JP4385447B2 - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP4385447B2
JP4385447B2 JP24509699A JP24509699A JP4385447B2 JP 4385447 B2 JP4385447 B2 JP 4385447B2 JP 24509699 A JP24509699 A JP 24509699A JP 24509699 A JP24509699 A JP 24509699A JP 4385447 B2 JP4385447 B2 JP 4385447B2
Authority
JP
Japan
Prior art keywords
cold
heat
cooling
refrigerator
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24509699A
Other languages
Japanese (ja)
Other versions
JP2001065930A (en
Inventor
哲郎 尾園
義徳 永嶋
茂孝 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP24509699A priority Critical patent/JP4385447B2/en
Publication of JP2001065930A publication Critical patent/JP2001065930A/en
Application granted granted Critical
Publication of JP4385447B2 publication Critical patent/JP4385447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
この発明は、蓄熱式空調設備に関し、冷熱負荷増大時に蓄熱された冷熱の放出と同時に追いかけ運転される冷凍機の冷却系に冷熱(冷廃熱)を利用することで効率向上を図るようにしたものである。
【0002】
【従来の技術】
従来から空調設備の一つとして蓄熱式の空調設備が用いられるようになってきており、通常負荷状態では、効率の良い定格運転を行う一方、夜間の比較的涼しい外気を利用するとともに、コストの安い夜間電力を利用して蓄熱槽に冷熱等を蓄熱しておき、、冷熱負荷増大時には、冷熱などを放出するようにしている。
【0003】
例えば蓄熱式空調設備の一例は、図3に示すように、冷凍機1で作られる冷水2を冷熱負荷3に供給するとともに、夜間などに蓄熱槽4に冷水2を供給できるようにする一方、冷凍機1には冷却塔5を介して冷却水6を送る冷却系7が設けられて放熱が行われるようになっており、冷熱負荷増大時には、図4に示すように、蓄熱槽4の冷熱を冷熱負荷3に送って利用するようになっている。
【0004】
【発明が解決しようとする課題】
ところが、このような冷凍機での放熱を冷却塔からの冷却水を循環して行う場合、外気温度(湿球温度)の上昇などによって冷却水の温度が上昇して凝縮温度が上昇すると、図5に示すように、冷凍機の効率が低下し、例えば冷却水の温度が1℃上昇すると、ターボ式冷凍機の場合には、運転効率が約3%、吸収式冷凍機の場合には、運転効率が5〜12%程度低下する。
【0005】
このため必要な冷熱を得るためにより多くの電力や熱エネルギを投入しなければならない。
【0006】
また、これまでの冷凍機の冷却水温度は、最低温度を管理制御しているが高温度側は何等制御が行われていない。
【0007】
一方、これまでの蓄熱槽4に蓄熱された冷水2は冷熱負荷に直接送られて利用されることから、通常12℃程度まででこれ以上の温度の冷熱は利用されていないのが現状である。
【0008】
この発明はかかる従来技術の有する課題を解決するためになされたもので、冷熱負荷増大時に蓄熱された冷熱の放出と同時に追いかけ運転される冷凍機の冷却系に蓄熱された冷熱(冷廃熱)を利用することで効率向上を図ることができる蓄熱式空調設備を提供しようとするものである。
【0009】
【課題を解決するための手段】
上記従来技術が有する課題を解決するためこの発明の請求項1記載の蓄熱式空調設備は、蓄熱槽に蓄熱した冷熱を冷熱負荷の増大時に放出する蓄熱式空調設備であって、前記空調設備の冷凍機の冷却系に、前記蓄熱槽から前記冷熱負荷に直接供給した後の冷廃熱を直接または熱交換器を介して利用する冷熱供給系を設けたことを特徴とするものである。
【0010】
この蓄熱式空調設備によれば、空調設備の冷凍機の冷却系に蓄熱槽から冷熱負荷に直接供給した後の冷廃熱を直接または熱交換器を介して利用する冷熱供給系を設けるようにしており、冷凍機の冷却水の温度を蓄熱された冷熱を利用して冷却することで、冷熱負荷に対する冷熱の放熱と同時に、追いかけ運転する冷凍機の冷却水の温度を下げることで外気温度の上昇にかかわらず冷凍機の運転効率を向上するようにしている。
また、冷凍機の冷却系に冷熱供給系を介して供給する冷熱を、冷熱負荷に直接供給した後の冷廃熱とするようにしており、これまで利用できなかった温度の高い冷廃熱(外気温度に比べれば、低温の冷廃熱)を利用することで、一層効率的に蓄熱された冷熱を利用できるようになる。
【0013】
【発明の実施の形態】
以下、この発明の一実施の形態について図面に基づき詳細に説明する。
図1および図2はこの発明の蓄熱式空調設備の一実施の形態にかかり、図1は概略構成図、図2は運転状態の説明図である。
【0014】
この蓄熱式空調設備10は、冷凍機11を備えており、冷凍機11の蒸発器12で熱交換されて作られる冷水13を冷熱負荷14に冷水ポンプ15を介して循環して昼間の冷房などを行う一方、夜間には冷水13を蓄熱槽16に循環して冷熱を蓄熱するようになっている。
【0015】
また、冷凍機11には、凝縮器17などに冷却水18を循環供給する冷却系19が設けられ、冷却塔20と冷却水ポンプ21によって冷却水18を循環して冷却塔20で放熱するようになっている。
【0016】
そして、蓄熱槽16には冷水供給ポンプ22が備えられ、冷熱負荷14の負荷増大時に冷水13を供給して放熱することで、冷凍機11の駆動に必要なピーク電力等をカットするようにしてある。
【0017】
さらに、この蓄熱式空調設備10では、冷凍機11の冷却系19に熱交換器23が設けられ、冷水供給ポンプ22の吐出側の分岐管24と接続され、蓄熱槽16に蓄熱された冷水13を供給して冷却水18を冷却できるようにしてあり、冷却後の冷水13が蓄熱槽16に戻されるようになっている。また、この熱交換器23には、蓄熱槽16に蓄熱された冷水13を冷熱負荷14に供給して放熱した後の冷廃水25を供給し、冷却水18を冷却した後蓄熱槽16に戻すことができるようにしてある。
【0018】
なお、冷凍機11の冷却系19の冷却水18の冷却のため熱交換器23を設置して蓄熱槽16から冷水13を供給するのに代え、冷却水18に冷水13を混合循環するようにしても良い。
【0019】
また、冷凍機11はターボ式冷凍機、往復式冷凍機や吸収式冷凍機などいずれの形式のものであっても良い。
【0020】
さらに、蓄熱槽16として冷水13で蓄熱する場合に限らず、氷蓄熱を行うものなど他の形式の蓄熱槽であっても良い。
【0021】
このように構成した蓄熱式空調設備10では、夜間などに夜間電力を利用するとともに、比較的涼しい外気を利用して冷凍機11を運転し、蒸発器12で熱交換されて作られる冷水13を蓄熱槽16に循環して、例えば5〜7℃程度の冷水13として冷熱を蓄熱する。
【0022】
一方、昼間など冷熱負荷14の負荷増大時には、蓄熱槽16に蓄熱してある冷水13を冷水供給ポンプ22により冷熱負荷14に供給して放熱することで、冷凍機11の駆動に必要な電力等を削減するようにする。
【0023】
この蓄熱された冷水13の冷熱負荷14への供給と同時に、冷凍機11も追いかけ運転されるが、通常冷熱負荷14の負荷増大時には、外気温度が上昇しており、冷凍機11の冷却系19の冷却塔20と冷却水ポンプ21によって循環される冷却水18の温度が上昇した状態となり、冷凍機11の運転効率が低下した状態になる。
【0024】
そこで、冷凍機11の冷却系19に設けた熱交換器23に、蓄熱槽16に蓄熱された冷水13を冷熱負荷14に供給して放熱した後の冷廃水25として供給し、冷却水18を冷却する。
【0025】
この冷熱負荷14では、蓄熱槽16の5〜7℃の冷水13が12℃程度まで放熱利用され、12℃以上の冷廃水25は直接冷房などに利用することができず蓄熱槽16に戻されているが、冷凍機11の冷却系19では有効に利用できる冷熱であり、この冷廃水25によって冷却水18を冷却し、例えば冷廃水25が28℃程度になるまでその冷熱を利用し、冷凍機11の運転効率の向上を図る。
【0026】
これにより、従来の蓄熱式空調設備では、昼間の冷熱負荷の負荷増大時に追いかけ運転する必要がある冷凍機については、冷却水18の温度を何等制御することなく外気温度の影響を直接受ける状態で運転せざるを得ず、運転効率が著しく低い状態となっていたが、この蓄熱式空調設備10によれば、追いかけ運転する必要がある冷凍機11を運転効率の好い状態で運転することができる。
【0027】
なお、夜間の蓄熱運転の際、冷水13を28℃から5〜7℃間で冷凍機11で冷却して蓄熱する必要があるが、夜間電力を利用するとともに、比較的涼しい外気を利用して冷凍機11を運転できるので、使用電力料金も大巾に削減できる。
【0028】
例えば年間電力料金の削減効果を試算してみると、次のようになる。
【0029】
まず、試算条件として、電力料金を、基本料金が1510円/kw/月、従量料金が夏期昼間で20円/kwh 、夜間で6円/kwh とし、冷凍機を、容量が500USRTで、冷却水温度が1℃変化すると消費動力が3%変化するとし、運転条件を、蓄熱槽の冷熱を使い切ってしまい、冷却水を5℃下げるようにこの蓄熱式空調設備を運転することが1日3時間、週5日、年間6週間あるものとした。
【0030】
このような条件の下で、基本料金の削減効果が、1576千円/年、従量料金の削減が−265千円/年(増加)となり、全体で1311千円/年の削減効果がある。
【0031】
以上のように、この蓄熱式空調設備10によれば、冷凍機11の冷却水18を蓄熱した冷水で冷却することで運転効率を向上することができ、電力または熱エネルギの消費を減らすことができる。
【0032】
また、これまで利用されていなかった蓄熱槽の10〜12℃以上の冷熱を利用することができ、実質的に蓄熱槽を大容量としたのと同等の効果を得ることができる。
【0033】
さらに、蓄熱装置としてアイスオンコイル型氷蓄熱装置を用いた場合には、過大に蓄熱されると、氷のブロッキングによる熱量不足を招くことがあるが、冷熱を冷凍機の冷却水の冷却に用いることで過大に蓄熱されることがなくなるとともに、冷熱を有効に活用し、設備の健全性を維持することができる。
【0034】
また、既存の蓄熱式空調設備に蓄熱槽からの冷水による冷凍機の冷却水の冷却系(熱交換器あるいは直接混合する配管など)を付加するだけでこの発明を簡単に適用することができる。
【0035】
なお、上記実施の形態では、蓄熱槽への冷熱の蓄熱を空調設備を構成する冷凍機を運転して得るようにしたが、この場合に限らず、他の冷凍機等の運転によって冷熱を蓄熱したり、他の冷熱源がある場合にそれを利用して蓄熱するようにしても良い。
【0036】
【発明の効果】
以上、一実施の形態とともに具体的に説明したように、この発明の請求項1記載の蓄熱式空調設備によれば、空調設備の冷凍機の冷却系に蓄熱槽から冷熱負荷に直接供給した後の冷廃熱を直接または熱交換器を介して利用する冷熱供給系を設けたので、冷熱負荷に対する冷熱の放熱と同時に、追いかけ運転する冷凍機の冷却水の温度を下げることで外気温度の上昇にかかわらず冷凍機の運転効率を向上することができる。
また、冷凍機の冷却系に冷熱供給系を介して供給する冷熱を、冷熱負荷に直接供給した後の冷廃熱とするようにしたので、これまで利用できなかった温度の高い冷廃熱(外気温度に比べれば、低温の冷廃熱)を利用することができ、一層効率的に蓄熱された冷熱を利用して冷凍機の運転効率を向上することができる。
【図面の簡単な説明】
【図1】この発明の蓄熱式空調設備の一実施の形態にかかる概略構成図である。
【図2】この発明の蓄熱式空調設備の一実施の形態にかかる運転状態の説明図である。
【図3】従来の蓄熱式空調設備の概略構成図である。
【図4】従来の蓄熱式空調設備の運転状態の説明図である。
【図5】冷凍機の凝縮温度に対する冷凍能力の変化の説明図である。
【符号の説明】
10 蓄熱式空調設備
11 冷凍機
12 蒸発器
13 冷水
14 冷熱負荷
15 冷水ポンプ
16 蓄熱槽
17 凝縮器
18 冷却水
19 冷却系
20 冷却塔
21 冷却水ポンプ
22 冷水供給ポンプ
23 熱交換器
24 分岐管
25 冷廃水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage type air conditioner, and is designed to improve efficiency by using cold heat (cold waste heat) in a cooling system of a refrigerator that is chased simultaneously with the discharge of cold heat stored when the cold load is increased. Is.
[0002]
[Prior art]
Thermal storage air-conditioning equipment has been used as one of the air-conditioning equipment. In normal load conditions, efficient rated operation is performed. Cold energy is stored in the heat storage tank using cheap nighttime electric power, and when the cold load increases, the cold energy is released.
[0003]
For example, as shown in FIG. 3, an example of a heat storage type air conditioner supplies cold water 2 produced by the refrigerator 1 to the cold load 3 and allows the cold water 2 to be supplied to the heat storage tank 4 at night. The refrigerator 1 is provided with a cooling system 7 for sending the cooling water 6 through the cooling tower 5 so as to dissipate heat. When the cooling load increases, as shown in FIG. Is sent to the cold load 3 for use.
[0004]
[Problems to be solved by the invention]
However, when heat radiation in such a refrigerator is performed by circulating cooling water from the cooling tower, if the temperature of the cooling water rises due to an increase in the outside air temperature (wet bulb temperature) or the like, As shown in FIG. 5, when the efficiency of the refrigerator decreases, for example, when the temperature of the cooling water rises by 1 ° C., the operation efficiency is about 3% in the case of a turbo type refrigerator, and in the case of an absorption type refrigerator, Operating efficiency is reduced by about 5 to 12%.
[0005]
For this reason, more electric power and thermal energy must be input in order to obtain the necessary cold energy.
[0006]
In addition, the cooling water temperature of the conventional refrigerator is managed and controlled at the minimum temperature, but no control is performed on the high temperature side.
[0007]
On the other hand, since the cold water 2 stored in the heat storage tank 4 so far is directly sent to the cold load for use, the cold at a temperature of about 12 ° C. or higher is not currently used. .
[0008]
The present invention has been made in order to solve the problems of the prior art, and cold energy (cold waste heat) stored in the cooling system of the refrigerator that is chased simultaneously with the release of the cold energy stored when the cold load is increased. It is intended to provide a regenerative air conditioning facility that can improve efficiency by using the.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the regenerative air conditioning system according to claim 1 of the present invention is a regenerative air conditioning system that discharges the cold energy stored in the thermal storage tank when the cold load increases , The cooling system of the refrigerator is provided with a cooling heat supply system that uses the chilled waste heat directly supplied from the heat storage tank to the cooling load directly or through a heat exchanger.
[0010]
According to this heat storage type air conditioner, the cooling system of the refrigerator of the air conditioner is provided with a cold heat supply system that uses the cold waste heat directly supplied from the heat storage tank to the cold load or directly through the heat exchanger. and has, by cooling by using cold heat stored in the heat-the temperature of the cooling water of the refrigerator, at the same time as the cold heat of the heat radiation for cooling load, by lowering the temperature of the cooling water of the refrigerator to chase operating outside air temperature Regardless of the rise, the operation efficiency of the refrigerator is improved.
In addition, the cooling heat supplied to the cooling system of the refrigerator via the cooling power supply system is used as the cooling waste heat after being directly supplied to the cooling load. Compared to the outside air temperature, the cold energy stored at a low temperature can be used more efficiently by utilizing the low-temperature waste heat.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
1 and 2 relate to an embodiment of a heat storage type air conditioning system according to the present invention, FIG. 1 is a schematic configuration diagram, and FIG. 2 is an explanatory diagram of an operation state.
[0014]
The regenerative air conditioning system 10 includes a refrigerator 11, and chilled water 13 produced by heat exchange in the evaporator 12 of the refrigerator 11 is circulated to a cooling load 14 via a chilled water pump 15 to cool the daytime. On the other hand, the cold water 13 is circulated to the heat storage tank 16 at night to store the cold energy.
[0015]
Further, the refrigerator 11 is provided with a cooling system 19 that circulates and supplies the cooling water 18 to the condenser 17 and the like so that the cooling water 18 is circulated by the cooling tower 20 and the cooling water pump 21 to dissipate heat in the cooling tower 20. It has become.
[0016]
The heat storage tank 16 is provided with a chilled water supply pump 22 to supply the chilled water 13 and dissipate heat when the load of the refrigeration load 14 increases, thereby cutting the peak power necessary for driving the refrigerator 11 and the like. is there.
[0017]
Further, in the heat storage type air conditioner 10, the heat exchanger 23 is provided in the cooling system 19 of the refrigerator 11, and is connected to the branch pipe 24 on the discharge side of the cold water supply pump 22, and the cold water 13 stored in the heat storage tank 16 is stored. So that the cooling water 18 can be cooled, and the cooled cold water 13 is returned to the heat storage tank 16. The heat exchanger 23 is supplied with cold water 13 stored in the heat storage tank 16 to the heat load 14 and supplied with cold waste water 25 after radiating heat, cooled the cooling water 18 and then returned to the heat storage tank 16. I can do it.
[0018]
Instead of installing the heat exchanger 23 for cooling the cooling water 18 of the cooling system 19 of the refrigerator 11 and supplying the cold water 13 from the heat storage tank 16, the cold water 13 is mixed and circulated in the cooling water 18. May be.
[0019]
The refrigerator 11 may be of any type such as a turbo refrigerator, a reciprocating refrigerator, or an absorption refrigerator.
[0020]
Further, the heat storage tank 16 is not limited to the case of storing heat with the cold water 13 but may be another type of heat storage tank such as one that performs ice heat storage.
[0021]
In the regenerative air conditioning system 10 configured in this way, the nighttime power is used at night and the refrigerator 11 is operated using relatively cool outside air, and the cold water 13 produced by heat exchange in the evaporator 12 is used. It circulates in the heat storage tank 16, and stores cold heat as the cold water 13 of about 5-7 degreeC, for example.
[0022]
On the other hand, when the load of the cold load 14 is increased, such as during the daytime, the cold water 13 stored in the heat storage tank 16 is supplied to the cold load 14 by the cold water supply pump 22 to dissipate the heat, etc. To reduce.
[0023]
The refrigerator 11 is also chased simultaneously with the supply of the stored cold water 13 to the cooling load 14. However, when the load of the normal cooling load 14 increases, the outside air temperature rises and the cooling system 19 of the refrigerator 11 is increased. As a result, the temperature of the cooling water 18 circulated by the cooling tower 20 and the cooling water pump 21 increases, and the operating efficiency of the refrigerator 11 decreases.
[0024]
Therefore, the cold water 13 stored in the heat storage tank 16 is supplied to the heat exchanger 23 provided in the cooling system 19 of the refrigerator 11 as the cold waste water 25 after being supplied to the cold load 14 and dissipated, and the cooling water 18 is supplied. Cooling.
[0025]
In this cooling load 14, the 5 to 7 ° C. chilled water 13 in the heat storage tank 16 is radiated to about 12 ° C., and the chilled waste water 25 of 12 ° C. or higher cannot be directly used for cooling or the like and is returned to the heat storage tank 16. However, it is cold heat that can be effectively used in the cooling system 19 of the refrigerator 11. The cooling water 18 is cooled by the cold waste water 25, and the cold heat is used until the cold waste water 25 reaches about 28 ° C. The operation efficiency of the machine 11 is improved.
[0026]
As a result, in the conventional heat storage type air conditioner, the refrigerator that needs to be chased when the daytime cooling load increases is directly affected by the outside air temperature without any control of the temperature of the cooling water 18. Although it was forced to operate, the operating efficiency was extremely low, but according to the heat storage type air conditioner 10, the refrigerator 11 that needs to be chased can be operated with good operating efficiency. .
[0027]
In addition, at the time of night heat storage operation, it is necessary to cool the cold water 13 between 28 ° C. and 5 to 7 ° C. with the refrigerator 11 to store heat, but using night power and using relatively cool outside air Since the refrigerator 11 can be operated, the power consumption can be greatly reduced.
[0028]
For example, a trial calculation of the effect of reducing the annual electricity charge is as follows.
[0029]
First, as a trial calculation condition, the electricity charge is 1510 yen / kw / month for the basic charge, the pay-per-use charge is 20 yen / kwh for summer daytime, 6 yen / kwh for nighttime, and the refrigerator has a capacity of 500 USRT and cooling water. If the temperature changes by 1 ° C, the power consumption will change by 3%. The operating condition is that the cold energy in the heat storage tank is used up, and it is 3 hours a day that this regenerative air conditioning equipment is operated to lower the cooling water by 5 ° C. , 5 days a week, 6 weeks a year.
[0030]
Under these conditions, the basic charge reduction effect is 1576 thousand yen / year and the pay-as-you-go charge reduction is -265 thousand yen / year (increase), resulting in a total reduction effect of 1311 thousand yen / year.
[0031]
As described above, according to the heat storage type air conditioner 10, it is possible to improve the operation efficiency by cooling the cooling water 18 of the refrigerator 11 with the stored cold water, and to reduce the consumption of electric power or heat energy. it can.
[0032]
Moreover, the cool heat | fever of 10-12 degreeC or more of the thermal storage tank which was not utilized until now can be utilized, and the effect equivalent to having made the thermal storage tank large capacity | capacitance can be acquired.
[0033]
Furthermore, when an ice-on-coil type ice heat storage device is used as the heat storage device, if the heat is stored excessively, there may be a shortage of heat due to ice blocking, but the cold heat is used for cooling the cooling water of the refrigerator. As a result, heat is not stored excessively, and cold energy can be used effectively to maintain the soundness of the equipment.
[0034]
In addition, the present invention can be easily applied only by adding a cooling water cooling system (such as a heat exchanger or a pipe for direct mixing) of a refrigerator using cold water from a heat storage tank to an existing heat storage type air conditioner.
[0035]
In the above-described embodiment, cold energy is stored in the heat storage tank by operating a refrigerator that constitutes the air conditioning equipment. However, the present invention is not limited to this, and cold energy is stored by operation of other refrigerators or the like. Or, when there is another cold heat source, it may be used to store heat.
[0036]
【The invention's effect】
As described above in detail with reference to one embodiment, according to the heat storage type air conditioner of claim 1 of the present invention, after directly supplying the cooling load of the refrigerator of the air conditioner from the heat storage tank to the cooling load. A cold supply system that uses the cold waste heat directly or through a heat exchanger is provided, so that the temperature of the outside air can be raised by lowering the temperature of the cooling water of the chiller that is chasing after the heat is released to the cold load. Regardless of this, the operating efficiency of the refrigerator can be improved.
In addition, since the cooling heat supplied to the cooling system of the refrigerator via the cooling heat supply system is changed to the cooling waste heat after being directly supplied to the cooling load, the cold waste heat with a high temperature that could not be used until now ( Compared to the outside air temperature, it is possible to use low-temperature cold waste heat), and the operating efficiency of the refrigerator can be improved by using the cold energy stored more efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram according to an embodiment of a heat storage type air conditioner of the present invention.
FIG. 2 is an explanatory diagram of an operation state according to the embodiment of the heat storage type air conditioning equipment of the present invention.
FIG. 3 is a schematic configuration diagram of a conventional heat storage type air conditioner.
FIG. 4 is an explanatory diagram of an operation state of a conventional heat storage type air conditioner.
FIG. 5 is an explanatory diagram of changes in the refrigerating capacity with respect to the condensation temperature of the refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Heat storage type air conditioner 11 Refrigerator 12 Evaporator 13 Cold water 14 Cold load 15 Cold water pump 16 Heat storage tank 17 Condenser 18 Cooling water 19 Cooling system 20 Cooling tower 21 Cooling water pump 22 Cold water supply pump 23 Heat exchanger 24 Branch pipe 25 Cold waste water

Claims (1)

蓄熱槽に蓄熱した冷熱を冷熱負荷の増大時に放出する蓄熱式空調設備であって、前記空調設備の冷凍機の冷却系に、前記蓄熱槽から前記冷熱負荷に直接供給した後の冷廃熱を直接または熱交換器を介して利用する冷熱供給系を設けたことを特徴とする蓄熱式空調設備。A heat storage type air conditioner that discharges the cold stored in the heat storage tank when the cooling load increases, and the cold waste heat after being supplied directly from the heat storage tank to the cooling load to the cooling system of the refrigerator of the air conditioning equipment directly or regenerative air conditioning equipment, characterized in that a cold feed system utilizing through the heat exchanger.
JP24509699A 1999-08-31 1999-08-31 Thermal storage air conditioner Expired - Fee Related JP4385447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24509699A JP4385447B2 (en) 1999-08-31 1999-08-31 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24509699A JP4385447B2 (en) 1999-08-31 1999-08-31 Thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JP2001065930A JP2001065930A (en) 2001-03-16
JP4385447B2 true JP4385447B2 (en) 2009-12-16

Family

ID=17128558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24509699A Expired - Fee Related JP4385447B2 (en) 1999-08-31 1999-08-31 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP4385447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482614A (en) * 2014-11-17 2015-04-01 广东申菱空调设备有限公司 Double-cold-source sensible heat treatment high-temperature air-conditioning unit and control method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155797B2 (en) * 2002-11-01 2008-09-24 株式会社荏原製作所 Operation method of absorption refrigerator
CN102607123A (en) * 2012-04-01 2012-07-25 海信(山东)空调有限公司 Multi-system circulating air conditioning unit and control method
CN103256676A (en) * 2013-05-29 2013-08-21 赖正伦 Large-temperature-difference energy storage system and energy storage method thereof
CN103344023B (en) * 2013-07-15 2016-08-17 江苏省邮电规划设计院有限责任公司 A kind of electronic information machine room coupling-type cooling system
CN109631376B (en) * 2018-11-27 2022-01-28 珠海格力电器股份有限公司 Screw type water chilling unit and control method and system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482614A (en) * 2014-11-17 2015-04-01 广东申菱空调设备有限公司 Double-cold-source sensible heat treatment high-temperature air-conditioning unit and control method thereof
CN104482614B (en) * 2014-11-17 2017-07-25 广东申菱环境系统股份有限公司 A kind of pair of low-temperature receiver sensible heat processing high-temperature air conditioner unit and its control method

Also Published As

Publication number Publication date
JP2001065930A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
US10766338B2 (en) HVAC system of vehicle with battery heating and cooling
US9568235B2 (en) Thermal energy storage in a chiller system
KR20200127068A (en) Thermal management system for vehicle
KR20200142617A (en) Thermal management system for vehicle
KR20170008603A (en) device for control temperature of battery for a vehicle
KR20210003457A (en) Thermal management system for vehicle
KR20200139878A (en) Thermal management system for vehicle
KR101971889B1 (en) Gas engine driven heat pump system with generator
JP4385447B2 (en) Thermal storage air conditioner
JP2000105020A (en) Ice heat storage heat pump device using unutilized heat source
KR102463192B1 (en) Thermal management system for battery
KR101001293B1 (en) Energy-saving ice thermal storage system for separating cold charge and discharge pump
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
KR20020019787A (en) High efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
CN114076341B (en) Data center heat recovery system
CN210706790U (en) Whole vehicle refrigerating and heating system with phase change energy storage device for pure electric vehicle
JP6515441B2 (en) Hot water supply system
JP4464114B2 (en) Thermal storage device and thermal storage control method
KR200395419Y1 (en) Improved Heating and Cooling System
JP3937704B2 (en) Ice heat storage tank heat radiation leveling system
CN217455587U (en) Thermal management system and vehicle
CN218495212U (en) Air source water-cooling integrated air conditioning system with cooling and heating functions and double storage functions
CN219577692U (en) Cooling system for power converter
CN218351539U (en) Liquid cooling temperature control system for electrochemical energy storage battery
CN109291762B (en) Vehicle cold and hot management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees