every day from immediately after the end of the air-conditioning period until the operation time plan value of the heat source unit on the next day is calculated. A control device having a calculation function for calculating an operation time plan value based on a predicted value of the average value of the air conditioning time zone of the outside air temperature of the day when the operation time plan value is calculated immediately before the start of the daily heat storage time zone. is there.

【0359】このように、負荷と相関の強い外気温度の
空調時間帯の平均値の当日と参照日との差と、参照日の
負荷を基準とした当日の負荷の増減に相当する熱源機の
運転時間との間の関係を、過去の熱源機の運転状況に応
じて学習し、また毎日の蓄熱時間帯開始直前における運
転時間計画値算出時に当日の外気温度の空調時間帯の平
均値の予測値を入力する。これにより、当日の負荷状況
を参照日との比較において予測した運転時間計画値を算
出することができ、夜間電力を有効に利用でき、また昼
間電力のピークカットを蓄熱量の過不足なく空調するこ
とができて、所要の空調作用を維持すると共に運転費を
低減する効果がある。
As described above, the difference between the current day and the reference date of the average value of the air-conditioning time zone of the outside air temperature strongly correlated with the load, and the heat source unit corresponding to the increase / decrease of the load on the current day with reference to the load on the reference day. Learns the relationship with the operating time according to past operating conditions of the heat source equipment, and predicts the average value of the outside air temperature air conditioning time zone for the day when calculating the operating time plan immediately before the start of the daily heat storage time zone Enter a value. This makes it possible to calculate an operation time plan value that predicts the load situation of the day in comparison with the reference day, makes it possible to effectively use nighttime electric power, and air-condition the peak cut of daytime electric power without excessive or insufficient heat storage. This has the effect of maintaining the required air conditioning and reducing operating costs.

【0360】また、この発明は以上説明したように、一
日に複数回が設定されて熱源機を運転して蓄熱槽に蓄熱
する蓄熱時間帯、一日に複数回が設定され熱源機を運転
して熱源機の負荷からの戻り蓄熱媒体を利用して蓄熱槽
内の蓄熱使用量を抑制する追いかけ時間帯及び熱源機の
運転を禁止するピークカット時間帯が設けられて、それ
ぞれの時間帯における負荷の状況に対応して熱源機を制
御すると共に、負荷が所定値よりも小さくなったときに
熱源機による蓄熱運転を開始し、負荷が所定値よりも大
きくなったときに蓄熱運転を終了して蓄熱利用運転及び
熱源機の負荷からの戻り蓄熱媒体を利用して蓄熱槽内の
蓄熱使用量を抑制する追いかけ運転するものである。
As described above, according to the present invention, a heat storage time zone in which the heat source device is operated a plurality of times a day and heat is stored in the heat storage tank, and the heat source device is operated a plurality of times a day is set. A chase time period for suppressing the amount of heat storage in the heat storage tank using the return heat storage medium from the load of the heat source device and a peak cut time period for prohibiting the operation of the heat source device are provided. The heat source unit is controlled according to the load condition, and the heat storage operation by the heat source unit is started when the load becomes smaller than a predetermined value, and the heat storage operation is terminated when the load becomes larger than the predetermined value. And a chase operation in which the amount of heat stored in the heat storage tank is suppressed by utilizing the heat storage medium returned from the load of the heat source device.

【0361】これによって、蓄熱時間帯、追いかけ時間
帯及びピークカット時間帯のそれぞれに対応した負荷の
状況に応じて熱源機が妥当に制御される。また、それぞ
れの時間帯における負荷の変動によっても、その変動に
対応して妥当に熱源機が制御される。したがって、電力
を有効に利用して所要の空調作用を得ることができ、運
転費を節減する効果がある。
As a result, the heat source unit is appropriately controlled according to the load conditions corresponding to the heat storage time zone, the chasing time zone, and the peak cut time zone. Also, the heat source device is appropriately controlled in accordance with the fluctuation of the load in each time zone. Therefore, the required air-conditioning effect can be obtained by effectively using the electric power, and there is an effect of reducing the operating cost.

【0362】また、この発明は以上説明したように、一
日の運転時間計画値に基づいて熱源機を運転し一日の空
調作用終了時点で熱源機に対応した蓄熱槽の蓄熱量が零
のときは一日の翌日において一日の運転時間計画値を継
続し、一日の空調作用終了時点で蓄熱量に余剰があると
きは翌日における運転時間計画値を減少し、一日の空調
作用終了時点で蓄熱量が不足したときは翌日のおける運
転時間計画値を増大する運転を行うものである。
As described above, according to the present invention, the heat source unit is operated based on the planned operation time of the day, and the heat storage amount of the heat storage tank corresponding to the heat source unit at the end of the air conditioning operation of the day is zero. At the end of the day, the planned operating time for the day is continued on the next day.If there is excess heat storage at the end of the air conditioning operation for the day, the planned operating time for the next day is reduced, and the air conditioning operation for the day ends. If the amount of stored heat is insufficient at the time, the operation for increasing the operation time plan value for the next day is performed.

【0363】これによって、一日の運転時間計画値に対
してその一日の空調作用終了時点での蓄熱槽の蓄熱量に
対応して、一日の翌日における熱源機の運転時間計画値
が加減される。したがって、電力を有効に利用して所要
の空調作用を得ることができ、運転費を節減する効果が
ある。
Accordingly, the planned operating time of the heat source unit on the next day of the day is adjusted according to the amount of heat stored in the heat storage tank at the end of the air conditioning operation of the day with respect to the planned operating time of the day. Is done. Therefore, the required air-conditioning effect can be obtained by effectively using the electric power, and there is an effect of reducing the operating cost.

