JPH108143A - Production of thin steel sheet excellent in workability and hardenability in coating/backing - Google Patents

Production of thin steel sheet excellent in workability and hardenability in coating/backing

Info

Publication number
JPH108143A
JPH108143A JP17999596A JP17999596A JPH108143A JP H108143 A JPH108143 A JP H108143A JP 17999596 A JP17999596 A JP 17999596A JP 17999596 A JP17999596 A JP 17999596A JP H108143 A JPH108143 A JP H108143A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
rolling
cooling rate
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17999596A
Other languages
Japanese (ja)
Inventor
Kiwamu Watanabe
極 渡邊
Yoshiaki Nakazawa
嘉明 中澤
Shigeki Nomura
茂樹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17999596A priority Critical patent/JPH108143A/en
Publication of JPH108143A publication Critical patent/JPH108143A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a means capable of inexpensively and stably producing a thin steel sheet showing excellent deep drawability and aging resistance and furthermore having high hardenability in coating/backing. SOLUTION: A slab contg., by weight, 0.0100 to 0.025% C, 0.05 to 0.25% Mn, 0.003 to 0.020% S, <=0.08% P, 0.005 to 0.030% Al, <=0.0030% N, 0.0015 to 0.0035% B, and the balance Fe with inevitable impurities is heated to <=1200 deg.C, is subjected to hot rolling, is subjected to finish rolling at the Ar3 transformation point or above and is coiled at 600 to 750 deg.C. Then, it is subjected to cold rolling at >=70% rolling ratio, thereafter, in the subsequent continuous annealing, after recrystallization annealing at >800 to 880 deg.C for 10 to 60sec, at first, it is slowly cooled at <=7 deg.C/s cooling rate down to the temp. range of 650 to 740 deg.C and is subsequently subjected to rapid cooling at 40 to 250 deg.C/s cooling rate to the temp. range of 350 to 400 deg.C, and thereafter, overaging treatment is executed from the rapid cooling end temp. in the above at 0 to <=0.5 deg.C/s cooling rate for 2 to 5min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、優れた深絞り性,耐
時効性並びに塗装焼付硬化性を有する薄鋼板(冷延鋼
板)を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin steel sheet (cold rolled steel sheet) having excellent deep drawability, aging resistance and paint bake hardenability.

【0002】[0002]

【従来技術とその課題】深絞り性の優れた塗装焼付硬化
性鋼板を連続焼鈍によって製造する手段としては、従来
より、鋼中C量を 0.007%未満(以降、 成分割合を示す
%は重量%とする)にまで低減し、更にTi,Nb等の炭窒
化物生成元素を添加することによって固溶C量を制御す
る方法が一般的に知られている。しかし、この方法に
は、“C含有量の低レベル化”や“Ti,Nbといった高価
な添加元素”が必要であるため製品コストが高くなる
上、焼付硬化量の制御が困難であるという問題が指摘さ
れていた。
[Prior art and its problems] As a means for producing a paint-bake hardenable steel sheet with excellent deep drawability by continuous annealing, the C content in steel has been conventionally reduced to less than 0.007% (hereinafter, the component ratio is% by weight. It is generally known to control the amount of solute C by adding a carbonitride forming element such as Ti or Nb. However, this method requires “lower C content” and “expensive additional elements such as Ti and Nb”, which increases the product cost and makes it difficult to control the amount of bake hardening. Was pointed out.

【0003】そこで、TiやNb等の高価な添加元素を使用
することなく深絞り性に優れた塗装焼付硬化性鋼板を得
る方法が、特開平6−93376号として提案された。
しかしながら、上記提案の方法では、鋼のC含有量を0.
0015%以下という更に低いレベルにまで低減する必要が
あるため工業的に多大な困難を伴い、製品コストの観点
からはそれほど有利な手段とは言えなかった。
Therefore, a method for obtaining a paint bake hardenable steel sheet having excellent deep drawability without using expensive additional elements such as Ti and Nb has been proposed in Japanese Patent Application Laid-Open No. Hei 6-93376.
However, in the method proposed above, the C content of the steel is reduced to 0.
Since it is necessary to reduce it to a lower level of 0015% or less, there is great industrial difficulty, and it cannot be said to be a very advantageous means from the viewpoint of product cost.

【0004】一方、上述のような製品コストの上昇を抑
えるため、通常の“Mn,S,sol.Alを含む低炭素Alキル
ド鋼”を用い、連続焼鈍過程において一旦過時効温度よ
り低い温度にまで冷却してから再加熱し過時効処理を行
うという工程を取り入れて結晶粒内炭化物密度を制御し
た非時効焼付硬化性冷延鋼板の製造方法も提案されてい
る(特公平6−8483号公報参照)。しかし、この方
法は、連続焼鈍過程において、炭化物の成長を促進させ
るための過時効処理を行う前に一旦過時効温度より低い
温度にまで急冷して粒内炭化物の核生成を促進させてか
ら再加熱するという工程が必要であるため、急冷後の再
加熱に特別な設備が必要となるばかりか、エネルギ−コ
ストの増加にもつながるという工業上好ましくない問題
を内在するものであった。
On the other hand, in order to suppress the above-mentioned increase in product cost, ordinary "low carbon Al-killed steel containing Mn, S, sol. Al" is used, and the temperature is temporarily lowered to a temperature lower than the overaging temperature in the continuous annealing process. A method of producing a non-aging bake hardenable cold-rolled steel sheet in which the density of carbides in crystal grains is controlled by incorporating a step of cooling and then reheating and performing an overaging treatment has been proposed (Japanese Patent Publication No. 6-8483). reference). However, in this method, in the continuous annealing process, before performing the overaging treatment for promoting the growth of carbides, the steel is once cooled to a temperature lower than the overaging temperature to promote nucleation of intragranular carbides and then re-cooled. Since the step of heating is necessary, not only special equipment is required for reheating after quenching, but also there is an industrially unfavorable problem that leads to an increase in energy cost.

【0005】なお、低炭素Alキルド薄鋼板の深絞り性を
向上させるため、熱間圧延後に高温巻取を行うことで
“固溶Cの低減",“セメンタイトの凝集析出",“AlNの
析出粗大化”を促進させて高いr値を得る方法が一般に
知られていたが、高温巻取を行うと“厚いスケ−ル生成
による酸洗性の低下”や“コイル内材質の不均一に起因
する歩留低下”を招くなどの問題が生じた。
[0005] In order to improve the deep drawability of a low carbon Al-killed thin steel sheet, high-temperature winding is performed after hot rolling to reduce “solid solution C”, “aggregate precipitation of cementite”, and “precipitation of AlN”. A method of accelerating coarsening to obtain a high r-value is generally known. However, when high-temperature winding is performed, it is caused by "a decrease in pickling properties due to formation of a thick scale" and "unevenness of the material in the coil. This leads to problems such as causing a "low yield".

【0006】そのため、高温巻取によらずに低炭素Alキ
ルド鋼板の深絞り性を改善する方法として、微量のBを
添加すると共にsol.Al量を 0.010%未満の低い値に制御
した鋼を素材鋼として用いる手法が提案されている(特
公平5−49728号公報参照)。しかし、Al含有量を
このような低い値に制御することは工業的には非常に困
難なことであり、そのためこの方法も実用的な手段であ
るとは言えなかった。
Therefore, as a method of improving the deep drawability of a low carbon Al-killed steel sheet without using high-temperature winding, a steel in which a small amount of B is added and the amount of sol. Al is controlled to a low value of less than 0.010% is used. There has been proposed a method of using the material steel (see Japanese Patent Publication No. 5-49728). However, it is extremely difficult industrially to control the Al content to such a low value, and therefore, this method cannot be said to be a practical means.

【0007】このようなことから、本発明が目的とした
のは、優れた深絞り性及び耐時効性を示し、しかも高い
焼付硬化能を有する薄鋼板を安価にかつ安定して製造で
きる手段を提供することであった。
In view of the above, an object of the present invention is to provide a means capable of inexpensively and stably producing a thin steel sheet having excellent deep drawability and aging resistance and having high bake hardening ability. Was to provide.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、特に「100℃×60分」の人工促進時
効後に降伏点伸び:0.3%以下、焼付硬化量(BH量):3
0N/mm2以上、平均r値:1.5以上という優れた深絞り
性,耐時効性,焼付硬化性を示す薄鋼板の工業的に有利
な製造法の確立を目指して種々研究を重ねたところ、
「素材鋼の化学組成を規制すると共に、 これと特定の熱
延及び連続焼鈍条件を組み合わせることにより、 製造コ
ストの著しい上昇を伴うことなく優れた深絞り性,耐時
効性,焼付硬化性を有する薄鋼板の安定製造が可能とな
る」との知見を得ることができた。
In order to achieve the above object, the present inventors have developed a yield point elongation: 0.3% or less, baking hardening amount (BH amount), especially after artificial acceleration aging at "100 ° C. × 60 minutes". : 3
After conducting various studies with the aim of establishing an industrially advantageous method for producing thin steel sheets exhibiting excellent deep drawability, aging resistance, and bake hardenability of 0 N / mm 2 or more and an average r value of 1.5 or more,
"Along with regulating the chemical composition of the base steel and combining it with specific hot rolling and continuous annealing conditions, it has excellent deep drawability, aging resistance, and bake hardenability without significantly increasing the production cost. The stable production of thin steel plates becomes possible. "

【0009】本発明は、上記知見事項等に基づいてなさ
れたものであり、「C:0.0100〜 0.025%, Mn:0.
05〜0.25%, S: 0.003〜 0.020%,P:0.08%以
下, Al: 0.005〜 0.030%, N:0.0030%以
下,B:0.0015〜0.0035%を含むと共に残部がFe及び不
可避的不純物から成る鋼片を1200℃を上回らない温
度に加熱して熱間圧延を施し、 Ar3変態点以上の温度で
仕上圧延を行ってから600〜750℃で巻取り、 次に
70%以上の圧延率で冷間圧延を施した後、続く連続焼
鈍において800超〜880℃で10〜60秒の再結晶
焼鈍を施してから、 まず650〜740℃の温度域に到
達するまでを7℃/s以下の冷却速度で徐冷し、 引き続い
て40〜250℃/sの冷却速度で350〜400℃の温
度域まで急速冷却した後、 そのときの急冷終点温度から
0〜 0.5℃/s以下の冷却速度で2〜5分の過時効処理を
行うことによって、 “100℃×60分”の人工促進時
効後に降伏点伸び:0.3%以下、 焼付硬化量(BH量):3
0N/mm2以上、 平均r値:1.5以上という優れた深絞り
性,耐時効性,焼付硬化性を示す薄鋼板を安価にかつ安
定して製造できにようにした点」に大きな特徴を有して
いる。
[0009] The present invention has been made based on the above findings and the like, and is based on "C: 0.0100 to 0.025%, Mn: 0.
Steel containing 05 to 0.25%, S: 0.003 to 0.020%, P: 0.08% or less, Al: 0.005 to 0.030%, N: 0.0030% or less, B: 0.0015 to 0.0035%, with the balance being Fe and unavoidable impurities The piece is heated to a temperature not exceeding 1200 ° C., subjected to hot rolling, subjected to finish rolling at a temperature not lower than the Ar 3 transformation point, wound up at 600 to 750 ° C., and then cooled at a rolling rate of 70% or more. After the cold rolling, the steel is subjected to recrystallization annealing at a temperature exceeding 800 to 880 ° C. for 10 to 60 seconds in the subsequent continuous annealing, and then cooled to 7 ° C./s or less until the temperature reaches 650 to 740 ° C. After cooling rapidly to a temperature range of 350 to 400 ° C at a cooling rate of 40 to 250 ° C / s, the cooling rate is 0 to 0.5 ° C / s or less from the quenching end temperature at that time. By performing overaging treatment for ~ 5 minutes, artificial promotion of "100 ° C x 60 minutes" Yield point elongation after aging: 0.3% or less, bake hardening amount (BH amount): 3
0N / mm 2 or more, the average r value: excellent deep drawability of 1.5 or more, aging resistance, the major feature in the point "as the way can be manufactured inexpensively and stably the thin steel sheet showing a bake hardenability Yes doing.

