JPH1161270A - Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability - Google Patents

Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability

Info

Publication number
JPH1161270A
JPH1161270A JP24346397A JP24346397A JPH1161270A JP H1161270 A JPH1161270 A JP H1161270A JP 24346397 A JP24346397 A JP 24346397A JP 24346397 A JP24346397 A JP 24346397A JP H1161270 A JPH1161270 A JP H1161270A
Authority
JP
Japan
Prior art keywords
point
steel sheet
rolled steel
hot
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24346397A
Other languages
Japanese (ja)
Inventor
Toshiaki Urabe
俊明 占部
Masaki Omura
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24346397A priority Critical patent/JPH1161270A/en
Publication of JPH1161270A publication Critical patent/JPH1161270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method capable of stably manufacturing a hot rolled steel sheet minimal in plastic anisotropy and excellent in workability, more particularly in ductility. SOLUTION: A steel, which has a composition containing, by weight, 0.015-0.040% C, <=0.02% Si, 0.05-0.30% Mn, <0.020% P, <=0.0030% S, 0.005-0.030% Al, <=0.0025% N, and 0.0008-0.0020% B and satisfying 0.0002<B%-0.47N% <=0.0010 and P%+S%<=0.020, is used. Immediately after casting of this steel or after reheating up to a temp. exceeding 1,100 deg.C, hot rolling is finished at a finishing temp. not lower than the Ar3 point. The resultant hot rolled steel sheet is coiled at 600-700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷延鋼板の代替と
なり得る、塑性異方性が小さく、加工性、特に延性に優
れた薄物熱延鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin hot-rolled steel sheet having a small plastic anisotropy and being excellent in workability, particularly excellent ductility, which can be used as a substitute for a cold-rolled steel sheet.

【0002】[0002]

【従来の技術】近年、自動車用材料に代表される高加工
用薄鋼板の分野において、従来の冷延鋼板に代替して、
製造工程の少ない、薄物熱延鋼板を適用する動きがあ
り、優れた加工性を有する薄物熱延鋼板が要望されてい
る。
2. Description of the Related Art In recent years, in the field of thin steel sheets for high working, represented by automotive materials, in place of conventional cold-rolled steel sheets,
There is a movement to apply a thin hot-rolled steel sheet with a small number of manufacturing steps, and a thin hot-rolled steel sheet having excellent workability has been demanded.

【0003】このような冷延鋼板と競合する薄物熱延鋼
板の板厚は1.0〜2.0mmと薄く、通常の板厚の熱
延鋼板の製造に比較し、仕上げ圧延段階での温度低下が
顕著となるため、仕上げ終了温度の低下に伴い、鋼板の
Ar3点を下回ってしまう。このようにAr3点以下のフ
ェライト存在域で仕上げた鋼板は、Ar3点以上のオー
ステナイト域で仕上げた鋼板に比較し、フェライト組織
が粗粒化するため、著しく延性が低下してしまうという
問題がある。
[0003] The thickness of a thin hot-rolled steel sheet competing with such a cold-rolled steel sheet is as thin as 1.0 to 2.0 mm. Since the decrease is remarkable, the temperature falls below the Ar 3 point of the steel sheet with a decrease in the finishing end temperature. Steel sheet thus finished with Ar 3 point or less of the ferrite presence zone, compared to steel sheet finished with Ar 3 point or more austenite region, since the ferrite structure is coarsened, a problem that significantly ductility decreases There is.

【0004】一方、鋼板の加工性、特に延性を改善する
ためには、鋼板の強度上昇を招くC、Mn等の固溶強化
元素の低減が効果的であるが、これらの元素はオーステ
ナイト安定化元素であり、これらを低減することにより
Ar3点の上昇を招くため、前述のAr3点と仕上げ温度
から導かれる延性の議論に対して不利に作用する。すな
わち、延性を改善するためにC、Mn等の固溶強化元素
を低減すると、Ar3点が上昇する結果、Ar3点以下の
仕上げになりやすく、フェライト組織が粗粒化して、か
えって延性が低下してしまうことになる。
[0004] On the other hand, in order to improve the workability, particularly ductility, of a steel sheet, it is effective to reduce solid solution strengthening elements such as C and Mn, which increase the strength of the steel sheet. an element, for causing an increase of the Ar 3 point by reducing them, act disadvantageous for discussion of ductility derived from the above Ar 3 point and finishing temperature. That is, when the solid solution strengthening elements such as C and Mn are reduced to improve the ductility, the Ar 3 point rises, so that the finish tends to be finished at the Ar 3 point or less, the ferrite structure is coarsened, and the ductility is rather reduced. Will be reduced.

【0005】そこで、このような問題に対処し、仕上げ
温度を確保するため、B添加によるAr3点低下降下を
利用した0.06%以下のCを含有する熱延鋼板が特開
昭62−139849号公報に開示されている。しかし
ながら、この方法は延性を積極的に向上させることは目
的としておらず、830℃程度の仕上げ温度でも混粒組
織の生成により延性の低下は抑制されるものの、延性向
上の考慮のない従来の製造方法では、C含有量が高いた
め、需要家が要求するほどの延性が得られない。
To cope with such a problem and secure a finishing temperature, a hot-rolled steel sheet containing 0.06% or less of C using the lowering of the Ar 3 point due to the addition of B is disclosed in No. 139849. However, this method does not aim to positively improve the ductility, and although the decrease in ductility is suppressed by the formation of a mixed grain structure even at a finishing temperature of about 830 ° C., the conventional production without considering the improvement in ductility is considered. In the method, since the C content is high, ductility as required by the consumer cannot be obtained.