【0364】また、この発明は以上説明したように、運
転時間計画値に基づいて運転される熱源機に対応した蓄
熱槽の出口温度を所定の時間間隔ごとに検定して一日の
空調作用終了時点での出口温度を予測し、空調作用終了
時点での出口温度が第一設定温度以上になる予測結果が
三回連続したときには停止中の熱源機を強制運転し、熱
源機の強制運転中に空調作用終了時点での出口温度が第
二設定温度以下になる予測結果が三回連続したときには
熱源機の強制運転を終了するする運転を行うものであ
る。
Further, as described above, the present invention verifies the outlet temperature of the heat storage tank corresponding to the heat source unit operated based on the planned operation time at predetermined time intervals, and terminates the air conditioning operation for one day. The outlet temperature at the time point is predicted, and when the predicted result that the outlet temperature at the time of the end of the air-conditioning operation becomes equal to or higher than the first set temperature is continuously three times, the stopped heat source unit is forcibly operated. When the predicted result that the outlet temperature at the time of the end of the air-conditioning operation becomes equal to or lower than the second set temperature is repeated three times, an operation for terminating the forced operation of the heat source device is performed.

【0365】これによって、空調作用終了時点での出口
温度が第一設定温度以上になる予測結果が三回連続した
ときには、蓄熱槽の蓄熱量不足として停止中の熱源機が
強制運転される。また、熱源機の強制運転中に空調作用
終了時点での出口温度が第二設定温度以下になる予測結
果が三回連続したときには、蓄熱量に余裕があるとして
熱源機の強制運転を終了する。したがって、電力を有効
に利用して所要の空調作用を得ることができ、運転費を
節減する効果がある。
Thus, when the result of the prediction that the outlet temperature at the end of the air-conditioning operation is equal to or higher than the first set temperature has been repeated three times, the stopped heat source unit is forcibly operated because the heat storage tank has insufficient heat storage. In addition, when the predicted result that the outlet temperature at the time of the end of the air-conditioning operation becomes equal to or lower than the second set temperature for three consecutive times during the forced operation of the heat source unit is determined, the forced operation of the heat source unit is terminated, assuming that the heat storage amount has a margin. Therefore, the required air-conditioning effect can be obtained by effectively using the electric power, and there is an effect of reducing the operating cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す蓄熱装置の回
路図。
FIG. 1 is a circuit diagram of a heat storage device according to Embodiment 1 of the present invention.

【図2】 図1の蓄熱装置の蓄熱不足時の熱源機の強制
運転の状態を示すグラフ。
FIG. 2 is a graph showing a state of a forced operation of a heat source device when heat storage of the heat storage device of FIG. 1 is insufficient.

【図3】 図1の蓄熱装置の蓄熱不足判定を説明するグ
ラフ。
FIG. 3 is a graph illustrating determination of insufficient heat storage of the heat storage device of FIG. 1;

【図4】 この発明の実施の形態2を示す図で、蓄熱装
置における熱源機の運転時間計画を算出するフローチャ
ート。
FIG. 4 is a view showing the second embodiment of the present invention, and is a flowchart for calculating an operation time plan of the heat source unit in the heat storage device.

【図5】 この発明の実施の形態6を示す図で、蓄熱装
置における参照日の運転実績を当日の運転計画に利用す
る手順を説明する工程図。
FIG. 5 is a diagram showing the sixth embodiment of the present invention, and is a process diagram for explaining a procedure for using the operation results of the reference day in the heat storage device for the operation plan of the day.

【図6】 外気温度差と負荷の増減関係をニューラルネ
ットワークに対応させた要部論理回路図である。
FIG. 6 is a main part logic circuit diagram in which the relationship between the outside air temperature difference and the load increase / decrease is made to correspond to the neural network.

【図7】 この発明の実施の形態8を示す蓄熱装置の回
路図。
FIG. 7 is a circuit diagram of a heat storage device according to an eighth embodiment of the present invention.

【図8】 この発明の実施の形態9を示す図で、蓄熱装
置の運転時間帯の設定を説明する図。
FIG. 8 is a diagram showing the ninth embodiment of the present invention, and is a diagram for explaining the setting of the operation time zone of the heat storage device.

【図9】 この発明の実施の形態11を示す蓄熱装置の
回路図。
FIG. 9 is a circuit diagram of a heat storage device according to Embodiment 11 of the present invention.

【図10】 この発明の実施の形態12を示す図で、蓄
熱装置の運転時間帯の設定を説明する図。
FIG. 10 is a diagram illustrating a twelfth embodiment of the present invention, and is a diagram illustrating setting of an operation time zone of the heat storage device.

【図11】 従来の蓄熱装置の回路図。FIG. 11 is a circuit diagram of a conventional heat storage device.

【符号の説明】[Explanation of symbols]

17 熱源機、20 蓄熱槽、25 蓄熱媒体、32
氷厚センサ、37 制御装置。
17 heat source unit, 20 heat storage tank, 25 heat storage medium, 32
Ice thickness sensor, 37 control unit.

