JPH11158554A - Production of cold rolled steel sheet having aging resistance extremely small in dispersion - Google Patents
Production of cold rolled steel sheet having aging resistance extremely small in dispersionInfo
- Publication number
- JPH11158554A JPH11158554A JP33279897A JP33279897A JPH11158554A JP H11158554 A JPH11158554 A JP H11158554A JP 33279897 A JP33279897 A JP 33279897A JP 33279897 A JP33279897 A JP 33279897A JP H11158554 A JPH11158554 A JP H11158554A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cooling
- range
- rolled steel
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れた加工性と、
耐時効特性の、ばらつきが極めて少ない冷延鋼板の連続
焼鈍による製造方法に関わり、その主たる用途は、自動
車、家庭電化製品、建築材料等である。さらに、本発明
による高強度鋼板を自動車に使用すると、板厚を薄くす
ることができるため自動車の燃費の向上に寄与し、近
年、大きな課題となっている地球環境の改善にも役立つ
ことになる。TECHNICAL FIELD The present invention relates to an excellent workability,
The present invention relates to a method for producing a cold-rolled steel sheet having extremely small variation in aging resistance by continuous annealing, and its main uses are automobiles, home appliances, building materials, and the like. Furthermore, when the high-strength steel sheet according to the present invention is used in an automobile, the thickness can be reduced, which contributes to the improvement of the fuel efficiency of the automobile, and also contributes to the improvement of the global environment, which has been a major issue in recent years. .
【0002】[0002]
【従来の技術】低炭素鋼板を用い、耐時効特性のよい冷
延鋼板を連続焼鈍によって製造する方法は、例えば、特
公平5−55573号公報に開示されている。すなわ
ち、この発明は、冷延された低炭素鋼板を連続焼鈍する
にあたり、通常の方法で熱延された板を冷延し、その冷
延鋼板を再結晶・粒成長させた後、急冷・過冷却・再加
熱・傾斜過時効処理を行う連続焼鈍法に関するものであ
り、炭素量が0.01〜0.06%の範囲で変化する低
炭素鋼板を、720〜600℃の高温域から450〜3
00℃の低温域までを、50〜250℃/secの冷却
速度で一段で一気に冷却するものである。この急冷によ
って多量の固溶炭素を確保し炭化物の核発生を促進させ
ようとするものである。2. Description of the Related Art A method of producing a cold-rolled steel sheet having good aging resistance by continuous annealing using a low-carbon steel sheet is disclosed in, for example, Japanese Patent Publication No. 555553/1993. That is, according to the present invention, in continuous annealing of a cold-rolled low carbon steel sheet, a hot-rolled sheet is cold-rolled by a usual method, and the cold-rolled steel sheet is recrystallized and grain-grown, and then quenched and cooled. The present invention relates to a continuous annealing method for performing cooling / reheating / inclined overaging treatment, wherein a low-carbon steel sheet whose carbon content changes in a range of 0.01 to 0.06% is 450 to 450-600 ° C. from a high temperature range of 720-600 ° C. 3
It cools all the way down to a low temperature range of 00 ° C. in one step at a cooling rate of 50 to 250 ° C./sec. This rapid cooling secures a large amount of solute carbon to promote the generation of carbide nuclei.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来技術の特公平5−55573号公報に記載の発明で
は、炭素量が0.01〜0.06%の範囲で変化すると
炭化物の核発生の数が不安定になり、その結果、過時効
処理を行っても最終的な固溶炭素量にばらつきが発生し
易いことになり、冷延鋼板の耐時効特性がばらつくとい
う問題がある。このように、従来の連続焼鈍方法で冷延
鋼板を焼鈍すると、一般に、鋼板のCやMn等の成分量
の変動や熱延、冷延等の工程条件の変動の存在によっ
て、連続焼鈍後の冷延鋼板の耐時効特性に大きなばらつ
きが発生する。このばらつきは、製品価値を低めるばか
りでなく、出荷管理上の困難さをも生じさせることにな
る。However, in the invention described in Japanese Patent Publication No. 5-55573 of the prior art, when the carbon content changes in the range of 0.01 to 0.06%, the number of nuclei of carbides is reduced. Becomes unstable, and as a result, even if the overaging treatment is performed, the final amount of solute carbon is likely to vary, resulting in a problem that the aging resistance characteristics of the cold rolled steel sheet vary. As described above, when the cold-rolled steel sheet is annealed by the conventional continuous annealing method, generally, due to the fluctuation of the amount of components such as C and Mn of the steel sheet and the fluctuation of the process conditions such as hot rolling and cold rolling, the steel sheet after continuous annealing is generally used. A great variation occurs in the aging resistance characteristics of the cold-rolled steel sheet. This variation not only reduces product value, but also causes difficulty in shipping management.
【0004】そこで、本発明の第一の狙いは、耐時効特
性のばらつきを減少させることのできる冷延鋼板の製造
方法を提供することである。冷延鋼板の時効指数(Ag
ing Index、以下単にAIともいう)と焼付硬
化量(Bake−hardenability、以下単
にBHともいう)との間には、図5に示すような関係が
ある。鋼板の出荷管理上、時効指数には上限があり、こ
れ以上の時効指数をもつ鋼板は出荷できない。通常、時
効指数の上限値としては、30MPaが使われている。
鋼板の出荷を管理する上で時効指数には上限があるが、
それでも、焼付硬化量を、より高くすることが一方で要
請されている。そこで、本発明の第二のねらいは、耐時
効特性のばらつきを抑えることによって、実質的に焼付
硬化量の高い冷延鋼板の製造方法を提供することであ
る。Therefore, a first object of the present invention is to provide a method of manufacturing a cold-rolled steel sheet which can reduce the variation in aging resistance. Aging index (Ag
The relationship shown in FIG. 5 exists between the ing Index (hereinafter also simply referred to as AI) and the bake hardening amount (Bake-hardenability, hereinafter simply referred to as BH). There is an upper limit to the aging index in the management of steel sheet shipment, and steel sheets with an aging index higher than this cannot be shipped. Usually, 30 MPa is used as the upper limit of the aging index.