【0010】即ち、本発明は、特に、冷延板を焼鈍する
前の固溶Nを低減させ深絞り性に有効な集合組織を得る
ために窒化物形成能の高いBを添加した低炭素Alキルド
鋼を素材鋼として用いると共に、焼鈍条件を添加したB
の効果が最大限に発揮されるように設定することで、熱
延工程において厚いスケ−ル生成による酸洗性の低下や
コイル内材質の不均一化を懸念することのない比較的低
温の巻取を実施した場合でも冷延板製品に良好な深絞り
性が実現されるようにし、優れた深絞り性,耐時効性,
焼付硬化性の兼備を可能ならしめるという技術思想に沿
って完成されたものであるが、以下、本発明において素
材鋼の化学組成及び薄鋼板(冷延鋼板)の製造条件を前
記の如く限定した理由を説明する。
That is, the present invention particularly relates to a low-carbon Al to which B having a high nitride forming ability is added in order to reduce solid solution N before annealing a cold-rolled sheet and obtain a texture effective for deep drawability. B using killed steel as material steel and adding annealing conditions
By setting such that the effect of the coil is maximized, it is possible to reduce the pickling property due to the formation of a thick scale in the hot rolling process and to make the winding at a relatively low temperature without concern about the unevenness of the material in the coil. In order to achieve good deep drawability of cold rolled sheet products even when the work is carried out, excellent deep drawability, aging resistance,
It has been completed in accordance with the technical idea of making it possible to combine the properties of bake hardening. Hereinafter, in the present invention, the chemical composition of the material steel and the manufacturing conditions of the thin steel sheet (cold rolled steel sheet) are limited as described above. Explain why.

【0011】[0011]

【作用】[Action]

[A] 素材鋼の化学組成 C:C含有量の下限は時効性の観点から制限される。即
ち、C含有量が0.0100%よりも低くなると、過時効析出
に当って焼鈍後の冷却速度を大きくしてもCの過飽和度
が増加しないために粒内炭化物の密度が低下し、時効性
の劣化を招く傾向が著しくなる。一方、C含有量の上限
は深絞り性の観点から制限される。つまり、 0.025%を
超えるC含有量であると、焼鈍過程において炭化物から
のCの再固溶により深絞り性に有効な組織の成長が阻害
されるようになる。従って、C含有量は0.0100〜 0.025
%と定めたが、好ましくは 0.013〜 0.020%に調整する
のが良い。
[A] Chemical composition of base steel C: The lower limit of the C content is limited from the viewpoint of aging. That is, when the C content is lower than 0.0100%, the supersaturation of C does not increase even if the cooling rate after annealing is increased in overaging precipitation, so that the density of intragranular carbides decreases, The tendency to cause deterioration becomes significant. On the other hand, the upper limit of the C content is limited from the viewpoint of deep drawability. That is, if the C content exceeds 0.025%, the growth of a structure effective for deep drawing becomes impeded by the re-dissolution of C from carbide in the annealing process. Therefore, the C content is 0.0100 to 0.025.
%, But is preferably adjusted to 0.013 to 0.020%.

【0012】Mn及びS:Mn及びSは、MnSを形成して窒
化物や粒内炭化物の析出核となる重要な成分であり、こ
の効果を得るためにはMn含有量:0.05%以上,S含有
量:0.003%以上をそれぞれ確保する必要があるが、Mn含
有量が0.25%を超えると深絞り性の劣化を招き、またS
含有量が 0.020%を超えると熱間脆性の悪化が目立つよ
うになる。従って、Mn含有量を0.05〜0.25%、S含有量
を 0.003〜 0.020%とそれぞれ定めたが、好ましくはMn
含有量は0.07〜 0.015%、S含有量は 0.003〜 0.010%
に調整するのが良い。
Mn and S: Mn and S are important components that form MnS and serve as precipitation nuclei for nitrides and intragranular carbides. To obtain this effect, the Mn content is 0.05% or more, and Content: 0.003% or more must be ensured. However, if the Mn content exceeds 0.25%, deep drawability is deteriorated, and S
If the content exceeds 0.020%, deterioration of hot brittleness becomes noticeable. Therefore, the Mn content is set to 0.05 to 0.25% and the S content to 0.003 to 0.020%, respectively.
Content is 0.07 to 0.015%, S content is 0.003 to 0.010%
It is better to adjust.

【0013】P:Pには鋼板の強度を上昇させる作用が
あり、所望の強度を確保するために任意の量を含有させ
れば良いが、過剰に含有させると耐二次加工脆性の劣化
を招くにうになることから、P含有量の上限を0.08%と
定めた。
P: P has the effect of increasing the strength of the steel sheet. It is sufficient that P contains an arbitrary amount in order to secure the desired strength. Therefore, the upper limit of the P content was determined to be 0.08%.

【0014】Al:AlはAlNを形成して固溶Nの捕捉を促
進させる作用を有しているが、その含有量が 0.005%未
満では前記作用による所望の効果が得られず、一方、Al
含有量が0.030 %を超えると、B添加によって目論むB
Nの析出率が低下し、焼鈍過程での微細AlNの析出が促
進されて深絞り性の劣化を招くようになる。従って、Al
含有量は 0.005〜 0.030%と定めた。
Al: Al has the effect of forming AlN and promoting the capture of solid solution N. However, if its content is less than 0.005%, the desired effect cannot be obtained by the above-mentioned effect.
If the content exceeds 0.030%, the addition of B
The precipitation rate of N decreases, and the precipitation of fine AlN during the annealing process is promoted, resulting in deterioration of deep drawability. Therefore, Al
The content was determined to be 0.005 to 0.030%.

【0015】N:不可避的不純物の1つであるNは加工
性の面からその含有量は低いほど好ましいが、製鋼コス
トとの兼ね合いからN含有量の上限を0.0030%と定め
た。
N: N, which is one of the inevitable impurities, is preferably as low as possible from the viewpoint of workability, but the upper limit of the N content is set to 0.0030% in view of steelmaking costs.

【0016】B:Bは、Alより窒化物形成能が高く、B
Nを形成して焼鈍前の残留固溶Nを低減させることによ
り焼鈍後の粒成長性を向上させる作用を発揮するが、そ
の含有量が0.0015%未満では前記作用による所望の効果
を得ることができず、一方、B含有量が0.0035%を超え
ると過剰なBが固溶Bとなって逆に焼鈍時の粒成長性を
阻害するようになる。従って、B含有量は0.0015〜0.00
35%と定めたが、好ましくは 0.00018〜0.0025%に調整
するのが良い。
B: B has a higher nitride-forming ability than Al.
The effect of improving the grain growth after annealing is exhibited by forming N to reduce the residual solid solution N before annealing, but if the content is less than 0.0015%, the desired effect by the above-mentioned effect may be obtained. On the other hand, if the B content exceeds 0.0035%, excessive B becomes solid solution B and conversely inhibits grain growth during annealing. Therefore, the B content is 0.0015 to 0.00
Although set to 35%, it is preferable to adjust it to 0.00018 to 0.0025%.

【0017】[B] 製造条件 a) 熱延条件 常法通りに溶製され連続鋳造されて得られる上記化学組
成の鋼片(スラブ)にはまず熱間圧延が施されるが、熱
間圧延に際してのスラブ加熱温度が高すぎる場合には
“窒化物”及び“焼鈍後の粒内炭化物の析出サイトであ
るMnS”の一部が固溶し、BNの析出率低下による深絞
り性及び耐時効性の劣化を招くこととなるので、熱間圧
延に際してのスラブの加熱は1200℃を上回らないよ
うに留意する必要がある。なお、仕上圧延はAr3変態点
以上の温度で行うが、これは熱延板粗粒化による冷延焼
鈍板のr値低下を防止するためである。
[B] Manufacturing Conditions a) Hot Rolling Conditions A steel slab (slab) having the above chemical composition obtained by melting and continuous casting in the usual manner is first subjected to hot rolling. If the slab heating temperature is too high, a part of "nitride" and "MnS, which is a precipitation site of intragranular carbide after annealing" will form a solid solution, and deep drawability and aging resistance due to a decrease in the precipitation rate of BN Therefore, it is necessary to take care that heating of the slab during hot rolling does not exceed 1200 ° C. The finish rolling is performed at a temperature equal to or higher than the Ar 3 transformation point, in order to prevent a decrease in the r value of the cold-rolled annealed sheet due to coarsening of the hot-rolled sheet.

【0018】仕上圧延後の巻取温度は、炭化物凝集析出
を促進させると共に、B添加の効果を顕著化させて連続
焼鈍時の粒成長性を向上させることにより高いr値を得
るべく600℃以上とする必要がある。一方、スケ−ル
厚が厚くなることによる酸洗性悪化の防止という観点か
ら巻取温度の上限は750℃と定めた。ただ、より好ま
しくは巻取温度を630〜720℃と設定するのが良い
と言える。
The winding temperature after finish rolling is set at 600 ° C. or higher to promote carbide agglomeration and precipitation, to enhance the effect of the addition of B and to improve the grain growth during continuous annealing to obtain a high r value. It is necessary to On the other hand, the upper limit of the winding temperature is set to 750 ° C. from the viewpoint of preventing the pickling property from being deteriorated due to the increase in the scale thickness. However, it is more preferable to set the winding temperature to 630 to 720 ° C.

【0019】b) 冷延条件 冷間圧延における圧延率が小さいと十分なr値を得るこ
とができないので、冷間圧延は70%以上の圧延率で実
施する必要があるが、圧延率の上限は特に制限する必要
はない。なお、より好ましい冷間圧延率は75〜85%
である。
B) Cold Rolling Conditions When the rolling reduction in the cold rolling is small, a sufficient r value cannot be obtained. Therefore, it is necessary to carry out the cold rolling at a rolling reduction of 70% or more. Need not be particularly limited. In addition, more preferable cold rolling rate is 75-85%.
It is.

【0020】c) 連続焼鈍条件 本発明において、焼鈍条件はB添加低炭素Alキルド鋼冷
延板に十分な粒成長を行い高r値を得るために規定され
る。本発明では、まず前記冷延板に800℃を超える温
度で10秒以上の再結晶焼鈍が施される。この場合、焼
鈍温度が高すぎると結晶方位のランダム化による特性劣
化を招くため、焼鈍温度の上限は880℃とする。ま
た、焼鈍設備の長大化及びエネルギ−コストの増加を防
ぐため焼鈍時間の上限は60秒とする。
C) Conditions for Continuous Annealing In the present invention, the annealing conditions are defined in order to achieve sufficient grain growth and to obtain a high r value in a cold-rolled sheet of B-added low carbon Al-killed steel. In the present invention, the cold-rolled sheet is first subjected to recrystallization annealing at a temperature exceeding 800 ° C. for 10 seconds or more. In this case, if the annealing temperature is too high, the characteristics will be degraded due to randomization of the crystal orientation, so the upper limit of the annealing temperature is 880 ° C. The upper limit of the annealing time is set to 60 seconds in order to prevent an increase in the length of the annealing equipment and an increase in energy cost.

【0021】続いて、冷延板は上記再結晶焼鈍が終了し
た時点から急冷開始温度(650〜740℃)に至るま
で徐冷されるが、この時の冷却速度は、フェライト中の
固溶C量を高めて続く急冷,過時効過程において効果的
に粒内炭化物を生成させるため7℃/s以下(好ましくは
5℃/s以下)とされる。なお、フェライト中へのCの固
溶限の関係から急冷開始温度が650℃よりも低いかあ
るいは740℃より高い場合には十分な固溶Cの過飽和
度が得られず、粒内の炭化物密度が減少して時効性が劣
化することから、急冷開始温度は650〜740℃とす
る。
Subsequently, the cold-rolled sheet is gradually cooled from the time when the recrystallization annealing is completed to a quenching start temperature (650 to 740 ° C.). In order to effectively generate intragranular carbides in the rapid quenching and overaging processes that are continued with increasing the amount, the temperature is set to 7 ° C / s or less (preferably 5 ° C / s or less). When the quenching start temperature is lower than 650 ° C. or higher than 740 ° C., sufficient supersaturation of solid solution C cannot be obtained due to the solid solubility limit of ferrite in the ferrite, and the carbide density in the grains is low. The quenching start temperature is set to 650 to 740 ° C. since the aging property is deteriorated due to the decrease in quenching.

【0022】前記徐冷に続く急冷過程は粒内炭化物の析
出駆動力を確保するために必要であるが、本発明に係る
製造条件では粒内炭化物の析出サイトであるMnSが粗大
に析出し、粒内炭化物の析出が促進される。そのため、
従来提案された「過時効温度よりも低い温度まで過冷却
を行い核生成を行った後に再加熱を行う」という処理を
施さなくても十分に良好な耐時効性を実現することがで
きる。この急冷過程での冷却速度については、40℃/s
よりも低い場合には粒内炭化物密度が低下するため長い
過時効処理時間を要するようになり、一方、250℃/s
よりも高くなると粒内炭化物が微細に分散するために降
伏強度が増加して延性を低下させる。従って、急冷過程
での冷却速度は40〜250℃/sと定めたが、好ましく
は60〜150℃/sとするのが良い。
The quenching process following the slow cooling is necessary to secure the driving force for the precipitation of intragranular carbides. However, under the production conditions according to the present invention, MnS, which is a precipitation site of intragranular carbides, precipitates coarsely. Precipitation of intragranular carbide is promoted. for that reason,
Sufficiently good aging resistance can be realized without performing the conventionally proposed treatment of “supercooling to a temperature lower than the overaging temperature and performing nucleation and then reheating”. The cooling rate during this quenching process is 40 ° C / s
If it is lower than this, the intragranular carbide density decreases, so that a long overaging treatment time is required, while 250 ° C / s
If it is higher than this, the intragranular carbide is finely dispersed, so that the yield strength increases and the ductility decreases. Therefore, the cooling rate in the rapid cooling process is set to 40 to 250 ° C./s, but is preferably set to 60 to 150 ° C./s.

【0023】上記急冷の終点温度及び過時効温度は、粒
内炭化物の分布と成長を決定して固溶Cの残留量を左右
し、耐時効性に大きな影響を及ぼす。急冷終点温度が4
00℃より高いと、固溶Cの拡散は十分に確保できるも
のの固溶Cの溶解度が大きいために結果として固溶Cの
低減が十分に行われない。一方、急冷終点温度が350
℃よりも低い場合には固溶Cの拡散が不十分となって固
溶Cが大量に残留してしまう。従って、固溶Cを十分に
低減して優れた耐時効性を確保すべく、急冷終点温度は
350〜400℃と定めた。
The quenching end point temperature and the overaging temperature determine the distribution and growth of intragranular carbides, affect the residual amount of dissolved C, and greatly affect the aging resistance. Rapid cooling end point temperature is 4
When the temperature is higher than 00 ° C., the diffusion of the solid solution C can be sufficiently ensured, but the solubility of the solid solution C is large, so that the solid solution C is not sufficiently reduced as a result. On the other hand, the quenching end point temperature is 350
If the temperature is lower than ℃, the diffusion of solid solution C becomes insufficient and a large amount of solid solution C remains. Therefore, the quenching end point temperature is set to 350 to 400 ° C. in order to sufficiently reduce the solid solution C and secure excellent aging resistance.

【0024】過時効処理は、上記急冷終点温度に保持す
る等温過時効か、あるいは該急冷終点温度から十分に遅
い冷却速度で徐々に温度降下させる傾斜過時効によって
行われる。即ち、過時効過程における冷却速度が 0.5℃
/sより大きい場合には固溶Cの析出サイトまでの拡散が
不十分となり時効性が劣化するので、 0.5℃/s以下の傾
斜過時効又は等温過時効を適用する。何れの場合も過時
効処理時間は2〜5分間である。
The overaging treatment is carried out by isothermal overaging in which the above-mentioned quenching end point temperature is maintained or by gradient overaging in which the temperature is gradually lowered from the quenching end point temperature at a sufficiently low cooling rate. That is, the cooling rate in the overaging process is 0.5 ° C
If it is greater than / s, the diffusion of solid solution C to the precipitation site becomes insufficient and the aging property deteriorates. Therefore, a gradient overaging or isothermal overaging of 0.5 ° C / s or less is applied. In any case, the overaging treatment time is 2 to 5 minutes.

【0025】前記本発明で規定する化学組成の鋼片に以
上の条件に従った処理を施すことにより深絞り性,耐時
効性及び焼付硬化性に優れた薄鋼板が得られるが、この
薄鋼板の製造法を実施例によって更に具体的に説明す
る。
By subjecting the steel slab having the chemical composition specified in the present invention to treatment according to the above conditions, a thin steel sheet excellent in deep drawability, aging resistance and bake hardenability can be obtained. The production method will be described more specifically with reference to examples.

【0026】[0026]

【実施例】【Example】

〔実施例1〕まず、表1及び表2に示す化学組成の鋼を
溶製して出鋼し、連続鋳造法によってスラブとした後、
このスラブを1100〜1150℃に加熱してから熱間
圧延を施し、この熱間圧延において880〜920℃
(何れの鋼のAr3変態よりも高い温度)で仕上圧延を行
い板厚を 4.0mmとして640〜660℃でコイルに巻取
った。
[Example 1] First, steels having the chemical compositions shown in Tables 1 and 2 were smelted and tapped to form a slab by a continuous casting method.
The slab is heated to 1100 to 1150 ° C. and then subjected to hot rolling.
(Temperature higher than the Ar 3 transformation of any steel) was finish-rolled to a thickness of 4.0 mm and wound around a coil at 640 to 660 ° C.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】次いで、前記熱延コイルを巻戻して酸洗し
てから 0.8mm厚にまで冷間圧延を行い(冷間圧延率80
%)、引き続いて連続焼鈍を施した。連続焼鈍では、焼
鈍温度を820℃、均熱時間を30秒とし、均熱後は7
00℃までを冷却速度4℃/sで徐冷してから、380℃
までを80℃/sの冷却速度で急冷し、続いて380℃か
ら330℃までを 2.5分間の時間をかけて過時効処理し
た(冷却速度 0.3℃/s)。そして、常法に従って過時効
処理後の鋼板に 1.2%の伸び率でスキンパス圧延を施し
た。
Next, the hot-rolled coil is unwound, pickled, and then cold-rolled to a thickness of 0.8 mm (a cold-rolling ratio of 80).
%), Followed by continuous annealing. In the continuous annealing, the annealing temperature was set to 820 ° C., the soaking time was set to 30 seconds, and after the soaking, 7
Slowly cool to 00 ° C at a cooling rate of 4 ° C / s, then 380 ° C
Was rapidly cooled at a cooling rate of 80 ° C./s, and then over-aged from 380 ° C. to 330 ° C. over 2.5 minutes (cooling rate: 0.3 ° C./s). Then, the steel plate after the overaging treatment was subjected to skin pass rolling at an elongation of 1.2% in accordance with a conventional method.

【0030】このように製造された各冷延鋼板について
「100℃×60分」の人工促進時効を行った後の機械
特性を求めた。この結果を表1及び表2に併せて示す。
The mechanical properties of each of the thus produced cold rolled steel sheets after the artificial acceleration aging of “100 ° C. × 60 minutes” were determined. The results are shown in Tables 1 and 2.

【0031】一般に、遅時効と見なすには耐ストレッチ
ャ−ストレインの観点から「100℃×60分」の人工
促進時効後で降伏点伸び(YP−El)を 0.3%以下に
する必要がある。また、深絞り用鋼板として用いるに
は、3方向の平均r値を 1.5以上とする必要がある。し
かるに、表1及び表2に示される結果から分かるよう
に、本発明で規定する条件通りに製造された薄鋼板(本
発明例1〜16に係る鋼板)では、優れた深絞り性,耐時
効性及び塗装焼付性が実現されている。
In general, in order to be regarded as delayed aging, the yield point elongation (YP-El) must be 0.3% or less after artificial acceleration aging at "100 ° C. × 60 minutes" from the viewpoint of stretcher strain resistance. Further, in order to use the steel sheet for deep drawing, the average r value in three directions needs to be 1.5 or more. However, as can be seen from the results shown in Tables 1 and 2, the thin steel sheets manufactured according to the conditions specified in the present invention (the steel sheets according to Inventive Examples 1 to 16) have excellent deep drawability and aging resistance. Properties and paint baking properties are realized.

【0032】これに対して、比較例17及び24では、素材
鋼のC含有量が低すぎるために連続焼鈍過程における粒
内炭化物の析出が不十分となって固溶Cが残留してしま
うため、製品鋼板の時効性が劣る結果となっている。一
方、比較例18及び25では、素材鋼のC含有量が高すぎる
ために製品鋼板の深絞り性が劣る結果となっている。
On the other hand, in Comparative Examples 17 and 24, since the carbon content of the base steel was too low, the precipitation of intragranular carbide during the continuous annealing process was insufficient, and solid solution C remained. As a result, the aging property of the product steel sheet is inferior. On the other hand, in Comparative Examples 18 and 25, since the C content of the base steel was too high, the deep drawability of the product steel sheet was inferior.

【0033】また、比較例19及び26では、素材鋼のAl含
有量が少なすぎるために固溶Nが残留してしまい、製品
鋼板の時効性が劣る結果となっている。比較例20及び27
では、素材鋼のAl含有量が過剰であるために製品鋼板の
深絞り性が劣る結果となっている。
In Comparative Examples 19 and 26, the solute N was left because the Al content of the base steel was too small, resulting in inferior aging properties of the product steel sheet. Comparative Examples 20 and 27
In this case, since the Al content of the base steel is excessive, the deep drawability of the product steel sheet is inferior.

【0034】そして、比較例21及び28では、素材鋼のN
含有量が高すぎるために製品鋼板の深絞り性が劣ってい
る。比較例22及び29では、素材鋼にBが添加されていな
いため粒成長が悪く、製品鋼板の深絞り性が劣ってい
る。逆に、比較例23及び30では、素材鋼のB含有量が過
剰であるために粒成長が阻害され、製品鋼板の深絞り性
が劣る結果となっている。
In Comparative Examples 21 and 28, the N
Since the content is too high, the deep drawability of the product steel sheet is inferior. In Comparative Examples 22 and 29, the grain growth was poor because B was not added to the base steel, and the deep drawability of the product steel sheet was poor. On the contrary, in Comparative Examples 23 and 30, the B content of the material steel is excessive, so that the grain growth is hindered and the deep drawability of the product steel sheet is inferior.

【0035】〔実施例2〕まず、表3に示す本発明の規
定条件を満足する化学組成の鋼A〜Zを溶製して出鋼
し、連続鋳造法によってスラブとした。
Example 2 First, steels A to Z having a chemical composition satisfying the specified conditions of the present invention shown in Table 3 were melted and tapped, and slabs were formed by continuous casting.

【0036】[0036]

【表3】 [Table 3]

【0037】次に、この各スラブを表4及び表5に示す
条件で熱間圧延し(仕上圧延は何れもAr3変態以上の温
度で実施した)、板厚を 4.0mmとして表4及び表5に示
す温度でコイルに巻取った。
Next, each of the slabs was hot-rolled under the conditions shown in Tables 4 and 5 (the finish rolling was carried out at a temperature of Ar 3 transformation or higher). At a temperature shown in FIG.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】次いで、この熱延コイルを巻戻して酸洗し
てから 0.8mm厚にまで冷間圧延を行い(冷間圧延率80
%)、引き続いて連続焼鈍を施した。連続焼鈍では、焼
鈍過程での均熱時間を30秒間とした以外は表4及び表
5に示した条件が適用された。
Next, the hot-rolled coil is rewound, pickled, and then cold-rolled to a thickness of 0.8 mm (a cold-rolling ratio of 80).
%), Followed by continuous annealing. In the continuous annealing, the conditions shown in Tables 4 and 5 were applied except that the soaking time in the annealing process was set to 30 seconds.

【0041】このように製造された各冷延鋼板について
「100℃×60分」の人工促進時効を行った後の機械
特性を求めた。この結果を表4及び表5に併せて示す。
The mechanical properties of each of the thus produced cold-rolled steel sheets after the artificial acceleration aging of “100 ° C. × 60 minutes” were determined. The results are shown in Tables 4 and 5.

【0042】表4及び表5に示される結果から明らかな
ように、本発明で規定する条件通りに製造された薄鋼板
(本発明例31〜35及び44〜48に係る鋼板)では、優れた
深絞り性,耐時効性及び塗装焼付性が実現されている。
As is clear from the results shown in Tables 4 and 5, the thin steel sheets manufactured according to the conditions specified in the present invention (the steel sheets according to Examples 31 to 35 and 44 to 48 of the present invention) were excellent. Deep drawability, aging resistance and paint seizure are realized.

【0043】これに対して、比較例36及び49ではスラブ
の加熱温度が高すぎたために製品鋼板の深絞り性が劣る
結果となっている。また、比較例37及び50では巻取温度
が低すぎたために製品鋼板の深絞り性が劣る結果となっ
ている。比較例38及び51では、焼鈍温度が低すぎたため
に粒成長が不足し、製品鋼板の深絞り性が劣っている。
一方、比較例39及び52では焼鈍温度が高すぎたために結
晶方位のランダム化が生じ、製品鋼板の深絞り性が劣る
結果となっている。
On the other hand, in Comparative Examples 36 and 49, the deep drawing property of the product steel sheet was inferior because the heating temperature of the slab was too high. In Comparative Examples 37 and 50, the winding temperature was too low, resulting in inferior deep drawability of the product steel sheet. In Comparative Examples 38 and 51, the grain growth was insufficient because the annealing temperature was too low, and the deep drawability of the product steel sheet was inferior.
On the other hand, in Comparative Examples 39 and 52, since the annealing temperature was too high, the crystal orientation was randomized, resulting in inferior deep drawability of the product steel sheet.

【0044】そして、比較例40,41,53及び54では過時
効処理温度が適正温度から外れているため製品鋼板の時
効性が悪い結果となっている。更に、比較例42及び55で
は過時効処理温度の傾斜が大きいために製品鋼板の時効
性が悪くなっている。比較例43及び56では、過時効処理
時間が短かすぎるために製品鋼板の時効性が悪くなって
いる。
In Comparative Examples 40, 41, 53 and 54, the overageing temperature was out of the proper temperature, resulting in poor aging of the product steel sheet. Further, in Comparative Examples 42 and 55, the aging property of the product steel sheet was deteriorated because the gradient of the overaging treatment temperature was large. In Comparative Examples 43 and 56, the aging property of the product steel sheet was poor because the overaging treatment time was too short.

【0045】[0045]

【効果の総括】以上に説明した如く、この発明によれ
ば、格別なコスト高を招く手段を適用することなく、素
材鋼の化学組成調整及び熱間圧延条件と連続焼鈍熱サイ
クルの適正化によって優れた深絞り性,耐時効性及び塗
装焼付硬化性を有する薄鋼板の安定製造を可能とするな
ど、産業上有用な効果がもたらされる。
As described above, according to the present invention, it is possible to adjust the chemical composition of the base steel, optimize the hot rolling conditions and optimize the continuous annealing heat cycle without applying any means that causes extra cost. Industrially useful effects such as stable production of thin steel sheets having excellent deep drawability, aging resistance and paint bake hardenability are provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にてC:0.0100〜 0.025%,
Mn:0.05〜0.25%, S: 0.003〜 0.020%,P:0.
08%以下, Al: 0.005〜 0.030%, N:0.0030
%以下,B:0.0015〜0.0035%を含むと共に残部がFe及
び不可避的不純物から成る鋼片を1200℃を上回らな
い温度に加熱して熱間圧延を施し、Ar3変態点以上の温
度で仕上圧延を行ってから600〜750℃で巻取り、
次に70%以上の圧延率で冷間圧延を施した後、続く連
続焼鈍において800超〜880℃で10〜60秒の再
結晶焼鈍を施してから、まず650〜740℃の温度域
に到達するまでを7℃/s以下の冷却速度で徐冷し、引き
続いて40〜250℃/sの冷却速度で350〜400℃
の温度域まで急速冷却した後、そのときの急冷終点温度
から0〜 0.5℃/s以下の冷却速度で2〜5分の過時効処
理を行うことを特徴とする、深絞り性,耐時効性及び塗
装焼付硬化性に優れた薄鋼板の製造方法。
C: 0.0100 to 0.025% by weight,
Mn: 0.05 to 0.25%, S: 0.003 to 0.020%, P: 0.
08% or less, Al: 0.005 to 0.030%, N: 0.0030
%, B: 0.0015 to 0.0035%, and the balance is heated to a temperature not exceeding 1200 ° C. by heating a slab consisting of Fe and unavoidable impurities, and finish rolling at a temperature not lower than the Ar 3 transformation point. And then winding at 600-750 ° C,
Next, after performing cold rolling at a rolling rate of 70% or more, recrystallization annealing is performed at more than 800 to 880 ° C. for 10 to 60 seconds in the subsequent continuous annealing, and then the temperature range reaches 650 to 740 ° C. Until it cools down slowly at a cooling rate of 7 ° C / s or less, and then 350-400 ° C at a cooling rate of 40-250 ° C / s.
After rapid cooling to the temperature range of, the over-aging treatment is performed for 2 to 5 minutes at a cooling rate of 0 to 0.5 ° C / s or less from the quenching end point temperature at that time, deep drawability, aging resistance And a method for producing a thin steel sheet having excellent paint bake hardenability.
JP17999596A 1996-06-20 1996-06-20 Production of thin steel sheet excellent in workability and hardenability in coating/backing Pending JPH108143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17999596A JPH108143A (en) 1996-06-20 1996-06-20 Production of thin steel sheet excellent in workability and hardenability in coating/backing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17999596A JPH108143A (en) 1996-06-20 1996-06-20 Production of thin steel sheet excellent in workability and hardenability in coating/backing

Publications (1)

Publication Number Publication Date
JPH108143A true JPH108143A (en) 1998-01-13

Family

ID=16075623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17999596A Pending JPH108143A (en) 1996-06-20 1996-06-20 Production of thin steel sheet excellent in workability and hardenability in coating/backing

Country Status (1)

Country Link
JP (1) JPH108143A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473017A2 (en) * 1990-08-31 1992-03-04 Minolta Camera Kabushiki Kaisha Printing apparatus
JP2008063619A (en) * 2006-09-07 2008-03-21 Nippon Steel Corp Steel sheet for side seamless can, and its production method
CN103045937A (en) * 2012-12-14 2013-04-17 宝山钢铁股份有限公司 Secondary cold rolled steel and production method thereof
CN105088065A (en) * 2015-09-25 2015-11-25 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled enamelled steel and production method thereof
CN105177411A (en) * 2015-08-07 2015-12-23 华北理工大学 Boracic cold-rolled enamel steel suitable for continuous annealing production and manufacturing method of boracic cold-rolled enamel steel
US9290835B2 (en) 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473017A2 (en) * 1990-08-31 1992-03-04 Minolta Camera Kabushiki Kaisha Printing apparatus
US9290835B2 (en) 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
JP2008063619A (en) * 2006-09-07 2008-03-21 Nippon Steel Corp Steel sheet for side seamless can, and its production method
CN103045937A (en) * 2012-12-14 2013-04-17 宝山钢铁股份有限公司 Secondary cold rolled steel and production method thereof
CN105177411A (en) * 2015-08-07 2015-12-23 华北理工大学 Boracic cold-rolled enamel steel suitable for continuous annealing production and manufacturing method of boracic cold-rolled enamel steel
CN105088065A (en) * 2015-09-25 2015-11-25 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled enamelled steel and production method thereof

Similar Documents

Publication Publication Date Title
JPH108143A (en) Production of thin steel sheet excellent in workability and hardenability in coating/backing
JP2776203B2 (en) Manufacturing method of cold rolled steel sheet excellent in non-aging at normal temperature
JPH025803B2 (en)
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JP3194120B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JP3818024B2 (en) Method for producing soft cold-rolled steel sheet with excellent aging resistance
JP2981629B2 (en) Method for manufacturing bake hardenable steel sheet with composite structure excellent in deep drawability
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH093550A (en) Production of cold rolled low carbon steel sheet having deep drawability and aging resistance
JPH0545652B2 (en)
JPS6323248B2 (en)
JP3777033B2 (en) Method for producing cold-rolled steel sheet having anti-aging characteristics with very little variation
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance
JPH09279237A (en) Production of low carbon cold rolled steel sheet
JPS6240319A (en) Manufacture of steel sheet having superior deep drawability by continuous annealing
JPS6048572B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for drawing by continuous annealing
JPH09263879A (en) Cold rolled steel sheet excellent in workability and aging resistance and its production
JPH07242949A (en) Production of cold rolled steel sheet for deep drawing excellent in baking hardenability
JPH0639622B2 (en) Method for producing soft cold-rolled steel sheet by continuous annealing excellent in deep drawability and non-aging at room temperature
JPH075989B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability
JPH0762180B2 (en) Method for producing cold-rolled steel sheet with excellent deep patterning property and aging characteristics by continuous annealing
JPH0510412B2 (en)