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 熱源機で発生した冷温熱を蓄熱槽に収容
された蓄熱媒体に蓄えて上記蓄熱媒体の蓄熱により所定
時間帯に空調動作する蓄熱装置において、運転開始及び
運転終了を運転時間計画に基づいて制御すると共に、上
記蓄熱媒体の代表温度を判定する蓄熱媒体代表温度判定
機能、上記蓄熱媒体代表温度を予測する蓄熱媒体代表温
度予測機能、この蓄熱媒体代表温度予測機能の予測値に
よって上記熱源機の運転を制御する熱源機運転制御機
能、上記蓄熱媒体代表温度判定機能の判定値によって上
記熱源機の運転を停止する熱源機停止制御機能、上記熱
源機運転制御機能及び熱源機停止制御機能による運転時
間を記憶する運転時間実績値記憶機能及びこの運転時間
実績値記憶機能の記憶を介して次の運転時間計画を設定
する運転時間計画設定機能を有する制御装置を備えたこ
とを特徴とする蓄熱装置。
1. A heat storage device that stores cold and hot heat generated by a heat source device in a heat storage medium accommodated in a heat storage tank and performs an air conditioning operation in a predetermined time zone by the heat storage of the heat storage medium. And a heat storage medium representative temperature determination function for determining the representative temperature of the heat storage medium, a heat storage medium representative temperature prediction function for predicting the heat storage medium representative temperature, and a predicted value of the heat storage medium representative temperature prediction function. A heat source device operation control function for controlling the operation of the heat source device, a heat source device stop control function for stopping the operation of the heat source device according to the judgment value of the heat storage medium representative temperature judgment function, a heat source device operation control function, and a heat source device stop control function Operation time actual value storage function for storing the operation time according to the above and operation time plan setting for setting the next operation time plan through the storage of this operation time actual value storage function A heat storage device comprising a control device having a function.
【請求項2】 熱源機で発生した冷温熱を蓄熱槽に収容
された蓄熱媒体に蓄えて上記蓄熱媒体の蓄熱により所定
時間帯に空調動作する蓄熱装置において、運転開始及び
運転終了を運転時間計画に基づいて制御し、上記蓄熱媒
体の代表温度を判定し、上記蓄熱媒体の代表温度を予測
して、この蓄熱媒体代表温度の予測値によって上記熱源
機を運転し、上記蓄熱媒体の代表温度判定値によって上
記熱源機を停止し、上記熱源機の運転及び停止による運
転時間を記憶して、この記憶を介して次の運転時間計画
を設定することを特徴とする蓄熱装置の運転方法。
2. A heat storage device that stores cold / hot heat generated by a heat source device in a heat storage medium accommodated in a heat storage tank and performs air conditioning operation in a predetermined time zone by heat storage of the heat storage medium. The representative temperature of the heat storage medium is determined, the representative temperature of the heat storage medium is predicted, the heat source device is operated based on the predicted value of the representative temperature of the heat storage medium, and the representative temperature of the heat storage medium is determined. A method for operating a heat storage device, comprising: stopping the heat source device according to a value; storing an operation time of the operation and stop of the heat source device; and setting a next operation time plan through the storage.
【請求項3】 制御装置に、熱源機の一日の実際の運転
時間を判定する熱源機運転時間判定機能及び上記一日の
実際の上記熱源機の運転時間を記憶する熱源機運転時間
実績値記憶機能が設けられて、この熱源機運転時間実績
値記憶機能の記憶を介して次の運転時間計画を設定する
運転時間計画設定機能に装備したことを特徴とする請求
項1記載の蓄熱装置。
3. A heat source unit operating time determining function for determining an actual operating time of a heat source unit in a day in a control unit, and a heat source unit operating time actual value storing an actual operating time of the heat source unit in the day. 2. The heat storage device according to claim 1, further comprising a storage function, wherein the operation time plan setting function sets a next operation time plan via the storage of the heat source unit operation time actual value storage function.
【請求項4】 熱源機で発生した冷温熱を蓄熱槽に収容
された蓄熱媒体に蓄えて上記蓄熱媒体の蓄熱により所定
時間帯に空調動作する蓄熱装置において、運転開始及び
運転終了を運転時間計画に基づいて制御すると共に、上
記蓄熱媒体の代表温度を判定する蓄熱媒体代表温度判定
機能、上記蓄熱媒体代表温度を予測する蓄熱媒体代表温
度予測機能、この蓄熱媒体代表温度予測機能の予測値に
よって上記熱源機の運転を制御する熱源機運転制御機
能、上記蓄熱媒体代表温度判定機能の判定値によって上
記熱源機の運転を停止する熱源機停止制御機能、上記熱
源機運転制御機能及び熱源機停止制御機能に基づく運転
時間計画値を記憶する運転時間計画値記憶機能、上記熱
源機の一日の実際の運転時間を判定する熱源機運転時間
判定機能、上記一日の実際の上記熱源機の運転時間を記
憶する熱源機運転時間実績値記憶機能、負荷との相関が
強い外気温度を含む外的条件を判定する外的条件判定機
能、この外的条件判定機能の判定を記憶する外的条件判
定値記憶機能、上記外的条件の当日の予測値を算出する
外的条件予測機能及び上記外的条件の上記当日の予測値
を入力する外的条件入力機能のいずれか一方、上記一日
の運転終了後に記憶されている過去の数日分の上記熱源
機の運転時間の計画値と実績値の差及び上記外的条件の
判定値との関係を学習する学習機能並びにこの学習機能
の学習結果を基に上記当日の上記熱源機の運転時間計画
値を上記外的条件の実績値及び上記当日の予測値のいず
れかから算出する運転時間計画値演算機能を有する制御
装置を備えたことを特徴とする蓄熱装置。
4. In a heat storage device that stores cold / hot heat generated by a heat source device in a heat storage medium accommodated in a heat storage tank and performs air conditioning operation in a predetermined time zone by heat storage of the heat storage medium, operation start and operation end are scheduled for operation time planning. And a heat storage medium representative temperature determination function for determining the representative temperature of the heat storage medium, a heat storage medium representative temperature prediction function for predicting the heat storage medium representative temperature, and a predicted value of the heat storage medium representative temperature prediction function. A heat source device operation control function for controlling the operation of the heat source device, a heat source device stop control function for stopping the operation of the heat source device according to the judgment value of the heat storage medium representative temperature judgment function, a heat source device operation control function, and a heat source device stop control function An operation time plan value storage function for storing an operation time plan value based on the heat source device operation time determination function for determining an actual operation time of the heat source device for one day, Actual heat source device operation time actual value storage function for storing the actual operation time of the heat source device, an external condition determination function for determining an external condition including an outside air temperature having a strong correlation with the load, and a determination of the external condition determination function Either an external condition determination value storage function of storing the external condition determination function of calculating the predicted value of the external condition on the day, or an external condition input function of inputting the predicted value of the external condition on the day. On the other hand, a learning function for learning the relationship between the difference between the planned value and the actual value of the operation time of the heat source unit for the past several days stored after the end of the one-day operation and the determination value of the external condition; A control device having an operation time plan value calculation function of calculating the operation time plan value of the heat source unit on the day based on the learning result of the learning function from either the actual value of the external condition or the predicted value of the day. Heat storage device characterized by comprising:
【請求項5】 蓄熱槽からの負荷側出口温度を蓄熱媒体
の代表温度として判定したことを特徴とする請求項1、
請求項3及び請求項4のいずれか一つに記載の蓄熱装
置。
5. The method according to claim 1, wherein the temperature of the load side outlet from the heat storage tank is determined as a representative temperature of the heat storage medium.
The heat storage device according to claim 3.
【請求項6】 蓄熱媒体の蓄熱槽内の所定位置における
温度を蓄熱媒体の代表温度として判定したことを特徴と
する請求項1、請求項3及び請求項4のいずれか一つに
記載の蓄熱装置。
6. The heat storage device according to claim 1, wherein a temperature of the heat storage medium at a predetermined position in the heat storage tank is determined as a representative temperature of the heat storage medium. apparatus.
【請求項7】 制御装置に、熱源機の運転時間計画値に
基づきピークカット時間帯を除く空調時間帯に前詰めで
上記熱源機の運転計画を立てて、この運転計画に応じて
熱源機を運転/停止する制御機能を装備したことを特徴
とする請求項1、請求項3〜請求項6のいずれか一つに
記載の蓄熱装置。
7. An operation plan of the heat source device is set in the control device in the air conditioning time period excluding the peak cut time period based on the planned operation time value of the heat source device, and the heat source device is set in accordance with the operation plan. The heat storage device according to any one of claims 1 to 3, further comprising a control function of operating / stopping the heat storage device.
【請求項8】 制御装置に、熱源機の運転時間計画値を
蓄熱時間帯と空調時間帯に分けてそれぞれ算出する算出
機能を装備したことを特徴とする請求項1、請求項3〜
請求項7のいずれか一つに記載の蓄熱装置。
8. The control device according to claim 1, further comprising a calculation function for calculating a planned operation time of the heat source unit separately for a heat storage time zone and an air conditioning time zone.
The heat storage device according to claim 7.
【請求項9】 制御装置に、熱源機の運転時間計画値を
蓄熱時間帯と空調時間帯に分けてそれぞれ算出する算出
機能及び上記蓄熱時間帯の運転時間が最大となるように
上記蓄熱時間帯の上記熱源機の能力と上記空調時間帯の
上記熱源機の能力との差を考慮して上記運転時間計画値
を設定する設定機能を装備したことを特徴とする請求項
1、請求項3〜請求項8のいずれか一つに記載の蓄熱装
置。
9. A control function for calculating a planned operating time of a heat source unit separately for a heat storage time zone and an air conditioning time period, and the heat storage time zone to maximize the operation time of the heat storage time zone. And a setting function for setting the operation time plan value in consideration of a difference between the capacity of the heat source unit and the capacity of the heat source unit in the air conditioning time zone. A heat storage device according to claim 8.
【請求項10】 制御装置に、蓄熱槽からの負荷側出口
温度が空調終了時点で所定の設定温度以上になるとの予
測結果が得られた場合に蓄熱量不足と判断して、熱源機
の運転時間計画値を使い切った後の空調時間帯に上記熱
源機を強制的に運転する制御機能を装備したことを特徴
とする請求項1、請求項3〜請求項9のいずれか一つに
記載の蓄熱装置。
10. When the control device obtains a prediction result that the load-side outlet temperature from the heat storage tank becomes equal to or higher than a predetermined set temperature at the end of air conditioning, it determines that the heat storage amount is insufficient and operates the heat source device. The control function of forcibly operating the heat source unit during an air conditioning time period after the time plan value is used up is provided, The control function according to any one of claims 1 to 3, wherein Heat storage device.
【請求項11】 制御装置に、蓄熱槽からの負荷側出口
温度が空調終了時点で第一設定温度以上になるとの予測
結果が得られた場合に蓄熱量不足と判断して、熱源機の
運転時間計画値を使い切った後の空調時間帯に上記熱源
機を強制的に運転し、この強制運転継続中に上記蓄熱槽
からの負荷側出口温度が上記空調終了時点で第二設定温
度以下になるとの予測結果が得られたときに上記強制運
転を終了する制御機能を装備したことを特徴とする請求
項10に記載の蓄熱装置。
11. When the control device obtains a prediction result that the load-side outlet temperature from the heat storage tank becomes equal to or higher than the first set temperature at the end of air conditioning, it determines that the heat storage amount is insufficient and operates the heat source device. When the heat source unit is forcibly operated during the air conditioning time period after the time plan value is used up, and the load side outlet temperature from the heat storage tank becomes equal to or lower than the second set temperature at the end of the air conditioning while the forced operation is continued. The heat storage device according to claim 10, further comprising a control function of terminating the forcible operation when the prediction result is obtained.
【請求項12】 制御装置に、蓄熱槽からの負荷側出口
温度が空調終了時点で第一設定温度以上になるとの予測
結果が複数回連続して得られた場合に蓄熱量不足と判断
して、熱源機の運転時間計画値を使い切った後の空調時
間帯に上記熱源機を強制的に運転し、この強制運転継続
中に上記蓄熱槽からの負荷側出口温度が上記空調終了時
点で第二設定温度以下になるとの予測結果が複数回連続
して得られたときに上記強制運転を終了する制御機能を
装備したことを特徴とする請求項1、請求項3〜請求項
9のいずれか一つに記載の蓄熱装置。
12. The control device determines that the heat storage amount is insufficient when the prediction result that the load-side outlet temperature from the heat storage tank becomes equal to or higher than the first set temperature at the end of air conditioning is obtained a plurality of times in succession. The forced operation of the heat source unit during the air-conditioning time period after the use of the planned operating time of the heat source unit is completed, and the load-side outlet temperature from the heat storage tank becomes the second at the end of the air conditioning during the forced operation. 10. A control function for terminating the forced operation when a predicted result that the temperature is equal to or lower than a set temperature is obtained a plurality of times in succession, is provided. The heat storage device according to any one of the above.
【請求項13】 蓄熱媒体の代表温度である空調終了時
点における蓄熱槽からの負荷側出口温度の予測値を、現
在及び数分前の時刻における実測値の二点から直線補完
によって演算することを特徴とする請求項1、請求項3
〜請求項9のいずれか一つに記載の蓄熱装置。
13. A method for calculating a predicted value of a load-side outlet temperature from a heat storage tank at the end of air conditioning, which is a representative temperature of a heat storage medium, by linear interpolation from two points of a current value and a measured value at a time several minutes before. Claims 1 and 3
The heat storage device according to claim 9.
【請求項14】 制御装置に、空調時間帯の空調終了時
刻までの残り時間が残氷判定時間よりも少なくなった時
点で、蓄熱槽からの負荷側出口温度が残氷検知温度以下
であり、かつ熱源機の運転計画時間を使い切っていない
場合には、蓄熱過剰と判断して上記熱源機の運転時間計
画値に関わらず上記熱源機を停止させる制御機能を装備
したことを特徴とする請求項1、請求項3〜請求項13
のいずれか一つに記載の蓄熱装置。
14. The controller, when the remaining time until the air conditioning end time in the air conditioning time zone becomes shorter than the remaining ice determination time, the load-side outlet temperature from the heat storage tank is equal to or lower than the remaining ice detection temperature, And a control function for stopping the heat source unit regardless of the planned operation time of the heat source unit when it is determined that the heat source unit has not been used up and the planned operation time of the heat source unit is not used up. 1, Claims 3 to 13
A heat storage device according to any one of the above.
【請求項15】 制御装置に、外気温度の予測値及び蓄
熱槽からの負荷側出口温度に基づいて、熱源機の蓄熱時
間帯の能力積算値の差と、上記熱源機の空調時間帯の能
力積算値の差と、一日の運転前後の残蓄熱量差の参照日
と当日の差と、空調時間帯の外気温度差に伴う空調熱負
荷積算値の上記参照日と上記当日の差とを予測して、蓄
熱時間帯開始直前に上記当日の上記熱源機の運転時間計
画値を設定する設定機能を装備したことを特徴とする請
求項1、請求項3〜請求項14のいずれか一つに記載の
蓄熱装置。
15. A control device, comprising: a difference between a capacity integrated value of a heat storage time zone of a heat source unit based on a predicted value of an outside air temperature and a load side outlet temperature from a heat storage tank; The difference between the integrated value, the difference between the reference date of the residual heat storage amount difference before and after the operation before and after the day and the day of the day, and the difference between the reference date and the day of the air conditioning heat load integrated value due to the outside air temperature difference during the air conditioning time zone and the day of the day 15. The apparatus according to claim 1, further comprising a setting function for predicting and setting an operation time plan value of the heat source unit on the day immediately before the start of the heat storage time zone. A heat storage device according to claim 1.
【請求項16】 外気温度の予測値を、蓄熱時間帯の平
均値及び空調時間帯の平均値としたことを特徴とする請
求項15に記載の蓄熱装置。
16. The heat storage device according to claim 15, wherein the predicted value of the outside air temperature is an average value of a heat storage time zone and an average value of an air conditioning time zone.
【請求項17】 外気温度の蓄熱時間帯の平均及び空調
時間帯の平均の予測値を、前日の上記外気温度の蓄熱時
間帯の平均及び空調時間帯の平均の実測値としたことを
特徴とする請求項15に記載の蓄熱装置。
17. A method according to claim 1, wherein the predicted value of the average of the outside air temperature heat storage time zone and the average of the air conditioning time zone is an actually measured value of the average of the outside air temperature heat storage time zone and the average of the air conditioning time zone on the previous day. The heat storage device according to claim 15, wherein:
【請求項18】 制御装置に、一日の任意の時刻におい
て、外気温度の予測値及び実績値のいずれか並びに蓄熱
槽からの負荷側出口温度に基づいて、熱源機の蓄熱時間
帯の能力積算値の差と、上記熱源機の空調時間帯の能力
積算値の差と、一日の運転前後の残蓄熱量差の参照日と
当日の差と、空調時間帯の外気温度差に伴う空調熱負荷
積算値の上記参照日と上記当日の差とを予測又は実測
し、上記当日の上記任意時刻までの上記熱源機の運転時
間実測値とによって、上記熱源機の運転時間計画値を設
定する設定機能を装備したことを特徴とする請求項1、
請求項3〜請求項17のいずれか一つに記載の蓄熱装
置。
18. The controller integrates, at an arbitrary time of day, the heat storage time capacity of the heat source unit based on one of the predicted value and the actual value of the outside air temperature and the load-side exit temperature from the heat storage tank. Value difference, the difference of the integrated value of the capacity of the heat source unit in the air conditioning time zone, the difference between the reference day and the day of the difference in the residual heat storage amount before and after one day of operation, and the air conditioning heat due to the outside air temperature difference in the air conditioning time zone. A setting for predicting or measuring the difference between the reference day and the day of the load integrated value on the day, and setting the operation time plan value of the heat source unit based on the actual measurement value of the heat source unit up to the arbitrary time on the day. Claim 1, characterized by being equipped with a function.
The heat storage device according to any one of claims 3 to 17.
【請求項19】 任意の時刻を、午前八時、午前十時及
び正午としたことを特徴とする請求項18に記載の蓄熱
装置。
19. The heat storage device according to claim 18, wherein the arbitrary times are 8:00 am, 10:00 am, and noon.
【請求項20】 制御装置に、氷厚センサにより蓄熱充
満を検知した場合に熱源機を強制的に停止し、上記熱源
機の運転時間計画値を減少修正し、かつ上記熱源機の運
転再開まで所定時間にわたって上記熱源機の停止を継続
する制御機能を装備したことを特徴とする請求項1、請
求項3〜請求項19のいずれか一つに記載の蓄熱装置。
20. The control device according to claim 1, wherein when the heat storage unit is detected by the ice thickness sensor, the heat source unit is forcibly stopped, the operation time plan value of the heat source unit is reduced and corrected, and until the operation of the heat source unit is restarted. 20. The heat storage device according to claim 1, further comprising a control function of continuing to stop the heat source device for a predetermined time.
【請求項21】 制御装置に、負荷と相関の強い外的条
件である外気温度の空調時間帯の平均値の当日と参照日
との差と、この参照日の負荷を基準とした上記当日の負
荷の増減に相当する熱源機の運転時間との間の関係を、
空調時間帯終了直後から次の日の上記熱源機の運転時間
計画値を算出するまでの間に毎日学習すると共に、毎日
の蓄熱時間帯開始直前における運転時間計画値算出時に
上記当日の外気温度の空調時間帯の平均値の予測値を基
に運転時間計画値を算出する算出機能を装備したことを
特徴とする請求項1、請求項3〜請求項20のいずれか
一つに記載の蓄熱装置。
21. A control device, comprising: a difference between the day of the average value of the air-conditioning time zone of the outside air temperature, which is an external condition having a strong correlation with the load, and a reference date; The relationship between the operation time of the heat source unit corresponding to the increase and decrease of the load,
Immediately after the end of the air-conditioning time period and until the calculation of the operation time plan value of the heat source unit on the next day is learned daily, and at the time of calculating the operation time plan value immediately before the start of the daily heat storage time period, the outside air temperature of the day is calculated. The heat storage device according to any one of claims 1 to 3, further comprising a calculation function for calculating an operation time plan value based on a predicted value of an average value of an air conditioning time zone. .
【請求項22】 一日に複数回が設定されて熱源機を運
転して蓄熱槽に蓄熱する蓄熱時間帯、一日に複数回が設
定されて上記熱源機を運転して上記熱源機の負荷からの
戻り蓄熱媒体を利用して上記蓄熱槽内の蓄熱使用量を抑
制する追いかけ時間帯及び上記熱源機の運転を禁止する
ピークカット時間帯が設けられて、それぞれの上記時間
帯における上記負荷の状況に対応して上記熱源機を制御
すると共に、上記負荷が所定値よりも小さくなったとき
に上記熱源機による蓄熱運転を開始し、上記負荷が所定
値よりも大きくなったときに上記蓄熱運転を終了して蓄
熱利用運転及び上記熱源機の負荷からの戻り蓄熱媒体を
利用して上記蓄熱槽内の蓄熱使用量を抑制する追いかけ
運転を行う蓄熱装置の運転方法。
22. A heat storage time period in which the heat source device is operated a plurality of times a day to store heat in the heat storage tank, and the heat source device is operated a plurality of times a day to load the heat source device. A chase time period for suppressing the amount of heat storage in the heat storage tank using the return heat storage medium from the above and a peak cut time period for inhibiting the operation of the heat source device are provided, and the load of the load in each of the time periods is provided. The heat source device is controlled according to the situation, and the heat storage operation by the heat source device is started when the load becomes smaller than a predetermined value, and the heat storage operation is performed when the load becomes larger than a predetermined value. And an operation method of a heat storage device that performs a heat storage utilization operation and performs a chasing operation for suppressing the amount of heat storage in the heat storage tank using the heat storage medium returned from the load of the heat source device.
【請求項23】 一日の運転時間計画値に基づいて熱源
機を運転し上記一日の空調作用終了時点で上記熱源機に
対応した蓄熱槽の蓄熱量が零のときは上記一日の翌日に
おいて上記一日の運転時間計画値を継続し、上記一日の
空調作用終了時点で上記蓄熱量に余剰があるときは上記
翌日における運転時間計画値を減少し、上記一日の空調
作用終了時点で上記蓄熱量が不足したときは上記翌日の
おける運転時間計画値を増大する蓄熱装置の運転方法。
23. When the heat source unit is operated based on the planned operation time of the day and the amount of heat stored in the heat storage tank corresponding to the heat source unit at the end of the air conditioning operation of the day is zero, the next day of the day. At the end of the air conditioning operation of the day, if there is a surplus in the heat storage amount at the end of the air conditioning operation of the day, the operation time planning value for the next day is reduced, and the end of the air conditioning operation of the day The method of operating a heat storage device, wherein when the heat storage amount is insufficient, the operation time plan value for the next day is increased.
【請求項24】 運転時間計画値に基づいて運転される
熱源機に対応した蓄熱槽の出口温度を所定の時間間隔ご
とに検定して一日の空調作用終了時点での上記出口温度
を予測し、上記空調作用終了時点での上記出口温度が第
一設定温度以上になる予測結果が三回連続したときには
停止中の上記熱源機を強制運転し、上記熱源機の強制運
転中に上記空調作用終了時点での上記出口温度が第二設
定温度以下になる予測結果が三回連続したときには上記
熱源機の強制運転を終了する蓄熱装置の運転方法。
24. Verify the outlet temperature of the heat storage tank corresponding to the heat source unit operated based on the planned operating time at predetermined time intervals to predict the outlet temperature at the end of the air conditioning operation in one day. When the result of the prediction that the outlet temperature at the time of the end of the air conditioning operation is equal to or higher than the first set temperature is repeated three times, the stopped heat source unit is forcibly operated, and the air conditioning operation is terminated during the forced operation of the heat source unit. A method for operating a heat storage device, wherein the forced operation of the heat source device is terminated when the predicted result that the outlet temperature at the time point becomes equal to or lower than the second set temperature is repeated three times.
JP23059298A 1997-08-22 1998-08-17 Heat storage device and method of operating heat storage device Expired - Fee Related JP3585021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23059298A JP3585021B2 (en) 1997-08-22 1998-08-17 Heat storage device and method of operating heat storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-226723 1997-08-22
JP22672397 1997-08-22
JP23059298A JP3585021B2 (en) 1997-08-22 1998-08-17 Heat storage device and method of operating heat storage device

Publications (2)

Publication Number Publication Date
JPH11159827A true JPH11159827A (en) 1999-06-15
JP3585021B2 JP3585021B2 (en) 2004-11-04

Family

ID=26527322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23059298A Expired - Fee Related JP3585021B2 (en) 1997-08-22 1998-08-17 Heat storage device and method of operating heat storage device

Country Status (1)

Country Link
JP (1) JP3585021B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099467A (en) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp Control unit for thermal storage device
JP2002243216A (en) * 2001-02-19 2002-08-28 Takasago Thermal Eng Co Ltd Dynamic ice heat storage system and method for operating it and method for prediction
JP2010071599A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Ice thermal storage system
JP2010242990A (en) * 2009-04-01 2010-10-28 Tokyo Toshi Service Kk Air conditioning system
JP2011153729A (en) * 2010-01-26 2011-08-11 Daikin Industries Ltd Air conditioner
JP2014514585A (en) * 2011-05-11 2014-06-19 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to predict building energy consumption
CN106642536A (en) * 2016-11-18 2017-05-10 广东美的暖通设备有限公司 Intelligent matching method for load of air conditioner
WO2018211679A1 (en) * 2017-05-19 2018-11-22 三菱電機株式会社 Power monitoring system

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316940A (en) * 1991-04-16 1992-11-09 Takasago Thermal Eng Co Ltd Water heat source air conditioning method
JPH0588715A (en) * 1991-09-26 1993-04-09 Tokyo Electric Power Co Inc:The Heat source estimation controller
JPH05133577A (en) * 1991-11-13 1993-05-28 Mitsubishi Electric Corp Heat accumulation room heating controller
JPH05256482A (en) * 1992-03-16 1993-10-05 Toshiba Corp Operation controller for heat source apparatus
JPH05324014A (en) * 1991-09-26 1993-12-07 Tokyo Electric Power Co Inc:The Thermal load predicting device
JPH06137640A (en) * 1992-10-23 1994-05-20 Hitachi Ltd Energy system and operation control method thereof
JPH06241530A (en) * 1993-02-18 1994-08-30 Hitachi Ltd Controlling method of heat storage equipment
JPH06300344A (en) * 1993-04-19 1994-10-28 Omron Corp Method and apparatus for controlling cooling/heating system
JPH06313605A (en) * 1993-04-28 1994-11-08 Hitachi Ltd Method and apparatus for controlling operation of heat source unit
JPH074721A (en) * 1993-02-19 1995-01-10 Tokyo Electric Power Co Inc:The Heat accumulating type air conditioning device
JPH07127897A (en) * 1993-11-05 1995-05-16 Toshiba Corp Building energy conservation controller
JPH07133945A (en) * 1993-11-09 1995-05-23 Hitachi Ltd Operation of ice storage type apparatus
JPH07167512A (en) * 1993-12-15 1995-07-04 Mitsubishi Electric Corp Controller for composite refrigerant circuit facility
JPH07180107A (en) * 1993-12-24 1995-07-18 Pub Works Res Inst Ministry Of Constr Three dimensional position automatic control method of construction equipment
JPH07217965A (en) * 1994-02-04 1995-08-18 Sanyo Electric Co Ltd Air conditioning equipment
JPH0814627A (en) * 1994-06-28 1996-01-19 Nec Eng Ltd Predicted data forming system and heat load predicting apparatus using the same
JPH0835708A (en) * 1994-07-26 1996-02-06 Ebara Corp Ice cold heat storage type refrigerator unit and operating method therefor
JPH0835707A (en) * 1994-07-21 1996-02-06 Ebara Corp Heat supplying facility
JPH0849901A (en) * 1994-08-03 1996-02-20 Matsushita Refrig Co Ltd Heat storage air-conditioner
JPH0886492A (en) * 1994-09-14 1996-04-02 Ebara Corp Heat supply device
JPH08136032A (en) * 1994-11-01 1996-05-31 Matsushita Refrig Co Ltd Load forecast corrector
JPH08178389A (en) * 1994-12-27 1996-07-12 Sanyo Electric Co Ltd Air conditioning equipment
JPH08210686A (en) * 1995-02-03 1996-08-20 Hitachi Plant Eng & Constr Co Ltd Air-conditioning system
JPH0921557A (en) * 1995-07-06 1997-01-21 Kiyota Kogyo:Kk Controller for regenerative air conditioning system
JPH0979644A (en) * 1995-09-13 1997-03-28 Toshiba Corp Control device of heat accumulation plant
JPH0989546A (en) * 1995-09-28 1997-04-04 Mitsubishi Materials Corp Ice thickness measuring device
JPH0989348A (en) * 1995-09-29 1997-04-04 East Japan Railway Co System using regenerative heat and control for the same
JPH09113009A (en) * 1995-10-17 1997-05-02 Matsushita Electric Ind Co Ltd Control device for air conditioner
JPH09189444A (en) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp Ice-heat accumulation type air conditioner

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316940A (en) * 1991-04-16 1992-11-09 Takasago Thermal Eng Co Ltd Water heat source air conditioning method
JPH0588715A (en) * 1991-09-26 1993-04-09 Tokyo Electric Power Co Inc:The Heat source estimation controller
JPH05324014A (en) * 1991-09-26 1993-12-07 Tokyo Electric Power Co Inc:The Thermal load predicting device
JPH05133577A (en) * 1991-11-13 1993-05-28 Mitsubishi Electric Corp Heat accumulation room heating controller
JPH05256482A (en) * 1992-03-16 1993-10-05 Toshiba Corp Operation controller for heat source apparatus
JPH06137640A (en) * 1992-10-23 1994-05-20 Hitachi Ltd Energy system and operation control method thereof
JPH06241530A (en) * 1993-02-18 1994-08-30 Hitachi Ltd Controlling method of heat storage equipment
JPH074721A (en) * 1993-02-19 1995-01-10 Tokyo Electric Power Co Inc:The Heat accumulating type air conditioning device
JPH06300344A (en) * 1993-04-19 1994-10-28 Omron Corp Method and apparatus for controlling cooling/heating system
JPH06313605A (en) * 1993-04-28 1994-11-08 Hitachi Ltd Method and apparatus for controlling operation of heat source unit
JPH07127897A (en) * 1993-11-05 1995-05-16 Toshiba Corp Building energy conservation controller
JPH07133945A (en) * 1993-11-09 1995-05-23 Hitachi Ltd Operation of ice storage type apparatus
JPH07167512A (en) * 1993-12-15 1995-07-04 Mitsubishi Electric Corp Controller for composite refrigerant circuit facility
JPH07180107A (en) * 1993-12-24 1995-07-18 Pub Works Res Inst Ministry Of Constr Three dimensional position automatic control method of construction equipment
JPH07217965A (en) * 1994-02-04 1995-08-18 Sanyo Electric Co Ltd Air conditioning equipment
JPH0814627A (en) * 1994-06-28 1996-01-19 Nec Eng Ltd Predicted data forming system and heat load predicting apparatus using the same
JPH0835707A (en) * 1994-07-21 1996-02-06 Ebara Corp Heat supplying facility
JPH0835708A (en) * 1994-07-26 1996-02-06 Ebara Corp Ice cold heat storage type refrigerator unit and operating method therefor
JPH0849901A (en) * 1994-08-03 1996-02-20 Matsushita Refrig Co Ltd Heat storage air-conditioner
JPH0886492A (en) * 1994-09-14 1996-04-02 Ebara Corp Heat supply device
JPH08136032A (en) * 1994-11-01 1996-05-31 Matsushita Refrig Co Ltd Load forecast corrector
JPH08178389A (en) * 1994-12-27 1996-07-12 Sanyo Electric Co Ltd Air conditioning equipment
JPH08210686A (en) * 1995-02-03 1996-08-20 Hitachi Plant Eng & Constr Co Ltd Air-conditioning system
JPH0921557A (en) * 1995-07-06 1997-01-21 Kiyota Kogyo:Kk Controller for regenerative air conditioning system
JPH0979644A (en) * 1995-09-13 1997-03-28 Toshiba Corp Control device of heat accumulation plant
JPH0989546A (en) * 1995-09-28 1997-04-04 Mitsubishi Materials Corp Ice thickness measuring device
JPH0989348A (en) * 1995-09-29 1997-04-04 East Japan Railway Co System using regenerative heat and control for the same
JPH09113009A (en) * 1995-10-17 1997-05-02 Matsushita Electric Ind Co Ltd Control device for air conditioner
JPH09189444A (en) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp Ice-heat accumulation type air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099467A (en) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp Control unit for thermal storage device
JP2002243216A (en) * 2001-02-19 2002-08-28 Takasago Thermal Eng Co Ltd Dynamic ice heat storage system and method for operating it and method for prediction
JP2010071599A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Ice thermal storage system
JP2010242990A (en) * 2009-04-01 2010-10-28 Tokyo Toshi Service Kk Air conditioning system
JP2011153729A (en) * 2010-01-26 2011-08-11 Daikin Industries Ltd Air conditioner
JP2014514585A (en) * 2011-05-11 2014-06-19 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to predict building energy consumption
CN106642536A (en) * 2016-11-18 2017-05-10 广东美的暖通设备有限公司 Intelligent matching method for load of air conditioner
CN106642536B (en) * 2016-11-18 2019-09-17 广东美的暖通设备有限公司 A kind of air conditioner load intelligent Matching method
WO2018211679A1 (en) * 2017-05-19 2018-11-22 三菱電機株式会社 Power monitoring system

Also Published As

Publication number Publication date
JP3585021B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4435533B2 (en) Heat source system and control device
JP5696877B2 (en) Operation management device, operation management method, and operation management program
JP5668970B2 (en) Operation management device, operation management method, and operation management program
US7992630B2 (en) System and method for pre-cooling of buildings
US10580094B1 (en) Energy cost optimizer
JP6328283B2 (en) Controller, schedule creation method, and program
JP6108333B2 (en) Operation management device, operation management method, operation management program
EP2511618B1 (en) Air conditioning system and air conditioning method
KR20110139184A (en) Energy supply system
CN108473022A (en) Vehicle air-conditioning systems
JP3585021B2 (en) Heat storage device and method of operating heat storage device
JPH08240335A (en) Air-conditioning heat load estimating device for building
US3998267A (en) Temperature control system
JP6513257B2 (en) Controller, schedule creation method, and program
JP6628831B2 (en) Controller, schedule creation method, and program
JPH09273795A (en) Thermal load estimating device
JP5725364B2 (en) Operation management device, operation management method, and operation management program
JP6115831B2 (en) Controller, schedule creation method, and program
JP2983159B2 (en) Heat storage utilization system and control method thereof
JPH0886490A (en) Predicting equipment of thermal load
JPH07151369A (en) Heat load predicting apparatus and plant heat load predicting apparatus
JP7035969B2 (en) Hot water storage type hot water supply device
JP2006010296A (en) Heat source system
JP2001099467A (en) Control unit for thermal storage device
US20230228435A1 (en) System and method for determining hvac set points

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees