JPH04316940A - Water heat source air conditioning method - Google Patents

Water heat source air conditioning method

Info

Publication number
JPH04316940A
JPH04316940A JP3109540A JP10954091A JPH04316940A JP H04316940 A JPH04316940 A JP H04316940A JP 3109540 A JP3109540 A JP 3109540A JP 10954091 A JP10954091 A JP 10954091A JP H04316940 A JPH04316940 A JP H04316940A
Authority
JP
Japan
Prior art keywords
heat
heat source
amount
air conditioning
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3109540A
Other languages
Japanese (ja)
Other versions
JP2848716B2 (en
Inventor
Takatoshi Takahashi
高橋 隆勇
Tsukasa Kato
司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
NEC Corp
Original Assignee
Takasago Thermal Engineering Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, NEC Corp filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP3109540A priority Critical patent/JP2848716B2/en
Publication of JPH04316940A publication Critical patent/JPH04316940A/en
Application granted granted Critical
Publication of JP2848716B2 publication Critical patent/JP2848716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To cut the peak of power consumption during water heat source air conditioning. CONSTITUTION:Air conditioning operation includes two operation modes; heat source side (primary side) operation in which the heat source water in a heat storage water tank is circulated to heat source side equipment, and load side (secondary side) operation in which the heat source water in the heat storage water tank is circulated to a group of air conditioners installed inside a building. The residual heat amount in the heat storage water tank at the operation start-up time of the day is compared with the estimated heat amount of the day required by the load side, and when the residual heat amount < the estimated heat amount, the time period of follow-up primly-side operation during secondary-side operation is allocated to a time band except the power consumption peak time band. At this time, number controls of refrigerating machines is also performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,消費電力ピーク時間帯
において熱源機器の稼働を最小限にする水熱源空調方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heat source air conditioning method that minimizes the operation of heat source equipment during peak power consumption hours.

【0002】0002

【従来の技術】蓄熱水槽に熱源水を蓄え,この熱源水を
建物内に配設した水熱源空調ユニットに循環する空調方
式は安価な深夜電力で蓄熱運転できることや建物内での
内部発生熱を有効利用できるなどからビル空調に多用さ
れている。空調ユニットとしてはフアンコイルユニット
や水熱源ヒートポンプユニット等が使用される。熱源機
器としては冷凍機やボイラーが一般であり,場合によっ
てヒートポンプチラー等が使用される。
[Prior Art] An air conditioning system that stores heat source water in a heat storage water tank and circulates this heat source water to a water heat source air conditioning unit installed in a building can perform heat storage operation using inexpensive late-night electricity, and can reduce internal heat generated within the building. It is widely used in building air conditioning because it can be used effectively. As the air conditioning unit, a fan coil unit, a water heat source heat pump unit, etc. are used. Refrigerators and boilers are generally used as heat source equipment, and heat pump chillers and the like are used in some cases.

【0003】0003

【発明が解決しようとする課題】最近,消費電力のピー
クカットやピークシフトが社会問題化しており,その原
因の一つに空調がある。すなわち冷房負荷が急増する昼
間に電力消費がピークを示す。水熱源空調方式では夜間
電力で冷熱を蓄熱できるので,この問題に対処するには
効果的な空調方式であるが,それでも,昼間の負荷が大
きく,夜間電力による蓄熱量だけではこれをまかなうこ
とができない場合には,熱源機器を稼働して蓄熱水槽に
蓄熱する運転が行われる。すなわち,水熱源空調方式で
は蓄熱水槽内の熱源水は一次側熱源として熱源機器と同
様に取り扱われ,負荷側(二次側)が要求するときには
即座に熱源機器を運転するようになっている。
[Problem to be Solved by the Invention] Recently, peak cutting and peak shifting of power consumption has become a social problem, and one of the causes is air conditioning. In other words, power consumption peaks during the day when the cooling load increases rapidly. Water heat source air conditioning is an effective air conditioning method for dealing with this problem because it can store cold heat using electricity at night, but it still has a large load during the day and cannot cover this with just the amount of heat stored from electricity at night. If this is not possible, the heat source equipment is operated to store heat in the heat storage tank. In other words, in water heat source air conditioning systems, the heat source water in the heat storage water tank is treated as a primary heat source in the same way as heat source equipment, and the heat source equipment is immediately operated when the load side (secondary side) requests it.

【0004】このために,負荷が急増する消費電力ピー
ク時(例えば夏期の昼の12〜3時)に残蓄熱量が不足
して熱源機器を運転することが多い。この熱源機器の運
転でも冷凍機や一次側ポンプの稼働に電力を消費する。
[0004] For this reason, heat source equipment is often operated with insufficient remaining heat storage during peak power consumption times when the load increases rapidly (for example, from 12:00 to 3:00 noon in summer). Even in the operation of this heat source equipment, electricity is consumed to operate the refrigerator and the primary pump.

【0005】本発明はこの問題の解決を目的としたもの
であり,昼間の残蓄熱量の管理を適切に行うことによっ
て電力ピーク時間帯での熱源機器の運転を最小限に抑え
る空調方法を提供する。
The present invention aims to solve this problem, and provides an air conditioning method that minimizes the operation of heat source equipment during peak power hours by appropriately managing the amount of residual heat storage during the day. do.

【0006】[0006]

【課題を解決するための手段】本発明は,蓄熱水槽内の
熱源水を熱源機器側に循環させる熱源側(一次側)運転
と,蓄熱水槽内の熱源水を建物内に配置した水熱源空調
ユニット群に循環するする負荷側(二次側)運転とを行
う空調方法において,当日の二次側運転開始時点におけ
る蓄熱水槽の残蓄熱量と当日の負荷側が要求する予測熱
量とを比較し,残蓄熱量<予測熱量の場合に二次側運転
中に一次側運転を追いかけ運転する時間を電力消費のピ
ーク時間帯を除く時間帯に予め割り振ることを特徴とす
る。
[Means for Solving the Problems] The present invention provides a heat source side (primary side) operation in which heat source water in a heat storage water tank is circulated to the heat source equipment side, and a water heat source air conditioning system in which the heat source water in the heat storage water tank is placed inside a building. In an air conditioning method that performs load side (secondary side) operation where circulation is circulated to a group of units, the amount of residual heat stored in the thermal storage tank at the start of secondary side operation on that day is compared with the predicted amount of heat required by the load side on that day, The present invention is characterized in that when the amount of residual heat storage < the predicted amount of heat, the time for following the primary side operation during the secondary side operation is allocated in advance to a time period excluding the peak time period of power consumption.

【0007】[0007]

【実施例】図1は本発明法を適用する水熱源空調設備を
図解して示したものであり,ビルの地下等に設置された
蓄熱水槽1内の熱源水を,建物の各所に配置された水熱
源空調ユニット2に二次側ポンプ3で汲み上げ,これを
熱源としてユニット2で空調を行い,ユニット2を通過
した熱源水は再び蓄熱水槽1内に戻す。ユニット2はフ
アンコイルユニット或いは水熱源ヒートポンプユニット
のいずれでもよい。一方,蓄熱水槽1内の熱源水は熱源
機器に一次側ポンプ4で送られ,熱源機器で加熱または
冷却される。図示の例では冷房負荷に対処するために,
熱源機器として冷凍機5を使用する状態を示している。
[Example] Figure 1 is a diagram illustrating a water heat source air conditioning system to which the method of the present invention is applied, in which heat source water in a heat storage water tank 1 installed in the basement of a building, etc. is distributed at various locations in the building. The heat source water is pumped up to the heat source air conditioning unit 2 by the secondary pump 3, and the unit 2 performs air conditioning using this as a heat source.The heat source water that has passed through the unit 2 is returned to the heat storage water tank 1. The unit 2 may be either a fan coil unit or a water heat source heat pump unit. On the other hand, the heat source water in the heat storage water tank 1 is sent to the heat source device by the primary side pump 4, and is heated or cooled by the heat source device. In the illustrated example, in order to cope with the cooling load,
A state in which a refrigerator 5 is used as a heat source device is shown.

【0008】図1のような設備を備えたビルでは,建物
側が要求する負荷(冷房負荷)の熱量の経時変化を見る
と,図2の曲線Aのようになる。すなわち,始業時間が
午前9時として, 7時前後から冷房負荷があり,終業
時間の17時以降も19時前後まで空調ユニット2が稼
働され,その熱量ピークは約12時から約15時に存在
する。
In a building equipped with the equipment shown in FIG. 1, the change over time in the amount of heat of the load (cooling load) required by the building is as shown by curve A in FIG. 2. In other words, if the start time is 9 a.m., the cooling load is applied from around 7 a.m., and the air conditioning unit 2 is operated after the end time of 5 p.m. until around 7 p.m., and its calorific value peaks from about 12 p.m. to about 3 p.m. .

【0009】図2において曲線Bは,曲線Aの冷房負荷
に対処するために空調ユニット(二次側)を稼働したさ
いの蓄熱水槽1内の熱源水(冷水)の残熱量の経時変化
を示す。夜間に冷凍機5を稼働して冷水を作り,この蓄
熱した冷水で冷房負荷をまかなうべく運転したさいに,
残熱量が時間の経過と共に減少し,12時過ぎには残熱
量が無くなる。このため,二次側の運転中において冷凍
機5を稼働し,必要な冷水を作る。この二次側運転中に
一次側を運転する態様を追いかけ運転と呼んでいる。図
2において,この追いかけ運転による補給熱量をハッチ
付棒グラフで示した。残熱量が不足した分はすべてこの
追いかけ運転でまかなっている。これが従来の通常の運
転態様である。この場合には,電力消費のピーク時間帯
である12時〜15時において一次側も稼働されるので
,蓄熱槽による電力消費のピーク回避が不可能となる。
In FIG. 2, curve B shows the change over time in the residual heat amount of the heat source water (cold water) in the heat storage water tank 1 when the air conditioning unit (secondary side) is operated to cope with the cooling load of curve A. . When operating the refrigerator 5 at night to produce cold water and use the stored heat to cover the cooling load,
The amount of residual heat decreases with the passage of time, and disappears after 12 o'clock. For this reason, the refrigerator 5 is operated while the secondary side is in operation to produce the necessary cold water. The manner in which the primary side is operated during this secondary side operation is called chasing operation. In FIG. 2, the amount of heat supplied by this follow-up operation is shown as a hatched bar graph. This follow-up operation makes up for the lack of residual heat. This is the conventional normal operating mode. In this case, since the primary side is also operated during the peak power consumption period from 12:00 to 15:00, it is impossible to avoid the peak power consumption by the heat storage tank.

【0010】本発明においては,二次側運転開始時にお
いて,当日の冷房負荷を前日の実績値や気象条件を基に
して予測し,この予測負荷が残熱量を上回る場合には,
その不足分を電力消費ピーク時間帯である12〜16,
 好ましくは12〜15を外した時間帯において追いか
け運転を割り振る。
[0010] In the present invention, at the start of secondary side operation, the cooling load for the day is predicted based on the previous day's actual values and weather conditions, and if this predicted load exceeds the amount of residual heat,
The shortfall will be calculated from 12 to 16, which is the peak power consumption period.
Preferably, chase driving is assigned to a time zone outside of 12 to 15.

【0011】図1の設備において冷凍機5が4台設置さ
れ,これを台数制御して追いかけ運転する例について述
べると,例えば図3のように冷凍機の運転台数と時間帯
を割り振る。図3は予測負荷−残熱量=予測不足熱量と
冷凍機運転台数の割り振り表を示している。すなわち予
測不足熱量をその大きさに応じて1から24の水準に等
級分けし,電力ピーク時間帯を除く時間帯において,最
も冷凍機稼働台数が少なくなるように時間配分したもの
である。いま,予測不足熱量が8のレベルに選択された
場合には,8以下の数字が割付けられた時間帯において
,その数字が属する台数で冷凍機を運転する。
To describe an example in which four refrigerators 5 are installed in the equipment shown in FIG. 1, and the number of refrigerators is controlled to follow each other, the number of refrigerators to be operated and the time periods are allocated, for example, as shown in FIG. FIG. 3 shows an allocation table of predicted load - residual heat amount = predicted insufficient heat amount and the number of operating refrigerators. In other words, the predicted amount of insufficient heat is classified into 1 to 24 levels according to its magnitude, and the hours are allocated so that the number of refrigerators in operation is the least during periods other than peak power hours. If the predicted insufficient amount of heat is selected to be at level 8, the refrigerators will be operated in the number of refrigerators to which that number belongs during the time period to which a number of 8 or less is assigned.

【0012】すなわち,8のレベルに選択された場合に
は,11〜12時で2台,12〜13時で2台,17〜
18時で1台,16〜17時で1台,9〜10時で1台
,10〜11時で1台,11〜12時で1台の冷凍機稼
働を行い,全体で予測不足熱量を補充する。このように
して,予測不足熱量を賄うに必要な冷凍機運転台数およ
び運転時間との相関を予め求めておき,この相関を用い
て最も冷凍機運転台数が少なくなるように電力ピーク時
間帯を外して追いかけ運転時間の割り振りを行う。
[0012] In other words, if level 8 is selected, 2 units will be activated between 11:00 and 12:00, 2 units will be activated between 12:00 and 13:00, and 2 units will be activated between 17:00 and 13:00.
One refrigerator was operated at 18:00, one between 16:00 and 17:00, one between 9:00 and 10:00, one between 10:00 and 11:00, and one between 11:00 and 12:00 to reduce the predicted heat shortage overall. refill. In this way, the correlation between the number of operating chillers and operating time required to cover the predicted heat deficit is determined in advance, and this correlation is used to remove peak power hours so that the number of operating chillers is minimized. Allocate chase driving time.

【0013】図4は,本発明に従って追いかけ時間帯を
割り振った場合の残熱量の経時変化Bと追いかけ運転に
よる補充熱量との関係例を示したものである。Aは冷房
負荷の経時変化である。図3の場合に比べて,電力ピー
ク時間帯での一次側運転を最小限に抑えながら,冷房負
荷に対処している様子が分かる。このため,電力ピーク
時間帯での一次側運転の動力が低減される。
FIG. 4 shows an example of the relationship between the temporal change B in the amount of residual heat and the amount of supplementary heat due to the chasing operation when chasing time slots are allocated according to the present invention. A is the change in cooling load over time. Compared to the case in Figure 3, it can be seen that the cooling load is handled while minimizing primary side operation during peak power hours. Therefore, the power required for primary side operation during peak power hours is reduced.

【0014】なお,この追いかけ運転の割り振りと同時
に,或いは別個に,一次側ポンプ4による冷凍機5への
循環水量が,二次側ポンプ3による空調ユニットへの循
環水量よりも少なくなる状態で追いかけ運転を行えるよ
うに管理し,追いかけ運転実施中での電力消費も最小限
に抑えるようにするのがよい。
[0014] At the same time as this allocation of the follow-up operation, or separately, the follow-up operation is carried out when the amount of water circulating to the refrigerator 5 by the primary pump 4 is smaller than the amount of water circulating to the air conditioning unit by the secondary pump 3. It is best to manage the system so that it can be operated, and to minimize power consumption during follow-up operation.

【0015】[0015]

【発明の効果】以上のようにして,本発明によれば,水
熱源空調設備においても夜間電力の利用のうえ,さらに
消費電力ピーク時間帯での一次側運転が最小限に制限で
きるので,電力のピークカットやピークシフトが効果的
に達成できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to use nighttime power even in water heat source air conditioning equipment, and furthermore, the primary side operation during peak power consumption hours can be restricted to a minimum, so that the power consumption can be reduced to a minimum. Peak cuts and peak shifts can be effectively achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明法を適用する水熱源空調設備の例を示す
機器配置系統図である。
FIG. 1 is an equipment layout system diagram showing an example of water heat source air conditioning equipment to which the method of the present invention is applied.

【図2】従来法における蓄熱水槽の残熱量と冷房負荷の
経時変化と追いかけ運転による補充熱量の関係を示す図
である。
FIG. 2 is a diagram showing the relationship between the amount of residual heat in the heat storage water tank, the change in cooling load over time, and the amount of heat supplemented by follow-up operation in a conventional method.

【図3】本発明に従って追いかけ運転を割り振る割付表
の一例を示す図である。
FIG. 3 is a diagram showing an example of an allocation table for allocating chase driving according to the present invention.

【図4】本発明に従う蓄熱水槽の残熱量と冷房負荷の経
時変化と追いかけ運転による補充熱量の関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between the amount of residual heat in the heat storage water tank, the change in cooling load over time, and the amount of heat supplemented by follow-up operation according to the present invention.

【符号の説明】[Explanation of symbols]

1  蓄熱水槽 2  空調ユニット 3  二次側ポンプ 4  一次側ポンプ 5  冷凍機 1 Heat storage water tank 2 Air conditioning unit 3 Secondary side pump 4 Primary side pump 5 Refrigerator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  蓄熱水槽内の熱源水を熱源機器側に循
環させる熱源側(一次側)運転と,蓄熱水槽内の熱源水
を建物内に配置した水熱源空調ユニット群に循環するす
る負荷側(二次側)運転とを行う空調方法において,当
日の二次側運転開始時点における蓄熱水槽の残蓄熱量と
当日の負荷側が要求する予測熱量とを比較し,残蓄熱量
<予測熱量の場合に二次側運転中に一次側運転を追いか
け運転する時間を電力消費のピーク時間帯を除く時間帯
に予め割り振ることを特徴とする水熱源空調方法。
[Claim 1] A heat source side (primary side) operation in which the heat source water in the heat storage water tank is circulated to the heat source equipment side, and a load side in which the heat source water in the heat storage tank is circulated to a group of water heat source air conditioning units arranged in the building. In an air conditioning method that performs (secondary side) operation, the residual heat storage amount of the thermal storage tank at the start of the secondary side operation on the day and the predicted heat amount required by the load side on that day are compared, and if the remaining heat storage amount < predicted heat amount, A water heat source air conditioning method characterized in that the time for following the primary side operation during the secondary side operation is allocated in advance to a time period excluding the peak power consumption time period.
【請求項2】  熱源機器は複数台の冷凍機群からなり
,運転開始時点における(予測熱量−残蓄熱量)=予測
不足熱量と,この不足熱量を賄うに必要な冷凍機運転台
数および運転時間との相関を予め求めておき,この相関
を用いて最も冷凍機運転台数が少なくなるように該追い
かけ運転時間の割り振りを行う請求項1に記載の水熱源
空調方法。
[Claim 2] The heat source equipment consists of a group of multiple refrigerators, and (predicted heat amount - residual heat storage amount) = predicted insufficient heat amount at the start of operation, and the number of operating refrigerators and operating time required to cover this insufficient heat amount. 2. The water heat source air conditioning method according to claim 1, wherein a correlation is determined in advance, and this correlation is used to allocate the follow-up operation time so that the number of operating refrigerators is minimized.
【請求項3】  追いかけ運転は,一次側循環水量<二
次側循環水量の関係を維持しながら実施する請求項1ま
たは2に記載の水熱源空調方法。
3. The water heat source air conditioning method according to claim 1, wherein the follow-up operation is performed while maintaining the relationship: primary side circulating water amount < secondary side circulating water amount.
JP3109540A 1991-04-16 1991-04-16 Water heat source air conditioning method Expired - Lifetime JP2848716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109540A JP2848716B2 (en) 1991-04-16 1991-04-16 Water heat source air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109540A JP2848716B2 (en) 1991-04-16 1991-04-16 Water heat source air conditioning method

Publications (2)

Publication Number Publication Date
JPH04316940A true JPH04316940A (en) 1992-11-09
JP2848716B2 JP2848716B2 (en) 1999-01-20

Family

ID=14512841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109540A Expired - Lifetime JP2848716B2 (en) 1991-04-16 1991-04-16 Water heat source air conditioning method

Country Status (1)

Country Link
JP (1) JP2848716B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159827A (en) * 1997-08-22 1999-06-15 Mitsubishi Electric Corp Heat storage equipment add operating method thereof
JP2007303759A (en) * 2006-05-12 2007-11-22 Toyo Netsu Kogyo Kk Operation control method of ice thermal storage system
JP2009210170A (en) * 2008-03-03 2009-09-17 Takasago Thermal Eng Co Ltd Heat source system and control method of heat source system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011046A (en) * 1983-06-30 1985-01-21 Yamatake Honeywell Co Ltd Operation control of heat source equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011046A (en) * 1983-06-30 1985-01-21 Yamatake Honeywell Co Ltd Operation control of heat source equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159827A (en) * 1997-08-22 1999-06-15 Mitsubishi Electric Corp Heat storage equipment add operating method thereof
JP2007303759A (en) * 2006-05-12 2007-11-22 Toyo Netsu Kogyo Kk Operation control method of ice thermal storage system
JP2009210170A (en) * 2008-03-03 2009-09-17 Takasago Thermal Eng Co Ltd Heat source system and control method of heat source system

Also Published As

Publication number Publication date
JP2848716B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JPH04316940A (en) Water heat source air conditioning method
US4570449A (en) Refrigeration system
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
KR20070067653A (en) Air cooling system with ac power of vehicle
JP4563825B2 (en) Refrigerator operation method and equipment comprising the refrigerator
JP4385447B2 (en) Thermal storage air conditioner
JP3304265B2 (en) Operation control method of ice storage type air conditioner
KR200395419Y1 (en) Improved Heating and Cooling System
JP3937704B2 (en) Ice heat storage tank heat radiation leveling system
JPH0526480A (en) District heat source system
JPH0942741A (en) Operation controller for heat storage air conditioner system
JP2921667B2 (en) Ice heat storage control device
JPH08247521A (en) Heat source control device
JP3853965B2 (en) Heat storage system
JPH0660751B2 (en) Air conditioning equipment
JP2000065401A (en) Heat accumulating system
JPS6298174A (en) Cooling device for food, etc.
JPS6410063A (en) Heat accumulation type air conditioner
JP3999874B2 (en) Air conditioning system
JPH10325588A (en) Air conditioning control method for heat storage air conditioning system
JPH0642782A (en) Heat accumulating method and device employing both of water tank and ice tank
JPH0972579A (en) Heat accumulation air conditioner and its control method
EP3022504B1 (en) An air conditioning system for a building, and method of operating an air conditioning system of a building
JPH1078248A (en) Heat pump type air conditioning system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13