There is an upper limit to the aging index in managing the shipment of steel sheets,
Nevertheless, there is a demand on the other hand to increase the bake hardening amount. Therefore, a second aim of the present invention is to provide a method for producing a cold-rolled steel sheet having a substantially high bake hardening amount by suppressing variation in aging resistance.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記の課
題を解決するために、鋼板の成分や熱延、冷延等の工程
条件が、ある範囲内で変動しても耐時効特性のばらつき
を十分に小さくすることのできる連続焼鈍熱サイクルに
ついて鋭意検討した。その結果、図2に示すように、急
冷開始温度(T1)から急冷終点温度(T3)までを直
線的に一気に冷却する従来の方法に対して、T1から急
冷中間温度のT2までを急冷し、その後T2からT3に
いたる温度の間では緩冷却をすれば、冷延鋼板の耐時効
特性のばらつきが極めて小さくなるという新しい作用効
果を見出した。この二段冷却法ともいうべき新連続焼鈍
の熱サイクルを使用して鋼板を連続焼鈍すると、鋼板の
成分系や熱延、冷延等の工程条件に、ある範囲内での変
動があっても、耐時効特性のばらつきを十分に小さくす
ることができる。Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have developed an anti-aging property even if the components of the steel sheet and the process conditions such as hot rolling and cold rolling vary within a certain range. The continuous annealing thermal cycle that can sufficiently reduce the variation of the temperature was studied. As a result, as shown in FIG. 2, in contrast to the conventional method of linearly cooling from the quenching start temperature (T1) to the quenching end point temperature (T3) at once, the quenching is performed from T1 to the quenching intermediate temperature T2, Thereafter, a new effect has been found that if the cooling is performed slowly between the temperatures T2 and T3, the aging resistance characteristics of the cold-rolled steel sheet have extremely small variations. If the steel sheet is continuously annealed using the new continuous annealing heat cycle which can be called this two-stage cooling method, even if there is a variation within a certain range in the component system of the steel sheet and the process conditions such as hot rolling and cold rolling. In addition, variations in aging resistance can be sufficiently reduced.
【0006】T1からT3にいたる冷却処理の技術的役
割は、(1)過冷による多量の固溶炭素の確保と、
(2)過時効処理に先立ち炭化物の核発生の誘起の2点
である。まず、(1)の多量の固溶炭素量の確保は、炭
化物の核発生が容易に起こるための駆動力を発生させる
ために不可欠である。そして、(2)は、その後に続く
過時効処理で固溶炭素を迅速に減少させるために、固溶
炭素の析出サイトの数を十分に確保することと、それを
板内で均一に発生させるために必要である。[0006] The technical role of the cooling process from T1 to T3 is (1) securing a large amount of solute carbon by subcooling;
(2) Two points of induction of carbide nucleation prior to overaging treatment. First, the securing of a large amount of solute carbon in (1) is indispensable for generating a driving force for easily generating nuclei of carbides. In (2), in order to rapidly reduce solid solution carbon in the subsequent overaging treatment, the number of precipitation sites of solid solution carbon is sufficiently ensured, and it is uniformly generated in the plate. Is necessary for
【0007】この技術的目的を達成させるためのT1か
らT3までの熱サイクル条件を詳細に検討した。その結
果、(1)の固溶炭素量を十分確保するためには、特に
炭素の拡散速度の速い720℃〜600℃から中間温度
の450〜300℃の温度域において高冷却速度が必要
であることを見出した。すなわち、この場合に必要な冷
却速度は、50℃/sec以上の高冷却速度である。一
方、上限の冷却速度は250℃/secであり、これを
超える高冷却速度は固溶炭素量を高める点では不必要で
ある。また、(2)の十分な炭化物の核を板内に均一に
発生させるためには、450〜300℃の急冷中間温度
(T2)から350〜200℃までの急冷終点温度(T
3)を5〜40℃/sのやや緩い速度で冷却することが
効果的であることを見出した。[0007] The thermal cycling conditions from T1 to T3 to achieve this technical object were studied in detail. As a result, in order to sufficiently secure the amount of dissolved carbon in (1), a high cooling rate is required particularly in a temperature range from 720 ° C. to 600 ° C. where the diffusion rate of carbon is high to 450 ° C. to 300 ° C. at an intermediate temperature. I found that. That is, the cooling rate required in this case is a high cooling rate of 50 ° C./sec or more. On the other hand, the upper limit cooling rate is 250 ° C./sec, and a high cooling rate exceeding this is unnecessary in terms of increasing the amount of dissolved carbon. In addition, in order to uniformly generate sufficient carbide nuclei of (2) in the plate, the quenching intermediate temperature (T2) of 450 to 300 ° C. to the quenching end point temperature (T2) of 350 to 200 ° C.
It has been found that it is effective to cool 3) at a slightly slower rate of 5 to 40 ° C./s.
【0008】この本発明の方法を、再結晶・粒成長処理
後、急冷・過冷却・再加熱・傾斜過時効を行う連続焼鈍
法に適用すると、従来より極めて、ばらつきの少ない耐
時効特性を持った冷延鋼板を製造することができる。更
に、耐時効特性のばらつきを少なくすることによって、
鋼板にはより高い焼付硬化量を実質的に持たせることが
できるのである。When the method of the present invention is applied to a continuous annealing method in which quenching, supercooling, reheating, and gradient overaging are performed after a recrystallization / grain growth treatment, the method has an aging resistance characteristic with extremely little variation compared to the conventional method. Cold rolled steel sheet can be manufactured. Furthermore, by reducing the variation in aging resistance,
The steel sheet can have substantially higher bake hardening.
【0009】本発明による、ばらつきの極めて少ない耐
時効特性を有する冷延鋼板の製造方法は以下の通りであ
る。 (1)質量%で、C:0.01〜0.06%、Si:
0.1%以下、Mn:0.05〜0.40%、P:0.
10%以下、S:0.002〜0.025%、sol.
Al:0.01〜0.10%、N:0.001〜0.0
06%、残部鉄および不可避的不純物からなる鋼を通常
の方法で熱延し、冷延した冷延鋼板を再結晶・粒成長処
理後、急冷・過冷却・再加熱・傾斜過時効処理する連続
焼鈍を行う際、再結晶・粒成長後に720〜600℃の
温度域から450〜300℃の温度域までを50〜25
0℃/secの冷却速度で急冷し、次いで350〜20
0℃の温度域までを5〜40℃/secの冷却速度で冷
却し、該温度域で0〜15秒間保持した後、400〜3
20℃の温度域に少なくとも40℃以上の昇温を伴う再
加熱を行い、該温度域から385〜220℃の温度域ま
で冷却しながら過時効処理することを特徴とする、ばら
つきの極めて少ない耐時効特性を有する冷延鋼板の製造
方法。 (2)前記鋼が、BとNの含有量の比でB/N=0.5
〜2.0の関係を満たして含有することを特徴とする、
上記(1)に記載のばらつきの極めて少ない耐時効特性
を有する冷延鋼板の製造方法。A method for producing a cold-rolled steel sheet having aging resistance with very little variation according to the present invention is as follows. (1) In mass%, C: 0.01 to 0.06%, Si:
0.1% or less, Mn: 0.05 to 0.40%, P: 0.
10% or less, S: 0.002 to 0.025%, sol.
Al: 0.01 to 0.10%, N: 0.001 to 0.0
Continuously hot-rolling a steel consisting of 06%, balance iron and unavoidable impurities, and subjecting cold-rolled cold-rolled steel sheet to recrystallization / grain growth treatment, rapid cooling / supercooling / reheating / inclined overaging treatment When performing annealing, after recrystallization and grain growth, the temperature range from 720 to 600 ° C. to 450 to 300 ° C. is 50 to 25.
Rapid cooling at a cooling rate of 0 ° C./sec.
After cooling to a temperature range of 0 ° C. at a cooling rate of 5 to 40 ° C./sec and maintaining the temperature range for 0 to 15 seconds,
Reheating with a temperature rise of at least 40 ° C. in a temperature range of 20 ° C., and performing overaging treatment while cooling from the temperature range to a temperature range of 385 to 220 ° C .; A method for producing a cold-rolled steel sheet having aging characteristics. (2) The steel has a ratio of B / N of B / N = 0.5.
Characterized by satisfying the relationship of ~ 2.0,
The method for producing a cold-rolled steel sheet having aging resistance with very little variation according to the above (1).
【0010】[0010]
【発明の実施の形態】本発明における冷延鋼板の製造方
法は、低炭素鋼板のC、Si、Mn、P、S、Al、N
量を限定し、通常の方法で熱延板とし、冷延した冷延鋼
板を再結晶・粒成長処理後、急冷・過冷却・再加熱・傾
斜過時効処理する連続焼鈍法に関するものである。特
に、急冷開始温度(T1)から急冷終点温度(T3)ま
でを二段階に冷却する熱サイクルを採用するものであ
る。これらによって、耐時効特性のばらつきが抑えら
れ、高い焼付硬化量を持った冷延鋼板が製造される。以
下に本発明の限定理由を述べる。BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a cold-rolled steel sheet according to the present invention is a method for producing C, Si, Mn, P, S, Al, N
The present invention relates to a continuous annealing method in which the amount is limited, a hot-rolled sheet is formed by an ordinary method, and a cold-rolled cold-rolled steel sheet is subjected to recrystallization / grain growth treatment, followed by rapid cooling / supercooling / reheating / inclined overaging treatment. In particular, a heat cycle in which cooling is performed in two stages from the quenching start temperature (T1) to the quenching end point temperature (T3) is employed. With these, variations in aging resistance are suppressed, and a cold rolled steel sheet having a high bake hardening amount is manufactured. The reasons for limiting the present invention are described below.
【0011】先ず化学成分についてである。Cは、その
含有量が少なくなるに従って、延性および深絞り性が向
上すること、また、含有量が少なくなり過ぎる耐時効特
性が劣化するるので、本発明の場合は、C:0.01〜
0.06%の範囲で加工性と耐時効特性の優れた冷延鋼
板が得られる。First, the chemical components will be described. As for C, as its content decreases, ductility and deep drawability improve, and the aging resistance, which is too low in content, deteriorates.
In the range of 0.06%, a cold-rolled steel sheet excellent in workability and aging resistance can be obtained.
【0012】MnおよびSは、熱間圧延時のSによる脆
性を防止することと、MnSを炭化物の優先析出サイト
として利用するので、それらの量には限定された範囲が
必要である。これらの観点から、Mnを0.05〜0.
40%、Sを0.002〜0.025%に規制した。こ
のことと二段急速冷却の組み合わせによって、一層、耐
時効特性の優れた冷延鋼板が製造されることになるので
ある。Since Mn and S prevent brittleness due to S during hot rolling and utilize MnS as a preferential precipitation site for carbides, their amounts need to have a limited range. From these viewpoints, Mn is set to 0.05 to 0.
40% and S were regulated to 0.002 to 0.025%. By the combination of this and the two-stage rapid cooling, a cold rolled steel sheet having more excellent aging resistance properties is manufactured.
【0013】Siは、フェライトに固溶し、マトリック
スを硬質化させるのみならず、大量に添加された場合に
はスケール起因の表面キズ等による表面品位の劣化や、
化成処理性の低下をもたらすために、0.1%以下の添
加量に制限する。しかしながら、Si添加量を0.00
3%未満に制御することは実製造条件から困難であるこ
とから、Si添加量の下限を0.003%とすることが
好ましい。Pは、耐時効特性に大きく影響しない元素で
あるが、自動車用鋼板等を製造する場合はその上限を
0.10%としなければならない。Pがこれを越えると
鋼板の加工性が著しく劣化するからである。[0013] Si not only dissolves in ferrite and hardens the matrix, but when added in a large amount, deteriorates surface quality due to surface scratches caused by scale,
To reduce the chemical conversion property, the addition amount is limited to 0.1% or less. However, if the amount of Si added is 0.00
Since it is difficult to control the content to less than 3% under actual manufacturing conditions, the lower limit of the amount of Si added is preferably set to 0.003%. P is an element that does not significantly affect the aging resistance. However, in the case of manufacturing a steel sheet for automobiles, the upper limit must be 0.10%. If P exceeds this, workability of the steel sheet is significantly deteriorated.
【0014】sol.Alは、鋼中の酸素、窒素量を制
御するのに必要な元素であるが、これが多すぎると硬質
化するので上限を0.10%とした。一方、これが少な
過ぎると窒素に起因する時効性を抑えることができない
ので、下限を0.01%とした。Nは、鋼中のsol.
Alと結びついてAlN(Bが添加されるときはBN)
となり材質を硬質化させるので、その上限を0.006
%とした。なお、下限を0.001%としたのは、現在
の製鋼技術ではN量をこれより低くすることは困難なた
めである。Sol. Al is an element necessary for controlling the amounts of oxygen and nitrogen in the steel, but if it is too much, it hardens, so the upper limit was made 0.10%. On the other hand, if the content is too small, the aging effect due to nitrogen cannot be suppressed, so the lower limit was made 0.01%. N in sol.
AlN in combination with Al (BN when B is added)
And the material is hardened, so the upper limit is 0.006
%. The lower limit is set to 0.001% because it is difficult to make the N amount lower than the current steelmaking technology.
【0015】Bは、本発明においては、必要に応じて含
有させるものである。Bは、B/Nで0.5以上含有す
ると鋼中のNと結びついてBNとなり窒素時効を防止で
きるが、B/Nが2.0を越えると固溶のB量が増えて
材質を硬質化させるので、B/Nの下限を0.5、上限
を2.0とした。次に、鋳造から熱間圧延にいたるまで
の工程であるが、スラブを冷片とした後再加熱する方法
でも、連続鋳造−直送熱間圧延(CC−DR)法でもい
ずれを採用してもよい。従って、スラブを加熱する場合
の温度は、特に限定しなくてもよいことになる。また、
熱延後の巻取温度は、鋼板の耐時効特性にあまり影響を
与えず、600℃程度の低温巻取の場合でも本発明の効
果は十分に得られる。700℃以上の高温巻取をした場
合には、焼鈍後の結晶粒が大きくなり加工性が向上す
る。次に連続焼鈍工程について述べる。In the present invention, B is contained as required. If B is contained in B / N of 0.5 or more, B is combined with N in the steel to form BN, and nitrogen aging can be prevented. However, if B / N exceeds 2.0, the amount of solid solution B increases and the material becomes hard. Therefore, the lower limit of B / N was set to 0.5 and the upper limit was set to 2.0. Next, the process from casting to hot rolling is carried out. Regardless of the method in which the slab is cooled and then reheated, the continuous casting-direct feed hot rolling (CC-DR) method is used. Good. Therefore, the temperature for heating the slab does not need to be particularly limited. Also,
The winding temperature after hot rolling does not significantly affect the aging resistance of the steel sheet, and the effect of the present invention can be sufficiently obtained even at a low temperature of about 600 ° C. When a high-temperature winding at 700 ° C. or more is performed, crystal grains after annealing become large and workability is improved. Next, the continuous annealing step will be described.
【0016】冷間圧延された鋼板を再結晶・粒成長させ
る工程は、特に限定する必要は無く、通常の方法の再結
晶温度以上に加熱し均熱すればよい。均熱後の急冷は、
720〜600℃の温度域から450〜300℃の温度
域までを50〜250℃/secの冷却速度で冷却し、
次いで350〜200℃の温度域までを5〜40℃/s
ecの冷却速度で冷却する必要がある。この二段階の冷
却方法が、ばらつきの少ない耐時効特性を得る上で最も
重要な技術的ポイントである。The step of recrystallization and grain growth of the cold-rolled steel sheet does not need to be particularly limited, and may be performed by heating to a temperature higher than the recrystallization temperature in a usual method. Rapid cooling after soaking,
Cooling from a temperature range of 720 to 600 ° C. to a temperature range of 450 to 300 ° C. at a cooling rate of 50 to 250 ° C./sec,
Next, up to a temperature range of 350 to 200 ° C., 5 to 40 ° C./s
It is necessary to cool at a cooling rate of ec. This two-stage cooling method is the most important technical point in obtaining aging resistance with less variation.
【0017】鋼板中への変態による歪みの導入を避ける
ために、均熱後は20℃/sec以下の冷却速度で冷却
する。同じ理由で急冷開始温度の上限は720℃とす
る。急冷開始温度が600℃未満になると、急冷中間温
度(T2)での固溶炭素量が十分でなくなるので、60
0℃を急冷開始温度の下限とする。急冷中間温度(T
2)の上限温度は450℃とする。この温度より高くな
ると固溶炭素量が不足し、炭化物の核発生が十分に起こ
らなくなるからである。また、急冷中間温度が300℃
未満になると、炭化物の核発生の、ばらつきが大きくな
り、結果として耐時効特性の、ばらつきを大きくさせる
ので、300℃を急冷中間温度の下限とする。After soaking, the steel sheet is cooled at a cooling rate of 20 ° C./sec or less in order to avoid introduction of distortion due to transformation into the steel sheet. For the same reason, the upper limit of the quenching start temperature is set to 720 ° C. If the quenching start temperature is lower than 600 ° C., the amount of solute carbon at the quenching intermediate temperature (T2) becomes insufficient, so
0 ° C. is the lower limit of the quenching start temperature. Rapid cooling intermediate temperature (T
The upper limit temperature in 2) is 450 ° C. If the temperature is higher than this, the amount of dissolved carbon is insufficient, and nucleation of carbides does not sufficiently occur. Also, the quenching intermediate temperature is 300 ° C.
If it is less than 300%, the variation in the nucleation of carbides becomes large, and as a result, the variation in the aging resistance becomes large. Therefore, 300 ° C. is set as the lower limit of the quenching intermediate temperature.
【0018】急冷開始温度(T1)から急冷中間温度
(T2)までの冷却速度の下限は50℃/secであ
る。これより遅くなると十分な固溶炭素量が確保され
ず、高い耐時効特性は得られない。また、冷却速度を2
50℃/sec超にしても、温度の制御性が悪くなり耐
時効特性が不安定になるので、250℃/secを冷却
速度の上限とする。The lower limit of the cooling rate from the quenching start temperature (T1) to the quenching intermediate temperature (T2) is 50 ° C./sec. If it is later than this, a sufficient amount of solute carbon is not secured, and high aging resistance cannot be obtained. In addition, the cooling rate is 2
Even if it exceeds 50 ° C./sec, the controllability of the temperature is deteriorated and the aging resistance becomes unstable, so that 250 ° C./sec is set as the upper limit of the cooling rate.
【0019】十分な炭化物の析出密度を確保するため
に、急冷終点温度を350℃以下にする。一方、急冷終
点温度を200℃未満にすると、炭化物の核の密度が多
くなりすぎて鋼板が硬質化するので、200℃をその下
限とする。急冷中間温度(T2)から急冷終点温度(T
3)までは、5〜40℃/secの冷却速度で冷却する
必要がある。40℃/secを超える冷却速度になる
と、鋼板の耐時効特性のばらつきが大きくなるので、4
0℃/secを上限とする。一方、5℃/sec未満の
冷却速度になると連続焼鈍炉が長大になるので、5℃/
secを下限とした。In order to secure a sufficient precipitation density of carbides, the quenching end point temperature is set to 350 ° C. or less. On the other hand, if the quenching end point temperature is lower than 200 ° C., the density of carbide nuclei becomes too high and the steel sheet becomes hard, so 200 ° C. is set as the lower limit. From the quenching intermediate temperature (T2) to the quenching end point temperature (T
Until 3), it is necessary to cool at a cooling rate of 5 to 40 ° C./sec. If the cooling rate exceeds 40 ° C./sec, the variation in the aging resistance of the steel sheet becomes large.
The upper limit is 0 ° C./sec. On the other hand, if the cooling rate is less than 5 ° C./sec, the continuous annealing furnace becomes long,
sec was the lower limit.
【0020】急冷終点温度(T3)に到達後は、この温
度域で0〜15秒間保持する。この保持時間は、長いほ
うが耐時効特性が安定するが、焼鈍炉を不必要に長くす
るので15秒をその上限とする。なお、保持時間が0秒
であっても本発明の目的は達成される。この後は、40
0〜320℃(過時効開始温度T4)の温度域に再加熱
し、徐冷させながら385〜220℃の温度域(過時効
終了温度T5)までで過時効処理する。これらの温度範
囲内で過時効処理すると、炭素の効率的な拡散速度が活
用でき、迅速に固溶炭素量の減少が図れる。更に、過時
効終了温度を385〜220℃にすることによって、到
達固溶炭素量を低く抑えることができる。急冷終点温度
(T3)から過時効開始温度(T4)までの再加熱は、
5℃/sec以上の加熱速度で行えば、最終的な特性を
大きく劣化させることはない。好ましくは、過度に連続
焼鈍炉のライン長さを長くしないために、15℃/se
c以上とするのが好ましく、また、再加熱のコスト上昇
を最小限にとどめるために60℃/sec以下とするの
が好ましい。After reaching the quenching end point temperature (T3), the temperature is maintained in this temperature range for 0 to 15 seconds. Although the longer the holding time, the more stable the aging resistance, the upper limit thereof is 15 seconds because the annealing furnace is unnecessarily long. Note that the object of the present invention is achieved even if the holding time is 0 second. After this, 40
It is reheated to a temperature range of 0 to 320 ° C (overaging start temperature T4), and is overaged up to a temperature range of 385 to 220 ° C (overaging end temperature T5) while being gradually cooled. When the overaging treatment is performed within these temperature ranges, the efficient diffusion speed of carbon can be utilized, and the amount of dissolved carbon can be rapidly reduced. Further, by setting the overaging end temperature to 385 to 220 ° C., it is possible to suppress the attained solid solution carbon amount to be low. Reheating from the quenching end point temperature (T3) to the overaging start temperature (T4)
If the heating is performed at a heating rate of 5 ° C./sec or more, the final characteristics are not significantly deteriorated. Preferably, in order not to excessively lengthen the line length of the continuous annealing furnace, 15 ° C./sec.
c or more, and preferably 60 ° C./sec or less in order to minimize an increase in the cost of reheating.
【0021】[0021]
【実施例】以下、実施例により本発明をさらに説明す
る。 (実施例1)表1に、熱延鋼板の製造現場から採取した
AからVまでの熱延鋼板の成分組成を記載する。この熱
延鋼板のBからJまでを実験室で冷間圧延をして、0.
8mmの冷延板とし、それに以下の熱処理を施した。The present invention will be further described with reference to the following examples. (Example 1) Table 1 shows the component compositions of hot-rolled steel sheets A to V collected from a hot-rolled steel sheet manufacturing site. The hot-rolled steel sheets B to J are cold-rolled in a laboratory to obtain 0.1 mm.
An 8 mm cold-rolled plate was subjected to the following heat treatment.
【0022】一つは従来の熱処理の代表的なもので、8
00℃−60秒の均熱焼鈍後、675℃から250℃ま
でを100℃/secの冷却速度で急冷し、続いて35
0℃まで再加熱し、350℃から270℃までの過時効
時間を変化させながら徐冷させて過時効処理をした。一
方、本発明の代表的な方法によるもので、800℃−6
0秒の均熱焼鈍後、675℃から350℃までを80℃
/secの冷却速度で冷却し、その後250℃までを2
0℃/secの冷却速度で冷却した。その後は、350
℃まで再加熱し、350℃から270℃までは過時効時
間を変えながら過時効処理を施した。One is a typical one of the conventional heat treatments.
After soaking at 00 ° C. for 60 seconds, the temperature was rapidly cooled from 675 ° C. to 250 ° C. at a cooling rate of 100 ° C./sec.
It was reheated to 0 ° C. and gradually cooled while changing the overaging time from 350 ° C. to 270 ° C. to perform an overaging treatment. On the other hand, according to a typical method of the present invention,
After 0 second soaking annealing, 80 ° C from 675 ° C to 350 ° C
/ Sec, and then cool to 250 ° C for 2
Cooling was performed at a cooling rate of 0 ° C./sec. After that, 350
C., and overaged from 350 ° C. to 270 ° C. while changing the overage time.
【0023】これらの鋼板の時効指数(AI)のばらつ
きを、過時効時間の関数として図3、図4に示す。図3
は、炭素量が0.010〜0.025%のものであり、
図4は、炭素量が0.025〜0.055%の結果であ
る。さらに、図1には、時効指数(AI)のばらつきの
範囲の変化を示す。なお、時効指数は焼鈍した鋼板中に
残存する固溶炭素量にほぼ比例する指標である。この時
効指数(AI)は、10%の引張歪みを与えた後に10
0℃−1hrの熱処理を施し、再度引張試験をして、そ
の降伏応力の上昇代で表現する。The variation in the aging index (AI) of these steel sheets is shown in FIGS. 3 and 4 as a function of the overaging time. FIG.
Has a carbon content of 0.010 to 0.025%,
FIG. 4 shows the results when the carbon content is 0.025 to 0.055%. FIG. 1 shows a change in the range of variation of the aging index (AI). The aging index is an index substantially proportional to the amount of solute carbon remaining in the annealed steel sheet. This aging index (AI) is 10% after 10% tensile strain.
A heat treatment of 0 ° C. for 1 hour is performed, a tensile test is performed again, and the yield is expressed by an increase in yield stress.
【0024】図3、図4および図1に示す結果から明ら
かなように、本発明による二段冷却方法によれば、鋼板
の炭素量の範囲にほとんど関係なく時効指数のばらつき
を非常に低く抑えることが可能である。時効指数のばら
つきを低く抑えることができれば、図5からわかるよう
に、高い焼付硬化量を持った鋼板の製造が可能になるの
である。 (実施例2)表1に示すA〜Vの熱延鋼板を実験室で冷
間圧延によって板圧0.80mmの鋼板とした。それら
を800℃−60sの均熱処理後、5〜10℃/sec
で急冷開始温度T1まで冷却し、急冷中間温度T2まで
およびその後急冷終点温度T3までをそれぞれ表2〜3
に示す冷却速度で冷却し、T3温度で所定の等温保持を
行い、過時効開始温度まで10〜30℃/secの加熱
速度で再加熱した。その後過時効処理の開始温度から終
了温度へ冷却しながら所定の時間の時効処理を行い、時
効処理完了後、室温まで冷却して鋼板の材質を調査し
た。この様にして得られた鋼板の特性を焼鈍処理条件と
共に表2〜3に示す。各条件で、10回の実験を行い、
各材質は12回の平均値を示した。また、AIのばらつ
きは、測定されたAIの範囲で示した。As is clear from the results shown in FIGS. 3, 4 and 1, according to the two-stage cooling method of the present invention, the variation of the aging index is suppressed to a very low level regardless of the range of the carbon content of the steel sheet. It is possible. If the variation of the aging index can be suppressed to a low level, as can be seen from FIG. 5, it is possible to produce a steel sheet having a high bake hardening amount. (Example 2) Hot rolled steel sheets A to V shown in Table 1 were cold-rolled in a laboratory into steel sheets having a sheet pressure of 0.80 mm. After soaking them at 800 ° C for 60s, 5-10 ° C / sec
To the quenching start temperature T1, and to the quenching intermediate temperature T2 and thereafter to the quenching end point temperature T3,
Then, the mixture was cooled at the cooling rate shown in Table 2, kept at a predetermined isothermal temperature at the T3 temperature, and reheated at a heating rate of 10 to 30 ° C / sec until the overaging start temperature. Thereafter, the aging treatment was performed for a predetermined time while cooling from the start temperature to the end temperature of the overaging treatment. After the aging treatment was completed, the aging treatment was cooled to room temperature and the material of the steel sheet was investigated. The properties of the steel sheet thus obtained are shown in Tables 2 and 3 together with the annealing conditions. Conducted 10 experiments under each condition,
Each material showed an average value of 12 times. The variation in AI was shown in the range of the measured AI.
【0025】No.1は、C量が本発明の範囲外である
ために、AIが30MPa以上であるばかりでなく、A
Iのばらつきも10MPa以上の大きな値となってい
る。また、No.42〜51はすべて、化学成分が本発
明の範囲外の鋼である。まず、No.42は、C量が過
剰であるために、YPが250MPa以上と硬質化して
いるばかりでなく、AI及びAIのばらつきも大きくな
っている。No.43は、Si添加量が本発明の範囲外
であったために熱延鋼板にスケール起因のキズが発生し
ており、冷延鋼板の表面品位が悪い。そのため、他の評
価は行わなかった。No.44および47は、MnとS
の比が10以下と小さいために、スラブ段階での割れが
生じ、冷延鋼板の表面品位が悪い。そのため、他の評価
は行わなかった。No.45、46、49、50、51
はそれぞれ、Mn、P、Al、N、Bの添加量が本発明
範囲より多いために、鋼板が硬質化し、YPが250M
Paを越えて、加工性が劣化している。No.48は、
Al添加量が本発明範囲より少ないために、N起因の時
効性が現れ、AI及びAIのばらつき共に大きくなって
いる。No. No. 1 indicates that not only AI is 30 MPa or more but also A
The variation of I is also a large value of 10 MPa or more. In addition, No. All 42 to 51 are steels whose chemical components are outside the scope of the present invention. First, no. Sample No. 42 has not only a hardened YP of 250 MPa or more but also a large variation in AI and AI due to an excessive amount of C. No. In No. 43, since the amount of Si added was outside the range of the present invention, scale-induced flaws occurred in the hot-rolled steel sheet, and the surface quality of the cold-rolled steel sheet was poor. Therefore, no other evaluation was performed. No. 44 and 47 are Mn and S
Is as small as 10 or less, cracking occurs in the slab stage, and the surface quality of the cold-rolled steel sheet is poor. Therefore, no other evaluation was performed. No. 45, 46, 49, 50, 51
In each case, since the added amounts of Mn, P, Al, N, and B were larger than the range of the present invention, the steel sheet was hardened and YP was 250M.
Exceeding Pa, the workability is degraded. No. 48 is
Since the amount of Al added is less than the range of the present invention, aging caused by N appears, and both AI and variation in AI increase.
【0026】No.11と12は急冷開始温度が、ま
た、No.3、4、18、31、39は急冷中間温度
が、また、No.24、25は急冷終点温度が本発明の
範囲外であるために、AIが30MPa以上と大きく、
また、AIのばらつきが10MPa以上と大きくなって
いる。また、No.24は、急冷終点温度から過時効ま
でに再加熱が行われていないことも本発明の範囲外であ
る。No. Nos. 11 and 12 have quenching start temperatures. Nos. 3, 4, 18, 31, and 39 have quenching intermediate temperatures. Nos. 24 and 25 have AIs as large as 30 MPa or more because the quenching end point temperature is outside the range of the present invention;
Further, the variation in AI is as large as 10 MPa or more. In addition, No. No. 24 is also outside the scope of the present invention in that reheating is not performed from the quenching end point temperature to overaging.
【0027】No8はT1からT2の冷却速度が、N
o.10はT2からT3の冷却速度が本発明の範囲外で
遅すぎるために、AIが30MPa以上と大きく、ま
た、AIのばらつきが10MPa以上と大きくなってい
る。No.9、13、14、26、40、41は、冷却
速度が本発明の範囲外で速すぎるか、もしくは、冷却が
1段で行われたために、AI自身は低くなっているもの
の、AIのばらつきが10MPa以上となって、安定し
たAIの制御ができていない。In No. 8, the cooling rate from T1 to T2 is N
o. In No. 10, since the cooling rate from T2 to T3 is too slow outside the range of the present invention, the AI is as large as 30 MPa or more, and the variation in AI is as large as 10 MPa or more. No. 9, 13, 14, 26, 40, and 41 indicate that although the cooling rate is too high outside the scope of the present invention or that the cooling is performed in one stage, the AI itself is low, but the variation in the AI is Became 10 MPa or more, and stable AI control was not performed.
【0028】No.22は、T3での保持時間が18秒
と本発明の範囲よりも長いために、AIのばらつきが1
0MPa以上と大きくなっている。No.35、36、
37、38は、過時効温度が本発明の範囲外であること
から、AI及びAIのばらつきが大きくなっている。以
上の比較例以外の例はすべて本発明例であり、焼鈍の均
熱処理以降の冷却条件、過時効条件が、本発明の二段冷
却−再加熱−過時効処理による場合には、AIとして3
0MPa以内でかつ、AIのばらつきが10MPa以内
である様な耐時効性のばらつきが極めて少ない冷延鋼板
を製造できることを示している。No. Sample No. 22 has an AI variation of 1 because the holding time at T3 is 18 seconds, which is longer than the range of the present invention.
It is as large as 0 MPa or more. No. 35, 36,
In Nos. 37 and 38, since the overaging temperature is out of the range of the present invention, AI and variation in AI are large. All of the examples other than the comparative examples described above are examples of the present invention. When the cooling condition and the overaging condition after the soaking heat treatment of annealing are the two-stage cooling-reheating-overaging treatment of the present invention, the AI is 3
This indicates that a cold-rolled steel sheet with extremely small aging resistance variation within 0 MPa and variation in AI within 10 MPa can be manufactured.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】[0032]
【発明の効果】以上詳述したように、本発明によれば、
実質的に加工用冷延鋼板のAIのばらつきを低減でき、
図5に概念的に示したように、品質管理上、より高いB
H性を持った非時効性鋼板を安定して提供することがで
きる。これによって、鋼板の出荷管理が容易になるばか
りでなく、鋼板の使用者である自動車メーカー等で、ス
トレッチャーストレインが発生しない条件下でこれまで
よりも高いBH性の鋼板を使用することができるため
に、製品の高品質化、安全性向上、更には、車体重量の
低下等を通じて、省エネルギー、環境負荷の低減等に貢
献する事ができる。As described in detail above, according to the present invention,
Substantially reduces the variation in AI of cold-rolled steel sheets for processing,
As conceptually shown in FIG. 5, higher B
A non-ageing steel sheet having H property can be stably provided. This facilitates not only shipping management of the steel sheet, but also enables an automobile manufacturer or the like who uses the steel sheet to use a higher BH steel sheet under conditions where stretcher strain does not occur. Therefore, it is possible to contribute to energy saving, reduction of environmental load, and the like by improving the quality of the product, improving the safety, and further reducing the weight of the vehicle body.
【図面の簡単な説明】[Brief description of the drawings]
【図1】図1は、本発明と従来方法について、時効指数
の範囲を示すグラフである。FIG. 1 is a graph showing the range of the aging index for the present invention and the conventional method.
【図2】図2は、本発明と従来方法の焼鈍サイクルを比
較して概念的に示すグラフである。FIG. 2 is a graph conceptually showing a comparison between annealing cycles of the present invention and a conventional method.
【図3】図3は、本発明と従来方法について、C:0.
010〜0.025%の鋼板の時効指数のばらつきを示
すグラフである。FIG. 3 is a graph showing C: 0.
It is a graph which shows the dispersion of the aging index of a steel plate of 010-0.025%.
【図4】図4は、本発明と従来方法について、C:0.
025〜0.055%の鋼板の時効指数のばらつきを示
すグラフである。FIG. 4 is a graph showing C: 0.
It is a graph which shows the dispersion of the aging index of the steel plate of 025-0.055%.
【図5】図5は、焼き付け硬化量(BH)と時効指数
(AI)の関係により、本発明によるばらつき低減の効
果を概念的に説明するグラフである。FIG. 5 is a graph conceptually illustrating the effect of the present invention on the reduction of variation based on the relationship between the bake hardening amount (BH) and the aging index (AI).
Claims (2)
Si:0.1%以下、Mn:0.05〜0.40%、
P:0.10%以下、S:0.002〜0.025%、
sol.Al:0.01〜0.10%、N:0.001
〜0.006%、残部鉄および不可避的不純物からなる
鋼を通常の方法で熱延し、冷延した冷延鋼板を再結晶・
粒成長処理後、急冷・過冷却・再加熱・傾斜過時効処理
する連続焼鈍を行う際、再結晶・粒成長後に720〜6
00℃の温度域から450〜300℃の温度域までを5
0〜250℃/secの冷却速度で急冷し、次いで35
0〜200℃の温度域までを5〜40℃/secの冷却
速度で冷却し、該温度域で0〜15秒間保持した後、4
00〜320℃の温度域に少なくとも40℃以上の昇温
を伴う再加熱を行い、該温度域から385〜220℃の
温度域まで冷却しながら過時効処理することを特徴とす
る、ばらつきの極めて少ない耐時効特性を有する冷延鋼
板の製造方法。C: 0.01 to 0.06% by mass%,
Si: 0.1% or less, Mn: 0.05 to 0.40%,
P: 0.10% or less, S: 0.002 to 0.025%,
sol. Al: 0.01 to 0.10%, N: 0.001
Hot-rolled steel consisting of 0.006%, balance iron and unavoidable impurities, and re-crystallization of cold-rolled cold-rolled steel sheet.
When performing continuous annealing for rapid cooling, supercooling, reheating, and gradient overaging after the grain growth treatment, 720 to 6 after recrystallization and grain growth.
5 from the temperature range of 00 ° C to the temperature range of 450 to 300 ° C
Quenching at a cooling rate of 0 to 250 ° C./sec.
After cooling to a temperature range of 0 to 200 ° C. at a cooling rate of 5 to 40 ° C./sec and maintaining the temperature range for 0 to 15 seconds,
Reheating with a temperature rise of at least 40 ° C. in a temperature range of 00 to 320 ° C., and performing overaging treatment while cooling from the temperature range to a temperature range of 385 to 220 ° C .; A method for producing a cold-rolled steel sheet having low aging resistance.
=0.5〜2.0の関係を満たして含有することを特徴
とする、請求項1に記載のばらつきの極めて少ない耐時
効特性を有する冷延鋼板の製造方法。2. The steel according to claim 1, wherein the ratio of B and N is B / N.
2. The method for producing a cold-rolled steel sheet having aging resistance with very little variation according to claim 1, wherein the cold-rolled steel sheet has a content of 0.5 to 2.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33279897A JP3777033B2 (en) | 1997-12-03 | 1997-12-03 | Method for producing cold-rolled steel sheet having anti-aging characteristics with very little variation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33279897A JP3777033B2 (en) | 1997-12-03 | 1997-12-03 | Method for producing cold-rolled steel sheet having anti-aging characteristics with very little variation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11158554A true JPH11158554A (en) | 1999-06-15 |
JP3777033B2 JP3777033B2 (en) | 2006-05-24 |
Family
ID=18258930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33279897A Expired - Fee Related JP3777033B2 (en) | 1997-12-03 | 1997-12-03 | Method for producing cold-rolled steel sheet having anti-aging characteristics with very little variation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3777033B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036412A (en) * | 2010-08-03 | 2012-02-23 | Nippon Steel Corp | Method for continuous-annealing steel sheet using continuous-annealing furnace |
-
1997
- 1997-12-03 JP JP33279897A patent/JP3777033B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036412A (en) * | 2010-08-03 | 2012-02-23 | Nippon Steel Corp | Method for continuous-annealing steel sheet using continuous-annealing furnace |
Also Published As
Publication number | Publication date |
---|---|
JP3777033B2 (en) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3152576B2 (en) | Method for producing Nb-containing ferrite steel sheet | |
KR102164329B1 (en) | Grain oriented electrical steel sheet and method for manufacturing therof | |
JP2005213603A (en) | High workability high strength cold rolled steel plate and its manufacturing method | |
JPS589921A (en) | Manufacture of seamless steel pipe for petroleum industry | |
JP3777033B2 (en) | Method for producing cold-rolled steel sheet having anti-aging characteristics with very little variation | |
JPS6369923A (en) | Production of cold rolled steel sheet for deep drawing having excellent baking hardenability | |
JPH108143A (en) | Production of thin steel sheet excellent in workability and hardenability in coating/backing | |
JPH02232316A (en) | Production of cold rolled steel sheet for working having good baking hardenability and cold non-aging property | |
JP3818025B2 (en) | Method for producing cold-rolled steel sheet with small anisotropy | |
JPH058256B2 (en) | ||
JPS6119733A (en) | Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property | |
JPH04120243A (en) | High tensile strength cold rolled steel sheet and its production | |
JPS5913030A (en) | Manufacture of cold rolled al killed steel plate with superior deep drawability | |
JP2790018B2 (en) | Manufacturing method of hot rolled steel sheet with excellent workability | |
JP3362739B2 (en) | Manufacturing method of hot rolled steel sheet with excellent deep drawability | |
JPH1161270A (en) | Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability | |
JPH0545652B2 (en) | ||
JPS59123721A (en) | Production of cold rolled steel sheet having excellent processability | |
JPS5980727A (en) | Manufacture of cold rolled steel sheet with high drawability by continuous annealing | |
KR20010062901A (en) | A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing | |
JPS6323248B2 (en) | ||
JPS61130423A (en) | Production of cold rolled steel sheet having excellent deep drawability | |
JPH0545654B2 (en) | ||
JP2953323B2 (en) | Manufacturing method of low carbon cold rolled steel sheet | |
JPH1150194A (en) | Soft cold-rolled steel sheet excellent in structural stability and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050719 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090303 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140303 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |