JP3818024B2 - Method for producing soft cold-rolled steel sheet with excellent aging resistance - Google Patents

Method for producing soft cold-rolled steel sheet with excellent aging resistance Download PDF

Info

Publication number
JP3818024B2
JP3818024B2 JP2000179254A JP2000179254A JP3818024B2 JP 3818024 B2 JP3818024 B2 JP 3818024B2 JP 2000179254 A JP2000179254 A JP 2000179254A JP 2000179254 A JP2000179254 A JP 2000179254A JP 3818024 B2 JP3818024 B2 JP 3818024B2
Authority
JP
Japan
Prior art keywords
less
mass
temperature
overaging
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000179254A
Other languages
Japanese (ja)
Other versions
JP2002003947A (en
Inventor
義正 船川
正 井上
賢一 三塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000179254A priority Critical patent/JP3818024B2/en
Publication of JP2002003947A publication Critical patent/JP2002003947A/en
Application granted granted Critical
Publication of JP3818024B2 publication Critical patent/JP3818024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、自動車や家電製品などに好適な耐時効性の優れた軟質冷延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
自動車や家電製品などに使用される鋼板には高い成形性が要求され、このため鋼板の軟質高延性化が精力的に進められている。このような高加工性冷延鋼板を連続焼鈍において製造する場合には、鋼中のC、Nを低減した上に炭窒化物形成元素を添加してC、Nを完全に固定したIF鋼が主に用いられているが、このIF鋼は鋼中C、Nを極限にまで低減し、且つTi、Nbなどを添加するため、製造コストが高い難点がある。
【0003】
このためCを極限まで低減しなくとも高加工性が得られる技術として、低炭素鋼にBを添加し、NのみをBNとして固定するB添加低炭素鋼が研究されてきた。しかし、このB添加低炭素鋼では、IF鋼とは異なり耐時効性を考慮しなければならない。すなわち、B添加量がN量に対して当量以下であれば耐時効性に問題はないが、通常の生産ではチャージによってN量がばらつくため、Bを一定量添加しても不可避的にBがN当量よりも多く添加されてしまい、この場合には耐時効性が劣ったものとなる。
【0004】
そこで、このようなB添加低炭素鋼の耐時効性を改善するため、以下のような方法が提案されている。
特開昭56−130431号には、BをNに対して当量以上添加し、Nを完全にBで固定する方法が開示されている。しかし、この方法ではリミング作用を防止するためにAlを0.01mass%以下まで低減しなければならず、延性を低下させる酸化物量の増大は避けられない。
【0005】
特開昭56−158821号には、B/N>0.5以上の鋼を300℃以下の低温で10分を超える長時間過時効処理することにより耐時効性を改善する方法が開示されている。しかし、この方法のように10分以上も過時効処理するにはライン速度を極端に遅くしなければならず、ストリップが炉内破断する危険がある。
特開昭60−165321号には、200〜400℃の低温で2〜10分間過時効処理することでMnSを核にフェライト粒内にセメンタイトを析出させる技術が開示されているが、セメンタイトの核となるMnSは微細なものだけであり、スラブ加熱温度によっては十分な効果が得られなかったり、効果のばらつきが大きい欠点がある。
【0006】
特開平7−3332号には、焼鈍温度を930℃以下の超高温とするとともに、400〜300℃の過時効温度まで急冷することにより、BNを核にセメンタイトを粒内に微細析出させる方法が開示されている。しかし、この方法ではセメンタイトが粒内に超微細に析出するため均一伸びが低下し、ELの劣化が避けられない。
特開平9−3550号には、スラブ熱履歴と高温焼鈍、400℃以下の低温過時効処理を組み合わせることでMnSを核にセメンタイトを析出させる方法が開示されている。しかし、この方法では耐時効性は改善されるものの、微細セメンタイトが粒内に多量に分散するため、ELの低下は避けられない。
【0007】
【発明が解決しようとする課題】
このように従来からB添加低炭素鋼の耐時効性を改善する方法が種々提案されているが、BがNに対して当量以上に添加された鋼において耐時効性と延性とを両立させ得るような技術は未だ開発されていない。
したがって本発明の目的は、BがNに対して当量以上に添加されたB添加低炭素鋼により延性を維持しつつ耐時効性に優れた冷延鋼板を得ることができる製造方法を提供することにある。
【0008】
【課題を解決するための手段】
BがNに対して過剰に添加されたB添加鋼では、固溶Bが発生して粒界に優先的に偏析するため、連続焼鈍後の過時効処理時にセメンタイトが粒界に析出できず、結果として粒内のBNを核に析出する。しかし、粒内にはBNが多数存在するため、通常の過時効処理条件または、先行文献に示されている耐時効性を考慮した低温過時効処理ではセメンタイトが粒内に微細分散し、ELが低下してしまう。そこで、本発明者らは発想を転換し、高温での過時効処理の可能性とその効果について鋭意検討を行った。その結果、従来技術とは逆に高温で過時効処理を行うことにより、粒内セメンタイトを粗大化させてELを低下させることなく耐時効性を効果的に改善できることを見出し、本発明をなすに至った。
【0009】
以下、上記の知見事実が得られた実験結果について説明する。
C≒0.02mass%、Si≒0.01mass%、Mn≒0.2mass%、S≒0.01mass%、P≒0.01mass%、Al≒0.04mass%、N≒0.002mass%、BをB/Nで約1.3含む鋼を熱間圧延した後、640℃で巻取った。この熱延板を酸洗後、圧延率70%で冷間圧延し、次いで720℃で連続焼鈍した後、冷却速度120℃/秒で過時効処理温度まで冷却し、過時効処理を行った。この過時効処理では処理温度を400〜500℃の範囲、処理時間を3〜7分の範囲で変化させた。この過時効処理後、伸長率1%の調質圧延を行った。冷延鋼板の最終板厚は1mmとした。
【0010】
耐時効性を時効指数で各々評価するため、得られた鋼板からJIS 5号試験片を作成し、時効指数(8%引張後100℃で1時間保持)の測定を行った。その結果を図1に示す。図1において“×”は時効指数が40MPaを超えたもの、“○”は時効指数が20MPa〜40MPaの範囲のものであり、図中にはそれぞれの時効指数を示してある。これによれば、通常の条件である400℃で4分程度の過時効処理では、時効指数は約50MPaと高いのに対し、過時効処理温度が高いほど、また、処理時間が長いほど時効指数が低くなることが判る。さらに、過時効処理温度と過時効処理時間には関係があり、過時効処理温度が下記(1)式に基づいて過時効処理時間t(分)から計算される温度T(℃)以上の場合に、耐時効性が良好であることが判る。
T(℃)=500−(t−3)×30 … (1)
但し t:過時効処理時間(分)
【0011】
このような結果が得られる理由については、以下のように考えられる。すなわち、過時効処理温度が高い場合でも粒界には固溶Bが存在するため、セメンタイトは粒内に析出するが、過時効処理温度が高いと微細なセメンタイトは生成せず、セメンタイトは粗大化する。この粗大セメンタイトはELには影響を与えないことから、粒内に粗大セメンタイトが生成しても延性は低下しない。一方、固溶Bが粒界に存在するため、粒内に非平衡に残留した固溶Cは絶えずセメンタイト析出駆動力となる過飽和度を高く保持することから、高温過時効処理でも時効指数は十分低下するものと考えられる。
また、さらなる検討の結果、過時効処理前に過時効処理温度よりも30℃以上低い温度まで一旦冷却することで、上記のような作用効果がさらに高まることとも判明した。
【0012】
本発明は、このような知見に基づきなされたもので、その特徴は以下のとおりである。
[1] 実質的に、C:0.01〜0.05mass%、Si:0.1mass%以下、Mn:0.5mass%以下、S:0.03mass%以下、P:0.03mass%以下、Al:0.04mass%以下、N:0.004mass%以下、BをNに対して原子比で1以上含有し、残部がFeからなる成分組成の鋼を、熱間圧延後660℃以下で巻き取り、酸洗した後、50%以上の圧延率で冷間圧延し、次いで700℃以上800℃以下の温度で連続焼鈍し、該焼鈍後100℃/秒以上の冷却速度で冷却した後、下記(1)式で示すT℃以上530℃以下の温度で過時効処理を開始し、該過時効処理中は10℃/分以上30℃/分以下の冷却速度で徐冷するとともに、過時効処理時間を3分以上7分以下とすることを特徴とする耐時効性に優れた軟質冷延鋼板の製造方法。
T(℃)=500−(t−3)×30 … (1)
但し t:過時効処理時間(分)
【0013】
[2] 実質的に、C:0.01〜0.05mass%、Si:0.1mass%以下、Mn:0.5mass%以下、S:0.03mass%以下、P:0.03mass%以下、Al:0.04mass%以下、N:0.004mass%以下、BをNに対して原子比で1以上含有し、残部がFeからなる成分組成の鋼を、熱間圧延後660℃以下で巻き取り、酸洗した後、50%以上の圧延率で冷間圧延し、次いで700℃以上800℃以下の温度で連続焼鈍し、該焼鈍後100℃/秒以上の冷却速度で、下記(1)式で示す温度T(℃)に対してT−30℃以下まで一旦冷却した後、T℃以上530℃以下の温度で過時効処理を開始し、該過時効処理中は10℃/分以上30℃/分以下の冷却速度で徐冷するとともに、過時効処理時間を3分以上7分以下とすることを特徴とする耐時効性に優れた軟質冷延鋼板の製造方法。
T(℃)=500−(t−3)×30 … (1)
但し t:過時効処理時間(分)
【0014】
【発明の実施の形態】
以下、本発明の詳細とその限定理由について説明する。
まず、鋼の成分組成の限定理由について説明する。
C:Cが過剰であると炭化物が多量に析出し、鋼の硬質化を招くことから、0.05mass%以下とした。また、耐時効性をさらに向上させるためには0.03mass%以下が望ましい。また、Cが0.01mass%を下回ると過時効処理でCが析出しなくなることから、下限を0.01mass%とした。
【0015】
Si:Siは過剰に添加すると強度が上昇して成形性を劣化させることから、0.1mass%以下(0mass%の場合を含む)とした。
P:Pは固溶強化元素であり、過剰な添加は鋼の硬質化をもたらすことから0.03mass%以下(0mass%の場合を含む)とした。
Mn:MnはSをMnSの形で固定し、熱間延性を向上させる働きがあることから0.05mass%以上は添加することが望ましいが、過剰な添加は鋼の硬質化をもたらし、成形性を劣化させるため、0.5mass%以下(0mass%の場合を含む)とした。
【0016】
S:Sは熱間延性や成形性を阻害する元素であることからMnSとして固定される。このためSは低い方が望ましく、MnS量が多くなると伸びフランジ性が低下することから、0.03mass%以下(0mass%の場合を含む)とした。
Al:Alは脱酸剤として使用されることから、一般に鋼中にある程度は含まれる。しかし、Alが0.04mass%を超えて添加されると微細AlNが析出して硬質化するため、0.04mass%以下(0mass%の場合を含む)とした。
【0017】
N:Nは当量以上添加されるBにより完全にBNとして固定される。しかし、鋼中に多量に窒化物が存在すると延性が低下するとともに、Bを多量に添加する必要が生じ、圧延が安定的に行えなくなることから、0.004mass%以下(0mass%の場合を含む)とした。
B:BはNを固定するために添加されるが、Nを完全に固定するために原子比でB/Nが1以上となるように添加する。しかし、B量が多いと熱間圧延時の圧延負荷が増大して圧延を安定的に行えないため、上限は0.004mass%とすることが望ましい。
鋼の組成は実質的に上記成分とFeとからなり、したがって不可避的不純物などの他の元素が本発明の効果を損なわない限度で微量含まれることは妨げない。
【0018】
次に、製造条件について説明する。
本発明では、上述した成分組成の鋼を熱間圧延した後660℃以下で巻き取り、酸洗した後、50%以上の圧延率で冷間圧延し、次いで700以上800℃以下の温度で連続焼鈍し、焼鈍後100℃/秒以上の冷却速度で冷却した後、下記(1)式で示すT℃以上530℃以下の温度で過時効処理を開始し、この過時効処理中は10℃/分以上30℃/分以下の冷却速度で徐冷するとともに、過時効処理時間を3分以上7分以下とする。また、好ましくは、焼鈍後100℃/秒以上の冷却速度で、下記(1)式で示す温度T(℃)に対してT−30℃以下まで一旦冷却した後、T℃以上530℃以下の温度で過時効処理を開始する。
T(℃)=500−(t−3)×30 … (1)
但し t:過時効処理時間(分)
【0019】
巻取温度: 巻取温度が660℃を超えると熱延板中にセメンタイトが粗大に析出するため、連続焼鈍時にセメンタイトの再固溶が進まず、結果として焼鈍均熱時の固溶C量が低減する。この固溶C量の減少は過時効処理時のセメンタイトの析出駆動力を減じ、結果的に常温における焼鈍板中の固溶C量の増大を招き、耐時効性と延性が劣化する。このため巻取温度の上限を660℃とした。
冷間圧延率: 冷間圧延率が50%を下回ると、熱延板中の炭化物を圧延で粉砕することができず、やはり焼鈍中に再固溶しないセメンタイト量が多くなり、結果的に耐時効性、延性が低下する。このため圧延率の下限を50%とした。
【0020】
連続焼鈍の焼鈍温度: 再結晶を完了させ十分に粒成長させるため、焼鈍温度の下限は700℃とした。また、焼鈍温度が800℃を超えると焼鈍中の組織が2相となり、冷却時にはフェライト粒界がバルジングしてγ→α変態が起こるため得られる焼鈍板組織が混粒となり、延性が低下する。このため焼鈍温度の上限を800℃とした。
連続焼鈍後の冷却速度: 焼鈍中にセメンタイトを十分に再固溶させ、過飽和度を高めることで過時効処理時に固溶Cを効果的に減じさせるためには、焼鈍中に再固溶したCが析出開始する前に過時効処理を開始する必要がある。本発明では、焼鈍後の冷却速度を100℃/秒以上とすることで過時効処理時の過飽和度を維持しなければならない。
【0021】
過時効処理開始温度: 過時効処理開始温度は本発明で最も重要である。過時効開始温度は下記(1)式で与えられるT℃以上とすることで、Cの析出が促進される。固溶Bが存在せず、セメンタイトが粒界に析出する場合には、粒界の拡散速度が粒内よりも数桁速いことから、400℃程度の低温で過時効処理する方が粒内から粒界への固溶Cの排出を促進して固溶C量が効果的に低減する。しかしながら、本発明のように固溶Bで粒界への析出が阻害されたセメンタイトは粒内のBNを核に析出を開始する。この場合、過時効処理温度を十分高くしなければ、粒内をCが十分拡散することができなくなり、焼鈍板中に固溶Cが多量に残留し、耐時効性と延性が低下する。この過時効温度はCの粒内拡散を促進するものであることから、過時効処理時間とトレードオフできるため、過時効処理温度は過時効処理時間によって下限が決まる。本発明ではその下限を下記(1)式で規定する。しかし、過時効処理温度が530℃よりも高い場合、セメンタイト析出の駆動力が十分得られず、また過時効処理終了温度も高くなり、固溶Cが残留するようになる。よって、過時効処理開始温度の上限を530℃とした。
T(℃)=500−(t−3)×30 … (1)
t:過時効処理時間(分)
【0022】
過時効処理中の冷却速度: 過時効処理中の冷却速度も本発明では重要である。過時効が進むにつれ固溶C量が減ることでセメンタイト析出の駆動力は減少する。このため固溶Cを効果的に減じるには、時効が進むにつれて過時効処理温度を低下させる必要がある。本発明では、その冷却速度の下限を10℃/分とした。また、この冷却速度が速いとセメンタイトが微細に析出するため耐時効性が向上するが、延性が低下してしまう。このため本発明では過時効処理中の冷却速度の上限を30℃/分とした。
【0023】
過時効処理時間: 過時効処理時間が3分未満ではセメンタイトが完全には析出できず、耐時効性は向上しないことから、下限を3分とした。また、処理時間が7分を超えるとライン速度が遅くなり、高温に保たれている均熱帯でストリップがネッキング若しくは破断するおそれがあることから、上限を7分とした。
焼鈍後過時効処理前の急冷停止温度: 焼鈍後過時効処理前にT−30℃以下まで一旦冷却し、その後T℃以上530℃以下で過時効処理することで本発明の効果は促進される。しかしながら、焼鈍後過時効処理前に300℃未満まで冷却するとセメンタイトの微細化傾向が強くなり延性が低下することから、冷却停止温度は300℃以上が望ましい。
【0024】
本発明における熱間圧延では、粗圧延後、粗バーを接合して仕上げ圧延を連続して行っても何ら問題は生じない。また、粗圧延後、温度調整の目的で粗バーを加熱したり、或いはコイルボックスに巻き取っても問題はない。さらに、粗バーの加熱と連続圧延を組み合わせてもよい。
スラブを熱間圧延するに当っては、連続鋳造されたスラブをそのまま圧延するか、若しくは室温まで冷却することなくスラブ均熱を目的とした100分以内の保熱又は加熱を行ってもよい。さらに、薄スラブを用いて粗圧延を省略して熱間圧延を行ってもよく、いずれの場合も本発明の効果は変わらない。
【0025】
調質圧延の条件についての制限も特にないが、伸長率が1.5%を超えるとELの低下が著しいことから、伸長率は1.5%以下が望ましい。
なお、本発明で用いる鋼は、転炉、電気炉のいずれで成分調整したものでもよく、また、原料にスクラップを用いたものでもよい。スクラップを用いた場合に混入する不純物については特に制限はない。
また、本発明により得られる鋼板に亜鉛めっきや錫めっき、クロメート処理、リン酸亜鉛処理などの化成処理を行っても本発明の効果にはなんら影響はない。
【0026】
【実施例】
[実施例1]
表1に示す成分組成の鋼を溶製・鋳造した後、表2に示す条件で熱間圧延、酸洗、冷間圧延、連続焼鈍及び過時効処理を行い、次いで伸長率1.0%で調質圧延を行った。このようにして得られた冷延鋼板の時効指数を測定するとともに、引張試験(JIS 5号試験片)によりTS、ELを測定し、各冷延鋼板の耐時効性と延性の評価を行った。その結果を表2に併せて示す。
なお、時効指数の測定では、8%予歪み付加後に100℃で1時間保持することで時効させた。また、各冷延鋼板の最終板厚は熱延板板厚を調整することで調整した。
【0027】
表1及び表2において、No.1〜No.5は巻取温度を変化させた例でありNo.1〜No.4(本発明例)では時効指数が低く、ELも良好であるが、巻取温度が高いNo.5(比較例)では時効指数が高い。
No.6〜No.10は焼鈍温度を変化させた例であるが、焼鈍温度が低いNo.6(比較例)では時効指数が高く、ELも低い。また、焼鈍温度が高いNo.10(比較例)では時効指数は良好であるものの、ELは著しく低い。これに対してNo.7〜No.9(本発明例)は時効指数、ELともに良好である。
【0028】
No.11(比較例)は冷間圧延率が低いため時効指数が高い。No.12(比較例)は過時効処理時間が短いため時効指数が高く、それに伴ってELも低くなっている。No.13(比較例)では過時効処理時間が長く、しかも過時効処理中の冷却速度が小さいため時効指数が高い。No.14(比較例)は焼鈍後の冷却速度が遅いため、やはり時効指数が高い。No.15(本発明例)は良好なELと時効指数が同時に実現されている。
No.16〜No.20は過時効処理温度を変化させた例であり、過時効処理温度の低いNo.16(比較例)は時効指数は高く、ELは低い。過時効処理温度の高いNo.20(比較例)は時効指数が高い。これに対してNo.17〜No.19(本発明例)は時効指数、ELともに良好である。
【0029】
【表1】

Figure 0003818024
【0030】
【表2】
Figure 0003818024
【0031】
[実施例2]
表3に示す成分の鋼を溶製・鋳造した後、表4に示す条件で熱間圧延(巻取温度640℃)、酸洗、冷間圧延(冷間圧延率80%)、連続焼鈍(焼鈍温度750℃)し、焼鈍後の急冷における冷却停止温度を変化させて過時効処理を行った後、伸長率1.0%で調質圧延を行い、板厚0.8mmの冷延鋼板を得た。このようにして得られた冷延鋼板の時効指数を測定するとともに、引張試験(JIS5号試験片)によりTS、ELを測定し、各冷延鋼板の耐時効性と延性の評価を行った。その結果を表4に示す。
なお、時効指数の測定では、8%予歪み付加後に100℃で1時間保持することで時効させた。
【0032】
No.1〜No.2の本発明例は、過時効処理開始温度付近で焼鈍後の急冷を停止したものである。これに対してNo.3〜No.5の本発明例は、過時効処理開始温度よりも30℃以上過冷した後に過時効処理を開始したものであり、これらは時効指数がNo.1〜No.2よりも低く、過時効処理前に過冷することにより耐時効性がさらに向上することが判る。
【0033】
【表3】
Figure 0003818024
【0034】
【表4】
Figure 0003818024
【0035】
【発明の効果】
以上述べたように本発明法によれば、BがNに対して当量以上に添加されたB添加低炭素鋼から耐時効性と延性とを兼ね備えた冷延鋼板を製造することができる。
【図面の簡単な説明】
【図1】BがNに対して当量以上に添加されたB添加低炭素鋼から得られた冷延鋼板について、その時効指数を過時効処理温度と過時効処理時間との関係で示すグラフ[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for producing a soft cold-rolled steel sheet having excellent aging resistance suitable for automobiles and home appliances.
[0002]
[Prior art]
Steel sheets used for automobiles, home appliances, and the like are required to have high formability. For this reason, increasing the softness and ductility of steel sheets has been energetically promoted. When manufacturing such a high workability cold-rolled steel sheet by continuous annealing, IF steel in which C and N in steel are reduced and carbonitride forming elements are added to completely fix C and N is used. Although mainly used, this IF steel has the disadvantage of high production costs because it reduces C and N in the steel to the limit and adds Ti, Nb, and the like.
[0003]
For this reason, B-added low-carbon steel in which B is added to low-carbon steel and only N is fixed as BN has been studied as a technique for obtaining high workability without reducing C to the limit. However, in this B-added low carbon steel, aging resistance must be considered unlike IF steel. That is, if the amount of B added is equal to or less than the amount of N, there is no problem in aging resistance. However, in normal production, the amount of N varies due to charging, so B is inevitable even if a certain amount of B is added. More than N equivalent is added, and in this case, the aging resistance is inferior.
[0004]
In order to improve the aging resistance of such a B-added low carbon steel, the following method has been proposed.
Japanese Patent Application Laid-Open No. 56-130431 discloses a method in which B is added in an equivalent amount or more with respect to N, and N is completely fixed with B. However, in this method, in order to prevent a rimming action, Al must be reduced to 0.01 mass% or less, and an increase in the amount of oxide that reduces ductility is inevitable.
[0005]
Japanese Patent Application Laid-Open No. 56-158821 discloses a method for improving aging resistance by subjecting a steel having B / N> 0.5 or more to an overaging treatment for a long time exceeding 10 minutes at a low temperature of 300 ° C. or less. Yes. However, the line speed must be extremely slow for overaging for 10 minutes or more as in this method, and there is a risk that the strip breaks in the furnace.
Japanese Patent Application Laid-Open No. 60-165321 discloses a technique for precipitating cementite in ferrite grains with MnS as nuclei by overaging at a low temperature of 200 to 400 ° C. for 2 to 10 minutes. MnS to be obtained is only a fine one, and there is a drawback that a sufficient effect cannot be obtained depending on the slab heating temperature or the effect varies greatly.
[0006]
Japanese Patent Application Laid-Open No. 7-3332 discloses a method of finely precipitating cementite in grains using BN as a core by setting the annealing temperature to an ultrahigh temperature of 930 ° C. or lower and quenching to an overaging temperature of 400 to 300 ° C. It is disclosed. However, in this method, cementite precipitates ultrafinely in the grains, so that the uniform elongation is lowered and the deterioration of EL is inevitable.
Japanese Patent Application Laid-Open No. 9-3550 discloses a method of precipitating cementite with MnS as a nucleus by combining slab thermal history, high temperature annealing, and low temperature overaging treatment at 400 ° C. or lower. However, with this method, although the aging resistance is improved, since a large amount of fine cementite is dispersed in the grains, a decrease in EL is inevitable.
[0007]
[Problems to be solved by the invention]
Thus, various methods for improving the aging resistance of B-added low carbon steel have been proposed in the past, but both aging resistance and ductility can be achieved in steel in which B is added in an amount equal to or more than N. Such technology has not been developed yet.
Accordingly, an object of the present invention is to provide a production method capable of obtaining a cold-rolled steel sheet having excellent aging resistance while maintaining ductility with B-added low carbon steel in which B is added in an amount equal to or more than N. It is in.
[0008]
[Means for Solving the Problems]
In the B-added steel in which B is excessively added to N, solute B is generated and segregates preferentially at the grain boundaries, so that cementite cannot precipitate at the grain boundaries during the overaging treatment after continuous annealing. As a result, BN in the grains is precipitated in the nucleus. However, since there are a lot of BN in the grains, the cementite is finely dispersed in the grains in the normal overaging treatment conditions or in the low temperature overaging treatment in consideration of the aging resistance shown in the prior literature, and the EL It will decline. Therefore, the present inventors changed the way of thinking and intensively studied the possibility of overaging treatment at high temperature and the effect thereof. As a result, it has been found that by performing an overaging treatment at a high temperature contrary to the prior art, the aging resistance can be effectively improved without coarsening the intragranular cementite and lowering the EL, thereby forming the present invention. It came.
[0009]
Hereinafter, the experimental results obtained from the above findings will be described.
C≈0.02 mass%, Si≈0.01 mass%, Mn≈0.2 mass%, S≈0.01 mass%, P≈0.01 mass%, Al≈0.04 mass%, N≈0.002 mass%, B After hot rolling a steel containing about 1.3 at B / N, it was wound at 640 ° C. The hot-rolled sheet was pickled, cold-rolled at a rolling rate of 70%, then continuously annealed at 720 ° C., then cooled to an overaging temperature at a cooling rate of 120 ° C./second, and an overaging treatment was performed. In this overaging treatment, the treatment temperature was changed in the range of 400 to 500 ° C., and the treatment time was changed in the range of 3 to 7 minutes. After this overaging treatment, temper rolling with an elongation of 1% was performed. The final thickness of the cold rolled steel sheet was 1 mm.
[0010]
In order to evaluate the aging resistance by the aging index, a JIS No. 5 test piece was prepared from the obtained steel sheet, and the aging index (held at 100 ° C. for 1 hour after 8% tension) was measured. The result is shown in FIG. In FIG. 1, “x” indicates that the aging index exceeds 40 MPa, and “◯” indicates that the aging index ranges from 20 MPa to 40 MPa, and each aging index is shown in the figure. According to this, in the overaging treatment at 400 ° C. for about 4 minutes, which is a normal condition, the aging index is as high as about 50 MPa, whereas the aging index is higher as the overaging temperature is higher and the treatment time is longer. It turns out that becomes low. Furthermore, there is a relationship between the overaging treatment temperature and the overaging treatment time, and the overaging treatment temperature is equal to or higher than the temperature T (° C) calculated from the overaging treatment time t (minutes) based on the following equation (1). In addition, it can be seen that the aging resistance is good.
T (° C.) = 500− (t−3) × 30 (1)
Where t: overage treatment time (minutes)
[0011]
The reason why such a result can be obtained is considered as follows. That is, even when the overaging temperature is high, solid solution B exists at the grain boundary, so cementite precipitates in the grains, but when the overaging temperature is high, fine cementite does not form and the cementite becomes coarse. To do. Since this coarse cementite does not affect EL, the ductility does not decrease even if coarse cementite is generated in the grains. On the other hand, since solid solution B exists in the grain boundary, the solid solution C remaining in the grains in a non-equilibrium state keeps a high degree of supersaturation which is the driving force for precipitation of cementite. It is thought to decrease.
Further, as a result of further studies, it has been found that the above-described effects can be further enhanced by once cooling to a temperature 30 ° C. or more lower than the overaging temperature before the overaging treatment.
[0012]
The present invention has been made based on such findings, and the features thereof are as follows.
[1] Substantially, C: 0.01 to 0.05 mass%, Si: 0.1 mass% or less, Mn: 0.5 mass% or less, S: 0.03 mass% or less, P: 0.03 mass% or less, Al: 0.04 mass% or less, N: 0.004 mass% or less, B containing 1 or more in atomic ratio with respect to N, and the remainder of the steel composed of Fe is wound at 660 ° C. or less after hot rolling. After pickling and pickling, it is cold-rolled at a rolling rate of 50% or higher, then continuously annealed at a temperature of 700 ° C. or higher and 800 ° C. or lower, and cooled at a cooling rate of 100 ° C./second or higher after the annealing. The overaging treatment is started at a temperature of T ° C. or more and 530 ° C. or less represented by the formula (1), and during the overaging treatment, it is gradually cooled at a cooling rate of 10 ° C./min to 30 ° C./min and overaging treatment A method for producing a soft cold-rolled steel sheet having excellent aging resistance, characterized in that the time is 3 minutes or more and 7 minutes or less.
T (° C.) = 500− (t−3) × 30 (1)
Where t: overage treatment time (minutes)
[0013]
[2] Substantially, C: 0.01 to 0.05 mass%, Si: 0.1 mass% or less, Mn: 0.5 mass% or less, S: 0.03 mass% or less, P: 0.03 mass% or less, Al: 0.04 mass% or less, N: 0.004 mass% or less, B containing 1 or more in atomic ratio with respect to N, and the remainder of the steel composed of Fe is wound at 660 ° C. or less after hot rolling. After pickling and pickling, it is cold-rolled at a rolling rate of 50% or higher, then continuously annealed at a temperature of 700 ° C. or higher and 800 ° C. or lower. After the annealing, at a cooling rate of 100 ° C./second or higher, the following (1) After cooling to T-30 ° C. or less with respect to the temperature T (° C.) shown in the formula, overaging treatment is started at a temperature of T ° C. or more and 530 ° C. or less. During the overaging treatment, 10 ° C./min or more and 30 Slow cooling at a cooling rate of ℃ / min or less, and over-aging treatment time of 3 minutes to 7 minutes Excellent production method for a soft cold-rolled steel sheet sexual.
T (° C.) = 500− (t−3) × 30 (1)
Where t: overage treatment time (minutes)
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention and the reasons for limitation will be described below.
First, the reason for limiting the component composition of steel will be described.
C: If C is excessive, a large amount of carbide precipitates and the steel is hardened, so the content was set to 0.05 mass% or less. Moreover, in order to further improve aging resistance, 0.03 mass% or less is desirable. Moreover, when C is less than 0.01 mass%, C does not precipitate in the overaging treatment, so the lower limit was made 0.01 mass%.
[0015]
Si: When Si is added excessively, the strength is increased and the moldability is deteriorated, so the content is set to 0.1 mass% or less (including the case of 0 mass%).
P: P is a solid solution strengthening element, and excessive addition causes hardening of the steel, so it was set to 0.03 mass% or less (including the case of 0 mass%).
Mn: Mn fixes S in the form of MnS and has the function of improving hot ductility. Therefore, it is desirable to add 0.05 mass% or more. However, excessive addition leads to hardening of the steel and formability. In order to deteriorate the amount, it was set to 0.5 mass% or less (including the case of 0 mass%).
[0016]
S: Since S is an element that inhibits hot ductility and formability, it is fixed as MnS. For this reason, it is desirable that the S is low, and when the amount of MnS increases, the stretch flangeability deteriorates.
Al: Since Al is used as a deoxidizer, it is generally contained to some extent in steel. However, when Al is added in excess of 0.04 mass%, fine AlN precipitates and hardens, so it was set to 0.04 mass% or less (including the case of 0 mass%).
[0017]
N: N is completely fixed as BN by B added in an equivalent amount or more. However, if a large amount of nitride is present in the steel, the ductility is lowered and a large amount of B needs to be added, and rolling cannot be stably performed. Therefore, 0.004 mass% or less (including the case of 0 mass%) is included. ).
B: B is added to fix N, but is added so that B / N is 1 or more by atomic ratio in order to completely fix N. However, if the amount of B is large, the rolling load during hot rolling increases and rolling cannot be performed stably, so the upper limit is preferably set to 0.004 mass%.
The composition of the steel is substantially composed of the above components and Fe, and therefore, it is not prevented that other elements such as inevitable impurities are contained in a trace amount as long as the effects of the present invention are not impaired.
[0018]
Next, manufacturing conditions will be described.
In the present invention, the steel having the above component composition is hot-rolled, wound up at 660 ° C. or lower, pickled, cold-rolled at a rolling rate of 50% or higher, and then continuously at a temperature of 700 to 800 ° C. After annealing and cooling at a cooling rate of 100 ° C./second or more after annealing, overaging treatment was started at a temperature of T ° C. or more and 530 ° C. or less represented by the following formula (1). During this overaging treatment, 10 ° C. / While gradually cooling at a cooling rate of at least 30 ° C./minute, the overaging treatment time is at least 3 minutes and at most 7 minutes. Preferably, after annealing, after cooling once to T-30 ° C. or lower with respect to the temperature T (° C.) expressed by the following equation (1) at a cooling rate of 100 ° C./second or higher, the temperature is T ° C. or higher and 530 ° C. or lower. Start overaging at temperature.
T (° C.) = 500− (t−3) × 30 (1)
Where t: overage treatment time (minutes)
[0019]
Winding temperature: When the winding temperature exceeds 660 ° C., cementite precipitates coarsely in the hot-rolled sheet, so that re-solution of cementite does not proceed during continuous annealing, and as a result, the amount of dissolved C during annealing is equalized. To reduce. This decrease in the amount of solute C reduces the driving force for precipitation of cementite during the overaging treatment, resulting in an increase in the amount of solute C in the annealed sheet at room temperature, and deterioration of aging resistance and ductility. For this reason, the upper limit of coiling temperature was 660 degreeC.
Cold rolling rate: When the cold rolling rate is less than 50%, the carbide in the hot-rolled sheet cannot be pulverized by rolling, and the amount of cementite that does not re-dissolve during annealing is increased. Aging and ductility are reduced. For this reason, the lower limit of the rolling rate was set to 50%.
[0020]
Annealing temperature of continuous annealing: The lower limit of the annealing temperature was set to 700 ° C. in order to complete the recrystallization and allow sufficient grain growth. Further, when the annealing temperature exceeds 800 ° C., the annealing structure becomes a two-phase, and during cooling, the ferrite grain boundary bulges and the γ → α transformation occurs, so that the resulting annealed plate structure becomes mixed and the ductility decreases. For this reason, the upper limit of the annealing temperature was set to 800 ° C.
Cooling rate after continuous annealing: In order to reduce solid solution C effectively during over-aging treatment by sufficiently re-dissolving cementite during annealing and increasing the degree of supersaturation, C re-dissolved during annealing. It is necessary to start the overaging treatment before starting to precipitate. In the present invention, the supersaturation degree during the overaging treatment must be maintained by setting the cooling rate after annealing to 100 ° C./second or more.
[0021]
Overaging treatment start temperature: The overaging treatment start temperature is most important in the present invention. The precipitation of C is promoted by setting the overaging start temperature to T ° C or higher given by the following formula (1). When there is no solid solution B and cementite precipitates at the grain boundary, the diffusion rate of the grain boundary is several orders of magnitude faster than the inside of the grain. The discharge of the solid solution C to the grain boundary is promoted, and the amount of the solid solution C is effectively reduced. However, as in the present invention, cementite in which precipitation at the grain boundary is inhibited by solute B starts to precipitate with BN in the grain as a nucleus. In this case, unless the overaging treatment temperature is sufficiently high, C cannot sufficiently diffuse in the grains, and a large amount of solid solution C remains in the annealed plate, resulting in deterioration of aging resistance and ductility. Since this overaging temperature promotes intragranular diffusion of C, it can be traded off with the overaging treatment time, so the lower limit of the overaging treatment temperature is determined by the overaging treatment time. In the present invention, the lower limit is defined by the following equation (1). However, when the overaging temperature is higher than 530 ° C., sufficient driving force for precipitation of cementite cannot be obtained, and the overaging temperature is increased, so that solid solution C remains. Therefore, the upper limit of the overaging treatment start temperature was set to 530 ° C.
T (° C.) = 500− (t−3) × 30 (1)
t: Overaging treatment time (minutes)
[0022]
Cooling rate during overaging treatment: The cooling rate during overaging treatment is also important in the present invention. As the overaging progresses, the driving force for precipitation of cementite decreases due to a decrease in the amount of dissolved C. For this reason, in order to effectively reduce the solute C, it is necessary to lower the overaging temperature as aging progresses. In the present invention, the lower limit of the cooling rate is 10 ° C./min. Further, when the cooling rate is high, cementite is finely precipitated, so that the aging resistance is improved, but the ductility is lowered. Therefore, in the present invention, the upper limit of the cooling rate during the overaging treatment is set to 30 ° C./min.
[0023]
Overaging treatment time: If the overaging treatment time is less than 3 minutes, cementite cannot be completely precipitated and the aging resistance is not improved, so the lower limit was set to 3 minutes. In addition, when the treatment time exceeds 7 minutes, the line speed becomes slow, and the upper limit is set to 7 minutes because the strip may be necked or broken in the soaking zone maintained at a high temperature.
Rapid quenching stop temperature after annealing and before overaging treatment: The effect of the present invention is promoted by once cooling to T-30 ° C or lower before overaging treatment after annealing and then overaging at T ° C or higher and 530 ° C or lower. . However, cooling to less than 300 ° C. before the overaging treatment after annealing increases the tendency to refine cementite and lowers the ductility. Therefore, the cooling stop temperature is desirably 300 ° C. or higher.
[0024]
In the hot rolling according to the present invention, no problem arises even if rough rolling is continuously performed after rough rolling by joining the rough bars. Further, after rough rolling, there is no problem even if the rough bar is heated for the purpose of temperature adjustment or wound on a coil box. Furthermore, heating of the rough bar and continuous rolling may be combined.
When the slab is hot-rolled, the continuously cast slab may be rolled as it is, or heat retention or heating within 100 minutes may be performed for slab soaking without cooling to room temperature. Furthermore, hot rolling may be performed by omitting rough rolling using a thin slab, and in any case, the effect of the present invention does not change.
[0025]
There is no particular restriction on the conditions for temper rolling, but if the elongation rate exceeds 1.5%, the EL decreases significantly, so that the elongation rate is preferably 1.5% or less.
In addition, the steel used by this invention may use what adjusted the component in any of the converter and the electric furnace, and may use the scrap for the raw material. There is no particular limitation on the impurities mixed when scrap is used.
Further, even if the steel sheet obtained by the present invention is subjected to chemical conversion treatment such as galvanization, tin plating, chromate treatment, zinc phosphate treatment, etc., the effect of the present invention is not affected at all.
[0026]
【Example】
[Example 1]
After melting and casting the steel having the composition shown in Table 1, hot rolling, pickling, cold rolling, continuous annealing and overaging treatment were performed under the conditions shown in Table 2, and then the elongation was 1.0%. Temper rolling was performed. While measuring the aging index of the cold-rolled steel sheet thus obtained, TS and EL were measured by a tensile test (JIS No. 5 test piece), and the aging resistance and ductility of each cold-rolled steel sheet were evaluated. . The results are also shown in Table 2.
In addition, in the measurement of an aging index, it aged by hold | maintaining at 100 degreeC for 1 hour after 8% pre-strain addition. Moreover, the final plate thickness of each cold-rolled steel plate was adjusted by adjusting the hot-rolled plate thickness.
[0027]
In Tables 1 and 2, no. 1-No. No. 5 is an example in which the winding temperature is changed. 1-No. No. 4 (Example of the present invention) has a low aging index and good EL, but the winding temperature is high. In 5 (comparative example), the aging index is high.
No. 6-No. No. 10 is an example in which the annealing temperature was changed. In 6 (comparative example), the aging index is high and the EL is also low. In addition, No. having a high annealing temperature. At 10 (comparative example), the aging index is good, but the EL is remarkably low. In contrast, no. 7-No. 9 (Example of the present invention) is good in both aging index and EL.
[0028]
No. No. 11 (comparative example) has a high aging index because of its low cold rolling rate. No. No. 12 (comparative example) has a high aging index due to a short overaging treatment time, and accordingly, EL is also low. No. In No. 13 (Comparative Example), the overaging treatment time is long and the aging index is high because the cooling rate during the overaging treatment is small. No. 14 (Comparative Example) has a high aging index because the cooling rate after annealing is slow. No. No. 15 (example of the present invention) achieves good EL and aging index at the same time.
No. 16-No. No. 20 is an example in which the overaging treatment temperature was changed. 16 (Comparative Example) has a high aging index and a low EL. No. with high overaging temperature. 20 (comparative example) has a high aging index. In contrast, no. 17-No. 19 (example of the present invention) is good in both aging index and EL.
[0029]
[Table 1]
Figure 0003818024
[0030]
[Table 2]
Figure 0003818024
[0031]
[Example 2]
After melting and casting the steels having the components shown in Table 3, hot rolling (winding temperature 640 ° C.), pickling, cold rolling (cold rolling rate 80%), continuous annealing (conditions shown in Table 4) An annealing temperature of 750 ° C.) and after changing the cooling stop temperature in the rapid cooling after annealing and performing an aging treatment, temper rolling was performed at an elongation rate of 1.0%, and a cold rolled steel sheet having a thickness of 0.8 mm was obtained. Obtained. While measuring the aging index of the cold-rolled steel sheet thus obtained, TS and EL were measured by a tensile test (JIS No. 5 test piece), and the aging resistance and ductility of each cold-rolled steel sheet were evaluated. The results are shown in Table 4.
In addition, in the measurement of an aging index, it aged by hold | maintaining at 100 degreeC for 1 hour after 8% pre-strain addition.
[0032]
No. 1-No. In the present invention example 2, rapid cooling after annealing is stopped in the vicinity of the overaging treatment start temperature. In contrast, no. 3-No. In the inventive example of No. 5, the overaging treatment was started after overcooling by 30 ° C. or more from the overaging treatment start temperature. 1-No. It is lower than 2, and it can be seen that the aging resistance is further improved by overcooling before the overaging treatment.
[0033]
[Table 3]
Figure 0003818024
[0034]
[Table 4]
Figure 0003818024
[0035]
【The invention's effect】
As described above, according to the method of the present invention, a cold-rolled steel sheet having both aging resistance and ductility can be produced from B-added low carbon steel in which B is added in an amount equal to or greater than N.
[Brief description of the drawings]
FIG. 1 is a graph showing the aging index of a cold-rolled steel sheet obtained from a B-added low carbon steel in which B is added in an amount equal to or greater than N in relation to the overaging temperature and the overaging time.

Claims (2)

実質的に、C:0.01〜0.05mass%、Si:0.1mass%以下、Mn:0.5mass%以下、S:0.03mass%以下、P:0.03mass%以下、Al:0.04mass%以下、N:0.004mass%以下、BをNに対して原子比で1以上含有し、残部がFeからなる成分組成の鋼を、熱間圧延後660℃以下で巻き取り、酸洗した後、50%以上の圧延率で冷間圧延し、次いで700℃以上800℃以下の温度で連続焼鈍し、該焼鈍後100℃/秒以上の冷却速度で冷却した後、下記(1)式で示すT℃以上530℃以下の温度で過時効処理を開始し、該過時効処理中は10℃/分以上30℃/分以下の冷却速度で徐冷するとともに、過時効処理時間を3分以上7分以下とすることを特徴とする耐時効性に優れた軟質冷延鋼板の製造方法。
T(℃)=500−(t−3)×30 … (1)
但し t:過時効処理時間(分)
Essentially, C: 0.01-0.05 mass%, Si: 0.1 mass% or less, Mn: 0.5 mass% or less, S: 0.03 mass% or less, P: 0.03 mass% or less, Al: 0 0.04 mass% or less, N: 0.004 mass% or less, B containing 1 or more in atomic ratio with respect to N, and the remainder of the steel composed of Fe is wound up at 660 ° C. or less after hot rolling, and acid After washing, it is cold-rolled at a rolling rate of 50% or higher, then continuously annealed at a temperature of 700 ° C. or higher and 800 ° C. or lower, and after cooling at a cooling rate of 100 ° C./second or higher, the following (1) The overaging treatment is started at a temperature of T ° C. or more and 530 ° C. or less represented by the formula, and during the overaging treatment, it is gradually cooled at a cooling rate of 10 ° C./min to 30 ° C./min, and the overaging treatment time is set to 3 A method for producing a soft cold-rolled steel sheet having excellent aging resistance, characterized by being from 7 minutes to 7 minutes.
T (° C.) = 500− (t−3) × 30 (1)
Where t: overage treatment time (minutes)
実質的に、C:0.01〜0.05mass%、Si:0.1mass%以下、Mn:0.5mass%以下、S:0.03mass%以下、P:0.03mass%以下、Al:0.04mass%以下、N:0.004mass%以下、BをNに対して原子比で1以上含有し、残部がFeからなる成分組成の鋼を、熱間圧延後660℃以下で巻き取り、酸洗した後、50%以上の圧延率で冷間圧延し、次いで700℃以上800℃以下の温度で連続焼鈍し、該焼鈍後100℃/秒以上の冷却速度で、下記(1)式で示す温度T(℃)に対してT−30℃以下まで一旦冷却した後、T℃以上530℃以下の温度で過時効処理を開始し、該過時効処理中は10℃/分以上30℃/分以下の冷却速度で徐冷するとともに、過時効処理時間を3分以上7分以下とすることを特徴とする耐時効性に優れた軟質冷延鋼板の製造方法。
T(℃)=500−(t−3)×30 … (1)
但し t:過時効処理時間(分)
Essentially, C: 0.01-0.05 mass%, Si: 0.1 mass% or less, Mn: 0.5 mass% or less, S: 0.03 mass% or less, P: 0.03 mass% or less, Al: 0 0.04 mass% or less, N: 0.004 mass% or less, B containing 1 or more in atomic ratio with respect to N, and the remainder of the steel composed of Fe is wound up at 660 ° C. or less after hot rolling, and acid After washing, it is cold-rolled at a rolling rate of 50% or higher, and then continuously annealed at a temperature of 700 ° C. or higher and 800 ° C. or lower. After the annealing, it is expressed by the following formula (1) at a cooling rate of 100 ° C./second or higher. After cooling to T-30 ° C. or less with respect to temperature T (° C.), overaging treatment is started at a temperature of T ° C. or more and 530 ° C. or less. During the overaging treatment, 10 ° C./min to 30 ° C./min Slow cooling at the following cooling rate and overaging treatment time of 3 minutes to 7 minutes A method for producing a soft cold-rolled steel sheet with excellent resistance.
T (° C.) = 500− (t−3) × 30 (1)
Where t: overage treatment time (minutes)
JP2000179254A 2000-06-15 2000-06-15 Method for producing soft cold-rolled steel sheet with excellent aging resistance Expired - Fee Related JP3818024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179254A JP3818024B2 (en) 2000-06-15 2000-06-15 Method for producing soft cold-rolled steel sheet with excellent aging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179254A JP3818024B2 (en) 2000-06-15 2000-06-15 Method for producing soft cold-rolled steel sheet with excellent aging resistance

Publications (2)

Publication Number Publication Date
JP2002003947A JP2002003947A (en) 2002-01-09
JP3818024B2 true JP3818024B2 (en) 2006-09-06

Family

ID=18680554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179254A Expired - Fee Related JP3818024B2 (en) 2000-06-15 2000-06-15 Method for producing soft cold-rolled steel sheet with excellent aging resistance

Country Status (1)

Country Link
JP (1) JP3818024B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845694B1 (en) * 2002-10-14 2005-12-30 Usinor METHOD FOR MANUFACTURING COOK-CURABLE STEEL SHEETS, STEEL SHEETS AND PIECES THUS OBTAINED
JP6119478B2 (en) * 2013-07-19 2017-04-26 新日鐵住金株式会社 Hot rolled steel sheet for batch annealing

Also Published As

Publication number Publication date
JP2002003947A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP3152576B2 (en) Method for producing Nb-containing ferrite steel sheet
RU2433192C1 (en) Manufacturing method of cold-rolled strip (versions)
EP0905267B1 (en) Soft cold-rolled steel sheet and method for making the same
JPS5849627B2 (en) Method for producing non-temporal cold-rolled steel sheet
JP3818024B2 (en) Method for producing soft cold-rolled steel sheet with excellent aging resistance
JPH108143A (en) Production of thin steel sheet excellent in workability and hardenability in coating/backing
JP2005179732A (en) Method for producing cold-rolled steel sheet
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JP3339340B2 (en) Manufacturing method of high workability soft cold rolled steel sheet
JP3508491B2 (en) Soft cold rolled steel sheet excellent in microstructure stability and method for producing the same
KR100544617B1 (en) High Strength Cold Rolled Steel Sheet with Excellent Bake Hardenability, and Method for Manufacturing the Steel Sheet
KR100544618B1 (en) High Strength Cold Rolled Steel Sheet with Excellent Strain Aging Resistance at Room Temperature and Bake Hardenability, and Method for Manufacturing the Steel Sheet
JP3762085B2 (en) Manufacturing method of soft cold-rolled steel sheet by direct feed rolling with excellent workability
JP2000212690A (en) High strength hot rolled steel sheet excellent in formability and surface property and its production
JP3111462B2 (en) Manufacturing method of high-strength bake hardenable steel sheet
JP3224732B2 (en) Cold rolled steel sheet having good aging resistance and method for producing the same
JP3704790B2 (en) Cold-rolled steel sheet with good aging resistance
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance
KR20010062900A (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
KR100496532B1 (en) A bake-hardenable cold rolled steel sheet with superior formability, and a method for manufacturing it
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property
JP3111456B2 (en) Manufacturing method of bake hardening ultra deep drawing steel sheet
JPS63171832A (en) Production of cold rolled steel sheet having excellent ordinary temperature non-aging property and baking hardenability
JPH0545652B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees