JPH07167512A - Controller for composite refrigerant circuit facility - Google Patents

Controller for composite refrigerant circuit facility

Info

Publication number
JPH07167512A
JPH07167512A JP31536093A JP31536093A JPH07167512A JP H07167512 A JPH07167512 A JP H07167512A JP 31536093 A JP31536093 A JP 31536093A JP 31536093 A JP31536093 A JP 31536093A JP H07167512 A JPH07167512 A JP H07167512A
Authority
JP
Japan
Prior art keywords
storage
refrigerant circuit
heat
cold
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31536093A
Other languages
Japanese (ja)
Other versions
JP3036338B2 (en
Inventor
Kosaku Yaoda
耕作 矢尾田
Toshihiko Oyanagi
俊彦 大柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5315360A priority Critical patent/JP3036338B2/en
Publication of JPH07167512A publication Critical patent/JPH07167512A/en
Application granted granted Critical
Publication of JP3036338B2 publication Critical patent/JP3036338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a controller which can improve a general refrigerating efficiency as an entire facility and control for a composite refrigerant circuit facility for moving excess cold of a refrigerant circuit having high refrigerating efficiency to a refrigerant circuit having low refrigerating efficiency. CONSTITUTION:A cold storage amount is calculated by cold storage amount detecting means 41 based on a signal of a state of water of heat storage tank detected by a sensor 47. Cold storage amount deciding means 42 decides whether the cold storage amount becomes insufficient or not until a cold dissipating operation is finished. If insufficiency is decided, a signal is output. On the other hand, a priority order is set to priority order setting means 43 according to importance of a matter to be cooled and contained at each connected system, and these priority order is stored in priority order memory means 44. A system to be stopped for cold dissipation is decided by stopping system deciding means 45, a stop signal is output by cold dissipation stopping means 46, and cold dissipation of the corresponding system is stopped by a cold dissipation stop actuator 48.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば冷却温度域の異
なる複数の被冷却環境をそれぞれ冷却する、いわば蒸発
器の冷媒蒸発温度を異にする複数の冷媒回路と、冷熱を
蓄熱するための蓄熱槽とを供えた複合型冷媒回路設備を
効率よく制御する制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of refrigerant circuits for cooling a plurality of environments to be cooled which have different cooling temperature ranges, so to speak, and a plurality of refrigerant circuits having different evaporator evaporation temperatures, and for storing cold heat. The present invention relates to a control device for efficiently controlling composite refrigerant circuit equipment provided with a heat storage tank.

【0002】[0002]

【従来の技術】この種の複合型冷媒回路設備としては、
本発明者等により発明され、本願に先立って特願平5−
26732号として出願されたものがある。この複合型
冷媒回路設備を図26に示す。
2. Description of the Related Art As a composite refrigerant circuit facility of this type,
The present invention was invented by the present inventors, and prior to the present application, Japanese Patent Application No. 5-
There is an application filed as No. 26732. FIG. 26 shows this composite type refrigerant circuit facility.

【0003】同図において、1は冷蔵側圧縮機(第1の
圧縮機)、2は冷蔵側凝縮器(第1の凝縮器)、3は5
で示す冷蔵側蒸発器(第1の蒸発器)へ供給する冷媒を
断続するための冷蔵側電磁弁、4は冷蔵側膨張弁(第1
の絞り装置の一例)、6はこれらを連通する冷蔵側の冷
媒配管を示す。さらに、7は例えば水等の蓄熱剤を収容
した蓄熱槽、8は蓄熱槽7の蓄熱剤中に配備された冷蔵
側蓄熱用蒸発器(蓄熱用熱交換器)、9は冷蔵側蓄熱用
蒸発器8へ供給する冷媒を断続するための冷蔵側蓄熱用
電磁弁、10は冷蔵側蓄熱用膨張弁(蓄熱用絞り装置の
一例)、11は冷媒配管6に並列に連通され冷蔵側蓄熱
用蒸発器8へ冷媒を送るための冷媒配管を示す。即ち、
冷蔵側蓄熱用膨張弁10を全開にした状態で、冷媒流路
開閉自在に制御される冷蔵側蓄熱用電磁弁9が回路開閉
装置の一例であって、このときの冷蔵側蓄熱用電磁弁
9、冷媒配管11、及び冷蔵側蓄熱用蒸発器8を備えて
なる構成が第2の冷熱供給回路の一例である。前記1〜
11の符号を付した構成要素から、冷蔵側蒸発器5のお
かれた例えばショーケース(第1の被冷却環境の一例で
あって、例えば0℃を超える目標温度に設定されてい
る)を冷却する冷蔵側冷媒回路(第1の冷媒回路の一
例)が構成されている。
In the figure, 1 is a refrigeration side compressor (first compressor), 2 is a refrigeration side condenser (first condenser), and 3 is 5.
The refrigeration-side solenoid valve for interrupting the refrigerant supplied to the refrigeration-side evaporator (first evaporator) shown by 4 is a refrigeration-side expansion valve (first
Of the throttling device), 6 is a refrigerant pipe on the refrigerating side for communicating these. Further, 7 is a heat storage tank containing a heat storage agent such as water, 8 is a refrigeration side heat storage evaporator (heat storage heat exchanger) arranged in the heat storage agent of the heat storage tank 7, and 9 is a refrigeration side heat storage evaporation. Refrigerant-side heat storage solenoid valve for connecting and disconnecting the refrigerant to be supplied to the container 8. Reference numeral 10 is a refrigerating-side heat storage expansion valve (an example of a heat-storage expansion device). The refrigerant piping for sending a refrigerant to container 8 is shown. That is,
The refrigeration-side heat storage solenoid valve 9 is an example of a circuit opening / closing device, and the refrigerating-side heat storage expansion valve 10 is fully opened, and the refrigerant flow passage is freely opened and closed. A configuration including the refrigerant pipe 11 and the refrigeration side heat storage evaporator 8 is an example of a second cold heat supply circuit. 1 to
Cooling, for example, a showcase (an example of the first environment to be cooled, which is set to a target temperature exceeding 0 ° C., for example) in which the refrigerating evaporator 5 is placed, from the components denoted by reference numeral 11. A refrigerating-side refrigerant circuit (an example of a first refrigerant circuit) is configured.

【0004】また、21は冷凍側圧縮機(第2の圧縮
機)、22は冷凍側凝縮器(第2の凝縮器)、23は2
5で示す冷凍側蒸発器(第2の蒸発器)へ供給する冷媒
を断続するための冷凍側電磁弁、24は冷凍側膨張弁
(第2の絞り装置の一例)、26はこれらの連通する冷
凍側の冷媒配管弁、31は蓄熱槽7の蓄熱剤中に配備さ
れた冷凍側過冷却用熱交換器(冷熱供給用熱交換器)、
34は蓄熱槽7内に配備された冷凍側冷媒回路の冷凍側
過冷却用熱交換器31を冷凍側凝縮器22と冷凍側電磁
弁23との間の冷媒管路26に直列に連通する冷媒配管
を示す。
Further, 21 is a refrigeration side compressor (second compressor), 22 is a refrigeration side condenser (second condenser), and 23 is 2.
A freezing side solenoid valve for connecting and disconnecting the refrigerant to be supplied to the freezing side evaporator (second evaporator) shown by 5, 24 is a freezing side expansion valve (an example of a second expansion device), and 26 is in communication therewith. Refrigerant piping valve on the freezing side, 31 is a heat exchanger for subcooling on the freezing side (heat exchanger for supplying cold heat) arranged in the heat storage agent of the heat storage tank 7,
Refrigerant 34 communicates the freezing-side subcooling heat exchanger 31 of the freezing-side refrigerant circuit provided in the heat storage tank 7 in series with the refrigerant pipeline 26 between the freezing-side condenser 22 and the freezing-side electromagnetic valve 23. Shows piping.

【0005】前記21〜34の符号を付した構成要素か
ら、冷凍側蒸発器25のおかれた例えば冷凍庫(第2の
被冷却環境の一例であって、例えば0℃以下の目標温度
に設定されている)を冷却する冷凍側冷媒回路(第2の
冷媒回路の一例)が構成されている。この場合、冷凍側
過冷却用熱交換器31と冷媒配管34aとを備えてなる
構成が第1の冷熱供給回路の一例である。尚、ここでは
店舗などにおけるショーケース、冷蔵庫、冷凍庫等の負
荷側の機器については図示を省略する。
From the components denoted by the reference numerals 21 to 34, for example, a freezer in which the freezing side evaporator 25 is placed (an example of a second environment to be cooled, which is set to a target temperature of 0 ° C. or lower, for example) A cooling-side refrigerant circuit (an example of a second refrigerant circuit) that cools the cooling medium. In this case, the configuration including the refrigeration-side subcooling heat exchanger 31 and the refrigerant pipe 34a is an example of the first cold heat supply circuit. Here, illustration of load-side devices such as showcases, refrigerators, and freezers in stores is omitted.

【0006】次に、この複合型冷媒回路設備の動作につ
いて、説明する。ここで、例えば冷蔵側冷媒回路におい
て、冷蔵側圧縮機1や冷蔵側凝縮器2は、被冷却環境
(ショーケース等)について予め設定されている最大負
荷(最大冷凍能力の一例)を賄えるように設計されてい
るため、ショーケース等に与えられる負荷が減少する
と、前記最大負荷とそのときショーケース等に与えられ
た負荷との差として、余剰の冷凍能力を生じる。
Next, the operation of this composite refrigerant circuit facility will be described. Here, for example, in the refrigerating-side refrigerant circuit, the refrigerating-side compressor 1 and the refrigerating-side condenser 2 can cover the maximum load (an example of the maximum refrigerating capacity) preset for the environment to be cooled (showcase or the like). Since it is designed, when the load applied to the showcase or the like decreases, an excess refrigerating capacity is generated as a difference between the maximum load and the load applied to the showcase or the like at that time.

【0007】この複合型冷媒回路設備によれば、この余
剰の冷凍能力に対応する量の冷媒液が、冷蔵側蓄熱用電
磁弁9、冷蔵側蓄熱用膨張弁10を通じて冷蔵側蓄熱用
蒸発器8に供給され、これによって前記余剰の冷凍能力
が冷熱として蓄熱槽7内の蓄熱剤に蓄冷される。
According to this composite type refrigerant circuit facility, an amount of the refrigerant liquid corresponding to the surplus refrigerating capacity is passed through the refrigerating side heat storage electromagnetic valve 9 and the refrigerating side heat storage expansion valve 10, and the refrigerating side heat storage evaporator 8 is provided. Is supplied to the heat storage agent in the heat storage tank 7 as cold heat.

【0008】一方、冷凍側冷媒回路においては、冷凍側
圧縮機21で圧縮された高温、高圧のガス冷媒は、冷凍
側凝縮器22で液化された後、冷凍側過冷却用の冷媒配
管34を通じて蓄熱槽7内の冷凍側過冷却用熱交換器3
1に供給され蓄熱剤を介して冷却される。これによっ
て、より低い温度に励起された冷媒が冷凍側電磁弁23
等から冷凍側蒸発器25に供給される。
On the other hand, in the refrigeration side refrigerant circuit, the high-temperature, high-pressure gas refrigerant compressed by the refrigeration side compressor 21 is liquefied by the refrigeration side condenser 22 and then passed through the refrigeration side supercooling refrigerant pipe 34. Refrigeration-side supercooling heat exchanger 3 in the heat storage tank 7
1 and is cooled via the heat storage agent. As a result, the refrigerant excited to a lower temperature is cooled by the freezing-side solenoid valve 23.
And the like to the freezing side evaporator 25.

【0009】このように、余剰の冷凍能力として、冷蔵
側冷媒回路から蓄熱槽7の蓄熱剤に蓄えられた冷熱は、
共用される蓄熱剤を介して冷凍側冷媒回路にて消費され
る。従って、冷蔵側蒸発器5での冷媒の蒸発温度の高
い、すなわち運転効率の高い冷蔵側冷媒回路で余剰にな
った冷熱が蓄冷される一方で、この冷熱は冷凍側蒸発器
25での冷媒の蒸発温度の低い、すなわち運転効率の低
い冷凍側冷媒回路で利用されるため、冷蔵側冷媒回路及
び冷凍側冷媒回路を含めた設備全体としての総合的な冷
凍効率を、向上化させることができる。また、1基の蓄
熱槽ですむため、蓄熱槽にかかる構成を簡素化できるも
のであった。
As described above, the cold energy stored in the heat storage agent of the heat storage tank 7 from the refrigerating side refrigerant circuit as the surplus refrigerating capacity is
It is consumed in the refrigeration side refrigerant circuit via the shared heat storage agent. Therefore, while the excess cold heat in the refrigeration side evaporator 5 is stored in the refrigeration side refrigerant circuit having a high evaporation temperature of the refrigerant, that is, the refrigeration side refrigerant circuit having high operation efficiency, this cold heat is stored in the refrigeration side evaporator 25. Since it is used in a refrigeration side refrigerant circuit having a low evaporation temperature, that is, a low operation efficiency, it is possible to improve the overall refrigeration efficiency of the entire facility including the refrigeration side refrigerant circuit and the refrigeration side refrigerant circuit. Further, since only one heat storage tank is required, the structure of the heat storage tank can be simplified.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記した複
合型冷媒回路設備では、ショーケースに収納された被冷
却物の収納量やそのときのケース内温度にかかわらず、
全ての系統に冷熱を放冷するために、放冷運転の途中で
蓄熱剤の蓄冷量が不足することがあった。また、蓄冷量
が不足しないように安全率を大きく取った場合は、大き
な蓄熱槽が必要であった。
However, in the above-described composite refrigerant circuit equipment, regardless of the amount of objects to be cooled stored in the showcase and the temperature in the case at that time,
In some cases, the cold storage amount of the heat storage agent was insufficient during the cold discharge operation in order to discharge cold heat to all systems. In addition, a large heat storage tank was required when a large safety factor was set so that the amount of cold storage would not be insufficient.

【0011】そして、より不足する蓄冷量が大きくなっ
た場合においては、ショーケースに収納された被冷却物
にかかわらず全ての系統の能力が低下して、設備全体の
信頼性を低下させることがあった。
[0011] When the insufficient amount of cold storage becomes larger, the capacity of all the systems is reduced regardless of the objects to be cooled stored in the showcase, and the reliability of the entire equipment is reduced. there were.

【0012】また、必要な系統にのみ熱量を移動させる
ことができず、蓄冷量の効率的な利用ができなかったた
め、蓄熱槽などをさらに小型化することができなかっ
た。
Further, since the amount of heat cannot be transferred only to a necessary system and the amount of cold storage cannot be used efficiently, the heat storage tank and the like cannot be further downsized.

【0013】また、放冷運転中の負荷量を検出して負荷
の大きい系統では放冷運転し、負荷の小さい系統では蓄
冷運転するといった効率的な運転を行えなかったので、
負荷の変動が大きい場合においては蓄冷量の不足を生じ
て、能力不足による被冷却物への損害を被ることがあっ
た。
Further, since the load amount during the cooling operation is detected and the cooling operation is performed in the system with a large load and the cooling operation is performed in the system with a small load, the efficient operation cannot be performed.
When the load fluctuates greatly, the amount of cold storage may be insufficient, and the objects to be cooled may be damaged due to insufficient capacity.

【0014】また、蓄えられた蓄冷量から放冷運転でき
る系統を決定できず、放冷運転時間の途中で蓄熱量が不
足することがあり、能力の安定性に欠けることになって
いた。
Further, since the system capable of performing the cooling operation cannot be determined from the stored cooling storage amount, the amount of heat storage may be insufficient during the cooling operation time, resulting in lack of stability of capacity.

【0015】そして、負荷の変動量が大きい系統や被冷
却物収納量の少ない系統を蓄冷運転優先順位の高い系統
として設定しておくことができず、電力消費効率が低か
った。
Further, it is impossible to set a system having a large load variation amount or a system having a small amount of stored objects to be cooled as a system having a high priority for the cold storage operation, resulting in low power consumption efficiency.

【0016】更に、蓄冷運転中は、負荷量が大きくなっ
ても自動的に蓄冷運転から放冷運転に切換えることがで
きなかったので、急激な負荷の変動があった場合、蓄熱
剤の蓄冷量が絶対的に不足することがあった。
Further, during the cold storage operation, the cold storage operation could not be automatically switched from the cold storage operation to the cold discharge operation even if the load amount became large. There was an absolute shortage.

【0017】以上述べたように、この複合型冷媒回路設
備は、複数の系統間に関して設備全体としての総合的な
制御が行われていなかった。
As described above, in the composite refrigerant circuit equipment, the overall control of the equipment as a whole between a plurality of systems has not been performed.

【0018】本発明は、前記したような問題点を解消す
るためになされたものであって、蓄熱槽に効率よく蓄冷
し、又は一旦蓄冷された冷熱を有効に消費するように、
複数の系統間に関して設備全体としての総合的な高効率
制御を行うことのできる複合型冷内回路設備の制御装置
の提供を目的とするものである。
The present invention has been made to solve the above-mentioned problems, and efficiently stores cold in the heat storage tank or effectively consumes the cold heat once stored.
It is an object of the present invention to provide a control device for a combined cold internal circuit facility capable of performing comprehensive high-efficiency control of the entire facility between a plurality of systems.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するた
め、本発明による複合型冷媒回路設備の制御装置は、以
下のような技術手段を講じたものである。すなわち、請
求項1の発明による複合型冷媒回路設備の制御装置は、
第1の圧縮機、第1の凝縮器、第1の絞り装置、および
第1の被冷却環境を冷却する第1の蒸発器を順次環状に
接続してなる第1の冷媒回路と、第1の冷媒回路に第1
の絞り装置、および第1の蒸発器と並列に蓄熱用絞り装
置、および蓄熱用熱交換器を順次接続してなる蓄熱用冷
媒回路と、蓄熱用熱交換器を介して第1の冷媒回路の最
大冷凍能力と第1の被冷却環境の所要の冷凍能力との差
に対応した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、
第2の圧縮機、第2の凝縮器、第2の絞り装置、および
第1の被冷却環境よりも低温にされる第2の被冷却環境
を冷却する第2の蒸発器を順次環状に接続してなる複数
系統の第2の冷媒回路と、第2の冷媒回路の第2の凝縮
器と第2の蒸発器との間に接続され蓄熱槽の蓄熱剤から
の冷熱を第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路とを有した複合型冷媒回路
設備を制御するものであって、蓄熱槽の蓄熱剤に蓄えら
れた蓄冷量を検出する蓄冷量検出手段と、検出された蓄
冷量と予め設定された所定の蓄冷量とを比較する蓄冷量
判定手段と、第2の冷媒回路の冷熱供給を行うべき系統
に係る優先順位を設定する優先順位設定手段と、設定さ
れた第2の冷媒回路の系統に係る優先順位を記憶する優
先順位記憶手段と、蓄冷量判定手段による比較結果と優
先順位記憶手段に記憶されている優先順位とに基づいて
第1の冷熱供給回路からの冷熱供給を停止すべき系統を
決定する停止系統判定手段と、停止系統判定手段により
決定された系統への冷熱供給を停止する放冷運転停止手
段とを具備してなるものである。
In order to achieve the above object, the control device for a composite type refrigerant circuit facility according to the present invention has the following technical means. That is, the control device for the composite refrigerant circuit facility according to the invention of claim 1 is:
A first refrigerant circuit in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape; First in the refrigerant circuit
Of the first refrigerant circuit and the heat storage refrigerant circuit in which the heat storage expansion device and the heat storage heat exchanger are sequentially connected in parallel with the expansion device and the first evaporator. A heat storage tank containing a heat storage agent that stores cold heat corresponding to the difference between the maximum refrigerating capacity and the required refrigerating capacity of the first cooled environment,
The second compressor, the second condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment are sequentially connected in an annular shape. The second refrigerant circuit connected between the second condenser circuit of the second refrigerant circuit and the second condenser and the second evaporator of the second refrigerant circuit transfers the cold heat from the heat storage agent in the heat storage tank to the second refrigerant circuit. For controlling a composite refrigerant circuit facility having a first cold heat supply circuit having a cold heat supply heat exchanger to be supplied to, and a cold storage amount for detecting a cold storage amount stored in a heat storage agent of a heat storage tank Detecting means, cold storage amount determining means for comparing the detected cool storage amount with a preset predetermined cool storage amount, and priority setting for setting a priority order related to a system in which the cold heat supply of the second refrigerant circuit is to be performed. Means and a priority order storage means for storing the priority order related to the set second refrigerant circuit system. Stop system determination means for determining a system to stop the cold heat supply from the first cold heat supply circuit based on the comparison result by the cool storage amount determination means and the priority order stored in the priority order storage means; And a cooling operation stopping means for stopping the supply of cold heat to the system determined by the means.

【0020】また、請求項2の発明による複合型冷媒回
路制御装置は、第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、第1の冷媒回路に第1の絞り装置、および第1の蒸
発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器を
順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器を
介して第1の冷媒回路の最大冷凍能力と第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路と、第1
の冷媒回路の第1の凝縮器と第1の絞り装置の間に接続
されるとともに流路開閉自在の回路開閉装置を系統毎に
有してなり第1の凝縮器からの冷媒を蓄熱用熱交換器に
迂回させて蓄熱槽の蓄熱剤からの冷熱を第1の冷媒回路
に供給する第2の冷熱供給回路とを有した複合型冷媒回
路設備を制御するものであって、蓄熱槽の蓄熱剤に蓄え
られた蓄冷量を検出する蓄冷量検出手段と、検出された
蓄冷量と予め設定された所定の蓄冷量とを比較する蓄冷
量判定手段と、第1の冷媒回路の冷熱供給を行うべき系
統に係る優先順位を設定する優先順位設定手段と、設定
された第1の冷媒回路の系統に係る優先順位を記憶する
優先順位記憶手段と、蓄冷量判定手段による比較結果と
優先順位記憶手段に記憶されている優先順位とに基づい
て第1の冷媒回路の放冷運転から蓄冷運転に切換えるべ
き系統を決定する蓄冷切換え系統判定手段と、蓄冷切換
え系統判定手段により決定された系統の回路開閉装置を
駆動して当該系統を蓄冷運転に切換える放冷蓄冷運転切
換え手段とを具備してなるものである。
According to a second aspect of the present invention, there is provided a combined refrigerant circuit control device for cooling a first compressor, a first condenser, a first expansion device, and a first cooled environment. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat accumulating heat exchanger and the refrigerant circuit for accumulating heat which is sequentially connected A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit formed by sequentially connecting a second evaporator to be cooled in a ring shape, and a second condenser of the second refrigerant circuit. A first cold supply circuit having a cold feed heat exchanger to be supplied to the second refrigerant circuit cold from the connected storage tank of the heat storage agent between the second evaporator, the first
Is connected between the first condenser and the first expansion device of the refrigerant circuit, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is used as heat storage heat. A heat storage tank for controlling a composite refrigerant circuit facility having a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by diverting to the exchanger. The cool storage amount detecting means for detecting the cool storage amount stored in the agent, the cool storage amount determining means for comparing the detected cool storage amount with a preset predetermined cool storage amount, and the cold heat supply of the first refrigerant circuit are performed. Priority setting means for setting the priority order for the power system, the priority storage means for storing the set priority order for the first refrigerant circuit system, the comparison result by the cool storage amount determination means, and the priority storage means. Based on the priority stored in the first refrigerant circuit Cold storage switching system determination means for determining a system to switch from cold storage operation to cold storage operation, and cold storage cold storage operation switching for driving the circuit switching device of the system determined by the cold storage switching system determination means to switch the system to cold storage operation And means.

【0021】又、請求項3の発明による複合型冷媒回路
制御装置は、第1の圧縮機、第1の凝縮器、第1の絞り
装置、および第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、第1の冷
媒回路に第1の絞り装置、および第1の蒸発器と並列に
蓄熱用絞り装置、および蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、蓄熱用熱交換器を介して第1の
冷媒回路の最大冷凍能力と第1の被冷却環境の所要の冷
凍能力との差に対応した冷熱を蓄冷する蓄熱剤を収容し
た蓄熱槽と、第2の圧縮機、第2の凝縮器、第2の絞り
装置、および第1の被冷却環境よりも低温にされる第2
の被冷却環境を冷却する第2の蒸発器を順次環状に接続
してなる複数系統の第2の冷媒回路と、第2の冷媒回路
の第2の凝縮器と第2の蒸発器との間に接続され蓄熱槽
の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷熱供
給用熱交換器を有する第1の冷熱供給回路とを有した複
合型冷媒回路設備を制御するものであって、蓄熱槽の蓄
熱剤に蓄えられた蓄冷量を検出する蓄冷量検出手段と、
検出された蓄冷量と予め設定された所定の蓄冷量とを比
較する蓄冷量判定手段と、第2の冷媒回路における運転
負荷量を系統毎に検出する系統別負荷量検出手段と、蓄
冷量判定手段による比較結果と系統別負荷量検出手段に
より検出された系統毎の運転負荷量とに基づいて第2の
冷媒回路の冷熱供給を停止すべき系統を決定する停止系
統判定手段と、停止系統判定手段により決定された系統
への冷熱供給を停止する放冷運転停止手段とを具備して
なるものである。
In the composite refrigerant circuit control device according to a third aspect of the present invention, the first compressor, the first condenser, the first expansion device and the first environment for cooling are cooled. A first refrigerant circuit formed by sequentially connecting the evaporators in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device and a heat storage heat exchanger in parallel with the first evaporator. Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment is stored via the heat storage refrigerant circuit that is sequentially connected and the heat storage heat exchanger. A heat storage tank containing a heat storage agent, a second compressor, a second condenser, a second expansion device, and a second cooler than the first environment to be cooled.
Between a second refrigerant circuit of a plurality of systems in which second evaporators that cool the environment to be cooled are sequentially connected in an annular shape, and between the second condenser and the second evaporator of the second refrigerant circuit. And a first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit, the hybrid refrigerant circuit facility being controlled. A cool storage amount detecting means for detecting a cool storage amount stored in the heat storage agent of the heat storage tank,
A cool storage amount determining means for comparing the detected cool storage amount with a preset predetermined cool storage amount, a system-specific load amount detecting means for detecting an operating load amount in the second refrigerant circuit for each system, and a cool storage amount determination Stop system determination means for determining a system in which the cooling heat supply of the second refrigerant circuit should be stopped based on the comparison result by the means and the operating load amount for each system detected by the system-specific load amount detection means, and a stop system determination And a cooling operation stopping means for stopping the supply of cold heat to the system determined by the means.

【0022】そして、請求項4の発明による複合型冷媒
回路制御装置は、第1の圧縮機、第1の凝縮器、第1の
絞り装置、および第1の被冷却環境を冷却する第1の蒸
発器を順次環状に接続してなる複数系統の第1の冷媒回
路と、第1の冷媒回路に第1の絞り装置、および第1の
蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器
を順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器
を介して第1の冷媒回路の最大冷凍能力と第1の被冷却
環境の所要の冷凍能力との差に対応した冷熱を蓄冷する
蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路と、第1
の冷媒回路の第1の凝縮器と第1の絞り装置の間に接続
されるとともに流路開閉自在の回路開閉装置を系統毎に
有してなり第1の凝縮器からの冷媒を蓄熱用熱交換器に
迂回させて蓄熱槽の蓄熱剤からの冷熱を第1の冷媒回路
に供給する第2の冷熱供給回路とを有した複合型冷媒回
路設備を制御するものであって、蓄熱槽の蓄熱剤に蓄え
られた蓄冷量を検出する蓄冷量検出手段と、検出された
蓄冷量と予め設定された所定の蓄冷量とを比較する蓄冷
量判定手段と、第1の冷媒回路における運転負荷量を系
統毎に検出する系統別負荷量検出手段と、蓄冷量判定手
段による比較結果と系統別負荷量検出手段により検出さ
れた系統毎の運転負荷量とに基づいて第1の冷媒回路の
放冷運転から蓄冷運転に切換えるべき系統を決定する蓄
冷切換え系統判定手段と、蓄冷切換え系統判定手段によ
り決定された系統の回路開閉装置を駆動して当該系統を
蓄冷運転に切換える放冷蓄冷運転切換え手段とを具備し
てなるものである。
According to a fourth aspect of the present invention, there is provided a combined refrigerant circuit control device for cooling a first compressor, a first condenser, a first expansion device, and a first cooled environment. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in a ring, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger and the heat storage refrigerant circuit in which the exchangers are sequentially connected. A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second environment to be cooled at a temperature lower than that of the first environment to be cooled. A second refrigerant circuit in which a second evaporator to be cooled is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit. When the first cold supply circuit with supply cold supply heat exchanger cold from the connected storage tank of the heat storage agent in the second refrigerant circuit between the second evaporator, the first
Is connected between the first condenser and the first expansion device of the refrigerant circuit, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is used as heat storage heat. A heat storage tank for controlling a composite refrigerant circuit facility having a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by bypassing the heat storage tank. The cool storage amount detecting means for detecting the cool storage amount stored in the agent, the cool storage amount determining means for comparing the detected cool storage amount with a preset predetermined cool storage amount, and the operating load amount in the first refrigerant circuit Cooling operation of the first refrigerant circuit based on the system-specific load amount detecting means for each system, the comparison result by the cool storage amount determining means, and the operation load amount for each system detected by the system-specific load amount detecting means Cold storage switching system determination to determine the system to be switched from cold storage to cold storage operation Stage and is made by and a cool cold-storage operation switching means for driving the circuit switchgear of the system determined by the cold storage switching system determining means switches the system to the cold-storage operation.

【0023】更に、請求項5の発明による複合型冷媒回
路制御装置は、第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる第1の冷媒回路と、第1の
冷媒回路に第1の絞り装置、および第1の蒸発器と並列
に蓄熱用絞り装置、および蓄熱用熱交換器を順次接続し
てなる蓄熱用冷媒回路と、蓄熱用熱交換器を介して第1
の冷媒回路の最大冷凍能力と第1の被冷却環境の所要の
冷凍能力との差に対応した冷熱を蓄冷する蓄熱剤を収容
した蓄熱槽と、第2の圧縮機、第2の凝縮器、第2の絞
り装置、および第1の被冷却環境よりも低温にされる第
2の被冷却環境を冷却する第2の蒸発器を順次環状に接
続してなる複数系統の第2の冷媒回路と、第2の冷媒回
路の第2の凝縮器と第2の蒸発器との間に接続され蓄熱
槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷熱
供給用熱交換器を有する第1の冷熱供給回路とを有した
複合型冷媒回路設備を制御するものであって、蓄熱槽の
蓄熱剤に蓄えられた蓄冷量を検出する蓄冷量検出手段
と、検出された蓄冷量と予め設定された所定の蓄冷量と
を比較する蓄冷量判定手段と、第2の冷媒回路の各系統
にて消費される放冷量を検出する系統別放冷量検出手段
と、検出された各系統の放冷量を記憶する系統別放冷量
記憶手段と、蓄冷量判定手段による比較結果と系統別放
冷量記憶手段に記憶されている系統毎の放冷量とに基づ
いて第2の冷媒回路の冷熱供給を行うべき系統を決定す
る運転系統判定手段と、運転系統判定手段により決定さ
れた系統への冷熱供給を行う放冷運転制御手段とを具備
してなるものである。
Further, in the composite refrigerant circuit control device according to a fifth aspect of the present invention, the first compressor, the first condenser, the first expansion device, and the first environment for cooling are cooled. A first refrigerant circuit formed by sequentially connecting the evaporators in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device and a heat storage heat exchanger in parallel with the first evaporator. First through the heat storage refrigerant circuit and the heat storage heat exchanger that are sequentially connected.
A heat storage tank containing a heat storage agent for storing cold heat corresponding to the difference between the maximum refrigerating capacity of the refrigerant circuit and the required refrigerating capacity of the first cooled environment, a second compressor, a second condenser, A second expansion device and a second refrigerant circuit of a plurality of systems in which a second evaporator that cools a second cooled environment that is lower in temperature than the first cooled environment is sequentially connected in an annular shape; A heat exchanger for cold heat supply, which is connected between the second condenser and the second evaporator of the second refrigerant circuit, and supplies cold heat from the heat storage agent in the heat storage tank to the second refrigerant circuit. A cool storage amount detecting means for detecting a cool storage amount stored in a heat storage agent of a heat storage tank, and a detected cool storage amount, which are set in advance. Cool storage amount determination means for comparing the stored predetermined cool storage amount, and cooling to be consumed in each system of the second refrigerant circuit Cooling amount detection means by system, cooling amount storage means by system for storing the detected cooling amount of each system, comparison result by the cooling amount determination means and cooling amount storage means by system The operating system determining means for determining the system to which the cold heat of the second refrigerant circuit is to be supplied based on the cooling amount of each system being operated, and the cooling system for supplying the cold heat to the system determined by the operating system determining means. It is provided with a cold operation control means.

【0024】一方、請求項6の発明による複合型冷媒回
路制御装置は、第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、第1の冷媒回路に第1の絞り装置、および第1の蒸
発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器を
順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器を
介して第1の冷媒回路の最大冷凍能力と第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路とを有し
た複合型冷媒回路設備を制御するものであって、蓄熱槽
の蓄熱剤に蓄えられた蓄冷量を検出する蓄冷量検出手段
と、検出された蓄冷量を基に所定の蓄冷運転終了時刻に
おける蓄冷量を予測する蓄冷量算出手段と、予測された
蓄冷運転終了時刻の蓄冷量と予め設定入力された予定蓄
冷量とを比較する蓄冷完了量判定手段と、第1の冷媒回
路の蓄冷運転すべき系統に係る優先順位を設定する優先
順位設定手段と、設定された第1の冷媒回路の系統に係
る優先順位を決定する優先順位記憶手段と、蓄冷完了量
判定手段による比較結果と優先順位記憶手段に記憶され
ている優先順位とに基づいて第1の冷媒回路の蓄冷運転
を停止すべき系統を決定する停止系統判定手段と、停止
系統判定手段により決定された系統の蓄冷運転を停止す
る蓄冷運転制御手段とを具備してなるものである。
On the other hand, in the composite refrigerant circuit control device according to a sixth aspect of the present invention, the first compressor, the first condenser, the first expansion device, and the first environment for cooling are cooled. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat accumulating heat exchanger and the refrigerant circuit for accumulating heat which is sequentially connected A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit formed by sequentially connecting a second evaporator to be cooled in a ring shape, and a second condenser of the second refrigerant circuit. A composite refrigerant circuit having a first cold heat supply circuit having a cold heat supply heat exchanger connected to a second evaporator and supplying cold heat from a heat storage agent in a heat storage tank to the second refrigerant circuit. Cooling amount detecting means for controlling the equipment and detecting the amount of cold storage stored in the heat storage agent of the heat storage tank, and cold storage for predicting the amount of cold storage at a predetermined cold storage operation end time based on the detected amount of cold storage Amount calculating means, a cool storage completion amount determining means for comparing the cool storage amount at the predicted cold storage operation end time with a preset cool storage amount input in advance, and a priority order related to the system for the cold storage operation of the first refrigerant circuit. Is stored in the priority setting means, the priority storage means for determining the priority related to the set first refrigerant circuit system, the comparison result by the cool storage completion amount determination means, and the priority storage means. First cold based on priority and A stop line determining means for determining the system should be stopped cold-storage operation of the circuit is made by and a cold-storage operation control means for stopping the cold-storage operation of the determined by the stop line determining means lineage.

【0025】また、請求項7の発明による複合型冷媒回
路制御装置は、第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、第1の冷媒回路に第1の絞り装置、および第1の蒸
発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器を
順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器を
介して第1の冷媒回路の最大冷凍能力と第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路と、第1
の冷媒回路の第1の凝縮器と第1の絞り装置の間に接続
されるとともに流路開閉自在の回路開閉装置を系統毎に
有してなり第1の凝縮器からの冷媒を蓄熱用熱交換器に
迂回させて蓄熱槽の蓄熱剤からの冷熱を第1の冷媒回路
に供給する第2の冷熱供給回路とを有した複合型冷媒回
路設備を制御するものであって、蓄熱槽の蓄熱剤に蓄え
られた蓄冷量を検出する蓄冷量検出手段と、検出された
蓄冷量を基に所定の蓄冷運転終了時刻における蓄冷量を
予測する蓄冷量算出手段と、予測された蓄冷運転終了時
刻の蓄冷量と予め設定入力された予定蓄冷量とを比較す
る蓄冷完了量判定手段と、第1の冷媒回路の放冷運転す
べき系統に係る優先順位を設定する優先順位設定手段
と、設定された第1の冷媒回路の系統に係る優先順位を
記憶する優先順位記憶手段と、蓄冷完了量判定手段によ
る比較結果と優先順位記憶手段に記憶されている優先順
位とに基づいて第1の冷媒回路の蓄冷運転から放冷運転
に切換えるべき系統を決定する放冷切換え系統判定手段
と、放冷切換え系統判定手段により決定された系統の回
路開閉装置を駆動して当該系統を放冷運転に切換える蓄
冷放冷運転切換え手段とを具備してなるものである。
According to a seventh aspect of the present invention, there is provided a composite refrigerant circuit control device, wherein a first compressor, a first condenser, a first expansion device, and a first cooled environment are cooled. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat accumulating heat exchanger and the refrigerant circuit for accumulating heat which is sequentially connected A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit formed by sequentially connecting a second evaporator to be cooled in a ring shape, and a second condenser of the second refrigerant circuit. A first cold supply circuit having a cold feed heat exchanger to be supplied to the second refrigerant circuit cold from the connected storage tank of the heat storage agent between the second evaporator, the first
Is connected between the first condenser and the first expansion device of the refrigerant circuit, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is used as heat storage heat. A heat storage tank for controlling a composite refrigerant circuit facility having a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by diverting to the exchanger. Cold storage amount detection means for detecting the amount of cold storage stored in the agent, cold storage amount calculation means for predicting the amount of cold storage at the predetermined cold storage operation end time based on the detected amount of cold storage, and the predicted cold storage operation end time The cool storage completion amount determining means for comparing the cool storage amount with the preset cool storage amount that has been input in advance, and the priority setting means for setting the priority order of the system for the cooling operation of the first refrigerant circuit are set. A priority record that stores the priority of the first refrigerant circuit system Means, and a cold discharge switching system for determining a system to be switched from the cold storage operation to the cold discharge operation of the first refrigerant circuit based on the comparison result by the cool storage completion amount determination means and the priority order stored in the priority order storage means. It comprises a determining means and a cold storage cooling operation switching means for driving the circuit switchgear of the system determined by the cooling switching system determining means to switch the system to the cooling operation.

【0026】さらに、請求項8の発明による複合型冷媒
回路制御装置は、第1の圧縮機、第1の凝縮器、第1の
絞り装置、および第1の被冷却環境を冷却する第1の蒸
発器を順次環状に接続してなる複数系統の第1の冷媒回
路と、第1の冷媒回路に第1の絞り装置、および第1の
蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器
を順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器
を介して第1の冷媒回路の最大冷凍能力と第1の被冷却
環境の所要の冷凍能力との差に対応した冷熱を蓄冷する
蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路とを有し
た複合型冷媒回路設備を制御するものであって、蓄熱槽
の蓄熱剤に蓄えられた蓄冷量を検出する蓄冷量検出手段
と、検出された蓄冷量を基に所定の蓄冷運転終了時刻に
おける蓄冷量を予測する蓄冷量算出手段と、予測された
蓄冷運転終了時刻の蓄冷量と予め設定入力された予定蓄
冷量とを比較する蓄冷完了量判定手段と、第1の冷媒回
路における運転負荷量を系統毎に検出する系統別負荷量
検出手段と、蓄冷完了量判定手段による比較結果と系統
別負荷量検出手段により検出された系統毎の運転負荷量
とに基づいて第1の冷媒回路の蓄冷運転を停止すべき系
統を決定する停止系統判定手段と、停止系統判定手段に
より決定された系統の蓄冷運転を停止する蓄冷運転停止
手段とを具備してなるものである。
Further, in the composite refrigerant circuit control device according to the present invention, the first compressor, the first condenser, the first expansion device, and the first environment for cooling are cooled. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat accumulating heat exchanger and the refrigerant circuit for accumulating heat which is sequentially connected A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit in which a second evaporator to be cooled is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit. And a second evaporator, and a first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent in the heat storage tank to the second refrigerant circuit It controls circuit equipment, and predicts the cold storage amount at a predetermined cold storage operation end time based on the cold storage amount detection means for detecting the cold storage amount stored in the heat storage agent of the heat storage tank and the detected cool storage amount. A cool storage amount calculating means, a cool storage completion amount determining means for comparing the cool storage amount at the predicted cold storage operation end time with a preset cool storage amount input in advance, and an operating load amount in the first refrigerant circuit is detected for each system. The cold storage operation of the first refrigerant circuit should be stopped based on the system-specific load amount detection means, the comparison result by the cool storage completion amount determination means, and the operation load amount for each system detected by the system-based load amount detection means. Stop system determination means for determining the system, Those formed by and a cold-storage operation stopping means for stopping the cold-storage operation of the stop line is determined by the determining means lineage.

【0027】そして、請求項9の発明による複合型冷媒
回路制御装置は、第1の圧縮機、第1の凝縮器、第1の
絞り装置、および第1の被冷却環境を冷却する第1の蒸
発器を順次環状に接続してなる複数系統の第1の冷媒回
路と、第1の冷媒回路に第1の絞り装置、および第1の
蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器
を順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器
を介して第1の冷媒回路の最大冷凍能力と第1の被冷却
環境の所要の冷凍能力との差に対応した冷熱を蓄冷する
蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路と、第1
の冷媒回路の第1の凝縮器と第1の絞り装置の間に接続
されるとともに流路開閉自在の回路開閉装置を系統毎に
有してなり第1の凝縮器からの冷媒を蓄熱用熱交換器に
迂回させて蓄熱槽の蓄熱剤からの冷熱を第1の冷媒回路
に供給する第2の冷熱供給回路とを有した複合型冷媒回
路設備を制御するものであって、蓄熱槽の蓄熱剤に蓄え
られた蓄冷量を検出する蓄冷量検出手段と、検出された
蓄冷量を基に所定の蓄冷運転終了時刻における蓄冷量を
予測する蓄冷量算出手段と、予測された蓄冷運転終了時
刻の蓄冷量と予め設定入力された予定蓄冷量とを比較す
る蓄冷完了量判定手段と、第1の冷媒回路における運転
負荷量を系統毎に検出する系統別負荷量検出手段と、蓄
冷完了量判定手段による比較結果と系統別負荷量検出手
段により検出された系統毎の運転負荷量とに基づいて第
1の冷媒回路の蓄冷運転から放冷運転に切換えるべき系
統を決定する放冷切換え系統判定手段と、放冷切換え系
統判定手段により決定された系統の回路開閉装置を駆動
して当該系統を放冷運転に切換える蓄冷放冷運転切換え
手段とを具備してなるものである。
According to a ninth aspect of the present invention, there is provided a combined refrigerant circuit control device, wherein the first compressor, the first condenser, the first expansion device, and the first cooled environment are cooled. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat accumulating heat exchanger and the refrigerant circuit for accumulating heat which is sequentially connected A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second environment to be cooled at a temperature lower than that of the first environment to be cooled. A second refrigerant circuit in which a second evaporator to be cooled is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit. When the first cold supply circuit with supply cold supply heat exchanger cold from the connected storage tank of the heat storage agent in the second refrigerant circuit between the second evaporator, the first
Is connected between the first condenser and the first expansion device of the refrigerant circuit, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is used as heat storage heat. A heat storage tank for controlling a composite refrigerant circuit facility having a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by diverting to the exchanger. Cold storage amount detection means for detecting the amount of cold storage stored in the agent, cold storage amount calculation means for predicting the cold storage amount at a predetermined cold storage operation end time based on the detected cold storage amount, and the predicted cold storage operation end time Cold storage completion amount determination means for comparing the cold storage amount with a preset cold storage amount input in advance, system-specific load amount detection means for detecting the operating load amount in the first refrigerant circuit for each system, and cold storage completion amount determination means It is detected by the comparison result by Cooling switching system determining means for determining the system to be switched from the cold storage operation to the cooling operation of the first refrigerant circuit based on the operating load of each system, and the circuit of the system determined by the cooling switching system determining means It is provided with a cold storage cooling operation switching means for driving the switchgear to switch the system to cooling operation.

【0028】また、請求項10の発明による複合型冷媒
回路制御装置は、第1の圧縮機、第1の凝縮器、第1の
絞り装置、および第1の被冷却環境を冷却する第1の蒸
発器を順次環状に接続してなる複数系統の第1の冷媒回
路と、第1の冷媒回路に第1の絞り装置、および第1の
蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器
を順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器
を介して第1の冷媒回路の最大冷凍能力と第1の被冷却
環境の所要の冷凍能力との差に対応した冷熱を蓄冷する
蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路とを有し
た複合型冷媒回路設備を制御するものであって、蓄熱槽
の蓄熱剤からの放冷量を検出する放冷量検出手段と、検
出された放冷量を積算して一日分の放冷量を算出する放
冷量算出手段と、第1の冷媒回路の蓄冷運転すべき系統
に係る優先順位を設定する優先順位設定手段と、設定さ
れた第1の冷媒回路の系統に係る優先順位を記憶する優
先順位記憶手段と、放冷量算出手段により算出された1
日分の放冷量と優先順位記憶手段に記憶されている優先
順位とに基づいて第1の冷媒回路の蓄冷運転すべき系統
を決定する運転系統判定手段と、運転系統判定手段によ
り決定された系統の蓄冷運転を行う蓄冷運転停止手段と
を具備してなるものである。
According to a tenth aspect of the present invention, there is provided a combined refrigerant circuit control device, comprising: a first compressor, a first condenser, a first expansion device, and a first cooling environment for cooling a first environment. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat accumulating heat exchanger and the refrigerant circuit for accumulating heat which is sequentially connected A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit in which a second evaporator to be cooled is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit. And a second evaporator, and a first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent in the heat storage tank to the second refrigerant circuit This is for controlling the circuit equipment, and the cooling amount detection means for detecting the cooling amount from the heat storage agent in the heat storage tank and the detected cooling amount are integrated to calculate the cooling amount for one day. Cooling amount calculating means, priority setting means for setting a priority order related to the system for the cold storage operation of the first refrigerant circuit, and priority order for storing the priority order related to the set first refrigerant circuit system. 1 calculated by the storage means and the cooling amount calculation means
It is determined by the operating system determining unit and the operating system determining unit that determines the system to perform the cold storage operation of the first refrigerant circuit based on the daily cooling amount and the priority stored in the priority storing unit. It is provided with a cold storage operation stopping means for performing cold storage operation of the system.

【0029】また、請求項11の発明による複合型冷媒
回路制御装置は、第1の圧縮機、第1の凝縮器、第1の
絞り装置、および第1の被冷却環境を冷却する第1の蒸
発器を順次環状に接続してなる複数系統の第1の冷媒回
路と、第1の冷媒回路に第1の絞り装置、および第1の
蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱交換器
を順次接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器
を介して第1の冷媒回路の最大冷凍能力と第1の被冷却
環境の所要の冷凍能力との差に対応した冷熱を蓄冷する
蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、および第1の被冷却環境よりも低
温にされる第2の被冷却環境を冷却する第2の蒸発器を
順次環状に接続してなる第2の冷媒回路と、第2の冷媒
回路の第2の凝縮器と第2の蒸発器との間に接続され蓄
熱槽の蓄熱剤からの冷熱を第2の冷媒回路に供給する冷
熱供給用熱交換器を有する第1の冷熱供給回路とを有し
た複合型冷媒回路設備を制御するものであって、所定の
放冷運転終了時刻における蓄熱剤の蓄冷量を検出する蓄
冷量検出手段と、検出された蓄冷量と予め設定入力され
た予定蓄冷量とを比較して余剰蓄冷量を算出する余剰蓄
冷量算出手段と、蓄冷能力を系統毎に検出する系統別蓄
冷能力検出手段と、余剰蓄冷量算出手段により算出され
た余剰蓄冷量と系統別蓄冷能力検出手段により検出され
た系統毎の蓄冷能力とに基づいて第1の冷媒回路の蓄冷
運転すべき系統を決定する蓄冷運転系統判定手段と、蓄
冷運転系統判定手段により決定された系統の蓄冷運転を
行う蓄冷運転制御手段とを具備してなるものである。
According to the composite refrigerant circuit control device of the present invention, the first compressor, the first condenser, the first expansion device, and the first environment for cooling are cooled. A plurality of systems of first refrigerant circuits in which evaporators are sequentially connected in an annular shape, a first expansion device in the first refrigerant circuit, and a heat storage expansion device in parallel with the first evaporator, and heat storage heat Cooling heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat accumulating heat exchanger and the refrigerant circuit for accumulating heat which is sequentially connected A heat storage tank containing a heat storage agent for storing the heat, a second compressor, a second condenser, a second expansion device, and a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit in which a second evaporator to be cooled is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit. And a second evaporator, and a first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent in the heat storage tank to the second refrigerant circuit It controls the circuit equipment, and compares the cool storage amount detecting means for detecting the cool storage amount of the heat storage agent at the predetermined cooling operation end time with the detected cool storage amount and preset preset cool storage amount. With the excess cold storage amount calculation means for calculating the excess cold storage amount, the system-specific cold storage capacity detection means for detecting the cold storage capacity for each system, and the excess cold storage amount and the system-specific cold storage capacity detection means calculated by the excess cold storage amount calculation means. A cold storage operation system determining unit that determines a system to perform the cool storage operation of the first refrigerant circuit based on the detected cool storage capacity of each system, and a cool storage operation that performs the cool storage operation of the system determined by the cool storage operation system determining unit With control means Is shall.

【0030】[0030]

【作用】本発明においては、優先順位設定手段及び優先
順位記憶手段によって、冷媒回路の複数系統にそれぞれ
優先順位が設定・記憶される。そして、停止系統判定手
段が蓄熱槽の蓄冷量不足を判定した場合、放冷運転停止
手段が優先順位の低い系統から順に放冷運転を停止す
る。従って、蓄冷量が不足した場合においても、優先順
位の高い系統から放冷運転を停止できる。即ち、影響の
大きな被冷却物への冷却能力の低下による損失を最小限
に抑えることができる。これにより、設備全体としての
信頼性が向上する。
In the present invention, the priority order setting means and the priority order storage means set and store the priority order in each of a plurality of refrigerant circuit systems. When the stop system determining means determines that the amount of cold storage in the heat storage tank is insufficient, the cooling operation stopping means stops the cooling operation in order from the system with the lowest priority. Therefore, even when the amount of cold storage is insufficient, the cooling operation can be stopped from the system with a higher priority. That is, it is possible to minimize the loss due to the reduction of the cooling capacity of the object to be cooled which has a great influence. This improves the reliability of the equipment as a whole.

【0031】また、蓄冷量検出手段及び蓄冷量判定手段
により検出・比較された蓄熱槽の蓄冷量をもとにして、
蓄冷量がさらに不足すると判定された場合、蓄冷切換え
系統判定手段は優先順位設定手段及び優先順位記憶手段
により予め設定・記憶されている優先順位の低い系統を
決定し、放冷蓄冷運転切換え手段が当該優先順位の低い
系統を放冷運転から蓄冷運転に切換える。これにより、
不足分の蓄冷量を補充することができる。従って、設備
全体として、より一層の信頼性の向上化が図れる。
Further, based on the cool storage amount of the heat storage tank detected and compared by the cool storage amount detecting means and the cool storage amount determining means,
When it is determined that the cold storage amount is further insufficient, the cold storage switching system determination means determines a system having a low priority set and stored in advance by the priority setting means and the priority storage means, and the cold storage cold storage operation switching means is set. The low priority system is switched from cold storage operation to cold storage operation. This allows
The shortage of cold storage can be supplemented. Therefore, the reliability of the entire equipment can be further improved.

【0032】また、系統別負荷量検出手段により検出さ
れた、各系統の例えば凝縮器入口冷媒温度に対応する運
転負荷量と、蓄冷量検出手段及び蓄冷量判定手段により
検出・比較された蓄熱槽の蓄冷量とをもとにして、蓄冷
量が不足すると予測される場合、停止系統判定手段によ
り決定された例えば運転負荷量の小さな系統から、放冷
運転停止手段は放冷運転を停止させる。従って、必要な
系統のみ放冷運転を行わせることができる。そのため、
蓄冷された冷熱を効率的に利用できる一方、蓄熱槽の容
量などを小さくすることもできる。
Further, the heat storage tank detected and compared by the cold storage amount detection means and the cold storage amount determination means with the operation load amount corresponding to, for example, the condenser inlet refrigerant temperature of each system detected by the system-dependent load amount detection means. When it is predicted that the cold storage amount will be insufficient based on the cold storage amount, the cooling operation stopping means stops the cooling operation from the system determined by the stop system determining means, for example, the system having a small operation load amount. Therefore, the cooling operation can be performed only in the required system. for that reason,
While the stored cold heat can be used efficiently, the capacity of the heat storage tank can be reduced.

【0033】そして、系統別負荷量検出手段により検出
された放冷運転中の系統の運転負荷量と、蓄冷量検出手
段及び蓄冷量判定手段により検出・比較された蓄熱槽の
蓄冷量とをもとにして、蓄冷量が不足すると判断される
場合、放冷蓄冷運転切換え手段は、停止系統判定手段に
より決定された例えば運転負荷量の大きい系統を放冷運
転させ、運転負荷量の小さい系統を蓄冷運転に切換え
る。従って、運転負荷量の変動が大きい場合においても
蓄冷量が補充されて不足が解消され、冷却能力不足によ
る被冷却物への悪影響が極力抑えられる。
The operation load amount of the system during the cold discharge operation detected by the load amount detecting means for each system and the cool storage amount of the heat storage tank detected and compared by the cool storage amount detecting means and the cool storage amount determining means are also included. When it is determined that the cool storage amount is insufficient, the cold storage cool storage operation switching means causes the system having a large operating load amount determined by the stop system determining means to perform the cool operation, and sets the system having a small operating load amount. Switch to cold storage operation. Therefore, even when the operating load varies greatly, the cold storage amount is replenished and the shortage is eliminated, and the adverse effect on the object to be cooled due to the insufficient cooling capacity is suppressed as much as possible.

【0034】更に、例えば蓄冷運転時の冷媒圧力と圧縮
機運転時間をもとに蓄冷量検出手段及び蓄冷量判定手段
により検出・比較された蓄熱槽の蓄冷量と、系統別放冷
量検出手段及び系統別放冷量記憶手段により検出・記憶
された各系統での放冷量とに基づいて、運転系統判定手
段は放冷運転可能な系統を決定する。そして、放冷運転
制御手段は決定された系統へ冷熱を供給する。従って、
所定の放冷運転終了時刻以前に蓄冷量の不足を生じるこ
とがなくなり、冷却能力の供給安定性が向上する。
Further, for example, the cool storage amount of the heat storage tank detected and compared by the cool storage amount detecting means and the cool storage amount determining means based on the refrigerant pressure and the compressor operating time during the cool storage operation, and the cold discharge amount detecting means by system And the operating system determination means determines the system in which the cooling operation is possible based on the cooling amount in each system detected and stored by the system-specific cooling amount storage means. Then, the cooling operation control means supplies cold heat to the determined system. Therefore,
The shortage of the cold storage amount does not occur before the predetermined cooling operation end time, and the supply stability of the cooling capacity is improved.

【0035】一方、蓄冷量検出手段及び蓄冷量算出手段
により検出・算出された所定の蓄冷運転終了時刻におけ
る蓄熱槽の蓄冷量をもとに、所定の蓄冷運転終了時刻以
前に蓄冷運転が完了すると蓄冷完了量判定手段により判
定された場合、停止系統判定手段は、優先順位設定手段
及び優先順位記憶手段により予め設定・記憶されている
蓄冷運転を停止すべき優先順位の低い系統(例えば、運
転負荷量の変動の小さな系統や被冷却物量の多い系統
等)を決定し、蓄冷運転制御手段は決定された優先順位
の低い系統から優先的に蓄冷運転を停止する。従って、
少ない所要電力で蓄冷運転を行うことができる。
On the other hand, when the cool storage operation is completed before the predetermined cool storage operation end time, based on the cool storage amount of the heat storage tank at the predetermined cool storage operation end time detected and calculated by the cool storage amount detection means and the cool storage amount calculation means. When it is determined by the cool storage completion amount determination means, the stop system determination means determines that the system having a low priority order for stopping the cool storage operation preset and stored by the priority setting means and the priority storage means (for example, operating load). A system having a small fluctuation in the amount or a system having a large amount of the object to be cooled is determined, and the cold storage operation control means preferentially stops the cold storage operation from the system having the lower priority. Therefore,
Cold storage operation can be performed with a small amount of required power.

【0036】また、蓄冷量検出手段及び蓄冷量判定手段
により検出・算出された所定の蓄冷運転終了時刻におけ
る蓄熱槽の蓄冷量をもとに、所定の蓄冷運転終了時刻以
前に蓄冷運転が完了すると蓄冷完了量判定手段により判
定された場合、放冷切換え系統判定手段は、優先順位設
定手段及び優先順位記憶手段により予め設定・記憶され
ている放冷運転に切換えるべき優先順位の高い系統を決
定し、蓄冷運転制御手段は決定された優先順位の高い系
統から蓄冷運転を放冷運転に切換える。従って、少ない
所要電力での蓄冷運転と被冷却物の重要度に応じた放冷
運転とを両立させることができる。
Further, when the cold storage operation is completed before the predetermined cold storage operation end time, based on the cold storage amount of the heat storage tank at the predetermined cold storage operation end time detected and calculated by the cold storage amount detection means and the cold storage amount determination means. When it is judged by the cool storage completion amount judging means, the cold discharge switching system judging means decides a system having a high priority to be switched to the cold discharge operation preset and stored by the priority setting means and the priority storing means. The cold storage operation control means switches the cold storage operation to the cold discharge operation from the system having the determined higher priority. Therefore, both the cold storage operation with a small required power and the cooling operation according to the importance of the object to be cooled can be compatible.

【0037】さらに、蓄冷量検出手段及び蓄冷量判定手
段により検出・算出された所定の蓄冷運転終了時刻にお
ける蓄熱槽の蓄冷量をもとに、所定の蓄冷運転終了時刻
以前に蓄冷運転が完了すると蓄冷完了量判定手段により
判定された場合、実運転状態を基に系統別負荷量検出手
段により検出された各系統の運転負荷量に基づいて、停
止系統判定手段は運転負荷量の低い系統を決定し、蓄冷
運転停止手段は決定された運転負荷量の低い系統から優
先して蓄冷運転を停止させる。従って、蓄冷運転効率の
高い系統を用いて蓄冷運転させることができる。これに
より、より少ない所要電力で蓄冷運転を行うことができ
る。
Further, when the cool storage operation is completed before the predetermined cool storage operation end time based on the cool storage amount of the heat storage tank at the predetermined cool storage operation end time detected and calculated by the cool storage amount detection means and the cool storage amount determination means. When it is judged by the cool storage completion amount judging means, the stopped grid judging means determines a grid with a low running load based on the running load of each grid detected by the grid load detecting means based on the actual operating state. Then, the cold storage operation stopping means preferentially stops the cold storage operation from the system having the determined low operation load amount. Therefore, the cold storage operation can be performed by using the system having the high cold storage operation efficiency. Thereby, the cold storage operation can be performed with less required power.

【0038】そして、蓄冷量検出手段及び蓄冷量判定手
段により検出・算出された所定の蓄冷運転終了時刻にお
ける蓄熱槽の蓄冷量をもとに、所定の蓄冷運転終了時刻
以前に蓄冷運転が完了すると蓄冷完了量判定手段により
判定された場合、実運転状態を基に系統別負荷量検出手
段により検出された各系統の運転負荷量に基づいて、放
冷切換え系統判定手段は蓄冷運転から放冷運転に切換え
るべき系統を決定し、蓄冷放冷運転切換え手段は決定さ
れた系統を放冷運転に切換える。即ち、運転負荷量の高
い系統は、蓄冷運転中であっても自動的に蓄冷運転から
放冷運転に切換えられる。従って、急激な運転負荷量の
変動にも対処することができ、設備全体としての信頼性
が向上する。
When the cool storage operation is completed before the predetermined cool storage operation end time based on the cool storage amount of the heat storage tank at the predetermined cool storage operation end time detected and calculated by the cool storage amount detection means and the cool storage amount determination means. When it is judged by the cool storage completion amount judging means, based on the actual operation state, the cold load switching system judging means, based on the operating load amount of each system detected by the load detecting means for each system, changes from the cool storage operation to the cool operation. The system to be switched to is determined, and the cold storage / cooling operation switching means switches the determined system to the cooling operation. That is, a system having a high operation load amount is automatically switched from the cold storage operation to the cold discharge operation even during the cold storage operation. Therefore, it is possible to cope with a sudden change in the operation load amount, and the reliability of the entire equipment is improved.

【0039】また、放冷量検出手段及び放冷量算出手段
により検出・算出された1日分の放冷量と、優先順位設
定手段及び優先順位記憶手段により予め設定・記憶され
た優先順位とに基づいて、運転系統判定手段は、例えば
算出された1日分の放冷量に見合った蓄冷能力を有する
系統のみを決定し、蓄冷運転制御手段は決定された系統
を蓄冷運転させる。これにより、蓄冷運転時間を必要最
小限に抑えることができる。
Further, the cooling amount for one day detected and calculated by the cooling amount detecting means and the cooling amount calculating means, and the priority order preset and stored by the priority setting means and the priority storing means. On the basis of the above, the operating system determination means determines only the system having the cold storage capacity corresponding to the calculated amount of cold radiation for one day, and the cold storage operation control means performs the cold storage operation of the determined system. As a result, the cold storage operation time can be suppressed to the necessary minimum.

【0040】また、蓄冷量検出手段及び余剰蓄冷量判定
手段により算出された所定の放冷運転終了時刻における
余剰蓄冷量と、系統別蓄冷能力検出手段により検出され
た系統毎の蓄冷能力とに基づいて、蓄冷運転系統判定手
段は蓄冷運転すべき系統を決定する。そして、蓄冷運転
制御手段は決定された系統を蓄冷運転させ、例えば余剰
蓄冷量に見合った蓄冷能力を有する系統は蓄冷運転させ
ないでおく。それにより、必要以上に蓄冷運転を行わな
くてもすむので、蓄冷運転時間を必要最小限に抑えるこ
とができる。
Further, based on the surplus cool storage amount at the predetermined end time of the cooling operation calculated by the cool storage amount detecting means and the surplus cool storage amount determining means, and the cool storage capacity for each system detected by the system-specific cool storage capacity detecting means. Then, the cold storage operation system determination means determines the system for the cold storage operation. Then, the cool storage operation control unit causes the determined system to perform the cool storage operation, and for example, does not allow the system having the cool storage capacity corresponding to the surplus cool storage amount to perform the cool storage operation. Thereby, it is not necessary to perform the cold storage operation more than necessary, and thus the cold storage operation time can be suppressed to the necessary minimum.

【0041】[0041]

【実施例】以下に述べる実施例の内、実施例1〜実施例
5は、蓄えた蓄冷量を有効に使用するための制御に関す
るものである。 実施例1.図1はこの発明の実施例1〜11による複合
型冷媒回路設備及びその制御装置を示す構成図である。
図において、各実施例の複合型冷媒回路設備は、図26
に示した複合型冷媒回路設備と同様の構成であり、図2
6の複合型冷媒回路設備と共通する構成要素には同符号
を付してそれらの説明は省略する。但し、以下に述べる
各実施例の複合型冷媒回路設備には、特に、これらの設
備全体を効率よく制御するための制御装置38が設けら
れている。この制御装置38は、図示せぬ中央演算処理
装置(CPU)を中心として構成され、後述する実施例
1〜11において本発明に係る制御装置の各手段の機能
を実現する処理フロー(各処理ステップは、それぞれS
101,S102,S103,・・・で示される)をプ
ログラムデータとして記憶しておくメモリ(図示せず)
等を備えている。
[Embodiments] Of the embodiments described below, Embodiments 1 to 5 relate to control for effectively using the stored cold storage amount. Example 1. FIG. 1 is a block diagram showing a composite refrigerant circuit facility and its control device according to Examples 1 to 11 of the invention.
In the figure, the composite refrigerant circuit equipment of each example is shown in FIG.
It has the same configuration as the composite refrigerant circuit equipment shown in FIG.
The same components as those of the complex refrigerant circuit facility of No. 6 are denoted by the same reference numerals, and the description thereof will be omitted. However, the composite refrigerant circuit equipment of each of the embodiments described below is provided with a control device 38 for efficiently controlling the entire equipment. The control device 38 is mainly configured by a central processing unit (CPU) (not shown), and a processing flow (each processing step) for realizing the function of each means of the control device according to the present invention in Examples 1 to 11 described later. Respectively S
(Denoted by 101, S102, S103, ...) As program data (not shown)
And so on.

【0042】図2はこの発明の実施例1による複合型冷
媒回路設備の制御装置の制御系統を示すブロック構成図
である。図において、47は蓄熱槽7内の水(蓄熱剤)
の水位、差圧などを検出するセンサー、41はセンサー
47からの信号を受けて蓄熱槽7に蓄えられた蓄冷量を
演算・検出する蓄冷量検出手段、42は予め設定された
放冷運転終了時間までに蓄冷量が不足するか否かの判定
を行って、不足すると判断した場合に信号を出力する蓄
冷量判定手段、43は接続された系統ごとに、収納した
被冷却物の重要度にしたがって冷熱供給を行うべき優先
順位を設定する優先順位設定手段、44は設定された優
先順位を記憶する優先順位記憶手段、45は蓄冷量判定
手段42からの信号を受けて優先順位記憶手段44から
記憶されている優先順位を読みだし、冷熱供給(放冷運
転)を停止するべき系統を決定してその結果を出力する
停止系統判定手段、46は停止系統判定手段45からの
出力を受けて系統別に停止信号を出力する放冷運転停止
手段、48は停止信号を受けて該当する系統の放冷運転
を停止させる放冷運転停止アクチュエータである。
FIG. 2 is a block diagram showing the control system of the controller for the composite refrigerant circuit equipment according to the first embodiment of the present invention. In the figure, 47 is water (heat storage agent) in the heat storage tank 7.
Sensor for detecting the water level, differential pressure, etc., 41 is a cool storage amount detecting means for calculating and detecting the cool storage amount stored in the heat storage tank 7 in response to the signal from the sensor 47, and 42 is a preset cooling operation end The cool storage amount determination means for determining whether or not the cool storage amount is insufficient by the time and outputting a signal when it is determined to be insufficient, 43 is the importance of the stored object to be cooled for each connected system. Therefore, 44 is a priority order setting means for setting a priority order for supplying cold heat, 44 is a priority order storage means for storing the set priority order, and 45 is a priority order storage means 44 in response to a signal from the cool storage amount determination means 42. Stop system determination means for reading the stored priority order, determining the system to stop the cold heat supply (cooling operation), and outputting the result, 46 is a system which receives the output from the stop system determination means 45 Cooling operation stop means for outputting a stop signal to, 48 is a cooling operation stop actuator for stopping the cooling operation of the system in question receives a stop signal.

【0043】次に、この実施例における制御装置38の
動作について、図3によって説明する。センサー47に
よって検出された信号は、蓄冷量検出手段41により蓄
冷量SP に変換演算される(S101)。次に、演算さ
れた蓄冷量SP と予め設定された設定蓄冷量SS とが蓄
冷量判定手段42により比較される(S102)。ここ
で、設定蓄冷量SS <蓄冷量SP の場合には、ステップ
S101〜S102の動作が繰り返される。一方、設定
蓄冷量SS >蓄冷量SP の場合には、ステップS103
において、系統を停止すべき停止レベル(優先順位)P
P が決定される。この停止レベルPP は3段階〜5段階
の数字で出力される。ステップS104では、記憶され
た系統別の設定値(優先順位)PSn(n(系統数)=1
〜nの整数)が優先順位記憶手段44から読み出され
る。ステップS105では、読み出された系統別の設定
値PSnとステップS103で決定された停止レベルPP
とが停止系統判定手段45によりPS1から順次比較され
る。このとき、系統別の設定値PSn<停止レベルPP
あれば、ステップS108で次の系統が指示されて、ス
テップS104〜S105の処理が繰り返される。逆
に、系統別の設定値PSn>停止レベルPP であれば、該
当する系統の放冷運転の停止処理がステップS106で
放冷運転停止手段46及び放冷運転停止アクチュエータ
48により実行される。これは演算対象となる系統がn
系統になるまで繰り返される(S107)。尚、系統別
の設定値PSnの設定・記憶動作は、図4に示したステッ
プS111〜S113の通りである。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. The signal detected by the sensor 47 is converted into the cool storage amount S P by the cool storage amount detecting means 41 (S101). Next, the calculated cool storage amount S P and the preset set cool storage amount S S are compared by the cool storage amount determination means 42 (S102). Here, when the set cool storage amount S S <the cool storage amount S P , the operations of steps S101 to S102 are repeated. On the other hand, if the set cool storage amount S S > the cool storage amount S P , step S103
At the stop level (priority level) P
P is determined. This stop level P P is output as a number of 3 to 5 levels. In step S104, the stored set value (priority order) P Sn (n (number of systems) = 1 for each system)
~ N) is read from the priority storage means 44. In step S105, the read set value P Sn for each system and the stop level P P determined in step S103
And Ps1 are sequentially compared by the stop system determination means 45. At this time, if the system-specific set value P Sn <stop level P P , the next system is instructed in step S108, and the processes of steps S104 to S105 are repeated. On the contrary, if the set value P Sn for each system> the stop level P P , the process for stopping the cooling operation of the corresponding system is executed by the cooling operation stopping means 46 and the cooling operation stopping actuator 48 in step S106. . This is because the system to be operated is n
This is repeated until the system is established (S107). The setting / storing operation of the set value P Sn for each system is as in steps S111 to S113 shown in FIG.

【0044】これによって、放冷量が大きくなったため
蓄冷量が不足した場合においても優先順位の低い系統か
ら順に放冷運転を停止するようにしたので、重要な被冷
却物を内蔵したショーケースなどにおいて温度の上昇に
よる損失を被ることがなく、システム全体の効率が向上
する。また、安全率を見込んで蓄冷量を余分に大きくす
る必要が無くなり、蓄熱槽を必要最小限に小さくするこ
とができる。
As a result, even if the amount of cold storage becomes large and the amount of cold storage becomes insufficient, the cooling operation is stopped in order from the system with the lowest priority. There is no loss due to a rise in temperature, and the efficiency of the entire system is improved. In addition, it is not necessary to increase the amount of cold storage in consideration of the safety factor, and the heat storage tank can be made as small as necessary.

【0045】実施例2.図5はこの発明の実施例2によ
る複合型冷媒回路設備の制御装置の制御系統を示すブロ
ック構成図である。図において、47は蓄熱槽7内の水
の水位,差圧などを検出するセンサー、41はセンサー
47からの信号を受けて蓄熱槽7に蓄えられた蓄冷量を
演算・検出する蓄冷量検出手段、42は予め設定された
放冷運転終了時間までに蓄冷量が不足するか否かの判定
を行って、不足すると判断した場合に信号を出力する蓄
冷量判定手段、49は接続された系統ごとに、収納した
被冷却物の重要度にしたがって冷熱供給すべき優先順位
を設定する優先順位設定手段、50は設定された優先順
位を記憶する優先順位記憶手段、51は蓄冷量判定手段
42からの信号を受けて優先順位記憶手段50から記憶
された優先順位を読みだし、放冷運転から蓄冷運転に切
換えるべき系統を決定してその結果を出力する蓄冷切換
え系統判定手段、52は蓄冷切換え系統判定手段51か
らの出力を受けて系統別に切換え信号を出力する放冷蓄
冷運転切換え手段、53は切換え信号を受けて該当する
系統を放冷運転から蓄冷運転に切換える運転切換えアク
チュエータである。
Example 2. FIG. 5 is a block diagram showing a control system of a control device for a composite refrigerant circuit facility according to a second embodiment of the present invention. In the figure, 47 is a sensor for detecting the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detecting means for calculating and detecting the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. , 42 determines whether or not the amount of cold storage is insufficient by a preset cooling operation end time, and outputs a signal when it is determined that the amount of cold storage is insufficient, 49 is each connected system Further, the priority setting means for setting the priority for supplying cold heat in accordance with the importance of the stored objects to be cooled, 50 is a priority storage means for storing the set priority, and 51 is a cool storage amount judging means 42. In response to the signal, the stored priority order is read out from the priority order storage means 50, a system for determining a cold storage switching system for determining a system to be switched from the cold storage operation to the cold storage operation and outputting the result, and 52 is a cold storage switching system. Cool cold-storage operation switching means for outputting a switching signal according to a system in response to an output from the determination means 51, 53 is a driving switching actuator for switching the cold-storage operation from left to cool driving system in question receives a switching signal.

【0046】次に、この実施例における制御装置38の
動作について、図6によって説明する。まず、センサー
47によって検出された信号は蓄冷量検出手段41によ
り蓄冷量SP に変換演算される(S121)。次に、演
算された蓄冷量SP と予め設定された設定蓄冷量SS
が蓄冷量判定手段42により比較される(S122)。
このとき、設定蓄冷量SS <蓄冷量SP の場合には、ス
テップS121〜S122の動作が繰り返される。一
方、設定蓄冷量SS >蓄冷量SP の場合には、ステップ
S123において、切換えレベルPP が決定される。こ
の切換えレベルPPは3段階〜5段階の数字で出力され
る。ステップS124では、記憶された系統別の設定値
Snが優先順位記憶手段50から読み出される。ステッ
プS125では、読み出された系統別の設定値PSnとス
テップS123で決定された切換えレベルPP とが蓄冷
切換え系統判定手段51によりPS1から順次比較され
る。ここで、系統別の設定値PSn<切換えレベルPP
あれば、ステップS128で次の系統が指示されて、ス
テップS124〜S125の処理が繰り返される。一
方、系統別の設定値PSn>切換えレベルPP であれば、
該当する系統の放冷運転から蓄冷運転へ切換える処理が
ステップS126で放冷蓄冷運転切換え手段52及び運
転切換えアクチュエータ53により実行される。これは
演算対象となる系統がn系統になるまで繰り返される
(S126)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. First, the signal detected by the sensor 47 is converted into the cool storage amount S P by the cool storage amount detecting means 41 (S121). Next, the calculated cool storage amount S P and the preset set cool storage amount S S are compared by the cool storage amount determination means 42 (S122).
At this time, when the set cool storage amount S S <the cool storage amount S P , the operations of steps S121 to S122 are repeated. On the other hand, when the set cool storage amount S S > the cool storage amount S P , the switching level P P is determined in step S123. This switching level P P is output in the number of 3 to 5 levels. In step S124, the stored set value P Sn for each system is read from the priority order storage unit 50. In step S125, the read set value P Sn for each system and the switching level P P determined in step S123 are sequentially compared from P S1 by the cold storage switching system determining means 51. If the system-specific set value P Sn <the switching level P P , the next system is designated in step S128, and the processes of steps S124 to S125 are repeated. On the other hand, if the set value P Sn for each system> the switching level P P ,
In step S126, the processing for switching the cold storage operation of the corresponding system to the cold storage operation is executed by the cold storage operation of the cold storage operation 52 and the operation switching actuator 53. This is repeated until the number of systems to be calculated becomes n (S126).

【0047】これによって、放冷量が大きくなったため
蓄冷量が不足した場合においても優先順位の低い系統か
ら順に蓄冷運転を切換えるようにしたので、重要な被冷
却物を内蔵したショーケースなどにおいて温度の上昇に
よる損失を被ることがなく、システム全体の効率が向上
する。また、安全率を見込んで蓄冷量を余分に大きくす
る必要が無くなり、蓄熱槽を必要最小限に小さくするこ
とができる。
As a result, even when the amount of cold storage becomes large and the amount of cold storage becomes insufficient, the cold storage operation is switched in order from the system with the lowest priority, so that the temperature in a showcase containing an important object to be cooled can be improved. The efficiency of the entire system is improved without incurring the loss due to the increase of. In addition, it is not necessary to increase the amount of cold storage in consideration of the safety factor, and the heat storage tank can be made as small as necessary.

【0048】実施例3.図7はこの発明の実施例3によ
る複合型冷媒回路設備の制御装置の制御系統を示すブロ
ック構成図である。図において、47は蓄熱槽7内の水
の水位,差圧などを検出するセンサー、41はセンサー
47からの信号を受けて蓄熱槽7に蓄えられた蓄冷量を
演算・検出する蓄冷量検出手段、42は予め設定された
放冷運転終了時間までに蓄冷量が不足するか否かの判定
を行って、不足すると判断した場合に信号を出力する蓄
冷量判定手段、54は接続された系統ごとに、圧力,温
度などを検出するセンサー、55はセンサー54からの
信号を基に系統ごとの負荷量を演算・検出する系統別負
荷量検出手段、56は蓄冷量判定手段42からの信号を
受けて系統別負荷量検出手段55からの信号により、停
止すべき系統を決定してその結果を出力する停止系統判
定手段、57は停止系統判定手段56からの出力を受け
て系統別に停止信号を出力する放冷運転停止手段、48
は停止信号を受けて該当する系統の放冷運転を停止させ
る放冷運転停止アクチュエータである。
Example 3. FIG. 7 is a block diagram showing a control system of a control device for composite refrigerant circuit equipment according to a third embodiment of the present invention. In the figure, 47 is a sensor for detecting the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detecting means for calculating and detecting the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. , 42 determines whether or not the cool storage amount is insufficient by a preset cooling operation end time, and outputs a signal when it is determined that the cool storage amount is insufficient, and 54 is for each connected system Further, 55 is a sensor for detecting pressure, temperature, etc., 55 is a system-specific load amount detecting means for calculating and detecting a load amount for each system based on a signal from the sensor 54, and 56 is a signal from the cool storage amount judging means 42. A stop system determination unit that determines a system to be stopped and outputs the result based on a signal from the system-dependent load amount detection unit 55, and 57 receives the output from the stop system determination unit 56 and outputs a stop signal for each system. Freezing luck Stop means, 48
Is a cooling operation stop actuator that receives a stop signal and stops the cooling operation of the corresponding system.

【0049】次に、この実施例における制御装置38の
動作について図8によって説明する。センサー47によ
って検出された信号は蓄冷量検出手段41により蓄冷量
Pに変換演算され(S131)、図外の系統毎負荷量
記憶手段に記憶される。次に、演算された蓄冷量SP
予め設定された設定蓄冷量SS とが蓄冷量判定手段42
により比較される(S132)。そして、設定蓄冷量S
S <蓄冷量SP の場合には、ステップS131〜S13
2の動作が繰り返される。一方、設定蓄冷量SS >蓄冷
量SP の場合には、ステップS133において停止すべ
き系統に係る停止レベルPP が決定される。この停止レ
ベルPP は3段階〜5段階の数字で出力される。ステッ
プS134では、各系統別に負荷量LP1〜LPnがそれぞ
れ読み出される。ステップS135では、読み出された
系統別の負荷量LPnとステップS133で決定された停
止レベルPP とが停止系統判定手段56により順次比較
される。このとき、系統別の負荷量LPn<停止レベルP
P であれば、ステップS138で次の系統が指示され
て、ステップS134〜S135の処理が繰り返され
る。逆に、系統別の負荷量LPn>停止レベルPP であれ
ば、該当する系統の放冷運転を停止させる処理が放冷運
転停止手段57及び放冷運転停止アクチュエータ48に
よりステップS136で実行される。これは演算対象と
なる系統がn系統になるまで繰り返される(S13
7)。尚、系統毎の負荷量LPnの検出・記憶動作は、図
9に示したステップS131a〜S133aの通りであ
る。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. The signal detected by the sensor 47 is converted into the cool storage amount S P by the cool storage amount detecting means 41 (S131) and stored in the system-specific load amount storing means (not shown). Next, the calculated cool storage amount S P and the preset set cool storage amount S S are the cool storage amount determining means 42.
Are compared with each other (S132). And the set cold storage amount S
If S <Cold storage amount S P , steps S131 to S13
The operation of 2 is repeated. On the other hand, when the set cool storage amount S S > the cool storage amount S P , the stop level P P related to the system to be stopped is determined in step S133. This stop level P P is output as a number of 3 to 5 levels. In step S134, the load amounts L P1 to L Pn are read for each system. In step S135, the read load amount L Pn for each system and the stop level P P determined in step S133 are sequentially compared by the stop system determining means 56. At this time, load amount L Pn for each system <stop level P
If it is P , the next system is designated in step S138, and the processes of steps S134 to S135 are repeated. On the contrary, if the load amount L Pn for each system> the stop level P P , the process of stopping the cooling operation of the corresponding system is executed by the cooling operation stopping means 57 and the cooling operation stopping actuator 48 in step S136. It This is repeated until the number of systems to be operated becomes n (S13).
7). The operation of detecting and storing the load amount L Pn for each system is as in steps S131a to S133a shown in FIG.

【0050】これによって、放冷量が大きくなったため
蓄冷量が不足した場合においても負荷量の小さな系統か
ら放冷運転が停止されるため、必要とするショーケース
にのみ蓄冷量を利用することができるので、システム全
体の効率が向上する。また、安全率を見込んで蓄冷量を
余分に大きくする必要が無くなり、蓄熱槽を必要最小限
に小さくすることができる。尚、負荷量を求めるための
運転状態の検出要素としては、例えば圧縮機の冷媒吸入
圧力、圧縮機の運転時間、負荷側の電磁弁の開閉出力、
又は各系統の冷媒蒸発圧力と設定圧力との圧力差等を用
いることができる。
As a result, even if the amount of cold storage becomes large and the amount of cold storage becomes insufficient, the cold storage operation is stopped from the system with a small load, so that the amount of cold storage can be used only for the required showcase. Therefore, the efficiency of the entire system is improved. In addition, it is not necessary to increase the amount of cold storage in consideration of the safety factor, and the heat storage tank can be made as small as necessary. The operating state detection elements for obtaining the load amount include, for example, the refrigerant suction pressure of the compressor, the operating time of the compressor, the opening / closing output of the load side solenoid valve,
Alternatively, the pressure difference between the refrigerant evaporation pressure and the set pressure of each system can be used.

【0051】実施例4.図10はこの発明の実施例4に
よる複合型冷媒回路設備の制御装置の制御系統を示すブ
ロック構成図である。図において、47は蓄熱槽7内の
水の水位,差圧などを検出するセンサー、41はセンサ
ー47からの信号を受けて蓄熱槽7に蓄えられた蓄冷量
を演算・検出する蓄冷量検出手段、42は予め設定され
た放冷運転終了時間までに蓄冷量が不足するか否かの判
定を行って、不足すると判断した場合に信号を出力する
蓄冷量判定手段、54は接続された系統ごとの圧力,温
度などを検出スルセンサー、60はセンサー54からの
信号を基に系統ごとの負荷量を演算・検出する系統別負
荷量検出手段、61は蓄冷量判定手段42からの信号を
受けて優先順位記憶手段(図外)から読み出された蓄冷
運転へ切り換えるべき優先順位と系統別負荷量検出手段
60により検出された系統ごとの負荷量との比較結果に
基づいて、放冷運転から蓄冷運転に切換えるべき系統を
決定してその結果を出力する蓄冷切換え系統判定手段、
62は蓄冷切換え系統判定手段61からの出力を受けて
系統別に切換え信号を出力する放冷蓄冷運転切換え手
段、53は切換え信号を受けて該当する系統を放冷運転
から蓄冷運転に切換える運転切換えアクチュエータであ
る。
Example 4. FIG. 10 is a block diagram showing a control system of a control device for composite refrigerant circuit equipment according to Embodiment 4 of the present invention. In the figure, 47 is a sensor for detecting the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detecting means for calculating and detecting the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. , 42 determines whether or not the cool storage amount is insufficient by a preset cooling operation end time, and outputs a signal when it is determined that the cool storage amount is insufficient, and 54 is for each connected system For detecting the pressure and temperature of the system, 60 is a load amount detection means for each system that calculates and detects the load amount for each system based on the signal from the sensor 54, and 61 is a signal from the cold storage amount determination means 42 Based on the comparison result of the priority order to switch to the cold storage operation read from the priority order storage means (not shown) and the load amount for each system detected by the system-specific load amount detection means 60, the cold discharge operation to the cool storage operation is performed. Switch to operation Cold storage switching system determining means for outputting the result to determine the Rubeki system,
Reference numeral 62 denotes a cold-cooling cold storage operation switching means that receives an output from the cold storage switching system determination means 61 and outputs a switching signal for each system, and 53 is an operation switching actuator that receives the switching signal and switches the corresponding system from cold-cooling operation to cold storage operation. Is.

【0052】次に、この実施例における制御装置38の
動作について、図11によって説明する。センサー47
によって検出された信号は蓄冷量検出手段41により蓄
冷量SPに変換演算される(S141)。次に、演算さ
れた蓄冷量SP と予め設定された設定蓄冷量SS とが蓄
冷量判定手段42により比較される(S142)。ここ
で、設定蓄冷量SS <蓄冷量SP の場合には、ステップ
S141〜S142の動作が繰り返される。逆に、設定
蓄冷量SS >蓄冷量SP の場合には、ステップS143
において切換えレベルPP が決定される。切換えレベル
P は3段階〜5段階の数字で出力される。ステップS
144では、各系統別に負荷量LP1〜LPnが読み出され
る。ステップS145では、読み出された系統別の負荷
量LPnとステップS143で決定された切換えレベルP
P とが蓄冷切換え系統判定手段61により比較される。
このとき、各系統別の負荷量LPn<切換え判定レベルP
P であれば、ステップS148で次の系統が指示され
て、ステップS144〜S145の処理が繰り返され
る。一方、系統別の負荷量LPn>切換え判定レベルPP
であれば、該当する系統を放冷運転から蓄冷運転へ切換
える処理が放冷蓄冷運転切換え手段62及び運転切換え
アクチュエータ53によりステップS146で実行され
る。これは演算対象となる系統がn系統になるまで繰り
返される(S147)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. Sensor 47
The signal detected by is stored in the cold storage amount detecting means 41 and converted into the cold storage amount S P (S141). Next, the calculated cool storage amount S P and the preset cool storage amount S S are compared by the cool storage amount determining means 42 (S142). Here, when the set cool storage amount S S <the cool storage amount S P , the operations of steps S141 to S142 are repeated. On the contrary, if the set cool storage amount S S > the cool storage amount S P , step S143
At, the switching level P P is determined. The switching level P P is output as a number of 3 to 5 levels. Step S
At 144, the load amounts L P1 to L Pn are read for each system. In step S145, the read load amount L Pn for each system and the switching level P determined in step S143.
P is compared with P by the cold storage switching system determination means 61.
At this time, load amount L Pn for each system <switching determination level P
If it is P , the next system is instructed in step S148, and the processes of steps S144 to S145 are repeated. On the other hand, load amount L Pn for each system> switching determination level P P
If so, the process of switching the cold storage operation from the cold storage operation to the cold storage operation is executed by the cold storage operation in the cold storage operation 62 and the operation switching actuator 53 in step S146. This is repeated until the number of systems to be calculated becomes n (S147).

【0053】これによって、放冷量が大きくなったため
蓄冷量が不足した場合においても負荷量の少ない系統を
蓄冷運転に切換えるようにしたので、重要な被冷却物を
内蔵したショーケースなどにおいて温度の上昇による損
失を被ることがなく、システム全体の効率が向上する。
また、安全率を見込んで蓄冷量を余分に大きくする必要
が無くなり、蓄熱槽を必要最小限に小さくすることがで
きる。
As a result, even if the amount of cold storage becomes large and the amount of cold storage becomes insufficient, the system with a small load is switched to the cold storage operation. The efficiency of the entire system is improved without incurring the loss due to the rise.
In addition, it is not necessary to increase the amount of cold storage in consideration of the safety factor, and the heat storage tank can be made as small as necessary.

【0054】実施例5.図12はこの発明の実施例5に
よる複合型冷媒回路設備の制御装置の制御系統を示すブ
ロック構成図である。図において、47は蓄熱槽7内の
水の水位,差圧などを検出するセンサー、41はセンサ
ー47からの信号を受けて蓄熱槽7に蓄えられた蓄冷量
を演算・検出する蓄冷量検出手段、42は予め設定され
た蓄冷運転終了時間における蓄冷量を算出する蓄冷量判
定手段、63は接続された系統ごとの放冷量を設定入力
する系統別放冷量設定手段、64は設定された系統ごと
の放冷量を記憶する系統別放冷量記憶手段、65は蓄冷
量判定手段42からの信号と系統別放冷量記憶手段64
から読み出された系統ごとの放冷量とに基づいて、冷熱
供給(放冷運転)を行うべき系統を決定してその結果を
出力する運転系統判定手段、66は運転系統判定手段6
5からの出力を受けて系統別放冷運転切換え信号を出力
する放冷運転制御手段、58は運転切換え信号を受けて
該当する系統の放冷運転を開始させる運転開始アクチュ
エータである。尚、系統ごとの放冷量は、予め設定・記
憶されたものでなくても、例えば系統ごとに設けた系統
別放冷検出手段(図外)により検出されたものをそのま
ま演算に用いてもよい。
Example 5. FIG. 12 is a block diagram showing the control system of the control device for the composite refrigerant circuit facility according to the fifth embodiment of the present invention. In the figure, 47 is a sensor for detecting the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detecting means for calculating and detecting the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. , 42 is a cool storage amount determining means for calculating a cool storage amount at a preset cool storage operation end time, 63 is a system-specific cool discharge amount setting means for setting and inputting a cool discharge amount for each connected system, and 64 is set. A system-specific cooling amount storage means for storing the cooling amount for each system, 65 is a signal from the cold storage amount determining means 42 and a system-specific cooling amount storage device 64
Based on the cooling amount for each system read from the system, an operating system determining unit that determines a system to perform cold heat supply (cooling operation) and outputs the result, 66 is an operating system determining unit 6
Cooling operation control means for receiving the output from 5 and outputting a cooling operation switching signal for each system, and 58 is an operation start actuator for receiving the operation switching signal and starting the cooling operation of the corresponding system. Note that the cooling amount for each system is not necessarily set and stored in advance, but for example, the amount detected by the system-specific cooling detection means (not shown) provided for each system can be used as it is for calculation. Good.

【0055】次に、この実施例における制御装置38の
動作について、図13によって説明する。センサー47
によって検出された信号は蓄冷量検出手段41により蓄
冷量SPに変換演算される(S151)。次に、予め設
定された系統別放冷量Dn (n=1から順に)が系統別
放冷量記憶手段64から読み出され(S152)、それ
ぞれ総和されて総放冷量DT が求められる(S15
3)。ステップS154,S155,S156は、系統
別放冷量D1 〜Dn を任意数(n=1から順に)に組み
合わせたときの総放冷量DT が、蓄冷量SP に最も近く
なる組み合わせの系統を選択し決定する処理手順であ
る。ステップS157では、ステップS156からの判
断結果を受けて、放冷運転制御手段66及び運転開始ア
クチュエータ58により、該当する系統の放冷運転が開
始される。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. Sensor 47
The signal detected by is stored in the cool storage amount detecting means 41 and converted into the cool storage amount S P (S151). Next, the preset system-specific cooling amount D n (in order from n = 1) is read from the system-specific cooling amount storage means 64 (S152) and summed up to obtain the total cooling amount D T. (S15
3). Steps S154, S155, and S156 are a combination in which the total cooling amount D T when combining the system-specific cooling amounts D 1 to D n with an arbitrary number (in order from n = 1) is closest to the cool storage amount S P. This is a processing procedure for selecting and determining the system. In step S157, in response to the determination result from step S156, the cooling operation control means 66 and the operation start actuator 58 start the cooling operation of the relevant system.

【0056】これによって、蓄冷量が不足した場合にお
いても放冷運転時間の途中で蓄冷量の不足を生じるよう
なことがないので、重要な被冷却物を内蔵したショーケ
ースなどにおいて温度の上昇による損失を被ることがな
く、システム全体の効率が上昇する。また、安全率を見
込んで蓄冷量を余分に大きくする必要が無くなり、蓄熱
槽を必要最小限にすることができる。
As a result, even if the amount of cold storage is insufficient, the amount of cold storage does not become insufficient during the cooling operation time, so that the temperature rises in a showcase containing an important object to be cooled. It does not suffer losses and increases the efficiency of the overall system. In addition, it is not necessary to increase the amount of cold storage in consideration of the safety factor, and the heat storage tank can be minimized.

【0057】一方、実施例6〜実施例11は、蓄熱剤に
冷熱を効率よく蓄えるための制御に関するものである。 実施例6.図14はこの発明の実施例6による複合型冷
媒回路設備の制御装置の制御系統を示すブロック構成図
である。図において、47は蓄熱槽7内の水の水位,差
圧などを検出するセンサー、41はセンサー47からの
信号を受けて蓄熱槽7に蓄えられた蓄冷量を演算・検出
する蓄冷量検出手段、70は蓄冷量の変化量を算出する
蓄冷量算出手段、71は所定の運転時間内に所定の蓄冷
量を得ることができるかどうかについて判断を行い、所
定の蓄冷量を得ることができる場合にはその結果を出力
する蓄冷完了量判定手段、72は接続された系統ごと
に、蓄冷運転を行うべき優先順位を設定する優先順位設
定手段、73は設定された優先順位を記憶する優先順位
記憶手段、74は蓄冷完了量判定手段71からの信号を
受けて優先順位記憶手段73から記憶された優先順位を
読みだし、蓄冷運転を停止すべき系統を決定してその結
果を出力する停止系統判定手段、75は停止系統判定手
段74からの出力を受けて系統別に蓄冷運転の停止信号
を出力する蓄冷運転制御手段、76は停止信号を受けて
該当する系統の蓄冷運転を停止させる蓄冷運転停止アク
チュエータである。
On the other hand, Examples 6 to 11 relate to control for efficiently storing cold heat in the heat storage agent. Example 6. FIG. 14 is a block diagram showing a control system of a control device for a composite refrigerant circuit facility according to a sixth embodiment of the present invention. In the figure, 47 is a sensor for detecting the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detecting means for calculating and detecting the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. , 70 is a cool storage amount calculating means for calculating the amount of change in the cool storage amount, 71 is a judgment as to whether or not a predetermined cool storage amount can be obtained within a predetermined operating time, and when a predetermined cool storage amount can be obtained. Is a means for determining the amount of completed cold storage for outputting the result, 72 is a priority setting means for setting a priority for performing the cold storage operation for each connected system, and 73 is a priority storage for storing the set priority. A means, 74 receives the signal from the cool storage completion amount determining means 71, reads the priority order stored in the priority order storing means 73, determines a system for stopping the cold storage operation, and outputs the result. hand Reference numeral 75 denotes a cool storage operation control means for receiving an output from the stop system determining means 74 and outputting a stop signal for the cool storage operation for each system, and 76 denotes a cool storage operation stop actuator for receiving the stop signal and stopping the cool storage operation of the corresponding system. is there.

【0058】次に、この実施例における制御装置38の
動作について、図15によって説明する。センサー47
によって検出された信号は蓄冷量検出手段41により蓄
冷量に変換演算される(S161)。次に、単位時間当
たりの蓄冷量の変化が蓄冷量算出手段70により演算さ
れこの変化から蓄冷運転終了時間(例えば翌日の8時)
における蓄冷量S2 が予測量として算出される(S16
2)。そして、算出された蓄冷量S2 と蓄冷運転終了時
間における予定蓄冷量S1 とが蓄冷完了量判定手段71
により比較され(S163)、S2 ≦S1 の場合にはス
テップS161〜S163の動作が繰り返される。逆
に、S2 >S1 の場合には、ステップS164において
系統別の優先順位が優先順位記憶手段73から読み出さ
れる。そして、蓄冷運転を停止すべき系統が停止系統判
定手段74により決定され停止信号が出力されて(S1
65)、該当する系統の蓄冷運転が蓄冷運転制御手段7
5及び蓄冷運転停止アクチュエータ76により停止され
る(S166)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. Sensor 47
The signal detected by is stored in the cool storage amount detecting means 41 and converted into a cool storage amount (S161). Next, a change in the cool storage amount per unit time is calculated by the cool storage amount calculating means 70, and from this change, the cool storage operation end time (for example, 8:00 on the next day).
The amount S 2 of cold storage in is calculated as a predicted amount (S16
2). Then, the calculated cool storage amount S 2 and the planned cool storage amount S 1 at the end time of the cool storage operation are used to determine the cool storage completion amount 71.
Are compared by (S163), in the case of S 2 ≦ S 1 operating step S161~S163 are repeated. On the contrary, when S 2 > S 1 , the priority order for each system is read from the priority order storage unit 73 in step S164. Then, the system for stopping the cold storage operation is determined by the stop system determining means 74, and a stop signal is output (S1).
65), the cold storage operation of the corresponding system is the cold storage operation control means 7
5 and the cold storage operation stop actuator 76 are stopped (S166).

【0059】このように、蓄冷量が予測量よりも多くな
った場合においては、蓄冷運転効率の低い系統から順に
蓄冷運転を停止させ、効率の高い系統によって蓄冷運転
させるようにしたので、システム全体の効率が良くな
る。
As described above, when the cold storage amount becomes larger than the predicted amount, the cold storage operation is stopped in order from the system having the lowest cold storage operation efficiency, and the cold storage operation is performed by the system having the highest efficiency. Will be more efficient.

【0060】実施例7.図16はこの発明の実施例7に
よる複合型冷媒回路設備の制御装置の制御系統を示すブ
ロック構成図である。同図において、47は蓄熱槽7内
の水の水位,差圧などを検出するセンサー、41はセン
サー47からの信号を受けて蓄熱槽7に蓄えられた蓄冷
量を演算・検出する蓄冷量検出手段、70は蓄冷量の変
化量を算出する蓄冷量算出手段、71は所定の運転時間
内に所定の蓄冷量を得ることができるかどうかについて
判断を行い、所定の蓄冷量を得ることができる場合には
その判断結果を出力する蓄冷完了量判定手段、72は接
続された系統ごとに、蓄冷運転を行う優先順位を設定す
る優先順位設定手段、73は設定された系統ごとの優先
順位を記憶する優先順位記憶手段、82は蓄冷完了量判
定手段71からの信号を受けて優先順位記憶手段73か
ら記憶された優先順位を読みだし、蓄冷運転から放冷運
転に切換える系統を決定してその結果を出力する放冷切
換え系統判定手段、83は放冷切換え系統判定手段82
からの出力を受けて系統別に蓄冷運転から放冷運転への
切換え信号を出力する蓄冷放冷運転切換え手段、84は
切換え信号を受けて該当する系統を蓄冷運転から放冷運
転へ切換える蓄冷放冷切換えアクチュエータである。
Example 7. FIG. 16 is a block diagram showing the control system of the control device for the composite refrigerant circuit facility according to the seventh embodiment of the present invention. In the figure, 47 is a sensor that detects the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detection that calculates and detects the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. A means, 70 is a cool storage amount calculating means for calculating the amount of change in the cool storage amount, and 71 is a judgment as to whether or not a predetermined cool storage amount can be obtained within a predetermined operating time, and a predetermined cool storage amount can be obtained. In this case, the cool storage completion amount determining means for outputting the determination result, 72 is a priority setting means for setting the priority order for performing the cool storage operation for each connected system, and 73 is storing the set priority order for each system. Upon receiving a signal from the cool storage completion amount determination means 71, the priority storage means 82 reads out the priority stored in the priority storage means 73, and determines the system for switching from the cold storage operation to the cold discharge operation. To Forces cool switching system determining unit, 83 cool the switching system determining means 82
Cooling storage cooling operation switching means for outputting a switching signal from the cold storage operation to the cooling operation for each system in response to an output from the system, and 84 is a cooling storage cooling operation for receiving the switching signal and switching the corresponding system from the cold storage operation to the cooling operation It is a switching actuator.

【0061】次に、この実施例における制御装置38の
動作について、図17によって説明する。まず、センサ
ー47によって検出された信号が41により蓄冷量に変
換演算される(S171)。続いて、単位時間当たりの
蓄冷量の変化から蓄冷運転終了時間(例えば、翌日の8
時)における蓄冷量S2 が蓄冷完了量判定手段70によ
り算出される(S172)。そして、算出された蓄冷量
2 と蓄冷運転終了時間における予定蓄冷量S1 とが蓄
冷完了量判定手段71により比較され(S173)、S
2 ≦S1 の場合にはステップS171〜S173の動作
が繰り返される。逆に、S2 >S1 の場合には、ステッ
プS174において系統別の優先順位が優先順位記憶手
段73から読み出される。そして、ステップS175に
て蓄冷運転から放冷運転に切り換えるべき系統が放冷切
換え系統判定手段82により決定され切換え信号が出力
されて、該当する系統が蓄冷放冷運転切換え手段83及
び蓄冷放冷切換えアクチュエータ84により蓄冷運転か
ら放冷運転に切り換えられる(S176)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. First, the signal detected by the sensor 47 is converted into the amount of cold storage by 41 (S171). Then, from the change in the cool storage amount per unit time, the cool storage operation end time (for example,
The cold storage amount S 2 at the time) is calculated by the cold storage completion amount determination means 70 (S172). Then, the calculated cool storage amount S 2 and the planned cool storage amount S 1 at the end time of the cool storage operation are compared by the cool storage completion amount determining means 71 (S173), S
When 2 ≦ S 1 , the operations of steps S171 to S173 are repeated. On the contrary, when S 2 > S 1 , the priority order for each system is read from the priority order storage unit 73 in step S174. Then, in step S175, the system to be switched from the cold storage operation to the cold discharge operation is determined by the cold discharge switching system determination means 82 and a switching signal is output, and the corresponding system is cooled cold discharge operation switching means 83 and cold storage cold discharge switching. The cold storage operation is switched to the cold discharge operation by the actuator 84 (S176).

【0062】このように、蓄冷量が多くなった場合にお
いては、優先順位の高い系統から順に放冷運転に切り換
えるようにしたので、システム全体の効率が良くなる。
In this way, when the amount of cold storage increases, the cooling operation is switched from the system having the highest priority to the cooling operation in order, so that the efficiency of the entire system is improved.

【0063】実施例8.図18はこの発明の実施例8に
よる複合型冷媒回路設備の制御装置の制御系統を示すブ
ロック構成図である。同図において、47は蓄熱槽7内
の水の水位,差圧などを検出するセンサー、41はセン
サー47からの信号を受けて蓄熱槽7に蓄えられた蓄冷
量を演算・検出する蓄冷量検出手段、70は蓄冷量の変
化量を算出する蓄冷量算出手段、71は所定の運転時間
内に所定の蓄冷量を得ることができるかどうかについて
の判断を行い、所定の蓄冷量を得ることができる場合に
はその判断結果を出力する蓄冷完了量判定手段、54は
接続された系統ごとの冷媒圧力,温度などの運転状態を
検出するセンサー、77はセンサー54からの信号によ
り系統ごとの負荷量を算出する系統別負荷量検出手段、
78は蓄冷完了量判定手段71からの信号を受けて系統
別負荷量検出手段77からの出力に基づいて、蓄冷運転
を停止させるべき系統を決定してその結果を出力する停
止系統判定手段、79は停止系統判定手段78からの出
力を受けて系統別に蓄冷運転の停止信号を出力する蓄冷
運転停止手段、80は停止信号を受けて該当する系統の
蓄冷運転を停止させる蓄冷運転停止アクチュエータであ
る。
Example 8. FIG. 18 is a block diagram showing the control system of the control device for the composite refrigerant circuit facility according to the eighth embodiment of the present invention. In the figure, 47 is a sensor that detects the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detection that calculates and detects the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. A means, 70 is a cool storage amount calculation means for calculating the amount of change in the cool storage amount, and 71 is a judgment as to whether or not a predetermined cool storage amount can be obtained within a predetermined operating time, and a predetermined cool storage amount can be obtained. If possible, the cool storage completion amount determination means for outputting the determination result, 54 is a sensor for detecting an operating state such as refrigerant pressure and temperature of each connected system, and 77 is a load amount for each system based on a signal from the sensor 54. Load amount detection means for each system for calculating
Reference numeral 78 is a stop system determining means for receiving a signal from the cool storage completion amount determining means 71, determining a system for stopping the cool storage operation based on the output from the system load amount detecting means 77, and outputting the result, 79 Is a cold storage operation stopping means for receiving the output from the stop system determining means 78 and outputting a stop signal for the cold storage operation for each system, and 80 is a cold storage operation stop actuator for receiving the stop signal and stopping the cold storage operation of the corresponding system.

【0064】次に、この実施例における制御装置38の
動作について、図19によって説明する。センサー47
によって検出された信号は蓄冷量検出手段41により蓄
冷量に変換演算される(S181)。つぎに、単位時間
当たりの蓄冷量の変化から蓄冷運転終了時間(例えば、
翌日の8時)における蓄冷量S2 が蓄冷量算出手段70
により算出される(S182)。そして、算出された蓄
冷量S2 と蓄冷運転終了時間における予定蓄冷量S1
が蓄冷完了量判定手段71により比較され(S18
3)、S2 ≦S1 の場合にはステップS181〜S18
3の動作が繰り返される。逆に、S2 >S1 の場合に
は、ステップS184において系統別の蓄冷運転負荷量
が系統別負荷量検出手段77により検出される。ステッ
プS185では、蓄冷運転を負荷量の大きいものから順
に停止すべき系統が停止系統判定手段78により判定さ
れて蓄冷運転停止信号が出力され、該当する系統の蓄冷
運転が蓄冷運転停止手段79及び蓄冷運転停止アクチュ
エータ80により停止される(S186)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. Sensor 47
The signal detected by is stored in the cold storage amount detecting means 41 and converted into a cold storage amount (S181). Next, from the change in the cool storage amount per unit time, the cool storage operation end time (for example,
The cool storage amount S 2 at 8:00 on the next day is the cool storage amount calculating means 70.
Is calculated by (S182). Then, the calculated cool storage amount S 2 and the planned cool storage amount S 1 at the end time of the cool storage operation are compared by the cool storage completion amount determination means 71 (S18).
3), if S 2 ≦ S 1 , steps S181 to S18
The operation of 3 is repeated. On the contrary, if S 2 > S 1 , then the cold storage operation load amount for each system is detected by the load amount detecting means for each system 77 in step S184. In step S185, the system in which the cold storage operation is to be stopped in order from the largest load is determined by the stop system determination means 78, and the cold storage operation stop signal is output. The operation stop actuator 80 stops the operation (S186).

【0065】このように、蓄冷量が多くなった場合、即
ち所定の蓄冷運転時間内に蓄冷が完了するような場合に
おいては、例えば冷媒蒸発圧力の高い系統から蓄冷運転
を停止させることができるので、システム全体の効率が
良くなる。
In this way, when the cool storage amount becomes large, that is, when the cool storage is completed within a predetermined cool storage operation time, the cool storage operation can be stopped from the system having a high refrigerant evaporation pressure, for example. , The efficiency of the whole system is improved.

【0066】実施例9.図20はこの発明の実施例9に
よる複合型冷媒回路設備の制御装置の制御系統を示すブ
ロック構成図である。同図において、47は蓄熱槽7内
の水の水位,差圧などを検出するセンサー、41はセン
サー47からの信号を受けて蓄熱槽7に蓄えられた蓄冷
量を演算・検出する蓄冷量検出手段、70は蓄冷量の変
化量を算出する蓄冷量算出手段、71は所定の運転時間
内に所定の蓄冷量を得ることができるかどうかについて
判断を行い、所定の蓄冷量を得ることができる場合には
その判断結果を出力する蓄冷完了量判定手段、54は接
続された系統ごとの冷媒圧力,温度などの運転状態を検
出するセンサー、77はセンサー54からの信号により
系統ごとの負荷量を算出する系統別負荷量検出手段、8
1は蓄冷完了量判定手段71からの信号を受けて系統別
負荷量検出手段77からの出力に基づいて、蓄冷運転か
ら放冷運転に切換えるべき系統を決定しその結果を出力
する放冷切換え系統判定手段、83は放冷切換え系統判
定手段81からの出力を受けて系統別に蓄冷運転から放
冷運転への切換え信号を出力する蓄冷放冷運転切換え手
段、84は切換え信号を受けて該当する系統の蓄冷運転
から放冷運転に切換える蓄冷放冷切換えアクチュエータ
である。
Example 9. FIG. 20 is a block diagram showing the control system of the control device for the composite refrigerant circuit facility according to Embodiment 9 of the present invention. In the figure, 47 is a sensor that detects the water level, differential pressure, etc. of the water in the heat storage tank 7, and 41 is a cool storage amount detection that calculates and detects the cool storage amount stored in the heat storage tank 7 in response to a signal from the sensor 47. A means, 70 is a cool storage amount calculating means for calculating the amount of change in the cool storage amount, and 71 is a judgment as to whether or not a predetermined cool storage amount can be obtained within a predetermined operating time, and a predetermined cool storage amount can be obtained. In this case, the cool storage completion amount determining means for outputting the determination result, 54 is a sensor for detecting an operating state such as refrigerant pressure and temperature of each connected system, and 77 is a load amount for each system based on a signal from the sensor 54. Load amount detection means for each system to be calculated, 8
Reference numeral 1 denotes a cold radiation switching system that receives a signal from the cold storage completion amount determination means 71 and determines the system to switch from the cold storage operation to the cold radiation operation based on the output from the system load amount detection means 77 and outputs the result. Determining means, 83 receives the output from the cold radiation switching system determining means 81, and outputs a switching signal from the cold storage operation to the cold radiation operation for each system. 2 is a cold storage / cooling switching actuator for switching from the cold storage operation to the cold storage operation.

【0067】次に、この実施例における制御装置38の
動作について、図21によって説明する。先ず、センサ
ー47によって検出された信号は蓄冷量検出手段41に
より蓄冷量に変換演算される(S191)。つぎに、単
位時間当たりの蓄冷量の変化から蓄冷運転終了時間(例
えば、翌日の8時)における蓄冷量S2 が蓄冷量算出手
段70により算出される(S192)。そして、算出さ
れた蓄冷量S2 と蓄冷運転終了時間における予定蓄冷量
1 とが蓄冷完了量判定手段71により比較され(S1
93)、S2 ≦S1 の場合にはステップS191〜S1
93の動作が繰り返される。逆に、S2 >S1 の場合に
はステップS194において系統別の蓄冷運転負荷量が
系統別負荷量検出手段77により検出され、ステップS
195にて蓄冷運転を負荷量の大きいものから順に停止
すべき系統が放冷切換え系統判定手段81により決定さ
れて運転切換え信号が出力され、該当する系統が蓄冷放
冷運転切換え手段83及び蓄冷放冷切換えアクチュエー
タ84により蓄冷運転から放冷運転に切換えられる(S
196)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. First, the signal detected by the sensor 47 is converted and calculated by the cold storage amount detecting means 41 into the cold storage amount (S191). Next, the cool storage amount S 2 at the cool storage operation end time (for example, 8:00 on the next day) is calculated by the cool storage amount calculation means 70 from the change in the cool storage amount per unit time (S192). Then, the calculated cool storage amount S 2 and the planned cool storage amount S 1 at the end time of the cool storage operation are compared by the cool storage completion amount determination means 71 (S 1
93), if S 2 ≦ S 1 , steps S191 to S1
The operation of 93 is repeated. On the contrary, when S 2 > S 1 , in step S 194, the system-by-system cold storage operation load amount is detected by the system-by-system load amount detection means 77, and step S
At 195, the systems for which the cold storage operation should be stopped in order from the largest load are determined by the cold radiation switching system determination means 81 and an operation switching signal is output, and the corresponding systems are cooled cold radiation operation switching means 83 and cold energy storage. The cold switching actuator 84 switches the cold storage operation to the cold discharge operation (S
196).

【0068】このように、蓄冷運転中であっても蓄冷が
完了すると判断される場合には、負荷量の高い系統(例
えば、冷媒蒸発圧力の高い系統)を放冷運転に切り換え
ることができるので、システム全体の効率が向上する。
As described above, when it is determined that the cold storage is completed even during the cold storage operation, the system with a high load amount (for example, the system with a high refrigerant evaporation pressure) can be switched to the cooling operation. , The efficiency of the entire system is improved.

【0069】実施例10.図22はこの発明の実施例1
0による複合型冷媒回路設備の制御装置の制御系統を示
すブロック構成図である。同図において、85は系統ご
との冷媒温度,圧力,運転時間などの運転状態を検出す
るセンサー、86はセンサー85からの信号を受けて放
冷量を演算・検出する放冷量検出手段、87は放冷量検
出手段86により検出された放冷量を積算して1日分の
放冷量を算出する放冷量算出手段、88は接続された系
統ごとに、蓄冷運転を行うべき優先順位を設定する優先
順位設定手段、89は設定された優先順位を記憶する優
先順位記憶手段、90は放冷量選出手段87からの信号
を受けて優先順位記憶手段89から優先順位を読みだ
し、蓄冷運転を行うべき系統を決定してその結果を出力
する運転系統判定手段、91は運転系統判定手段90か
らの出力を受けて系統別に蓄冷運転信号を出力する蓄冷
運転制御手段、92は蓄冷運転信号を受けて蓄冷運転を
開始する蓄冷運転アクチュエータである。
Example 10. 22 shows a first embodiment of the present invention.
It is a block block diagram which shows the control system of the control apparatus of the composite type refrigerant circuit installation by 0. In the figure, 85 is a sensor for detecting the operating conditions such as the refrigerant temperature, pressure, and operating time for each system, 86 is a cooling amount detecting means for calculating and detecting the cooling amount in response to a signal from the sensor 85, 87 Is a cooling amount calculation means for calculating the cooling amount for one day by integrating the cooling amount detected by the cooling amount detecting means 86, and 88 is a priority order for performing the cold storage operation for each connected system. Priority setting means for setting the priority order, 89 is a priority order storage means for storing the set priority order, and 90 is a signal from the cooling amount selection means 87 to read the priority order from the priority order storage means 89 to store the cold storage. An operation system determining unit that determines a system to be operated and outputs the result, 91 is a cold storage operation control unit that receives an output from the operation system determining unit 90 and outputs a cold storage operation signal for each system, and 92 is a cold storage operation signal Received and accumulated A cold-storage operation actuator starts operation.

【0070】次に、この実施例における制御装置38の
動作について、図23によって説明する。センサー85
によって検出された信号は放冷量検出手段86により放
冷量に変換演算される(S201)。続いて、放冷量検
出手段87は単位時間当たりの放冷量を積算して放冷運
転終了時間(例えば、22時)における放冷量を算出す
る(S202)。これらの処理は放冷運転終了時間にな
るまで繰り返される(S201〜S203)。ステップ
S204では、系統別の優先順位が優先順位記憶手段8
9から読み出され、蓄冷運転すべき系統が運転系統判定
手段90により決定され蓄冷運転開始信号が出力される
(S205)。蓄冷運転開始信号を受けて該当する系統
の蓄冷運転が蓄冷運転制御手段91及び蓄冷運転アクチ
ュエータ92により開始される(S206)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. Sensor 85
The signal detected by is calculated and converted by the cooling amount detecting means 86 into the cooling amount (S201). Subsequently, the cooling amount detecting means 87 integrates the cooling amount per unit time to calculate the cooling amount at the cooling operation end time (for example, 22:00) (S202). These processes are repeated until the cooling operation end time is reached (S201 to S203). In step S204, the priority for each system is the priority storage means 8
9, the system for the cold storage operation is determined by the operation system determination means 90, and the cold storage operation start signal is output (S205). Upon receiving the cold storage operation start signal, the cold storage operation of the corresponding system is started by the cold storage operation control means 91 and the cold storage operation actuator 92 (S206).

【0071】このように、放冷量が少なくなった場合に
おいて、優先順位の高い系統のみ蓄冷運転を行うことが
できるので、システム全体の効率が良くなる。
As described above, when the amount of cooling air is reduced, the cold storage operation can be performed only in the system having a high priority, so that the efficiency of the entire system is improved.

【0072】実施例11.図24はこの発明の実施例1
1による複合型冷媒回路設備の制御装置の制御系統を示
すブロック構成図である。同図において、47は蓄熱槽
7内の水の水位,差圧などを検出するセンサー、93は
センサー47からの信号を受けて蓄熱槽7の蓄冷量を演
算・検出する蓄冷量検出手段、94は蓄冷量検出手段9
3により検出された蓄冷量と予め算出された所定の蓄冷
量とを比較して余剰蓄冷量を算出する余剰蓄冷量算出手
段、95は系統ごとの冷媒圧力,温度などの運転状態を
検出するセンサー、96はセンサー95からの信号を基
に、接続された系統ごとの蓄冷能力を算出する系統別蓄
冷能力検出手段、97は余剰蓄冷量算出手段94及び系
統別蓄冷能力検出手段96からの出力結果より蓄冷運転
すべき系統を決定する蓄冷運転系統判定手段、98は蓄
冷系統判定手段からの出力を受けて系統別に蓄冷運転信
号を出力する蓄冷運転制御手段、99は蓄冷運転信号を
受けて該当する系統の蓄冷運転を開始する蓄冷運転アク
チュエータである。
Example 11. FIG. 24 shows the first embodiment of the present invention.
2 is a block configuration diagram showing a control system of the control device for the composite refrigerant circuit facility according to FIG. 1. FIG. In the figure, 47 is a sensor for detecting the water level and differential pressure of the water in the heat storage tank 7, 93 is a cool storage amount detecting means for calculating and detecting the cool storage amount of the heat storage tank 7 in response to a signal from the sensor 47, 94 Is a storage amount detecting means 9
3. A surplus cold storage amount calculating means for calculating a surplus cold storage amount by comparing the cool storage amount detected in 3 with a predetermined cool storage amount calculated in advance, and a sensor 95 for detecting an operating state such as refrigerant pressure and temperature for each system. , 96 are system-specific cold storage capacity detecting means for calculating the cool storage capacity of each connected system based on the signal from the sensor 95, and 97 are output results from the surplus cold storage amount calculating means 94 and the system-specific cold storage capacity detecting means 96. A cold storage operation system determination means for determining a system to perform a cool storage operation more, a reference numeral 98 denotes a cold storage operation control means for receiving an output from the cold storage system determination means and outputting a cool storage operation signal for each system, and a reference numeral 99 corresponds to a cold storage operation signal. It is a cold storage operation actuator that starts cold storage operation of the system.

【0073】次に、この実施例における制御装置38の
動作について、図25によって説明する。先ず、センサ
ー95によって検出された系統ごとの信号が系統別蓄冷
能力検出手段96により系統ごとの蓄冷能力D1 〜Dn
に変換演算される(S211)。次に、算出された系統
ごとの蓄冷能力D1 〜Dn は系統別蓄冷能力検出手段9
6の記憶手段(図外)にいったん記憶される(S21
2)。そして、全系統の蓄冷能力が変換演算されると
(S213)、蓄熱槽7の蓄冷量SP がセンサー47及
び蓄冷量検出手段93により検出され(S214)、予
め設定された必要蓄熱量SS と検出された蓄冷量SP
の差となる余剰蓄冷量S0 が余剰蓄冷量算出手段94に
より算出される(S215)。続いて、余剰蓄冷量S0
に最も近い蓄冷能力D1 〜Dn の総和が算出される(S
216)。そして、蓄冷能力D1 〜Dn の総和に対応し
た系統の組み合わせが蓄冷運転系統判定手段97により
決定され、決定された組み合わせの系統にそれぞれ蓄冷
運転信号が出力される(S217)。該当する組み合わ
せの系統が蓄冷運転制御手段98及び蓄冷運転アクチュ
エータ99によりそれぞれ蓄冷運転開始される(S21
8)。
Next, the operation of the control device 38 in this embodiment will be described with reference to FIG. First, the system-based cold storage capacity detection means 96 receives the signals for each system detected by the sensor 95 and stores the cold storage capacity D 1 to D n for each system.
Is converted to (S211). Next, the calculated cool storage capacity D 1 to D n for each system is the cool storage capacity detection means 9 for each system.
It is temporarily stored in the storage means 6 (not shown) (S21).
2). Then, when the cool storage capacity of all the systems is converted and calculated (S213), the cool storage amount S P of the heat storage tank 7 is detected by the sensor 47 and the cool storage amount detecting means 93 (S214), and the preset required heat storage amount S S is set. The surplus cool storage amount S 0, which is the difference between the detected cool storage amount S P and the stored cool storage amount S P, is calculated by the surplus cool storage amount calculation means 94 (S215). Then, the surplus cold storage amount S 0
The sum total of the cold storage capacities D 1 to D n closest to is calculated (S
216). Then, a combination of systems corresponding to the sum of the cold storage capacities D 1 to D n is determined by the cold storage operation system determination means 97, and a cold storage operation signal is output to each of the systems of the determined combination (S217). The cold storage operation control means 98 and the cold storage operation actuator 99 start the cold storage operation of the corresponding combination system (S21).
8).

【0074】このように、放冷量が少なくなった場合に
おいて、最小限蓄冷に必要な系統のみを運転させるよう
にしたので、システム全体の効率が良くなる。
As described above, when the amount of cooling is reduced, only the system required for minimum cold storage is operated, so that the efficiency of the entire system is improved.

【0075】[0075]

【発明の効果】本発明は、例えば冷却温度域の異なる被
冷却環境をそれぞれ冷却する。即ち蒸発器を冷媒蒸発温
度を異にする複数の冷媒回路と、冷熱を蓄冷するための
蓄熱槽とを備えた複合型冷媒回路設備の制御装置に係る
ものであって、冷媒回路の複数系統にそれぞれ優先順位
を設定しておき、蓄熱槽の蓄冷量が不足すると判定され
た場合は、優先順位の低い系統から順に放冷運転を停止
するので、蓄冷量が不足した場合においても優先順位の
高い系統から放冷運転を停止して、即ち影響の大きい被
冷却物への冷却能力の低下による損失を最小限に抑える
ことができる。従って、設備全体としての信頼性が向上
する。また、蓄冷量の不足を最小限に抑えるために蓄熱
槽を大きくしたりする必要や、蓄冷能力の増大を余儀な
くされて蓄冷用の系統を増設したりする必要がないの
で、設備全体の製造コストの高騰化を防ぐことができ
る。
INDUSTRIAL APPLICABILITY The present invention cools environments to be cooled which have different cooling temperature ranges, for example. That is, the evaporator relates to a plurality of refrigerant circuits having different refrigerant evaporation temperatures, and a control device of a combined refrigerant circuit facility including a heat storage tank for storing cold heat, in a plurality of refrigerant circuit systems. When it is determined that the cold storage amount of the heat storage tank is insufficient, the cooling operation is stopped in order from the system with the lowest priority, so even if the cold storage amount is insufficient, the priority is high. It is possible to stop the cooling operation from the system, that is, it is possible to minimize the loss due to the reduction of the cooling capacity of the object to be cooled which has a great influence. Therefore, the reliability of the equipment as a whole is improved. In addition, it is not necessary to enlarge the heat storage tank in order to minimize the shortage of cold storage amount, and it is not necessary to increase the cold storage capacity to add a system for cold storage, so the manufacturing cost of the entire equipment Can be prevented from soaring.

【0076】また、蓄熱槽の蓄冷量を検出して、蓄冷量
がさらに不足すると判定された場合には、優先順位の低
い系統は放冷運転から蓄冷運転に切換えられるので、不
足分の蓄冷量を補充することができる。従って、設備全
体として、より一層の信頼性の向上化が図れる。
When the amount of cold storage in the heat storage tank is detected and it is determined that the amount of cold storage is further insufficient, the system having a lower priority is switched from the cold discharge operation to the cold storage operation. Can be replenished. Therefore, the reliability of the entire equipment can be further improved.

【0077】また、各系統の運転負荷量を検出するとと
もに、蓄熱槽の蓄冷量を検出して、蓄冷量が不足すると
予測される場合には、運転負荷量の小さな系統から放冷
運転を停止するので、必要な系統のみ放冷運転を行わせ
ることができる。従って、蓄冷された冷熱を効率的に利
用できる一方、蓄熱槽の容量などを小さくすることもで
きる。
When the operation load amount of each system is detected and the cool storage amount of the heat storage tank is detected and it is predicted that the cool storage amount is insufficient, the cooling operation is stopped from the system having the small operation load amount. Therefore, the cooling operation can be performed only in the required system. Therefore, while the cold energy stored in the cold storage can be used efficiently, the capacity of the heat storage tank can be reduced.

【0078】そして、放冷運転中の系統の運転負荷量を
検出するとともに、蓄熱槽の蓄冷量を検出して、運転負
荷量の大きい系統では放冷運転を行い、運転負荷量の小
さい系統は蓄冷運転に切換えられるので、運転負荷量の
変動が大きい場合においても蓄冷量が補充されて、冷却
能力不足による被冷却物への悪影響を極力抑えることが
できる。
Then, the operation load amount of the system during the cooling operation is detected, the cool storage amount of the heat storage tank is detected, and the cooling operation is performed in the system having a large operation load, and the system having a small operation load is performed. Since it is switched to the cold storage operation, the cold storage amount is replenished even when the fluctuation of the operation load amount is large, and the adverse effect on the object to be cooled due to insufficient cooling capacity can be suppressed as much as possible.

【0079】更に、蓄えられた蓄冷量に基づいて放冷運
転できる系統を決定するので、所定の放冷運転終了時刻
以前に蓄冷量の不足を生じることがなくなり、冷却能力
の供給安定性が向上する。
Furthermore, since the system capable of performing the cooling operation is determined based on the stored amount of cold storage, the amount of cold storage will not be insufficient before the predetermined end time of the cooling operation and the supply stability of the cooling capacity will be improved. To do.

【0080】一方、蓄熱槽の蓄冷量を検出して、所定の
蓄冷運転終了時刻以前に蓄冷運転が完了すると判定され
た場合には、予め設定された蓄冷運転すべき優先順位の
低い系統(例えば、運転負荷量の変動の小さな系統や被
冷却物量の多い系統等)から優先的に蓄冷運転を停止す
るので、少ない所要電力で蓄冷運転を行うことができ
る。
On the other hand, when the cold storage amount of the heat storage tank is detected and it is determined that the cold storage operation is completed before the predetermined cold storage operation end time, a system having a preset low priority for the cold storage operation (for example, Since the cold storage operation is preferentially stopped from a system in which the fluctuation of the operating load amount is small or a system in which the amount of the object to be cooled is large, the cold storage operation can be performed with a small amount of required power.

【0081】一方、蓄熱槽の蓄冷量を検出して、所定の
蓄冷運転終了時刻以前に蓄冷運転が完了すると判定され
た場合には、予め設定された放冷運転すべき優先順位に
基づいて運転を切換えるので、優先順位の高い系統から
放冷運転に切換えることができる。従って、少ない所要
動力による蓄冷運転と被冷却物の重要度に応じた放冷運
転とを両立させることができる。
On the other hand, when the cold storage amount of the heat storage tank is detected and it is determined that the cold storage operation is completed before the predetermined cold storage operation end time, the operation is performed based on the preset priority order for the cold storage operation. Therefore, it is possible to switch from a system with a higher priority to a cooling operation. Therefore, the cold storage operation with a small required power and the cooling operation according to the importance of the object to be cooled can be compatible.

【0082】さらに、蓄熱槽の蓄冷量を検出して、所定
の蓄冷運転終了時刻以前に蓄冷運転が完了すると判定さ
れた場合には、各系統の運転負荷量を実運転状態を基に
検出して、運転負荷量の低い系統から優先して蓄冷運転
を停止させるので、蓄冷運転効率の高い系統を用いて蓄
冷運転させることができる。従って、より少ない所要電
力で蓄冷運転を行うことができる。
Furthermore, when the cool storage amount of the heat storage tank is detected and it is determined that the cool storage operation is completed before the predetermined cool storage operation end time, the operation load amount of each system is detected based on the actual operation state. Then, the cold storage operation is stopped with priority from the system having a low operation load amount, so that the cold storage operation can be performed using the system having the high cold storage operation efficiency. Therefore, the cold storage operation can be performed with less required power.

【0083】そして、蓄熱槽の蓄冷量を検出して、所定
の蓄冷運転終了時刻以前に蓄冷運転が完了すると判定さ
れた場合には、各系統の運転負荷量を実運転状態を基に
検出して、運転負荷量の高い系統は蓄冷運転中であって
も蓄冷運転から放冷運転に切換えるので、急激な運転負
荷量の変動にも対処することができ、設備全体としての
信頼性が向上する。
Then, when the cool storage amount of the heat storage tank is detected and it is determined that the cool storage operation is completed before the predetermined cool storage operation end time, the operation load amount of each system is detected based on the actual operation state. The system with a high operating load switches from cold storage operation to cold discharge operation even during cold storage operation, so it is possible to cope with sudden changes in operating load quantity and improve the reliability of the entire equipment. .

【0084】また、蓄熱剤からの一日分の放冷量を算出
し、この算出した放冷量に見合う蓄冷能力を有する系統
に対し、予め設定された優先順位にしたがって蓄冷運転
させるので、蓄冷運転時間を必要最小限に抑えることが
できる。
Further, the amount of cold radiation from the heat storage agent for one day is calculated, and the system having the cold storage capacity corresponding to the calculated amount of cold storage is made to perform the cold storage operation in accordance with the preset priority order. The operating time can be minimized.

【0085】また、所定の放冷運転終了時刻における余
剰蓄冷量を検出して、この余剰蓄冷量に見合う蓄冷能力
を有する系統は蓄冷運転させないでおくので、必要以上
に蓄冷運転を行わなくてもすむ。従って、蓄冷運転時間
を必要最小限に抑えることができる。
Further, since the excess cold storage amount at the end time of the predetermined cold storage operation is detected and the system having the cold storage capacity commensurate with this excess cold storage amount is not allowed to perform the cold storage operation, the cold storage operation is not performed more than necessary. I'm sorry. Therefore, the cold storage operation time can be suppressed to the necessary minimum.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1〜11による複合型冷媒回
路設備及びその制御装置を示す構成図である。
FIG. 1 is a configuration diagram showing a composite refrigerant circuit facility and its control device according to Examples 1 to 11 of the invention.

【図2】この発明の実施例1による複合型冷媒回路設備
の制御装置の制御系統を示すブロック構成図である。
FIG. 2 is a block configuration diagram showing a control system of a controller for a composite refrigerant circuit facility according to Embodiment 1 of the present invention.

【図3】この発明の実施例1による複合型冷媒回路設備
の制御装置の制御フローを示すフローチャートである。
FIG. 3 is a flow chart showing a control flow of the control device for the composite refrigerant circuit facility according to Embodiment 1 of the present invention.

【図4】この発明の実施例1による複合型冷媒回路設備
の制御装置の優先順位入力処理フローを示すフローチャ
ートである。
FIG. 4 is a flowchart showing a priority order input processing flow of the control device for the combined refrigerant circuit facility according to Embodiment 1 of the present invention.

【図5】この発明の実施例2による複合型冷媒回路設備
の制御装置の制御系統を示すブロック構成図である。
FIG. 5 is a block configuration diagram showing a control system of a control device for a composite refrigerant circuit facility according to a second embodiment of the present invention.

【図6】この発明の実施例2による複合型冷媒回路設備
の制御装置の処理フローを示すフローチャートである。
FIG. 6 is a flowchart showing a processing flow of a control device for a composite refrigerant circuit facility according to Embodiment 2 of the present invention.

【図7】この発明の実施例3による複合型冷媒回路設備
の制御装置の制御系統を示すブロック構成図である。
FIG. 7 is a block configuration diagram showing a control system of a controller for a composite refrigerant circuit facility according to a third embodiment of the present invention.

【図8】この発明の実施例3による複合型冷媒回路設備
の制御装置の処理フローを示すフローチャートである。
FIG. 8 is a flowchart showing a processing flow of a control device for a composite refrigerant circuit facility according to a third embodiment of the present invention.

【図9】この発明の実施例3による複合型冷媒回路設備
の制御装置の負荷量検出処理フローを示すフローチャー
トである。
FIG. 9 is a flowchart showing a load amount detection processing flow of the control device for the composite refrigerant circuit facility according to Embodiment 3 of the present invention.

【図10】この発明の実施例4による複合型冷媒回路設
備の制御装置の制御系統を示すブロック構成図である。
FIG. 10 is a block configuration diagram showing a control system of a controller for a composite refrigerant circuit facility according to a fourth embodiment of the present invention.

【図11】この発明の実施例4による複合型冷媒回路設
備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 11 is a flowchart showing a processing flow of a control device for a composite refrigerant circuit facility according to Embodiment 4 of the present invention.

【図12】この発明の実施例5による複合型冷媒回路設
備の制御装置の制御系統を示すブロック構成図である。
FIG. 12 is a block configuration diagram showing a control system of a controller for a composite refrigerant circuit facility according to a fifth embodiment of the present invention.

【図13】この発明の実施例5による複合型冷媒回路設
備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 13 is a flowchart showing a processing flow of a control device for a composite refrigerant circuit facility according to a fifth embodiment of the present invention.

【図14】この発明の実施例6による複合型冷媒回路設
備の制御装置の制御系統を示すブロック構成図である。
FIG. 14 is a block configuration diagram showing a control system of a control device for a composite refrigerant circuit facility according to Embodiment 6 of the present invention.

【図15】この発明の実施例6による複合型冷媒回路設
備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 15 is a flow chart showing a processing flow of a control device for composite refrigerant circuit equipment according to embodiment 6 of the present invention.

【図16】この発明の実施例7による複合型冷媒回路設
備の制御装置の制御系統を示すブロック構成図である。
FIG. 16 is a block configuration diagram showing a control system of a controller for a composite refrigerant circuit facility according to a seventh embodiment of the present invention.

【図17】この発明の実施例7による複合型冷媒回路設
備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 17 is a flowchart showing a processing flow of a control device for a composite refrigerant circuit facility according to a seventh embodiment of the present invention.

【図18】この発明の実施例8による複合型冷媒回路設
備の制御装置の制御系統を示すブロック構成図である。
FIG. 18 is a block configuration diagram showing a control system of a control device for composite refrigerant circuit equipment according to Embodiment 8 of the present invention.

【図19】この発明の実施例8による複合型冷媒回路設
備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 19 is a flowchart showing a processing flow of a control device for a composite refrigerant circuit facility according to an eighth embodiment of the present invention.

【図20】この発明の実施例9による複合型冷媒回路設
備の制御装置の制御系統を示すブロック構成図である。
FIG. 20 is a block diagram showing a control system of a control device for a composite refrigerant circuit facility according to a ninth embodiment of the present invention.

【図21】この発明の実施例9による複合型冷媒回路設
備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 21 is a flow chart showing a processing flow of a control device for composite refrigerant circuit equipment according to embodiment 9 of the present invention.

【図22】この発明の実施例10による複合型冷媒回路
設備の制御装置の制御系統を示すブロック構成図であ
る。
FIG. 22 is a block configuration diagram showing a control system of a control device for composite refrigerant circuit equipment according to Embodiment 10 of the present invention.

【図23】この発明の実施例10による複合型冷媒回路
設備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 23 is a flow chart showing a processing flow of a control device for a hybrid refrigerant circuit facility according to Embodiment 10 of the present invention.

【図24】この発明の実施例11による複合型冷媒回路
設備の制御装置の制御系統を示すブロック構成図であ
る。
FIG. 24 is a block diagram showing a control system of a control device for a composite refrigerant circuit facility according to an eleventh embodiment of the present invention.

【図25】この発明の実施例11による複合型冷媒回路
設備の制御装置の処理フローを示すフローチャートであ
る。
FIG. 25 is a flow chart showing a processing flow of a control device for a composite refrigerant circuit facility according to an eleventh embodiment of the present invention.

【図26】この発明の基礎となる複合型冷媒回路設備を
示す構成図である。
FIG. 26 is a diagram showing a composite refrigerant circuit facility which is the basis of the present invention.

【符号の説明】[Explanation of symbols]

1 冷蔵側圧縮機 2 冷蔵側凝縮器 3 冷蔵側電磁弁 4 冷蔵側膨張弁 5 冷蔵側蒸発器 6 冷媒配管 7 蓄熱槽 8 冷蔵側蓄熱用蒸発器 9 冷蔵側蓄熱用電磁弁 10 冷蔵側蓄熱用膨張弁 11 冷媒配管 21 冷凍側圧縮機 22 冷凍側凝縮器 23 冷凍側電磁弁 24 冷凍側膨張弁 25 冷凍側蒸発器 26 冷媒配管 31 冷凍側過冷却用熱交換器 34 冷媒配管 38 制御装置 41 蓄冷量検出手段 42 蓄冷量判定手段 43 優先順位設定手段 44 優先順位記憶手段 45 停止系統判定手段 46 放冷運転停止手段 47 センサー 48 放冷運転停止アクチュエータ 49 優先順位設定手段 50 優先順位記憶手段 51 蓄冷切換え系統判定手段 52 放冷蓄冷運転切換え手段 53 運転切換えアクチュエータ 54 センサー 55 系統別負荷量検出手段 56 停止系統判定手段 57 放冷運転停止手段 58 運転開始アクチュエータ 60 系統別負荷量検出手段 61 蓄冷切換え系統判定手段 62 放冷蓄冷運転切換え手段 63 系統別放冷量設定手段 64 系統別放冷量記憶手段 65 運転系統判定手段 66 放冷運転制御手段 70 蓄冷量算出手段 71 蓄冷完了量判定手段 72 優先順位設定手段 73 優先順位記憶手段 74 停止系統判定手段 75 蓄冷運転制御手段 76 蓄冷運転停止アクチュエータ 77 系統別負荷量検出手段 78 停止系統判定手段 79 蓄冷運転停止手段 80 蓄冷運転停止アクチュエータ 81 放冷切換え系統判定手段 82 放冷切換え系統判定手段 83 蓄冷放冷運転切換え手段 84 蓄冷放冷切換えアクチュエータ 85 センサー 86 放冷量検出手段 87 放冷量算出手段 88 優先順位設定手段 89 優先順位記憶手段 90 運転系統判定手段 91 蓄冷運転制御手段 92 蓄冷運転アクチュエータ 93 蓄冷量検出手段 94 余剰蓄冷量算出手段 95 センサー 96 系統別蓄冷能力検出手段 97 蓄冷運転系統判定手段 98 蓄冷運転制御手段 99 蓄冷運転アクチュエータ 1 Refrigerator side compressor 2 Refrigerator side condenser 3 Refrigerator side solenoid valve 4 Refrigerator side expansion valve 5 Refrigerator side evaporator 6 Refrigerant piping 7 Heat storage tank 8 Refrigerator side heat storage evaporator 9 Refrigerator side heat storage solenoid valve 10 Refrigerator side heat storage Expansion valve 11 Refrigerant pipe 21 Refrigeration side compressor 22 Refrigeration side condenser 23 Refrigeration side solenoid valve 24 Refrigeration side expansion valve 25 Refrigeration side evaporator 26 Refrigerant pipe 31 Refrigeration side supercooling heat exchanger 34 Refrigerant pipe 38 Control device 41 Cold storage Quantity detection means 42 Cold storage amount determination means 43 Priority setting means 44 Priority storage means 45 Stop system determination means 46 Cooling operation stop means 47 Sensor 48 Cooling operation stop actuator 49 Priority setting means 50 Priority storage means 51 Cold storage switching System determination means 52 Cooling cold storage operation switching means 53 Operation switching actuator 54 Sensor 55 System-specific load amount detection means 5 6 Stopping system judging means 57 Cooling operation stopping means 58 Operation starting actuator 60 System-specific load amount detecting means 61 Cooling storage switching system judging means 62 Cooling cold storage operation switching means 63 System cooling quantity setting means 64 System cooling quantity storage Means 65 Operation system determination means 66 Cooling operation control means 70 Cold storage amount calculation means 71 Cold storage completion amount determination means 72 Priority setting means 73 Priority storage means 74 Stop system determination means 75 Cold storage operation control means 76 Cold storage operation stop actuator 77 System Separate load amount detecting means 78 Stop system judging means 79 Cold storage stopping means 80 Cold storage stopping actuator 81 Cooling switching system judging means 82 Cooling switching system judging means 83 Cold storage cooling operation switching means 84 Cold storage cooling switching actuator 85 Sensor 86 Cooling amount detecting means 87 Cooling amount calculating means 88 Priority Setting Means 89 Priority Storage Means 90 Operating System Determining Means 91 Cold Storage Operation Controlling Means 92 Cold Storage Driving Actuators 93 Cooling Storage Detecting Means 94 Surplus Cooling Storage Calculating Means 95 Sensors 96 Cooling Capacity Detecting Means 97 Cold Storage Operating System Judging Means 98 cold storage operation control means 99 cold storage operation actuator

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる第1の冷媒回路と、前記第
1の冷媒回路に前記第1の絞り装置、および第1の蒸発
器と並列に蓄熱用絞り装置、および蓄熱用熱交換器を順
次接続してなる蓄熱用冷媒回路と、前記蓄熱用熱交換器
を介して前記第1の冷媒回路の最大冷凍能力と前記第1
の被冷却環境の所要の冷凍能力との差に対応した冷熱を
蓄冷する蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第
2の凝縮器、第2の絞り装置、および前記第1の被冷却
環境よりも低温にされる第2の被冷却環境を冷却する第
2の蒸発器を順次環状に接続してなる複数系統の第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路とを有した複合型冷媒回路
設備を制御するものであって、前記蓄熱槽の蓄熱剤に蓄
えられた蓄冷量を検出する蓄冷量検出手段と、検出され
た蓄冷量と予め設定された所定の蓄冷量とを比較する蓄
冷量判定手段と、前記第2の冷媒回路の冷熱供給を行う
べき系統に係る優先順位を設定する優先順位設定手段
と、設定された前記第2の冷媒回路の系統に係る優先順
位を設定する優先順位設定手段と、前記蓄冷量判定手段
による比較結果と前記優先順位記憶手段に記憶されてい
る優先順位とに基づいて前記第1の冷熱供給回路からの
冷熱供給を停止すべき系統を決定する停止系統判定手段
と、前記停止系統判定手段により決定された系統への冷
熱供給を停止する放冷運転停止手段とを具備してなるこ
とを特徴とする複合型冷媒回路設備の制御装置。
1. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in an annular shape. A circuit, a heat storage refrigerant circuit in which the first expansion device is connected to the first refrigerant circuit, and a heat storage expansion device and a heat storage heat exchanger are sequentially connected in parallel with the first evaporator; The maximum refrigerating capacity of the first refrigerant circuit and the first refrigerant circuit via the heat storage heat exchanger.
Storage tank containing a heat storage agent for storing cold heat corresponding to the difference between the required refrigerating capacity of the cooled environment, the second compressor, the second condenser, the second expansion device, and the first The second refrigerant circuit of a plurality of systems in which the second evaporator for cooling the second cooled environment, which has a temperature lower than that of the second refrigerant circuit, is sequentially connected in an annular shape, and the second refrigerant circuit of the second refrigerant circuit. Second condenser and second
First refrigerating heat supply circuit having a heat exchanger for supplying cold heat to the second refrigerant circuit, the refrigerating heat supply circuit being connected to the evaporator of FIG. Cooling amount detecting means for controlling the equipment and detecting the amount of cold storage stored in the heat storage agent of the heat storage tank, and the amount of cold storage comparing the detected amount of cold storage with a preset predetermined amount of cold storage Determination means, priority setting means for setting a priority order related to the system for performing the cold heat supply of the second refrigerant circuit, and priority order for setting a priority order related to the set system of the second refrigerant circuit A stop system that determines a system for stopping the cold heat supply from the first cold heat supply circuit based on the setting means, the comparison result by the cold storage amount judging means, and the priority order stored in the priority order storing means. Judgment means and the stop system judgment Composite refrigerant circuit equipment control apparatus characterized by comprising; and a cooling operation stop means for stopping cold heat supply to determined by means lineage.
【請求項2】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、前記第1の冷媒回路に前記第1の絞り装置、および
第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱
交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄熱
用熱交換器を介して前記第1の冷媒回路の最大冷凍能力
と前記第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、および前記第
1の被冷却環境よりも低温にされる第2の被冷却環境を
冷却する第2の蒸発器を順次環状に接続してなる第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路と、前記第1の冷媒回路の
第1の凝縮器と第1の絞り装置の間に接続されるととも
に流路開閉自在の回路開閉装置を系統毎に有してなり前
記第1の凝縮器からの冷媒を前記蓄熱用熱交換器に迂回
させて前記蓄熱槽の蓄熱剤からの冷熱を前記第1の冷媒
回路に供給する第2の冷熱供給回路とを有した複合型冷
媒回路設備を制御するものであって、前記蓄熱槽の蓄熱
剤に蓄えられた蓄冷量を検出する蓄冷量検出手段と、検
出された蓄冷量と予め設定された所定の蓄冷量とを比較
する蓄冷量判定手段と、前記第1の冷媒回路の冷熱供給
を行うべき系統に係る優先順位を設定する優先順位設定
手段と、設定された前記第1の冷媒回路の系統に係る優
先順位を記憶する優先順位記憶手段と、前記蓄冷量判定
手段による比較結果と前記優先順位記憶手段に記憶され
ている優先順位とに基づいて前記第1の冷媒回路の放冷
運転から蓄冷運転に切換えるべき系統を決定する蓄冷切
換え系統判定手段と、前記蓄冷切換え系統判定手段によ
り決定された系統の回路開閉装置を駆動して当該系統を
蓄冷運転に切換える放冷蓄冷運転切換え手段とを具備し
てなることを特徴とする複合型冷媒回路設備の制御装
置。
2. A plurality of systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and the heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger in which a heat storage heat exchanger is sequentially connected. And a heat storage containing a heat storage agent that stores cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. A tank, a second compressor, a second condenser, a second expansion device, and a second evaporator that cools a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit that is sequentially connected in an annular shape, a second condenser of the second refrigerant circuit, and a second refrigerant circuit.
A first cold heat supply circuit having a cold heat supply heat exchanger connected to the second refrigerant circuit to supply cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit, and the first refrigerant circuit. Is connected between the first condenser and the first expansion device, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is exchanged with the heat for heat storage. And a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by bypassing the heat storage tank, the heat storage tank comprising: Cold storage amount detection means for detecting the amount of cold storage stored in the heat storage agent, cold storage amount determination means for comparing the detected cold storage amount with a preset predetermined cold storage amount, and the cold heat of the first refrigerant circuit Priority setting means for setting the priority related to the system to be supplied, Based on the priority storage means for storing the priority of the system of the first refrigerant circuit, the comparison result by the cold storage amount determination means, and the priority stored in the priority storage means. Cooling storage switching system determining means for determining a system to be switched from the cooling operation of the refrigerant circuit to the cooling storage operation, and a circuit switching device of the system determined by the cooling storage switching system determining means to switch the system to the cold storage operation. A control device for a combined refrigerant circuit facility, comprising: cold storage operation switching means.
【請求項3】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる第1の冷媒回路と、前記第
1の冷媒回路に前記第1の絞り装置、および第1の蒸発
器と並列に蓄熱用絞り装置、および蓄熱用熱交換器を順
次接続してなる蓄熱用冷媒回路と、前記蓄熱用熱交換器
を介して前記第1の冷媒回路の最大冷凍能力と前記第1
の被冷却環境の所要の冷凍能力との差に対応した冷熱を
蓄冷する蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第
2の凝縮器、第2の絞り装置、および前記第1の被冷却
環境よりも低温にされる第2の被冷却環境を冷却する第
2の蒸発器を順次環状に接続してなる複数系統の第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路とを有した複合型冷媒回路
設備を制御するものであって、前記蓄熱槽の蓄熱剤に蓄
えられた蓄冷量を検出する蓄冷量検出手段と、検出され
た蓄冷量と予め設定された所定の蓄冷量とを比較する蓄
冷量判定手段と、前記第2の冷媒回路における運転負荷
量を系統毎に検出する系統別負荷量検出手段と、前記蓄
冷量判定手段による比較結果と前記系統別負荷量検出手
段により検出された系統毎の運転負荷量とに基づいて前
記第2の冷媒回路の冷熱供給を停止すべき系統を決定す
る停止系統判定手段と、前記停止系統判定手段により決
定された系統への冷熱供給を停止する放冷運転停止手段
とを具備してなることを特徴とする複合型冷媒回路設備
の制御装置。
3. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in an annular shape. A circuit, a heat storage refrigerant circuit in which the first expansion device is connected to the first refrigerant circuit, and a heat storage expansion device and a heat storage heat exchanger are sequentially connected in parallel with the first evaporator; The maximum refrigerating capacity of the first refrigerant circuit and the first refrigerant circuit via the heat storage heat exchanger.
Storage tank containing a heat storage agent for storing cold heat corresponding to the difference between the required refrigerating capacity of the cooled environment, the second compressor, the second condenser, the second expansion device, and the first The second refrigerant circuit of a plurality of systems in which the second evaporator for cooling the second cooled environment, which has a temperature lower than that of the second refrigerant circuit, is sequentially connected in an annular shape, and the second refrigerant circuit of the second refrigerant circuit. Second condenser and second
First refrigerating heat supply circuit having a heat exchanger for supplying cold heat to the second refrigerant circuit, the refrigerating heat supply circuit being connected to the evaporator of FIG. Cooling amount detecting means for controlling the equipment and detecting the amount of cold storage stored in the heat storage agent of the heat storage tank, and the amount of cold storage comparing the detected amount of cold storage with a preset predetermined amount of cold storage Determination means, system-specific load amount detection means for detecting the operating load amount in the second refrigerant circuit for each system, comparison results by the cool storage amount determination means, and system-specific load amount detection means for each system Stop system determining means for determining a system for stopping the cold heat supply of the second refrigerant circuit based on the operating load amount of the second refrigerant circuit, and cooling for stopping the cold heat supply to the system determined by the stop system determining means. And means for stopping the operation. Composite refrigerant circuit equipment control apparatus according to claim and.
【請求項4】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、前記第1の冷媒回路に前記第1の絞り装置、および
第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱
交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄熱
用熱交換器を介して前記第1の冷媒回路の最大冷凍能力
と前記第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、および前記第
1の被冷却環境よりも低温にされる第2の被冷却環境を
冷却する第2の蒸発器を順次環状に接続してなる第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路と、前記第1の冷媒回路の
第1の凝縮器と第1の絞り装置の間に接続されるととも
に流路開閉自在の回路開閉装置を系統毎に有してなり前
記第1の凝縮器からの冷媒を前記蓄熱用熱交換器に迂回
させて前記蓄熱槽の蓄熱剤からの冷熱を前記第1の冷媒
回路に供給する第2の冷熱供給回路とを有した複合型冷
媒回路設備を制御するものであって、前記蓄熱槽の蓄熱
剤に蓄えられた蓄冷量を検出する蓄冷量検出手段と、検
出された蓄冷量と予め設定された所定の蓄冷量とを比較
する蓄冷量判定手段と、前記第1の冷媒回路における運
転負荷量を系統毎に検出する系統別負荷量検出手段と、
前記蓄冷量判定手段による比較結果と前記系統別負荷量
検出手段により検出された系統毎の運転負荷量とに基づ
いて前記第1の冷媒回路の放冷運転から蓄冷運転に切換
えるべき系統を決定する蓄冷切換え系統判定手段と、前
記蓄冷切換え系統判定手段により決定された系統の前記
回路開閉装置を駆動して当該系統を蓄冷運転に切換える
放冷蓄冷運転切換え手段とを具備してなることを特徴と
する複合型冷媒回路設備の制御装置。
4. A plurality of systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and the heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger in which a heat storage heat exchanger is sequentially connected. And a heat storage containing a heat storage agent that stores cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. A tank, a second compressor, a second condenser, a second expansion device, and a second evaporator that cools a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit which is sequentially connected in an annular shape, a second condenser of the second refrigerant circuit and a second refrigerant circuit
A first cold heat supply circuit having a cold heat supply heat exchanger connected to the second refrigerant circuit to supply cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit, and the first refrigerant circuit. Is connected between the first condenser and the first expansion device, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is exchanged with the heat for heat storage. And a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by bypassing the heat storage tank, the heat storage tank comprising: Cool storage amount detecting means for detecting a cool storage amount stored in the heat storage agent, a cool storage amount determining means for comparing the detected cool storage amount with a preset predetermined cool storage amount, and an operation in the first refrigerant circuit. Load amount detection means for each system for detecting the load amount for each system,
Based on the comparison result by the cold storage amount determining means and the operating load amount for each system detected by the system-by-system load amount detecting means, a system to be switched from the cooling operation of the first refrigerant circuit to the cold storage operation is determined. A cold storage cold storage operation switching means for driving the circuit switchgear of the system determined by the cold storage switching system determination means to switch the system to cold storage operation. Control device for combined refrigerant circuit equipment.
【請求項5】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる第1の冷媒回路と、前記第
1の冷媒回路に前記第1の絞り装置、および第1の蒸発
器と並列に蓄熱用絞り装置、および蓄熱用熱交換器を順
次接続してなる蓄熱用冷媒回路と、前記蓄熱用熱交換器
を介して前記第1の冷媒回路の最大冷凍能力と前記第1
の被冷却環境の所要の冷凍能力との差に対応した冷熱を
蓄冷する蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第
2の凝縮器、第2の絞り装置、および前記第1の被冷却
環境よりも低温にされる第2の被冷却環境を冷却する第
2の蒸発器を順次環状に接続してなる複数系統の第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路とを有した複合型冷媒回路
設備を制御するものであって、前記蓄熱槽の蓄熱剤に蓄
えられた蓄冷量を検出する蓄冷量検出手段と、検出され
た蓄冷量と予め設定された所定の蓄冷量とを比較する蓄
冷量判定手段と、前記第2の冷媒回路の各系統にて消費
される放冷量を検出する系統別放冷量検出手段と、検出
された各系統の放冷量を記憶する系統別放冷量検出手段
と、前記蓄冷量判定手段による比較結果と前記系統別放
冷量記憶手段に記憶されている系統毎の放冷量とに基づ
いて前記第2の冷媒回路の冷熱供給を行うべき系統を決
定する運転系統判定手段と、前記運転系統判定手段によ
り決定された系統への冷熱供給を行う放冷運転制御手段
とを具備してなることを特徴とする複合型冷媒回路設備
の制御装置。
5. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. A circuit, a heat storage refrigerant circuit in which the first expansion device is connected to the first refrigerant circuit, and a heat storage expansion device and a heat storage heat exchanger are sequentially connected in parallel with the first evaporator; The maximum refrigerating capacity of the first refrigerant circuit and the first refrigerant circuit via the heat storage heat exchanger.
Storage tank containing a heat storage agent for storing cold heat corresponding to the difference between the required refrigerating capacity of the cooled environment, the second compressor, the second condenser, the second expansion device, and the first The second refrigerant circuit of a plurality of systems in which the second evaporator for cooling the second cooled environment, which has a temperature lower than that of the second refrigerant circuit, is sequentially connected in an annular shape, and the second refrigerant circuit of the second refrigerant circuit. Second condenser and second
And a first cold heat supply circuit having a cold heat supply heat exchanger connected to the evaporator of the heat storage tank and supplying cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. A facility for controlling a facility, wherein a cool storage amount detecting means for detecting a cool storage amount stored in the heat storage agent of the heat storage tank, and a cool storage amount for comparing the detected cool storage amount with a preset predetermined cool storage amount. Determining means, system-specific cooling amount detecting means for detecting the cooling amount consumed in each system of the second refrigerant circuit, and system-specific cooling amount for storing the detected cooling amount of each system A system for performing the cold heat supply of the second refrigerant circuit based on the detection means, the comparison result by the cold storage amount determination means, and the cooling amount for each system stored in the system-by-system cooling amount storage means. Operating system determining means for determining, and system determined by the operating system determining means Composite refrigerant circuit equipment control apparatus characterized by comprising; and a cooling operation control means for cold supply.
【請求項6】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、前記第1の冷媒回路に前記第1の絞り装置、および
第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱
交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄熱
用熱交換器を介して前記第1の冷媒回路の最大冷凍能力
と前記第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、および前記第
1の被冷却環境よりも低温にされる第2の被冷却環境を
冷却する第2の蒸発器を順次環状に接続してなる第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路とを有した複合型冷媒回路
設備を制御するものであって、前記蓄熱槽の蓄熱剤に蓄
えられた蓄冷量を検出する蓄冷量検出手段と、検出され
た蓄冷量を基に所定の蓄冷運転終了時刻における蓄冷量
を予測する蓄冷量算出手段と、予測された蓄冷運転終了
時刻の蓄冷量と予め設定入力された予定蓄冷量とを比較
する蓄冷完了量判定手段と、前記第1の冷媒回路の蓄冷
運転すべき系統に係る優先順位を設定する優先順位設定
手段と、設定された前記第1の冷媒回路の系統に係る優
先順位を決定する優先順位記憶手段と、前記蓄冷完了量
判定手段による比較結果と前記優先順位記憶手段に記憶
されている優先順位とに基づいて前記第1の冷媒回路の
蓄冷運転を停止すべき系統を決定する停止系統判定手段
と、前記停止系統判定手段により決定された系統の蓄冷
運転を停止する蓄冷運転制御手段とを具備してなること
を特徴とする複合型冷媒回路設備の制御装置。
6. A plurality of systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and the heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger in which a heat storage heat exchanger is sequentially connected. And a heat storage containing a heat storage agent that stores cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. A tank, a second compressor, a second condenser, a second expansion device, and a second evaporator that cools a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit that is sequentially connected in an annular shape, a second condenser of the second refrigerant circuit, and a second refrigerant circuit.
First refrigerating heat supply circuit having a heat exchanger for supplying cold heat to the second refrigerant circuit, the refrigerating heat supply circuit being connected to the evaporator of FIG. The facility is controlled, and the cold storage amount detecting means for detecting the cold storage amount stored in the heat storage agent of the heat storage tank and the cold storage amount at a predetermined cold storage operation end time are predicted based on the detected cold storage amount. The cool storage amount calculating means, the cool storage completion amount determining means for comparing the cool storage amount at the predicted end time of the cool storage operation with the preset cool storage amount input in advance, and the system for performing the cool storage operation of the first refrigerant circuit Priority setting means for setting the priority, priority storage means for determining the priority related to the set first refrigerant circuit system, comparison result by the cool storage completion amount determination means, and the priority storage means Priority stored in And a cold storage operation control means for stopping the cold storage operation of the system determined by the stop system determination means. A control device for a composite refrigerant circuit facility, characterized in that
【請求項7】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、前記第1の冷媒回路に前記第1の絞り装置、および
第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱
交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄熱
用熱交換器を介して前記第1の冷媒回路の最大冷凍能力
と前記第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、および前記第
1の被冷却環境よりも低温にされる第2の被冷却環境を
冷却する第2の蒸発器を順次環状に接続してなる第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路と、前記第1の冷媒回路の
第1の凝縮器と第1の絞り装置の間に接続されるととも
に流路開閉自在の回路開閉装置を系統毎に有してなり前
記第1の凝縮器からの冷媒を前記蓄熱用熱交換器に迂回
させて前記蓄熱槽の蓄熱剤からの冷熱を前記第1の冷媒
回路に供給する第2の冷熱供給回路とを有した複合型冷
媒回路設備を制御するものであって、前記蓄熱槽の蓄熱
剤に蓄えられた蓄冷量を検出する蓄冷量検出手段と、検
出された蓄冷量を基に所定の蓄冷運転終了時刻における
蓄冷量を予測する蓄冷量算出手段と、予測された蓄冷運
転終了時刻の蓄冷量と予め設定入力された予定蓄冷量と
を比較する蓄冷完了量判定手段と、前記第1の冷媒回路
の放冷運転すべき系統に係る優先順位を設定する優先順
位設定手段と、設定された前記第1の冷媒回路の系統に
係る優先順位を記憶する優先順位記憶手段と、前記蓄冷
完了量判定手段による比較結果と前記優先順位記憶手段
に記憶されている優先順位とに基づいて前記第1の冷媒
回路の蓄冷運転から放冷運転に切換えるべき系統を決定
する放冷切換え系統判定手段と、前記放冷切換え系統判
定手段により決定された系統の前記回路開閉装置を駆動
して当該系統を放冷運転に切換える蓄冷放冷運転切換え
手段とを具備してなることを特徴とする複合型冷媒回路
設備の制御装置。
7. A plurality of systems including a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled, which are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and the heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger in which a heat storage heat exchanger is sequentially connected. And a heat storage containing a heat storage agent that stores cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. A tank, a second compressor, a second condenser, a second expansion device, and a second evaporator that cools a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit which is sequentially connected in an annular shape, a second condenser of the second refrigerant circuit and a second refrigerant circuit
A first cold heat supply circuit having a cold heat supply heat exchanger connected to the second refrigerant circuit to supply cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit, and the first refrigerant circuit. Is connected between the first condenser and the first expansion device, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is exchanged with the heat for heat storage. And a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by bypassing the heat storage tank, the heat storage tank comprising: Cool storage amount detecting means for detecting the cool storage amount stored in the heat storage agent, the cool storage amount calculating means for predicting the cool storage amount at a predetermined cool storage operation end time based on the detected cool storage amount, and the predicted cool storage operation end Completing cold storage by comparing the cold storage amount at the time with the preset cold storage amount that has been input in advance An amount determination means, a priority setting means for setting a priority order related to a system in which the first refrigerant circuit is to perform a cooling operation, and a priority for storing the set priority order related to the system of the first refrigerant circuit. A system for switching from the cold storage operation to the cold discharge operation of the first refrigerant circuit is determined based on the order storage means, the comparison result by the cool storage completion amount determination means, and the priority order stored in the priority order storage means. And a cooling storage switching operation switching means for driving the circuit switchgear of the system determined by the cooling switching system determination means to switch the cooling operation to the cooling operation. A control device for a composite refrigerant circuit facility characterized by the above.
【請求項8】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、前記第1の冷媒回路に前記第1の絞り装置、および
第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱
交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄熱
用熱交換器を介して前記第1の冷媒回路の最大冷凍能力
と前記第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、および前記第
1の被冷却環境よりも低温にされる第2の被冷却環境を
冷却する第2の蒸発器を順次環状に接続してなる第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路とを有した複合型冷媒回路
設備を制御するものであって、前記蓄熱槽の蓄熱剤に蓄
えられた蓄冷量を検出する蓄冷量検出手段と、検出され
た蓄冷量を基に所定の蓄冷運転終了時刻における蓄冷量
を予測する蓄冷量算出手段と、予測された蓄冷運転終了
時刻の蓄冷量と予め設定入力された予定蓄冷量とを比較
する蓄冷完了量判定手段と、前記第1の冷媒回路におけ
る運転負荷量を系統毎に検出する系統別負荷量検出手段
と、前記蓄冷完了量判定手段による比較結果と前記系統
別負荷量検出手段により検出された系統毎の運転負荷量
とに基づいて前記第1の冷媒回路の蓄冷運転を停止すべ
き系統を決定する停止系統判定手段と、前記停止系統判
定手段により決定された系統の蓄冷運転を停止する蓄冷
運転停止手段とを具備してなることを特徴とする複合型
冷媒回路設備の制御装置。
8. A plurality of systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and the heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger in which a heat storage heat exchanger is sequentially connected. And a heat storage containing a heat storage agent that stores cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. A tank, a second compressor, a second condenser, a second expansion device, and a second evaporator that cools a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit that is sequentially connected in an annular shape, a second condenser of the second refrigerant circuit, and a second refrigerant circuit.
First refrigerating heat supply circuit having a heat exchanger for supplying cold heat to the second refrigerant circuit, the refrigerating heat supply circuit being connected to the evaporator of FIG. The facility is controlled, and the cold storage amount detecting means for detecting the cold storage amount stored in the heat storage agent of the heat storage tank and the cold storage amount at a predetermined cold storage operation end time are predicted based on the detected cold storage amount. A cool storage amount calculating means, a cool storage completion amount determining means for comparing a cool storage amount at a predicted cold storage operation end time with a preset cool storage amount input in advance, and an operating load amount in the first refrigerant circuit for each system. Cold storage operation of the first refrigerant circuit based on the system-specific load amount detection means for detection, the comparison result by the cold storage completion amount determination means, and the operation load amount for each system detected by the system-specific load amount detection means The line that should be stopped Stop system and determining means, the composite refrigerant circuit equipment control apparatus characterized by comprising; and a cold-storage operation stopping means for stopping the cold-storage operation of the determined line by the stop line determining means.
【請求項9】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、および第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる複数系統の第1の冷媒回路
と、前記第1の冷媒回路に前記第1の絞り装置、および
第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用熱
交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄熱
用熱交換器を介して前記第1の冷媒回路の最大冷凍能力
と前記第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、および前記第
1の被冷却環境よりも低温にされる第2の被冷却環境を
冷却する第2の蒸発器を順次環状に接続してなる第2の
冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第2
の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの冷
熱を前記第2の冷媒回路に供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路と、前記第1の冷媒回路の
第1の凝縮器と第1の絞り装置の間に接続されるととも
に流路開閉自在の回路開閉装置を系統毎に有してなり前
記第1の凝縮器からの冷媒を前記蓄熱用熱交換器に迂回
させて前記蓄熱槽の蓄熱剤からの冷熱を前記第1の冷媒
回路に供給する第2の冷熱供給回路とを有した複合型冷
媒回路設備を制御するものであって、前記蓄熱槽の蓄熱
剤に蓄えられた蓄冷量を検出する蓄冷量検出手段と、検
出された蓄冷量を基に所定の蓄冷運転終了時刻における
蓄冷量を予測する蓄冷量算出手段と、予測された蓄冷運
転終了時刻の蓄冷量と予め設定入力された予定蓄冷量と
を比較する蓄冷完了量判定手段と、前記第1の冷媒回路
における運転負荷量を系統毎に検出する系統別負荷量検
出手段と、前記蓄冷完了量判定手段による比較結果と前
記系統別負荷量検出手段により検出された系統毎の運転
負荷量とに基づいて前記第1の冷媒回路の蓄冷運転から
放冷運転に切換えるべき系統を決定する放冷切換え系統
判定手段と、前記放冷切換え系統判定手段により決定さ
れた系統の前記回路開閉装置を駆動して当該系統を放冷
運転に切換える蓄冷放冷運転切換え手段とを具備してな
ることを特徴とする複合型冷媒回路設備の制御装置。
9. A plurality of systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and a heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger are sequentially connected to a heat storage refrigerant circuit. And a heat storage containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. A tank, a second compressor, a second condenser, a second expansion device, and a second evaporator that cools a second cooled environment that is lower in temperature than the first cooled environment. A second refrigerant circuit that is sequentially connected in an annular shape, a second condenser of the second refrigerant circuit, and a second refrigerant circuit.
A first cold heat supply circuit having a cold heat supply heat exchanger connected to the second refrigerant circuit to supply cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit, and the first refrigerant circuit. Is connected between the first condenser and the first expansion device, and has a circuit opening / closing device for opening / closing the flow path for each system, and the refrigerant from the first condenser is exchanged with the heat for heat storage. And a second cold heat supply circuit for supplying the cold heat from the heat storage agent of the heat storage tank to the first refrigerant circuit by bypassing the heat storage tank, the heat storage tank comprising: Cool storage amount detecting means for detecting the cool storage amount stored in the heat storage agent, the cool storage amount calculating means for predicting the cool storage amount at a predetermined cool storage operation end time based on the detected cool storage amount, and the predicted cool storage operation end Completing cold storage by comparing the cold storage amount at the time with the preset cold storage amount that has been input in advance The amount determination means, the system-specific load amount detection means for detecting the operating load amount in the first refrigerant circuit for each system, the comparison result by the cold storage completion amount determination means, and the system-specific load amount detection means Cooling switching system determining means for determining a system to be switched from the cold storage operation to the cooling operation of the first refrigerant circuit based on the operating load amount for each system, and the system determined by the cooling switching system determining means 2. A control device for a composite refrigerant circuit facility, comprising: a cold storage cold-cooling operation switching means for driving the circuit switchgear to switch the system to a cold-cooling operation.
【請求項10】 第1の圧縮機、第1の凝縮器、第1の
絞り装置、および第1の被冷却環境を冷却する第1の蒸
発器を順次環状に接続してなる複数系統の第1の冷媒回
路と、前記第1の冷媒回路に前記第1の絞り装置、およ
び第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用
熱交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄
熱用熱交換器を介して前記第1の冷媒回路の最大冷凍能
力と前記第1の被冷却環境の所要の冷凍能力との差に対
応した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2
の圧縮機、第2の凝縮器、第2の絞り装置、および前記
第1の被冷却環境よりも低温にされる第2の被冷却環境
を冷却する第2の蒸発器を順次環状に接続してなる第2
の冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第
2の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの
冷熱を前記第2の冷媒回路に供給する冷熱供給用熱交換
器を有する第1の冷熱供給回路とを有した複合型冷媒回
路設備を制御するものであって、前記蓄熱槽の蓄熱剤か
らの放冷量を検出する放冷量検出手段と、検出された放
冷量を積算して一日分の放冷量を算出する放冷量算出手
段と、前記第1の冷媒回路の蓄冷運転すべき系統に係る
優先順位を設定する優先順位設定手段と、設定された前
記第1の冷媒回路の系統に係る優先順位を記憶する優先
順位記憶手段と、前記放冷量算出手段により算出された
1日分の放冷量と前記優先順位記憶手段に記憶されてい
る優先順位とに基づいて前記第1の冷媒回路の蓄冷運転
すべき系統を決定する運転系統判定手段と、前記運転系
統判定手段により決定された系統の蓄冷運転を行う蓄冷
運転制御手段とを具備してなることを特徴とする複合型
冷媒回路設備の制御装置。
10. A plurality of systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and the heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger in which a heat storage heat exchanger is sequentially connected. And a heat storage containing a heat storage agent that stores cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. Tank and second
Of the compressor, the second condenser, the second expansion device, and the second evaporator for cooling the second cooled environment that is lower in temperature than the first cooled environment are sequentially connected in an annular shape. Become second
Of the refrigerant circuit and the second condenser and the second evaporator of the second refrigerant circuit, which supply cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. For controlling a composite refrigerant circuit facility having a first cold heat supply circuit having a heat exchanger for use, wherein a cold radiation amount detecting means for detecting a cold radiation amount from the heat storage agent of the heat storage tank, A cooling amount calculation means for calculating the amount of cooling for one day by integrating the detected cooling amounts, and a priority setting means for setting the priority of the system in which the cold storage operation of the first refrigerant circuit is to be performed. A priority order storing means for storing the set priority order of the system of the first refrigerant circuit, a cooling amount for one day calculated by the cooling amount calculating means, and the priority storing means. A system for performing the cold storage operation of the first refrigerant circuit is determined based on the stored priority order. That the operating system and the determination means, the composite refrigerant circuit equipment control apparatus characterized by comprising; and a cold-storage operation control means for performing cool storage operation of the determined line by the operation system determination means.
【請求項11】 第1の圧縮機、第1の凝縮器、第1の
絞り装置、および第1の被冷却環境を冷却する第1の蒸
発器を順次環状に接続してなる複数系統の第1の冷媒回
路と、前記第1の冷媒回路に前記第1の絞り装置、およ
び第1の蒸発器と並列に蓄熱用絞り装置、および蓄熱用
熱交換器を順次接続してなる蓄熱用冷媒回路と、前記蓄
熱用熱交換器を介して前記第1の冷媒回路の最大冷凍能
力と前記第1の被冷却環境の所要の冷凍能力との差に対
応した冷熱を蓄冷する蓄熱剤を収容して蓄熱槽と、第2
の圧縮機、第2の凝縮器、第2の絞り装置、および前記
第1の被冷却環境よりも低温にされる第2の被冷却環境
を冷却する第2の蒸発器を順次環状に接続してなる第2
の冷媒回路と、前記第2の冷媒回路の第2の凝縮器と第
2の蒸発器との間に接続され前記蓄熱槽の蓄熱剤からの
冷熱を前記第2の冷媒回路に供給する冷熱供給用熱交換
器を有する第1の冷熱供給回路とを有した複合型冷媒回
路設備を制御するものであって、所定の放冷運転終了時
刻における前記蓄熱剤の蓄冷量を検出する蓄冷量検出手
段と、検出された蓄冷量と予め設定入力された予定蓄冷
量とを比較して余剰蓄冷量を算出する余剰蓄冷量算出手
段と、蓄冷能力を系統毎に検出する系統別蓄冷能力検出
手段と、前記余剰蓄冷量算出手段により算出された余剰
蓄冷量と前記系統別蓄冷能力検出手段により検出された
系統毎の蓄冷能力とに基づいて前記第1の冷媒回路の蓄
冷運転すべき系統を決定する蓄冷運転系統判定手段と、
前記蓄冷運転系統判定手段により決定された系統の蓄冷
運転を行う蓄冷運転制御手段とを具備してなることを特
徴とする複合型冷媒回路設備の制御装置。
11. A first system of a plurality of systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. No. 1 refrigerant circuit, the first refrigerant circuit, the first expansion device, and the heat storage expansion device in parallel with the first evaporator, and a heat storage heat exchanger in which a heat storage heat exchanger is sequentially connected. And a heat storage agent for storing cold heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger. Second heat storage tank
Of the compressor, the second condenser, the second expansion device, and the second evaporator for cooling the second cooled environment that is lower in temperature than the first cooled environment are sequentially connected in an annular shape. Become second
Of the refrigerant circuit and the second condenser and the second evaporator of the second refrigerant circuit, which supply cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. For controlling a composite refrigerant circuit facility having a first cold heat supply circuit having a heat exchanger for use, wherein a cool storage amount detecting means for detecting a cool storage amount of the heat storage agent at a predetermined cooling operation end time And a surplus cold storage amount calculating means for calculating a surplus cool storage amount by comparing the detected cool storage amount with a preset cool storage amount that has been input in advance, and a system-specific cool storage capacity detecting means for detecting a cool storage capacity for each system, Cool storage for determining a system in which the cold storage operation of the first refrigerant circuit is to be performed based on the excess cold storage amount calculated by the excess cold storage amount calculation means and the cold storage capacity for each system detected by the system-specific cold storage capacity detection means Operating system determination means,
A cool storage operation control means for performing a cool storage operation of the system determined by the cool storage operation system determining means, the control device for a composite refrigerant circuit facility.
JP5315360A 1993-12-15 1993-12-15 Complex refrigerant circuit equipment Expired - Lifetime JP3036338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315360A JP3036338B2 (en) 1993-12-15 1993-12-15 Complex refrigerant circuit equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315360A JP3036338B2 (en) 1993-12-15 1993-12-15 Complex refrigerant circuit equipment

Publications (2)

Publication Number Publication Date
JPH07167512A true JPH07167512A (en) 1995-07-04
JP3036338B2 JP3036338B2 (en) 2000-04-24

Family

ID=18064482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315360A Expired - Lifetime JP3036338B2 (en) 1993-12-15 1993-12-15 Complex refrigerant circuit equipment

Country Status (1)

Country Link
JP (1) JP3036338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159827A (en) * 1997-08-22 1999-06-15 Mitsubishi Electric Corp Heat storage equipment add operating method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014909B1 (en) * 2016-04-04 2016-10-26 有限会社阿部電機商会 Perforated ruler sticker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159827A (en) * 1997-08-22 1999-06-15 Mitsubishi Electric Corp Heat storage equipment add operating method thereof

Also Published As

Publication number Publication date
JP3036338B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US20210055045A1 (en) Micro Booster Supermarket Refrigeration Architecture
RU2362096C2 (en) Withdrawal of instantly releasing gas from cooling system header
JP6513400B2 (en) System and method for warming a cryogenic heat exchanger array for compact and efficient refrigeration and adaptive power management
US20150292777A1 (en) Air-conditioning apparatus
US20080196420A1 (en) Flashgas Removal From a Receiver in a Refrigeration Circuit
WO2018042611A1 (en) Refrigeration air conditioning system
US10180269B2 (en) Refrigeration device
CN106123450A (en) The refrigeration control method of refrigerator and refrigerator
CA2819308A1 (en) Refrigeration system with pressure-balanced heat reclaim
JP2002349938A (en) Refrigeration unit and control method for its oil return
JPH07167512A (en) Controller for composite refrigerant circuit facility
JP3499171B2 (en) Thermal storage cooling system
JP5388336B2 (en) Control method of refrigerator
WO2012043229A1 (en) Control device for cooling installation device
US11982480B2 (en) Refrigeration system with emergency cooling using dedicated compressor
JP2000337716A (en) Multiple refrigerant circuit facility combined
US20240053076A1 (en) Refrigeration system with emergency cooling using dedicated compressor
CN115289703B (en) Temperature control method
JPH11287523A (en) Composite type refrigerant circuit equipment
CN115289704B (en) Temperature control device and temperature control method
JP2855954B2 (en) Thermal storage type air conditioner
JP3046169B2 (en) Complex refrigerant circuit equipment
JP2010071599A (en) Ice thermal storage system
JPH09280668A (en) Composite refrigerant circuit equipment
WO2023006489A1 (en) Refrigerator and method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

EXPY Cancellation because of completion of term