【0006】また、B添加鋼の材料特性の向上を目的と
した製造方法が、例えば特開平2−104614号公報
や、特開平2−209423号公報に開示されている。
しかし、これらはいずれも異方性改善を目的とするもの
であり、延性改善を目的にしたものではない。
Further, a production method for improving the material properties of B-added steel is disclosed in, for example, JP-A-2-104614 and JP-A-2-209423.
However, these are all aimed at improving the anisotropy, but not at improving the ductility.

【0007】特開平7−90384号公報では、薄物熱
延鋼板の延性改善を主眼として、BまたはCr、あるい
はBおよびCrを複合添加した鋼により低C化を図る技
術が開示されている。この技術ではB添加量の範囲が広
く、0.0002〜0.0050%となっている。この
技術において、Ar3点は、試験片をオーステナイト域
の950℃に加熱した後に、冷却速度5℃/sで冷却し
た際の熱膨張変化から測定しているが、実際の熱延段階
でのAr3点評価のためには、加工を加えた条件下で測
定しなければ、正確なAr3点を測定することができな
い。すなわち、Bはオーステナイト域での熱間加工段階
において、再結晶遅滞効果が大きく、薄物材のような低
温オーステナイト域での高速通板においては、パス間で
の加工組織の再結晶化が完了せず、逆に加工誘起変態を
促進してしまい、Ar3点が上昇する。したがって、実
際のAr3点は、この特開平7−90384号公報の実
施例に示されたAr3点よりも高く、その実施例では仕
上げ温度はAr3点よりも低い。その実施例において
は、圧延方向のサンプルから引張試験により伸びの評価
がされており、したがって良好な延性を示しているが、
Ar3点よりも低い仕上げ温度で圧延を終了した鋼板の
塑性異方性は大きくなるため、実際のプレス成形におい
て、圧延方向以外の方向に厳しい加工が加わる場合、破
断する危険性が高い。
[0007] Japanese Patent Application Laid-Open No. 7-90384 discloses a technique for reducing C by using B or Cr, or a steel to which B and Cr are added in combination, mainly for improving the ductility of a thin hot-rolled steel sheet. In this technique, the range of the amount of B added is wide, being 0.0002 to 0.0050%. In this technique, the Ar 3 point is measured from a change in thermal expansion when the test piece is heated to 950 ° C. in an austenite region and then cooled at a cooling rate of 5 ° C./s. For the evaluation of the Ar 3 point, an accurate measurement of the Ar 3 point cannot be performed unless the measurement is performed under the condition of processing. That is, B has a large recrystallization delay effect in the hot working stage in the austenite region, and completes recrystallization of the worked structure between passes in high-speed passing in a low-temperature austenite region such as a thin material. On the contrary, work-induced transformation is accelerated, and the Ar 3 point rises. Therefore, the actual Ar 3 point is higher than the Ar 3 point shown in the embodiment of Japanese Patent Laid-Open No. 7-90384, and the finishing temperature is lower than the Ar 3 point in that embodiment. In the examples, the elongation of the sample in the rolling direction is evaluated by a tensile test, and thus shows good ductility.
Since the plastic anisotropy of the steel sheet that has been rolled at a finishing temperature lower than the Ar 3 point becomes large, there is a high risk of breaking if severe processing is applied in a direction other than the rolling direction in actual press forming.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑みてなされたものであって、塑性異方性が小さく、
加工性、特に延性が良好な薄物の熱延鋼板を安定して製
造することができる製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has a small plastic anisotropy.
An object of the present invention is to provide a manufacturing method capable of stably manufacturing a thin hot-rolled steel sheet having good workability, particularly good ductility.

【0009】本発明者らは、塑性異方性が小さく、加工
性に優れた熱延鋼板の製造方法を得るために種々の検討
を重ねた結果、以下に示す(1)、(2)の知見を得
た。
The present inventors have conducted various studies to obtain a method for producing a hot-rolled steel sheet having low plastic anisotropy and excellent workability. As a result, the following (1) and (2) Obtained knowledge.

【0010】(1)B添加鋼におけるAr3点の低下効
果は、鋼中N量との関係により、B%−0.47N%で
整理することができる。ここで、表1の鋼Aシリーズを
用いて、実験室にて、図1(a)に示すように、125
0℃、10分加熱後、冷却速度10℃/Sで冷却した場
合の熱膨張変化より測定したAr3点を、図2の無加工
時で示したB%−0.47N%とAr3温度との関係で
示す。
(1) The effect of lowering the Ar 3 point in the B-added steel can be summarized as B% −0.47N% in relation to the N content in the steel. Here, using the steel A series of Table 1, in the laboratory, as shown in FIG.
After heating at 0 ° C. for 10 minutes and then cooling at a cooling rate of 10 ° C./S, the Ar 3 point measured from the thermal expansion change was B% −0.47N% and the Ar 3 temperature shown in the unprocessed state in FIG. The relationship is shown below.

【0011】Bはオーステナイトの低温域において鋼中
窒素と反応し、BNを析出することはよく知られてい
る。また、BによるAr3点の低下効果はγ−α変態時
にフェライトの核発生サイトであるオーステナイト粒界
に偏析することによるものであり、固溶状態でその効果
を発揮する。したがって、オーステナイト域の連続冷却
段階にて一部のBがBNとして析出した残りの固溶Bが
Ar3点低下に寄与している。しかし、このような固溶
B量が増加し、オーステナイト粒界全てに偏析するとA
3点低下は飽和し、それ以上固溶B量が増加してもA
3点は低下しない。
It is well known that B reacts with nitrogen in steel in the low temperature region of austenite to precipitate BN. The effect of lowering the Ar 3 point by B is due to segregation at austenite grain boundaries, which are ferrite nucleation sites during γ-α transformation, and exhibits its effect in a solid solution state. Therefore, in the continuous cooling stage in the austenite region, the remaining solid solution B in which some B is precipitated as BN contributes to lowering the Ar 3 point. However, when the amount of solid solution B increases and segregates at all austenite grain boundaries, A
The r 3 point drop saturates, and even if the amount of solute B increases further, A
r 3 points is not reduced.

【0012】(2)B添加鋼をオーステナイト域で加工
しながら連続冷却すると、Ar3点低下効果が無加工時
に比べ著しく小さくなるが、鋼中PおよびS量の低減に
より、無加工時と同程度の効果を得られるB%−0.4
7N%領域が存在する。
(2) When the B-added steel is continuously cooled while being worked in the austenite region, the effect of lowering the Ar 3 point is significantly reduced as compared with the case of no working. B% -0.4 which can obtain the effect of the degree
There is a 7N% region.

【0013】表1の鋼Aシリーズを、図1(b)に示す
ように、1250℃、10分加熱後、冷却速度10℃/
Sで冷却する際にオーステナイト低温域において加工を
加えながら冷却し、Ar3点を測定すると、B%−0.
47N%が約0.0012%まではB無添加鋼に比べA
3点低下しているが、その低下量は無加工時に比較し
て極めて小さく、850℃より低下することができな
い。また、B%−0.47N%が0.0012%を超え
ると、Ar3点がB無添加鋼と同等あるいはそれ以上の
温度となり、目的とするB添加によるAr3点低下と逆
の効果となってしまう。したがって、無加工時のAr3
点以上、加工時のAr3点以下の温度で圧延が終了する
と、フェライト域あるいはオーステナイト−フェライト
2相域仕上げとなる。このようなフェライト高温域で
は、固溶Bによる再結晶遅滞効果がオーステナイト加工
時と同様に作用するため、B無添加鋼の場合ほど粗粒化
せず、延性の評価だけではAr3点以上で仕上げた場合
との見分けがつきにくい。しかし、フェライト域で圧延
された後再結晶すると著しく塑性異方性が大きくなるた
め、実際のプレス成形に対して不利となる。
As shown in FIG. 1 (b), after heating the steel A series in Table 1 at 1250 ° C. for 10 minutes, the cooling rate was 10 ° C. /
When cooling at S, cooling is performed in the austenitic low-temperature range while processing is performed, and the Ar 3 point is measured.
47N% up to about 0.0012% A compared to B-free steel
Although the r 3 point is lowered, the amount of the reduction is extremely small as compared with the case of no processing and cannot be lowered below 850 ° C. Further, when B% −0.47N% exceeds 0.0012%, the Ar 3 point becomes a temperature equal to or higher than that of the steel without B, and the effect opposite to the reduction of the Ar 3 point due to the desired B addition is obtained. turn into. Therefore, Ar 3 in the unprocessed state
When the rolling is completed at a temperature not lower than the point and not higher than the Ar 3 point during processing, a ferrite region or an austenitic-ferrite two-phase region is finished. In In such ferrite high temperature range, since the recrystallization retardation effect by solid solution B is applied in the same manner as when austenite processing, not the case as the coarsening of the B-free steels, only evaluate ductility Ar 3 point or more Difficult to distinguish from the finished case. However, when recrystallized after being rolled in the ferrite region, the plastic anisotropy increases significantly, which is disadvantageous for actual press forming.

【0014】しかし、このような熱間加工時のB添加に
よるAr3点の変化傾向は、無加工時と大きく異なるた
め、熱延時においても無加工時と同程度のAr3点低下
効果を得られるように検討したところ、鋼中のPおよび
S量を低減することにより、無加工時と同程度のAr3
点低下効果を得ることができるB%−0.47N%の領
域が存在することが判明した。
However, since the tendency of the change of the Ar 3 point due to the addition of B during such hot working is significantly different from that during the non-working, the same effect of reducing the Ar 3 point in the hot rolling as in the non-working can be obtained. It was found that by reducing the amounts of P and S in the steel, the same Ar 3
It was found that there was a region of B% -0.47N% where the point lowering effect could be obtained.

【0015】表1に示す鋼BシリーズはP量が0.00
5〜0.017%、S量が0.0004〜0.0027
%の範囲でP%+S%が0.0200%以下となる鋼で
あり、これらの鋼を用いて、図1(b)の加工時のAr
3点の挙動を調査した。その結果は、図2に示すよう
に、鋼Bシリーズの加工時のAr3点は、B%−0.4
7N%が6ppmまでは鋼Aシリーズの無加工時のAr
3点と同程度となっている。B%−0.47N%が6p
pmを越えると再び固溶Bの再結晶遅滞効果による歪誘
起変態促進効果によりAr3点が上昇し始めるが、10
ppmまでは810℃以下となっており、薄物熱延材の
限界仕上げ温度である820℃を下回っており、オース
テナイト域仕上げ圧延が終了することができる。オース
テナイト域で圧延が終了すると、その後の冷却段階でγ
ーα変態により結晶方位はランダム化され、塑性異方性
の低減を図ることができる。
The steel B series shown in Table 1 has a P content of 0.00.
5 to 0.017%, S content 0.0004 to 0.0027
% In the range of P% + S% is 0.0200% or less, and using these steels, the Ar in the processing shown in FIG.
The behavior of three points was investigated. As a result, as shown in FIG. 2, the Ar 3 point at the time of machining the steel B series was B% −0.4.
Unprocessed Ar of steel A series until 7N% is 6ppm
It is about the same as 3 points. Bp-0.47N% is 6p
pm, the Ar 3 point starts to rise again due to the strain-induced transformation promoting effect due to the recrystallization delay effect of solid solution B.
ppm is 810 ° C. or less, which is lower than 820 ° C. which is the limit finishing temperature of the thin hot rolled material, and the austenitic finish rolling can be completed. When rolling is completed in the austenite region, γ
The crystal orientation is randomized by the -α transformation, and plastic anisotropy can be reduced.

【0016】このような鋼中のPおよびS量低減による
固溶BのAr3点低下効果の維持の詳細なメカニズムは
不明であるが、Bに比べ拡散速度の遅いP、Sが予めオ
ーステナイト粒界に偏析していると、連続冷却中に加工
を加えるような熱延プロセスにおいては、粒界偏析係数
の高いBといえども、粒界へのsite commpe
titionに打ち勝てず、加工時に導入された変形帯
に移行しやすくなり、より再結晶遅滞効果を促進してし
まいAr3点を上昇させるためと考えられる。
Although the detailed mechanism of maintaining the effect of lowering the Ar 3 point of solid solution B by reducing the amounts of P and S in the steel is unknown, P and S, which have a slower diffusion rate than B, are previously formed of austenite grains. In a hot rolling process in which processing is performed during continuous cooling when B is segregated at the grain boundaries, even though B has a high grain boundary segregation coefficient, the B
It is considered that the transition to the deformation zone introduced at the time of processing becomes easy without overcoming the tension, which further promotes the recrystallization delay effect and raises the Ar 3 point.

【0017】[0017]

【表1】 [Table 1]

【0018】本発明は、このような知見に基づき、延性
を改善するために低C、低Mn化するとともに、鋼組成
を適正化することにより、B添加によるAr3点低下効
果を熱間加工時においても効果的に得られるようにし
て、塑性異方性を小さくしようとするものである。
Based on such findings, the present invention reduces the C and Mn levels to improve ductility and optimizes the steel composition to reduce the effect of lowering the Ar 3 point by adding B by hot working. It is intended to reduce the plastic anisotropy so that it can be obtained effectively even at the time.

【0019】すなわち、本発明は、重量%でC:0.0
15〜0.040%、Si:0.02%以下、Mn:
0.05〜0.30%、P:0.020%未満、S:
0.0030%以下、Al:0.005〜0.030
%、N:0.0025%以下、B:8〜20ppmの範
囲で、かつ0.0002≦B%−0.47N%≦0.0
010、P%+S%≦0.020を満足する鋼を、鋳造
直後あるいは1100℃を越えて再加熱した後、Ar3
点以上の仕上げ温度で熱間圧延を終了し、600〜70
0℃で巻き取ることを特徴とする、塑性異方性が小さ
く、加工性に優れた熱延鋼板の製造方法を提供するもの
である。
That is, in the present invention, C: 0.0
15 to 0.040%, Si: 0.02% or less, Mn:
0.05 to 0.30%, P: less than 0.020%, S:
0.0030% or less, Al: 0.005 to 0.030
%, N: 0.0025% or less, B: in the range of 8 to 20 ppm, and 0.0002 ≦ B% −0.47N% ≦ 0.0
010, P% + the steel satisfies S% ≦ 0.020, was reheated beyond or 1100 ° C. Immediately after the casting, Ar 3
Finish hot rolling at a finishing temperature above the point, 600-70
An object of the present invention is to provide a method for producing a hot-rolled steel sheet having low plastic anisotropy and excellent workability, characterized by winding at 0 ° C.

【0020】また、本発明は、上記方法において、仕上
げ圧延前に粗バー全体をオンラインで再加熱することを
特徴とする、塑性異方性が小さく、加工性に優れた熱延
鋼板の製造方法を提供するものである。
The present invention also provides a method for producing a hot-rolled steel sheet having low plastic anisotropy and excellent workability, characterized in that the entire rough bar is reheated online before finish rolling in the above method. Is provided.

【0021】[0021]

【発明の実施の形態】以下、本発明について、鋼の成分
・組成、および製造条件に分けて詳細に説明する。 1.鋼成分・組成 本発明においては、重量%で、C:0.015〜0.0
40%、Si:0.02%以下、Mn:0.05〜0.
30%、P:0.020%未満、S:0.0030%以
下、Al:0.005〜0.030%、N:0.002
5%以下、B:0.0008〜0.0020%の範囲で
含有し、かつ0.0002≦B%−0.47N%≦0.
0010、P%+S%≦0.020を満足する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail by dividing into components and compositions of steel and manufacturing conditions. 1. Steel composition and composition In the present invention, C: 0.015 to 0.0% by weight.
40%, Si: 0.02% or less, Mn: 0.05-0.
30%, P: less than 0.020%, S: 0.0030% or less, Al: 0.005 to 0.030%, N: 0.002
5% or less, B: contained in the range of 0.0008 to 0.0020%, and 0.0002 ≦ B% −0.47N% ≦ 0.
0010, P% + S% ≦ 0.020 are satisfied.

【0022】C:0.015〜0.040% Cは鋼板中に炭化物として析出し、この炭化物が鋼板強
度を上昇させ、延性を低下させてしまう。C量が増加す
ると炭化物析出量が増加し、特に0.040%を超える
と強度上昇に伴う加工性の劣化が生じる。一方、鋼板の
製造工程における熱延段階において、Cはオーステナイ
ト中に固溶してオーステナイトを安定化し、Ar3点を
低下させる効果がある。これは本発明の主目的である、
熱延時に温度低下が著しくオーステナイト域での熱延終
了が困難な薄物熱延鋼板の製造において好ましい。この
ように鋼のAr3点を低くする観点からはC量は0.0
15%以上必要である。また、C量が0.015%未満
となると、熱延終了後の巻取り段階において析出する炭
化物の核発生頻度が低下し、鋼中に固溶C量が増大し、
鋼板の時効性を劣化させてしまう。したがって、C含有
量を0.015〜0.040%の範囲とする。
C: 0.015 to 0.040% C precipitates as carbide in the steel sheet, and this carbide increases the strength of the steel sheet and lowers the ductility. When the amount of C increases, the amount of carbide precipitation increases. In particular, when the amount exceeds 0.040%, workability deteriorates due to an increase in strength. On the other hand, in the hot rolling stage in the steel sheet manufacturing process, C forms a solid solution in austenite to stabilize austenite and has an effect of lowering the Ar 3 point. This is the main object of the present invention,
This is preferable in the production of a thin hot-rolled steel sheet in which the temperature is significantly lowered during hot rolling and it is difficult to finish hot rolling in the austenite region. Thus, from the viewpoint of lowering the Ar 3 point of steel, the C content is 0.0
15% or more is required. Further, when the C content is less than 0.015%, the frequency of nucleation of carbides precipitated in the winding stage after the end of hot rolling decreases, the amount of solid solution C in steel increases,
It deteriorates the aging of the steel sheet. Therefore, the C content is in the range of 0.015 to 0.040%.

【0023】Si:0.02%以下 Siは鋼板中に固溶して強度を上昇させ延性の低下を招
く。またSiはAr3点を上昇させ、熱延仕上げ温度の
確保を困難にする。したがって、Si含有量を0.02
%以下と規定する。
Si: 0.02% or less Si forms a solid solution in a steel sheet to increase the strength and reduce the ductility. Si also raises the Ar 3 point, making it difficult to secure the hot rolling finish temperature. Therefore, the Si content is set to 0.02
% Or less.

【0024】Mn:0.05〜0.30% Mnは、鋼中に不純物として存在するSをMnSとして
熱間圧延中に生じる割れを抑制する作用を有する。その
含有量が0.05%未満では割れ抑制の効果が得られ
ず、一方、0.30%を超えて含有させてもその作用は
飽和するばかりでなく、強度上昇に伴う加工性の劣化を
生じる。したがって、Mnの含有量を0.05〜0.3
0%の範囲とする。
Mn: 0.05 to 0.30% Mn has an action of suppressing cracks generated during hot rolling as Sn present as an impurity in steel as MnS. If the content is less than 0.05%, the effect of suppressing cracking cannot be obtained. On the other hand, if the content exceeds 0.30%, the effect is not only saturated but also the workability is deteriorated due to the increase in strength. Occurs. Therefore, the content of Mn is adjusted to 0.05 to 0.3.
The range is 0%.

【0025】P:0.020%未満 PはSiと同様に固溶強化元素であり、強度を高め加工
性を劣化させる。したがって、P含有量を0.020%
未満と規定する。
P: less than 0.020% P is a solid solution strengthening element like Si, and increases the strength and deteriorates the workability. Therefore, the P content is 0.020%
Defined as less than.

【0026】S:0.0030%以下 SはFeあるいはMnと結合して硫化物を形成し、鋼板
を加工する際、加工が厳しい部位においてはボイド発生
の起点となりやすく、加工性を低下させる。したがっ
て、S含有量を0.0030%以下と規定する。
S: 0.0030% or less S combines with Fe or Mn to form a sulfide, and when a steel sheet is processed, it tends to be a starting point of void generation in a severely processed part, thereby deteriorating the workability. Therefore, the S content is specified to be 0.0030% or less.

【0027】Al:0.005〜0.030% Alは脱酸材として添加される他に、Nと結合してAl
Nを形成し、時効性を改善させる。このような効果を有
効に発揮させるためには0.005%以上の添加が必要
である。一方、Alは強力なフェライト安定化元素であ
り、0.030%を超えるとAr3点を上昇させるだけ
でなく、固溶強化作用があり強度上昇による延性の低下
を招く。したがって、Al含有量を0.005〜0.0
30%の範囲とする。
Al: 0.005 to 0.030% In addition to being added as a deoxidizing agent, Al is combined with N to form Al.
Form N to improve aging. In order to exert such effects effectively, 0.005% or more of addition is required. On the other hand, Al is a strong ferrite stabilizing element. If it exceeds 0.030%, it not only raises the Ar 3 point, but also has a solid solution strengthening effect and causes a decrease in ductility due to an increase in strength. Therefore, the Al content is 0.005 to 0.0
The range is 30%.

【0028】N:0.0025%以下 Nは固溶状態では時効により延性を劣化させる。また、
析出物として存在する場合、BNあるいはAlNとなっ
ている。0.0025%を超えて存在すると、時効ある
いは析出強化による強度上昇に伴い、いずれの存在形態
においても延性が低下する。したがって、N含有量を
0.0025%以下と規定する。
N: 0.0025% or less N deteriorates ductility by aging in a solid solution state. Also,
When present as a precipitate, it is BN or AlN. If the content exceeds 0.0025%, the ductility decreases in any of the existing forms with the increase in strength due to aging or precipitation strengthening. Therefore, the N content is specified to be 0.0025% or less.

【0029】B:0.0008〜0.0020%、0.
0002≦B%−0.47N%≦0.0010、P%+
S%≦0.020 Bは熱延時にAr3点を低下させる効果があり、本発明
では重要な元素である。その効果を有効に発揮させるた
めには、B含有量を0.0008〜0.0020%とす
ることが必要である。しかし、前述のように、加工を伴
う場合には、BによるAr3点低下効果は、ある特定の
条件下で有効に発揮される。つまり、加工を伴う場合に
もBのAr3点低下効果を有効に発揮させるためには、
鋼中のN、PおよびS量を適正に制御する必要があり、
そのため、0.0002≦B%−0.47N%≦0.0
010およびP%+S%≦0.020と規定する。
B: 0.0008-0.0020%;
0002 ≦ B% −0.47N% ≦ 0.0010, P% +
S% ≦ 0.020 B has the effect of lowering the Ar 3 point during hot rolling, and is an important element in the present invention. In order to effectively exhibit the effect, the B content needs to be 0.0008 to 0.0020%. However, as described above, when processing is involved, the Ar three- point lowering effect of B is effectively exerted under certain specific conditions. In other words, in order to effectively exert the effect of lowering the Ar 3 point of B even when processing is involved,
It is necessary to properly control the amounts of N, P and S in steel,
Therefore, 0.0002 ≦ B% −0.47N% ≦ 0.0
010 and P% + S% ≦ 0.020.

【0030】2.製造条件 本発明では、以上のような成分・組成を有する鋼に対
し、鋳造直後または1100℃を超えて再加熱した後、
Ar3点以上の仕上げ温度で熱間圧延を終了し、600
〜700℃で巻取る。
2. Manufacturing Conditions In the present invention, for steel having the above-described components and compositions, immediately after casting or after reheating above 1100 ° C.,
Ar Finish hot rolling at a finishing temperature of 3 points or more, 600
Wind at ~ 700 ° C.

【0031】仕上げ温度がAr3点より低い場合には、
フェライト域で加工されることにより塑性異方性に好ま
しくない結晶方位が鋼板表層部から生成され、r値が低
下するばかりでなく、延性も低下する場合もある。した
がって、仕上げ温度をAr3点以上としている。
When the finishing temperature is lower than the Ar 3 point,
By processing in the ferrite region, a crystal orientation unfavorable for plastic anisotropy is generated from the surface layer portion of the steel sheet, and not only the r value decreases, but also the ductility may decrease. Therefore, the finishing temperature is set to three or more Ar points.

【0032】また、上記成分系を有する薄物熱延鋼板を
製造するに際して、Ar3点よりも高い温度で熱間圧延
を終了するためには、一旦冷却したスラブを1100℃
を超えて加熱する必要がある。また、このような加熱温
度が確保されれば、連続鋳造直後に直接熱間圧延を施す
ことが可能である。
Further, in producing a thin hot-rolled steel sheet having the above-described component system, in order to end hot rolling at a temperature higher than the Ar 3 point, the slab once cooled is heated to 1100 ° C.
It is necessary to heat over. Further, if such a heating temperature is ensured, it is possible to directly perform hot rolling immediately after continuous casting.

【0033】仕上げ圧延に際しては、一旦粗圧延により
中間厚とした粗バーの仕上げ圧延機入側での温度低下を
防ぐために、保熱カバーあるいは粗バー加熱装置を用い
てオンラインで粗バー全体を再加熱することも可能であ
る。
At the time of finish rolling, in order to prevent the temperature of the rough bar having the intermediate thickness once formed by rough rolling from dropping on the side of the finishing rolling mill, the entire rough bar is re-used online using a heat retaining cover or a rough bar heating device. Heating is also possible.

【0034】巻取り温度は、鋼板の延性に有害な固溶
C、Nを低減する観点から、600〜700℃の範囲と
する必要がある。600℃未満では固溶Nの析出が不十
分となり、一方700℃を超えると炭化物の析出核数が
低下し、コイル冷却段階で十分に固溶Cが析出しないた
め、いずれの場合も固溶C、Nが十分に低減されず、結
果として延性が低下する。
The winding temperature must be in the range of 600 to 700 ° C. from the viewpoint of reducing solid solution C and N which are harmful to the ductility of the steel sheet. If the temperature is lower than 600 ° C., the precipitation of solid solution N becomes insufficient. On the other hand, if the temperature exceeds 700 ° C., the number of precipitation nuclei of carbide decreases, and the solid solution C is not sufficiently precipitated in the coil cooling stage. , N are not sufficiently reduced, resulting in reduced ductility.

【0035】[0035]

【実施例】以下、本発明の実施例について説明する。表
2に示す成分組成を有する鋼を1200〜1230℃に
加熱後、表3に示す熱延条件により板厚1.2mmに仕
上げた。これら熱延鋼板の圧延方向よりJIS5号試験
片を採取し、引張試験により、降伏点(YP)、引張強
度(TS)、伸び(El)を評価するとともに、圧延方
向および45゜方向のJIS5号試験片を採取し、塑性
異方性r値および板面異方性|Δr|値を評価した。ま
た、鋼板の時効特性を評価するため、圧延方向の引張試
験片に8%予歪を加えた後、100℃×1時間の時効処
理を施した後のYP上昇量(AI値)、および鋼板に3
00℃×1時間の処理後、炉冷により固溶Cの固定処理
をした後に測定したYP上昇量(AI′値)を評価し
た。また、表2中のAr3点は図1に示した熱間加工後
の冷却速度10℃/sでの熱膨張変化を測定した温度で
ある。
Embodiments of the present invention will be described below. After heating steel having a component composition shown in Table 2 to 1200 to 1230 ° C., it was finished to a sheet thickness of 1.2 mm under the hot rolling conditions shown in Table 3. JIS No. 5 test pieces were taken from the rolling direction of these hot-rolled steel sheets, and the yield point (YP), tensile strength (TS) and elongation (El) were evaluated by a tensile test, and JIS No. 5 in the rolling direction and 45 ° direction were evaluated. A test piece was sampled, and the plastic anisotropy r value and the plate surface anisotropy | Δr | value were evaluated. In addition, in order to evaluate the aging characteristics of the steel sheet, after increasing the tensile test specimen in the rolling direction by 8% prestrain, the aging treatment at 100 ° C. × 1 hour, the YP increase (AI value), and the steel sheet To 3
After the treatment at 00 ° C. × 1 hour, the amount of increase in YP (AI ′ value) measured after fixing treatment of solid solution C by furnace cooling was evaluated. The Ar 3 point in Table 2 is the temperature at which the change in thermal expansion at a cooling rate of 10 ° C./s after the hot working shown in FIG. 1 was measured.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表3に示すように、本発明例では、伸びが
大きく、塑性異方性が小さく、時効性も小さく、良好な
加工性が得られることが確認された。
As shown in Table 3, in the examples of the present invention, it was confirmed that elongation was large, plastic anisotropy was small, aging was small, and good workability was obtained.

【発明の効果】以上説明したように、本発明によれば、
C、Mnを低減した鋼により薄物熱延鋼板を製造するに
際して、仕上げ温度の低下によって問題となる、Ar3
点以下での仕上げに伴う鋼板の延性低下を防ぐため、鋼
中にBを添加し、さらにBによるAr3点低下効果を最
大限発揮することができるように、N、P、S量を適正
化し、仕上げ温度が低下してもその温度がAr3点以上
となるような鋼組成としたので、優れた塑性異方性およ
び優れた延性を兼備した、プレス成形性に優れた薄物熱
延鋼板を製造することが可能となる。
As described above, according to the present invention,
When a thin hot rolled steel sheet is manufactured from steel with reduced C and Mn, Ar 3 becomes a problem due to a decrease in the finishing temperature.
In order to prevent the decrease in ductility of the steel sheet due to finishing below the point, B is added to the steel, and the amounts of N, P, and S are adjusted appropriately so that the effect of lowering the Ar 3 point by B can be maximized. The hot-rolled thin steel sheet with excellent press-formability combines excellent plastic anisotropy and excellent ductility because the steel composition is such that even if the finishing temperature is lowered, the temperature becomes Ar 3 points or more. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】無加工状態および加工状態でAr3点を測定す
るためのヒートパターンを示す図。
FIG. 1 is a diagram showing a heat pattern for measuring Ar 3 points in a non-machining state and a machining state.

【図2】表1に示す鋼における、B%−0.47%の値
と図1に示す方法で測定したAr3点の値との関係を示
す図。
FIG. 2 is a view showing the relationship between the value of B% −0.47% and the value of the Ar 3 point measured by the method shown in FIG. 1 in the steel shown in Table 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.015〜0.040
%、Si:0.02%以下、Mn:0.05〜0.30
%、P:0.020%未満、S:0.0030%以下、
Al:0.005〜0.030%、N:0.0025%
以下、B:0.0008〜0.0020%の範囲で含有
し、かつ0.0002≦B%−0.47N%≦0.00
10、P%+S%≦0.020を満足する鋼に対し、鋳
造直後または1100℃を超えて再加熱した後、Ar3
点以上の仕上げ温度で熱間圧延を終了し、600〜70
0℃で巻取ることを特徴とする、塑性異方性が小さく、
加工性に優れた熱延鋼板の製造方法。
1. C: 0.015 to 0.040 by weight%
%, Si: 0.02% or less, Mn: 0.05 to 0.30
%, P: less than 0.020%, S: 0.0030% or less,
Al: 0.005 to 0.030%, N: 0.0025%
Hereinafter, B: contained in the range of 0.0008 to 0.0020%, and 0.0002 ≦ B% −0.47N% ≦ 0.00
10. For a steel satisfying P% + S% ≦ 0.020, immediately after casting or after reheating above 1100 ° C., Ar 3
Finish hot rolling at a finishing temperature above the point, 600-70
Characterized by winding at 0 ° C., with low plastic anisotropy,
A method for manufacturing hot-rolled steel sheets with excellent workability.
【請求項2】 仕上げ圧延前に粗バー全体をオンライン
で再加熱することを特徴とする、請求項1に記載の塑性
異方性が小さく、加工性に優れた熱延鋼板の製造方法。
2. The method for producing a hot-rolled steel sheet having low plastic anisotropy and excellent workability according to claim 1, wherein the entire rough bar is reheated online before finish rolling.
JP24346397A 1997-08-26 1997-08-26 Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability Pending JPH1161270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24346397A JPH1161270A (en) 1997-08-26 1997-08-26 Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24346397A JPH1161270A (en) 1997-08-26 1997-08-26 Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability

Publications (1)

Publication Number Publication Date
JPH1161270A true JPH1161270A (en) 1999-03-05

Family

ID=17104272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24346397A Pending JPH1161270A (en) 1997-08-26 1997-08-26 Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability

Country Status (1)

Country Link
JP (1) JPH1161270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335842A (en) * 2000-05-29 2001-12-04 Sumitomo Metal Ind Ltd Method for producing hot rolled steel sheet
KR100530079B1 (en) * 2001-12-26 2005-11-22 주식회사 포스코 Method for Producing Formable Hot-Rolled Low Carbon Steel Sheet with Low Mechanical Properties Anisotropy
WO2010137598A1 (en) * 2009-05-25 2010-12-02 Jfeスチール株式会社 Hot rolled sheet steel having excellent formability, and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335842A (en) * 2000-05-29 2001-12-04 Sumitomo Metal Ind Ltd Method for producing hot rolled steel sheet
KR100530079B1 (en) * 2001-12-26 2005-11-22 주식회사 포스코 Method for Producing Formable Hot-Rolled Low Carbon Steel Sheet with Low Mechanical Properties Anisotropy
WO2010137598A1 (en) * 2009-05-25 2010-12-02 Jfeスチール株式会社 Hot rolled sheet steel having excellent formability, and method for producing same
JP2010270383A (en) * 2009-05-25 2010-12-02 Jfe Steel Corp Hot-rolled steel plate superior in formability and method for manufacturing the same
CN102449178A (en) * 2009-05-25 2012-05-09 杰富意钢铁株式会社 Hot rolled sheet steel having excellent formability, and method for producing same
KR101369098B1 (en) * 2009-05-25 2014-02-28 제이에프이 스틸 가부시키가이샤 Hot rolled sheet steel having excellent formability, and method for producing same

Similar Documents

Publication Publication Date Title
JP4782243B2 (en) Boron-added steel sheet with excellent hardenability and manufacturing method
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JP2003183733A (en) Method for manufacturing wire rod
KR20210009606A (en) Austenitic stainless steel with imporoved strength and method for manufacturing the same
EP3901312B1 (en) High strength hot-rolled steel sheet having excellent workability, and method for manufacturing the same
JP4765388B2 (en) Manufacturing method for cold rolled steel sheet with excellent flatness after punching
JPH1161270A (en) Manufacture of hot rolled steel sheet minimal in plastic anisotropy and excellent in workability
JP3684850B2 (en) High-strength, high-workability hot-rolled steel sheet excellent in impact resistance and material uniformity and method for producing the same
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
KR100349157B1 (en) How to manufacture high tensile steels with high productivity
JPH0754041A (en) Manufacture of steel for cold forging
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
KR20180068087A (en) Ferritic stainless steel with improved impact toughness and method of manufacturing the same
JP2938147B2 (en) Manufacturing method of cold rolled steel sheet by thin cast strip
JPS6365021A (en) Production of b-containing non-tempered high tensile steel sheet having excellent low-temperature toughness
JP2000096140A (en) Production of high toughness high damping alloy
JPH0625743A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness
JPH0625739A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness
JPH1161274A (en) Manufacture of steel sheet for extra deep drawing, excellent in baking hardenability
EP4265753A1 (en) Cold-rolled steel sheet having excellent processability and manufacturing method thereof
JPH04110418A (en) Manufacture of hot-rolled steel plate and heat treatment method of this worked product
JPH0625742A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness